EP0711236B1 - Process for treating an object, in particular an aeroplane - Google Patents

Process for treating an object, in particular an aeroplane Download PDF

Info

Publication number
EP0711236B1
EP0711236B1 EP94926196A EP94926196A EP0711236B1 EP 0711236 B1 EP0711236 B1 EP 0711236B1 EP 94926196 A EP94926196 A EP 94926196A EP 94926196 A EP94926196 A EP 94926196A EP 0711236 B1 EP0711236 B1 EP 0711236B1
Authority
EP
European Patent Office
Prior art keywords
operating
sequence control
grid
treating device
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94926196A
Other languages
German (de)
French (fr)
Other versions
EP0711236A1 (en
Inventor
Martin-Christoph Wanner
Thomas Fred Herkommer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Putzmeister Concrete Pumps GmbH
Original Assignee
Putzmeister Werk Maschinenfabrik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4330846A external-priority patent/DE4330846C1/en
Application filed by Putzmeister Werk Maschinenfabrik GmbH filed Critical Putzmeister Werk Maschinenfabrik GmbH
Publication of EP0711236A1 publication Critical patent/EP0711236A1/en
Application granted granted Critical
Publication of EP0711236B1 publication Critical patent/EP0711236B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B59/00Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
    • B63B59/06Cleaning devices for hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/30Cleaning by methods involving the use of tools by movement of cleaning members over a surface
    • B08B1/32Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S3/00Vehicle cleaning apparatus not integral with vehicles
    • B60S3/04Vehicle cleaning apparatus not integral with vehicles for exteriors of land vehicles
    • B60S3/06Vehicle cleaning apparatus not integral with vehicles for exteriors of land vehicles with rotary bodies contacting the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/30Cleaning aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33078Error table, interpolate between two stored values to correct error
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37561Move camera until image corresponds to stored image of same workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37563Ccd, tv camera
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39024Calibration of manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40292Manipulator is positioned by a crane to cover a large workpiece, extended range
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40298Manipulator on vehicle, wheels, mobile
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45071Aircraft, airplane, ship cleaning manipulator, paint stripping
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49195Slide, guideway, robot arm deviation

Definitions

  • the invention relates to a method and an arrangement for processing an object, in particular an aircraft, according to the preambles of claims 1 and 19.
  • No. 3,835,498 a device for cleaning aircraft or ships has become known.
  • This device has a plurality of rotatable washing brushes which are arranged on a stationary crane and by means of which the surface of the aircraft can be cleaned.
  • this device requires a rotatable platform for the aircraft so that it can be rotated in front of the washing crane.
  • the washing brushes are either stationary or can be moved along defined directions. It is therefore necessary for the aircraft to be brought up to the washing device and for the aircraft and the washing device to be in a specific position relative to one another. Positioning errors are almost inevitable.
  • DE-A-2 701 823 describes a processing device with an articulated arm for cleaning large-volume bodies, in particular aircraft, which is moved along the large object using a laser guide beam control.
  • the well-known large manipulator has one of several pivotable at its ends Booms composed of an articulated mast, the basic boom of which is rotatably mounted about a vertical axis on a bearing block arranged on a motor-driven chassis, and the final boom of which has a multi-joint which can be fitted with the brush head.
  • the brush head it is also known to equip the brush head with sensors which enable the brush head to be regulated in a controllable manner with respect to the surface to be processed in accordance with a sensor signal which can be tapped off during the cleaning process on the sensor.
  • the large manipulator must be positioned precisely in relation to the aircraft.
  • the invention has for its object to further develop a method and an arrangement of the type mentioned in such a way that an at least almost complete compensation of positioning errors occurring in the installation of the processing device in front of the object to be processed is possible in a particularly simple manner is.
  • the measures according to the invention enable correction of positioning errors of the processing device relative to the object to be processed in a particularly advantageous manner.
  • a sequence control of a grid point of the storage field which is closest to the current position of the processing device it is achieved in a particularly simple manner that the previously provided, complex and therefore complex on-line Monitoring of the processing unit can generally be dispensed with, in each case by one optimal reference point-related sequence control is replaced by a sequence control, which was advantageously generated offline and stored in a memory for a raster point of the storage field closest to the current position of the processing device.
  • An advantageous development of the invention provides that at least one raster point of the storage field is assigned a sequence control which can be varied as a function of the relative distance between the current position of the processing device and this raster point of the distance area.
  • This measure also makes it possible to reduce the number of grid points required in the parking area, since this on-line correction of the positioning error of the processing device advantageously enables larger distances between the individual grid points, that is to say with a wider-meshed grid to work, the number of sequence controls to be created for a storage field being reduced in an advantageous manner.
  • the proposed online correction of the position error also makes it possible to individually compensate for any tolerances or deviations of the object to be processed from its dimensions which are provided as standard and are predetermined for the creation of the sequence controls.
  • a further advantageous development of the invention provides that the sequence control of at least one raster point of the storage field is dependent on a part that depends only on the relative position of the raster point to the predefined reference point and on a part that depends essentially only on the relative distance between the current position of the processing device and this raster point.
  • the at least one processing unit of the processing device is brought into a position relative to the object to be processed by the off-line part of the control, in which, even in the worst case, the relative distance between Raster point and current position of the processing device no collision between processing unit and object can lead to damage or impairment of the object to be processed.
  • the processing device is formed by a large manipulator arranged on a chassis, which is moved to a predetermined position relative to the large object and is parked there and in which a tool, which is preferably designed as a rotating brush head, by means of a plurality of rotating and / or thrust joints which can be pivoted or displaced with respect to one another and, if appropriate, a multi-joint which is arranged on the final boom and is arranged on the chassis and is arranged on the articulated mast.
  • a tool which is preferably designed as a rotating brush head
  • the chassis is positioned within the limited two-dimensional parking space at a distance from the large object to be processed, and the joints of the articulated mast and / or the multi-joint are controlled in the course of the surface processing in accordance with a sequence of predetermined joint coordinate sets which correspond to the sequence control and which are assigned to the current position of the chassis, and the tool is moved along a predetermined machining path over the object surface.
  • a preferred embodiment of the invention provides that the parking area is subdivided by a limited two-dimensional distance grid, that for each grid point of the distance grid, a sequence of joint coordinate sets defining support points of a machining path of the tool is specified and stored as a joint coordinate file in a database of a data processing system, and that the position-related joint coordinate sets are calculated by interpolation from the joint coordinate files stored in the database in accordance with the current position of the chassis within the distance grid and saved as a work file before the surface processing is triggered using the joint coordinate sets read from the work file and, if appropriate, additional movement-related parameters.
  • the joint coordinate sets read from the work file can be tracked in accordance with sensor signals, which are preferably queried at each base point of the machining path.
  • the friction or torsional resistance acting on the tool or the contact pressure can be measured and tapped as a sensor signal for tracking the joint coordinates.
  • other physical groups for example the distance of the tool from the object or a variable inclination of the large manipulator resulting from deformations of the substructure, can also be measured and tapped as a sensor signal. Too To avoid undesired collisions when tracking the joint coordinates, it is expedient to check the tracked joint coordinate sets by comparing them with joint coordinates stored with adjacent grid points of the distance grid, taking into account predetermined tolerance limits with regard to freedom from collisions.
  • the large manipulator has an articulated mast consisting of a plurality of cantilevers which can be pivoted relative to one another on rotary joints by means of hydraulic or motor drive units and is mounted on a pivot bracket of a motor-driven chassis with its basic arm rotatable about a vertical axis and one on the final arm of the articulated mast or at the free end of a multi-joint arranged on the end boom, having several push and / or swivel joints and preferably designed as a rotating brush head
  • an optoelectronic distance image camera that can be aligned with the large object to be machined is arranged on the chassis and a computer-aided evaluation electronics acted upon with the distance image signals of the distance image camera as a starting and positioning aid and for calibration Solution of the large manipulator is provided relative to the large object to be processed.
  • the distance camera is expediently rigid or movable in the vicinity of the pivot bracket
  • the Evaluation electronics In order to establish an association between the coordinates determined by the distance image camera and the tool coordinates of the articulated mast, the Evaluation electronics according to the invention a program part for normalizing the joint coordinates of the articulated mast according to the tool coordinates measured directly and via the electron camera relative to a stationary, preferably cubic calibration body. With this normalization, position errors of the large robot are determined due to deformation of the boom, zero position offset of the angle and displacement transducers and twists in the substructure of the articulated boom and the chassis.
  • the evaluation electronics also expediently have a memory arrangement for storing distance image data of striking sections of the large object from the perspective of a predetermined storage field, and a software routine for comparing the large image manipulator positioned in front of the large mast in front of the large object by the distance image camera and the stored distance image data and coordinate-based assignment of the distance image camera Large manipulator position within the specified limited parking space.
  • the parking space is advantageously subdivided by a two-dimensional distance grid, with each grid point of the distance grid being assigned an articulated coordinate file or a movement program within a database, in which a sequence of articulated coordinate sets of the articulated mast is stored along a processing path to be followed by the tool on the object surface.
  • each joint of the articulated mast and possibly the multi-joint is assigned a coordinate pickup, preferably in the form of an angle or displacement pickup, at the output of which the relevant joint coordinate can be tapped.
  • the evaluation electronics advantageously have a program for calculating and storing a sequence of position-related joint coordinate sets intended for the machining process by interpolation from the stored joint coordinate sets in accordance with the deviation of the current position of the large manipulator from the closest grid points within the specified distance grid.
  • the evaluation electronics have a computer-aided circuit part for controlling the drive units of the articulated boom joints in accordance with the deviation of the joint coordinates instantly tapped at the coordinate pickups from the associated values of the stored joint coordinate sets.
  • the tool has a sensor which responds to the distance from the surface to be machined, its machining resistance or its depth of penetration into the surface to be machined, correction signals for tracking the drive units of the articulated boom joints being derivable from the sensor signal.
  • At least one tilt jack is assigned to the swivel and / or tilt axes of the distance camera, from whose output signals correction signals for tracking the drive units can be derived.
  • the mobile large-scale manipulator 6 shown in FIG. 1 represents a preferred embodiment of a processing device 2 and essentially consists of an articulated mast 13 mounted on a pivot bracket 9 of a motor-driven chassis 8 with its base arm 12 rotatable about a vertical axis, one on the end arm 14 of the articulated mast 13 arranged multi-joint 16 and a brush head 18 detachably attached to the free end of the multi-joint as processing unit 4.
  • the five arms 12, 12 ', 12'',12''' and 14 of the articulated mast 13 are at their mutually facing ends on joints 20, 22, 24, 26 connected to one another to be pivotable to a limited extent about horizontal axes.
  • the pivoting takes place by means of hydraulic cylinders 27, which are arranged at suitable points between the arms.
  • the basic boom 12 is pivotally mounted on a pivot bearing 9 on a horizontal bearing 28 by means of a hydraulic drive 30.
  • This arrangement makes it possible to use the brush head 18 to traverse any surface contours within the plane spanned by the cantilevers.
  • With the aid of the motor-adjustable multi-joint 16 it is also possible to move the brush head 18 in six degrees of freedom in relation to the end arm 14 by several axes of rotation and pushing.
  • An optoelectronic distance camera 40 in the form of a 3-D laser scanner is arranged in the area of the pivot bracket 9, which detects a three-dimensional space within the viewing window 42 and digitizes the distance from a measurement object 44.
  • the distance image camera 40 is arranged at a sufficient height above the chassis 8 in order to be able to measure significant points of the measurement object 44 from the viewing window 42.
  • the distance image camera 40 works with a laser beam which is passed through at a certain clock frequency over the opening angle of the viewing window 42.
  • the evaluation of the distance signals, which result from a time difference measurement shows whether and at what distance a reflecting surface is present.
  • a normalization of the manipulator with respect to the distance image camera 40 is necessary.
  • the zero positions of the manipulator axes 20, 22, 24, 26, 28 are determined. These zero positions are determined via a closed kinematic chain, which uses a measuring cube to relate the measurement results of the distance image camera to the deflections of the articulated mast.
  • the measuring cube is oriented in such a way that a corner is aimed at by the distance image camera 40 and this corner is used as a reference point for the positioning of the end arm 14 of the articulated mast 13.
  • the angular positions of the joints are determined in a plurality of articulated mast configurations.
  • a possibly virtual parking area 46 with a diameter of approximately 4 m is defined in each washing position, which in turn is divided into a rectangular grid with a grid spacing between the individual grid points 48 and 40 cm ( Figure 3).
  • the grid spacing need not be more precise than the accuracy of the object to be measured.
  • the image data generated by the distance image camera 40 are evaluated in an evaluation circuit and an on-board computer.
  • a storage medium of the on-board computer either the complete aircraft 44 or a significant section of the aircraft 44 relating to the viewing window 42 of the distance image camera 40 is stored as a reference image for each aircraft type to be processed and for each parking area 46 to be approached.
  • a distance image of the aircraft section in question is continuously generated by the distance image camera 40 when the parking area 46 is started and compared with the stored reference image. From this, direction and position data can be derived, which give the driver instructions for the direction of travel and the distance. In principle, the resulting deviation signals can also be directly converted into driving and steering signals for the chassis 8.
  • the aim of the traction help is to position the large manipulator 6 on the parking area 46 within the reach of the aircraft 44 and to orient it with regard to the heading angle.
  • the chassis 8 is supported on the ground by swiveling and lowering the support legs 50 and thereby positioned relative to the aircraft 44.
  • the grid field 46 defines fictitious locations 1 to 109 (FIG. 3), for each of which a complete washing program created offline (ie on an external computer) is stored.
  • a large number of data records which define the angular positions of each joint are stored as wash program data (joint coordinate sets).
  • Several sets of joint coordinates of this type form a machining path 52 along the aircraft surface, which define the geometric location of the brush head 18 during the washing process.
  • the washing program is checked on the external computer in such a way that there can be no collision with object 1 and with any existing docks and hall parts.
  • the distance between the individual coordinate bases on the aircraft surface is on average 30 cm. During the measurement, the exact position of the distance image camera 40 with respect to the aircraft 44 is determined, and thus the exact location within the grid field 46.
  • the joint coordinates are then converted to the current position P by interpolation.
  • This data is stored in a file in the working memory of the manipulator control as the current washing program before the washing program is triggered via the manipulator control.
  • the collision space of the individual joints is also determined by the four neighboring points 48 within the grid field 46 and the permitted tolerances of, for example, +/- 50 cm.
  • the method provides that the program specified for reference point A is replaced by a program which has been stored for raster point 11a closest to current position P.
  • the program closest to the current position P is used, whereby the advantage is achieved that an on-line adaptation of the program to the still existing deviation is not necessary, whereby a significant reduction in the set-up time is achieved.
  • the variant of the method described above allows a positioning error to be corrected when the large manipulator 6 is set up relative to the object 1 to be processed, except for a residual position error which is less than or equal to half the distance between two diagonally opposite raster points 11 of the storage field 46. Such accuracy is sufficient for a variety of applications. It goes without saying here that this residual position error can be reduced even further by using a more closely meshed grid, that is to say a grid with a reduced distance between two grid points 11.
  • the articulated mast is first unfolded using a folding program.
  • target values are obtained which are approached by the washing brush, the actual and target value comparison being carried out on each individual joint by means of assigned coordinate transmitters.
  • the manipulator 6 In order to achieve the required washing result, the manipulator 6 must be moved with an accuracy of approximately 10 mm with regard to the prescribed penetration depth of the washing brush into the surface. This can only be achieved by an additional sensor system which compensates for the errors mentioned by measuring the contact pressure and by delivering the auxiliary axes of the multi-joint 16.
  • the auxiliary axes are pivot axes that compensate for orientation errors of the brush head 18.
  • the distance image camera 40 run during a washing program and to use it for collision monitoring.
  • the distance image camera 40 can measure individual joints and the aircraft 44 and control them for collisions. This could be important if, for example, a transducer fails at one of the joints and supplies incorrect measured values that are not recognized by the operator and the computer.
  • the invention relates to a method and an arrangement, in particular for the surface cleaning of aircraft 44, in which a large manipulator 6 arranged on a chassis 8 is moved into a predetermined position within the range of the aircraft 44 and is parked there and in which a rotating brush head 18 by means of a multi-joint 16 consisting of a plurality of arms 12, 12 ′, 12 ′′, 12 ′′, 14 that can be pivoted or displaced relative to one another on rotary and / or sliding joints, and a multi-joint 16 arranged on the end arm 14 on the chassis 8 arranged articulated mast 13 is moved over the object surface.
  • the large manipulator 6 is stationed within a limited two-dimensional, possibly virtual, parking area 46 at a distance from the aircraft 44, while the joints 20 to 28 of the articulated mast 13 and / or the multi-joint 16 can be controlled in the course of the surface machining in accordance with the measurement of a sequence of joint coordinate sets assigned to the current position of the large manipulator 6 within the storage field 46 and the brush head 18 is moved along a predetermined machining path over the object surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Manipulator (AREA)

Abstract

A process and arrangement are disclosed for cleaning the surface of aeroplanes (44). A large manipulator arranged on a truck (8) is moved towards the aeroplane (44) up to a predetermined position within its range of action and is parked in that position. A rotary brush-bearing head (18) is moved over the surface of the object by means of an articulated mast (13) arranged on the truck (10) and constituted of several extension arms (12, 12', 12', 12''', 14) that may swivel or slide with respect to each other at turning knuckles and/or prismatic joints and of a multiple joint (16) arranged at the last extension arm (14). In order to carry out a washing process in a reliable manner, without the risk of collisions even when the large manipulator is not accurately positioned in front of the aeroplane (44), the large manipulator is parked within a limited two-dimensional parking field (46) spaced apart from the aeroplane (44), while the joints (20 to 28) of the articulated mast (13) and/or the multiple joint (16) are controlled during the surface treatment according to a series of predetermined sets of joint co-ordinates associated to the actual position of the large manipulator within the parking field (46), and the brush-bearing head (18) is moved along a predetermined path of operation over the surface of the object.

Description

Die Erfindung betrifft ein Verfahren und eine Anordnung zur Bearbeitung eines Objekts, insbesondere eines Flugzeugs, gemäß den Oberbegriffen der Ansprüche 1 und 19.The invention relates to a method and an arrangement for processing an object, in particular an aircraft, according to the preambles of claims 1 and 19.

Ein derartiges Verfahren ist der EP-A-0 341 134 zu entnehmen. Eine derartige Anordnung ist durch das Dokument DORNIER POST 2/93, 30. Juni 1993, Seiten 29-30, "Großes Anwendungsgebiet für Entfernungsbildkamera" bekannt.Such a method can be found in EP-A-0 341 134. Such an arrangement is known from the document DORNIER POST 2/93, June 30, 1993, pages 29-30, "Large Area of Application for Distance Camera".

Mit der US 3,835,498 ist eine Vorrichtung zum Reinigen von Flugzeugen oder Schiffen bekannt geworden. Diese Vorrichtung weist mehrere an einem ortsfesten Kran angeordnete drehbare Waschbürsten auf, mit denen die Oberfläche des Flugzeugs gereinigt werden kann. Bei dieser Vorrichtung bedarf es jedoch einer drehbaren Plattform für das Flugzeug, so daß dieses vor dem Waschkran gedreht werden kann. Die Waschbürsten sind entweder ortsfest oder sind entlang definierter Richtungen beweglich. Somit es es erforderlich, daß das Flugzeug an die Waschvorrichtung herangeführt werden muß und daß das Flugzeug und die Waschvorrichtung eine bestimmte Relativlage zueinander einnehmen müssen. Positionierungsfehler sind nahezu unvermeidbar.No. 3,835,498 a device for cleaning aircraft or ships has become known. This device has a plurality of rotatable washing brushes which are arranged on a stationary crane and by means of which the surface of the aircraft can be cleaned. However, this device requires a rotatable platform for the aircraft so that it can be rotated in front of the washing crane. The washing brushes are either stationary or can be moved along defined directions. It is therefore necessary for the aircraft to be brought up to the washing device and for the aircraft and the washing device to be in a specific position relative to one another. Positioning errors are almost inevitable.

In der DE-A-2 701 823 ist ein Bearbeitungsgerät mit einem Gelenkarm zur Reinigung großvolumiger Körper, insbesondere von Flugzeugen, beschrieben, das unter Verwendung einer Laser-Leitstrahlsteuerung an dem Großobjekt entlang verfahren wird.DE-A-2 701 823 describes a processing device with an articulated arm for cleaning large-volume bodies, in particular aircraft, which is moved along the large object using a laser guide beam control.

Aus der DE-A-4035519 ist es bereits bekannt, einen Großmanipulator mit einem fernsteuerbaren Bürstenkopf auszustatten. Der bekannte Großmanipulator weist einen aus mehreren an ihren Enden gegeneinander verschwenkbaren Auslegern zusammengesetzten Knickmast auf, dessen Grundausleger an einem auf einem motorgetriebenen Fahrgestell angeordneten Lagerbock um eine vertikale Achse drehbar gelagert ist und dessen Endausleger ein mit dem Bürstenkopf bestückbares Multigelenk aufweist. Aus dieser Druckschrift ist es auch bekannt, den Bürstenkopf mit Sensoren auszustatten, die eine regelbare Nachführung des Bürstenkopfes gegenüber der zu bearbeitenden Oberfläche nach Maßgabe eines beim Reinigungsvorgang am Sensor auftretenden, abgreifbaren Sensorsignals ermöglichen. Auch hier muß der Großmanipulator positionsgenau zum Flugzeug stehen.From DE-A-4035519 it is already known to equip a large manipulator with a remotely controllable brush head. The well-known large manipulator has one of several pivotable at its ends Booms composed of an articulated mast, the basic boom of which is rotatably mounted about a vertical axis on a bearing block arranged on a motor-driven chassis, and the final boom of which has a multi-joint which can be fitted with the brush head. From this document it is also known to equip the brush head with sensors which enable the brush head to be regulated in a controllable manner with respect to the surface to be processed in accordance with a sensor signal which can be tapped off during the cleaning process on the sensor. Here, too, the large manipulator must be positioned precisely in relation to the aircraft.

Ausgehend von der US 3,835,498 liegt der Erfindung die Aufgabe zugrunde, ein Verfahren und eine Anordnung der eingangs genannten Art derart weiterzuentwickeln, daß in besonders einfacher Art und Weise ein wenigstens nahezu vollständiger Ausgleich von bei der Aufstellung des Bearbeitungsgeräts vor dem zu bearbeitenden Objekt auftretenden Positionierungsfehlern möglich ist.Based on US 3,835,498, the invention has for its object to further develop a method and an arrangement of the type mentioned in such a way that an at least almost complete compensation of positioning errors occurring in the installation of the processing device in front of the object to be processed is possible in a particularly simple manner is.

Diese Aufgabe wird erfindungsgemäß durch das Verfahren gemäß Anspruch 1 und die Anordnung gemäß Anspruch 19 gelöst. Weiterentwicklungen ergeben sich aus den Unteransprüchen.This object is achieved by the method according to claim 1 and the arrangement according to claim 19. Further developments result from the subclaims.

Durch die erfindungsgemäßen Maßnahmen wird in besonders vorteilhafter Art und Weise eine Korrektur von Positionierungsfehlern des Bearbeitungsgeräts relativ zu dem zu bearbeitenden Objekt ermöglicht. Durch den vorgesehenen Austausch der auf den vordefinierten Referenzpunkt bezogenen Ablaufsteuerung durch eine Ablaufsteuerung eines Rasterpunktes des Abstellfelds, welcher der aktuellen Position des Bearbeitungsgeräts am nächsten liegt, wird in besonders einfacher Art und Weise erreicht, daß die bisher vorgesehene, komplexe und daher aufwendige on-line-Überwachung der Bearbeitungseinheit im allgemeinen entfallen kann, indem jeweils eine auf den optimalen Bezugspunkt bezogene Ablaufsteuerung durch eine Ablaufsteuerung ersetzt wird, die für einen der aktuellen Position des Bearbeitungsgeräts am nächsten liegenden Rasterpunkt des Abstellfelds in vorteilhafter Art und Weise off-line erzeugt und in einem Speicher abgelegt wurde.The measures according to the invention enable correction of positioning errors of the processing device relative to the object to be processed in a particularly advantageous manner. By the intended replacement of the sequence control related to the predefined reference point by a sequence control of a grid point of the storage field which is closest to the current position of the processing device, it is achieved in a particularly simple manner that the previously provided, complex and therefore complex on-line Monitoring of the processing unit can generally be dispensed with, in each case by one optimal reference point-related sequence control is replaced by a sequence control, which was advantageously generated offline and stored in a memory for a raster point of the storage field closest to the current position of the processing device.

Eine vorteilhafte Weiterbildung der Erfindung sieht vor, daß mindestens einem Rasterpunkt des Abstellfeldes eine Ablaufsteuerung zugeordnet ist, die in Abhängigkeit des Relativabstandes zwischen der aktuellen Position des Bearbeitungsgeräts und diesem Rasterpunkt des Abstandsbereichs variierbar ist. Durch diese Maßnahme ist es auch möglich, die Anzahl der erforderlichen Rasterpunkte des Abstellfeldes zu verringern, da diese on-line-Korrektur des Positionierungsfehlers des Bearbeitungsgeräts es in vorteilhafter Art und Weise ermöglicht, mit größeren Abständen zwischen den einzelnen Rasterpunkten, also mit einem weitmaschigerem Raster, zu arbeiten, wobei in vorteilhafter Art und Weise die Anzahl der für ein Abstellfeld zu erstellenden Ablaufsteuerungen reduziert wird. Durch die vorgesehene on-line-Korrektur des Positionsfehlers ist es außerdem möglich, etwaige Toleranzen oder Abweichungen des zu bearbeitenden Objekts von seinen standardmäßig vorgesehenen und für die Erstellung der Ablaufsteuerungen vorgegebenen Dimensionen individuell zu kompensieren.An advantageous development of the invention provides that at least one raster point of the storage field is assigned a sequence control which can be varied as a function of the relative distance between the current position of the processing device and this raster point of the distance area. This measure also makes it possible to reduce the number of grid points required in the parking area, since this on-line correction of the positioning error of the processing device advantageously enables larger distances between the individual grid points, that is to say with a wider-meshed grid to work, the number of sequence controls to be created for a storage field being reduced in an advantageous manner. The proposed online correction of the position error also makes it possible to individually compensate for any tolerances or deviations of the object to be processed from its dimensions which are provided as standard and are predetermined for the creation of the sequence controls.

Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, daß die Ablaufsteuerung mindestens eines Rasterpunktes des Abstellfelds in einen nur von der Relativposition des Rasterpunktes zum vordefinierten Referenzpunkt abhängigen Teil und in einen im wesentlichen nur vom Relativabstand zwischen der aktuellen Position des Bearbeitungsgeräts und diesem Rasterpunkt abhängig ist. Durch diese Maßnahmen wird in vorteilhafter Art und Weise erreicht, daß die zwischen dem Erreichen der aktuellen Position des Bearbeitungsgeräts und dem Beginn des Bearbeitungsvorgangs verstreichende Zeit minimiert werden kann, da der nur vom Rasterpunkt abhängige, off-line erstellte Teil der den Bearbeitungsvorgang kontrollierenden Ablaufsteuerung bereits durchgeführt werden kann, während die vom Relativabstand abhängigen Bewegungsabläufe des Bearbeitungsvorgangs wäjremddessem on-line bestimmt werden.A further advantageous development of the invention provides that the sequence control of at least one raster point of the storage field is dependent on a part that depends only on the relative position of the raster point to the predefined reference point and on a part that depends essentially only on the relative distance between the current position of the processing device and this raster point. These measures are advantageous and In this way, the time that elapses between reaching the current position of the processing device and the start of the processing operation can be minimized, since the part of the sequence control that controls the processing operation, which is only dependent on the grid point, can already be carried out while that of the relative distance dependent movements of the machining process can be determined on-line.

Gemäß einer weiteren vorteilhaften Weiterbildung der Erfindung kann daher vorzugsweise vorgesehen sein, daß die mindestens eine Bearbeitungseinheit des Bearbeitungsgeräts durch den off-line erstellten Teil der Steuerung in eine Position relativ zu dem zu bearbeitenden Objekt gebracht wird, in der auch im ungünstigsten Fall des Relativabstandes zwischen Rasterpunkt und aktueller Position des Bearbeitungsgeräts keine zu einer Beschädigung oder Beeinträchtigung des zu bearbeitenden Objekts führende Kollision zwischen Bearbeitungseinheit und Objekt auftreten kann.According to a further advantageous development of the invention, it can therefore preferably be provided that the at least one processing unit of the processing device is brought into a position relative to the object to be processed by the off-line part of the control, in which, even in the worst case, the relative distance between Raster point and current position of the processing device no collision between processing unit and object can lead to damage or impairment of the object to be processed.

Bei einem bevorzugten, nachfolgend näher beschriebenen Ausführungsbeispiel wird das Bearbeitungsgerät von einem auf einem Fahrgestell angeordneten Großmanipulator gebildet, der in eine vorgegebene Position zum Großobjekt verfahren und dort abgestellt wird und bei welchem ein vorzugsweise als rotierender Bürstenkopf ausgebildetes Werkzeug mittels eines aus mehreren, an Dreh- und/oder Schubgelenken gegeneinander verschwenk- oder verschiebbaren Auslegern und gegebenenfalls einem am Endausleger angeordneten Multigelenk bestehenden, auf dem Fahrgestell angeordneten Knickmasts über die Objektoberfläche bewegt wird.In a preferred exemplary embodiment, described in more detail below, the processing device is formed by a large manipulator arranged on a chassis, which is moved to a predetermined position relative to the large object and is parked there and in which a tool, which is preferably designed as a rotating brush head, by means of a plurality of rotating and / or thrust joints which can be pivoted or displaced with respect to one another and, if appropriate, a multi-joint which is arranged on the final boom and is arranged on the chassis and is arranged on the articulated mast.

Das Fahrgestell wird innerhalb des begrenzten zweidimensionalen Abstellfeldes im Abstand von dem zu bearbeitenden Großobjekt stationiert, und die Gelenke des Knickmasts und/oder des Multigelenks werden im Zuge der Oberflächenbearbeitung nach Maßgabe einer der aktuellen Position des Fahrgestells innerhalb des Abstellfeldes zugeordneten Folge von vorgegebenen Gelenkkoordinatensätzen, die der Ablaufsteuerung entsprechen, angesteuert, und das Werkzeug wird dabei entlang einem vorgegebenen Bearbeitungsweg über die Objektoberfläche bewegt.The chassis is positioned within the limited two-dimensional parking space at a distance from the large object to be processed, and the joints of the articulated mast and / or the multi-joint are controlled in the course of the surface processing in accordance with a sequence of predetermined joint coordinate sets which correspond to the sequence control and which are assigned to the current position of the chassis, and the tool is moved along a predetermined machining path over the object surface.

Eine bevorzugte Ausgestaltung der Erfindung sieht dabei vor, daß das Abstellfeld durch ein begrenztes zweidimensionales Entfernungsraster unterteilt wird, daß zu jedem Rasterpunkt des Entfernungsrasters eine Folge von Stützpunkten eines Bearbeitungswegs des Werkzeugs definierenden Gelenkkoordinatensätzen vorgegeben und als Gelenkkoordinatendatei in einer Datenbank einer Datenverarbeitungsanlage abgespeichert wird, und daß die positionsbezogenen Gelenkkoordinatensätze durch Interpolation aus den in der Datenbank abgespeicherten Gelenkkoordinatendateien nach Maßgabe der aktuellen Position des Fahrgestells innerhalb des Entfernungsrasters berechnet und als Arbeitsdatei abgespeichert werden, bevor die Oberflächenverarbeitung unter Verwendung der aus der Arbeitsdatei ausgelesenen Gelenkkoordinatensätze und gegebenenfalls zusätzlicher bewegungsbezogener Parameter ausgelöst wird. Die aus der Arbeitsdatei ausgelesenen Gelenkkoordinatensätze können nach Maßgabe von vorzugsweise an jedem Stützpunkt des Bearbeitungsweges abgefragten Sensorsignalen nachgeführt werden. Zu diesem Zweck kann beispielsweise der an dem Werkzeug angreifende Reibungs- oder Torsionswiderstand oder der Anpreßdruck gemessen und als Sensorsignal zur Nachführung der Gelenkkoordinaten abgegriffen werden. Entsprechend können auch andere pyhsikalische Gröpen, z.B. der Abstand des Werkzeugs vom Objekt oder eine sich aufgrund von Deformationen des Unterbaus ergebende variable Neigung des Großmanipulators, gemessen und als Sensorsignal abgegriffen werden. Um auch beim Nachführen der Gelenkkoordinaten unerwünschte Kollisionen zu vermeiden, ist es zweckmäßig, die nachgeführten Gelenkkoordinatensätze durch Vergleich mit zu benachbarten Rasterpunkten des Entfernungsrasters abgespeicherten Gelenkkoordinaten unter Berücksichtigung vorgegebener Toleranzgrenzen hinsichtlich Kollisionsfreiheit zu überprüfen.A preferred embodiment of the invention provides that the parking area is subdivided by a limited two-dimensional distance grid, that for each grid point of the distance grid, a sequence of joint coordinate sets defining support points of a machining path of the tool is specified and stored as a joint coordinate file in a database of a data processing system, and that the position-related joint coordinate sets are calculated by interpolation from the joint coordinate files stored in the database in accordance with the current position of the chassis within the distance grid and saved as a work file before the surface processing is triggered using the joint coordinate sets read from the work file and, if appropriate, additional movement-related parameters. The joint coordinate sets read from the work file can be tracked in accordance with sensor signals, which are preferably queried at each base point of the machining path. For this purpose, for example, the friction or torsional resistance acting on the tool or the contact pressure can be measured and tapped as a sensor signal for tracking the joint coordinates. Correspondingly, other physical groups, for example the distance of the tool from the object or a variable inclination of the large manipulator resulting from deformations of the substructure, can also be measured and tapped as a sensor signal. Too To avoid undesired collisions when tracking the joint coordinates, it is expedient to check the tracked joint coordinate sets by comparing them with joint coordinates stored with adjacent grid points of the distance grid, taking into account predetermined tolerance limits with regard to freedom from collisions.

Bei einer bevorzugten Anordnung zur Durchführung des erfindungsgemäßen Verfahrens, bei welcher der Großmanipulator einen aus mehreren an Drehgelenken mittels hydraulischer oder motorischer Antriebsaggregate gegeneinander verschwenkbaren Auslegern bestehenden, auf einem Drehlagerbock eines motorgetriebenen Fahrgestells mit seinem Grundausleger um eine Hochachse drehbar gelagerten Knickmast und ein am Endausleger des Knickmasts oder am freien Ende eines am Endausleger aungeordneten, mehrere Schub- und/oder Drehgelenke aufweisenden Multigelenks angeordnetes, vorzugsweise als rotierender Bürstenkopf ausgebildetes Werkzeug aufweist, wird zur Lösung der vorstehend angegebenen Aufgabe vorgeschlagen, daß am Fahrgestell eine gegen das zu bearbeitende Großobjekt ausrichtbare optoelekronische Entfernungsbildkamera angeordnet und eine mit den Entfernungsbildsignalen der Entfernungsbildkamera beaufschlagte, rechnergestützte Auswerteelektronik als Anfahr- und Positionierhilfe und zur Einmessung des Großmanipulators relativ zu dem zu bearbeitenden Großobjekt vorgesehen ist. Die Entfernungsbildkamera ist dabei zweckmäßig in der Nähe des Drehlagerbocks starr oder beweglich, insbesondere um eine Hochachse schwenkbar und/oder um mindestens eine Horizontalachse neigbar am Großmanipulator angeordnet.In a preferred arrangement for carrying out the method according to the invention, in which the large manipulator has an articulated mast consisting of a plurality of cantilevers which can be pivoted relative to one another on rotary joints by means of hydraulic or motor drive units and is mounted on a pivot bracket of a motor-driven chassis with its basic arm rotatable about a vertical axis and one on the final arm of the articulated mast or at the free end of a multi-joint arranged on the end boom, having several push and / or swivel joints and preferably designed as a rotating brush head, it is proposed to solve the above-mentioned problem that an optoelectronic distance image camera that can be aligned with the large object to be machined is arranged on the chassis and a computer-aided evaluation electronics acted upon with the distance image signals of the distance image camera as a starting and positioning aid and for calibration Solution of the large manipulator is provided relative to the large object to be processed. The distance camera is expediently rigid or movable in the vicinity of the pivot bracket, in particular pivotable about a vertical axis and / or tiltable on the large manipulator about at least one horizontal axis.

Um eine Zuordnung zwischen den durch die Entfernungsbildkamera ermittelten Koordinaten und den Werkzeugkoordinaten des Knickmastes herzustellen, weist die Auswerteelektronik gemäß der Erfindung ein Programmteil zur Normalisierung der Gelenkkoordinaten des Knickmasts nach Maßgabe der unmittelbar und über die Elektronenbildkamera relativ zu einem ortsfesten, vorzugsweise kubischen Eichkörper gemessenen Werkzeugkoordinaten auf. Bei dieser Normalisierung werden Positionsfehler des Großroboters bedingt durch Deformationen der Ausleger, Nullagen-Offset der Winkel- und Wegaufnehmer und Verwindungen im Unterbau des Knickauslegers und des Fahrgestells ermittelt.In order to establish an association between the coordinates determined by the distance image camera and the tool coordinates of the articulated mast, the Evaluation electronics according to the invention a program part for normalizing the joint coordinates of the articulated mast according to the tool coordinates measured directly and via the electron camera relative to a stationary, preferably cubic calibration body. With this normalization, position errors of the large robot are determined due to deformation of the boom, zero position offset of the angle and displacement transducers and twists in the substructure of the articulated boom and the chassis.

Dei Auswerteelektronik weist ferner zweckmäßig eine Speicheranordnung zur Abspeicherung von Entfernungsbilddaten markanter Ausschnitte des Großobjekts aus der Sicht eines vorgegebenen Abstellfeldes sowie eine Softwareroutine zum Vergleich der bei in Reichweite des Knickmasts vor dem Großobjekt positionierten Großmanipulator von der Entfernungsbildkamera aufgenommenen Entfernungsbilddaten mit den gespeicherten Entfernungsbilddaten und koordinatenmäßiger Zuordnung der Großmanipulatorposition innerhalb des vorgebenen begrenzten Abstellfeldes auf. Vorteilhafterweise ist das Abstellfeld durch ein zweidimensionales Entfernungsraster unterteilt, wobei jedem Rasterpunkt des Entfernungsrasters eine Gelenkkoordinatendatei bzw. ein Bewegungsprogramm innerhabl einer Datenbank zugeordnet ist, worin eine Folge von Gelenkkoordinatensätzen des Knickmasts entlang einem vom Werkzeug auf der Objektoberfläche zu durchlaufenden Bearbeitungsweg abgespeichert ist.The evaluation electronics also expediently have a memory arrangement for storing distance image data of striking sections of the large object from the perspective of a predetermined storage field, and a software routine for comparing the large image manipulator positioned in front of the large mast in front of the large object by the distance image camera and the stored distance image data and coordinate-based assignment of the distance image camera Large manipulator position within the specified limited parking space. The parking space is advantageously subdivided by a two-dimensional distance grid, with each grid point of the distance grid being assigned an articulated coordinate file or a movement program within a database, in which a sequence of articulated coordinate sets of the articulated mast is stored along a processing path to be followed by the tool on the object surface.

Zur Messung der Gelenkkoordinaten ist jedem Gelenk des Knickmasts und gegebenenfalls des Multigelenks ein Koordinatenaufnehmer, vorzugsweise in Form eines Winkel- oder Wegaufnehmers zugeordnet, an dessen Ausgang die betreffende Gelenkkoordinate abgreifbar ist.To measure the joint coordinates, each joint of the articulated mast and possibly the multi-joint is assigned a coordinate pickup, preferably in the form of an angle or displacement pickup, at the output of which the relevant joint coordinate can be tapped.

Vorteilhafterweise weist die Auswerteelektronik ein Programm zur Berechnung und Abspeicherung einer für den Bearbeitungsvorgang bestimmten Folgen von positionsbezogenen Gelenkkoordinatensätzen durch Interpolation aus den abgespeicherten Gelenkkoordinatensätzen nach Maßgabe der Abweichung der aktuellen Position des Großmanipulators von den nächstliegenden Rasterpunkten innerhalb des vorgebenen Entfernungsrasters auf.The evaluation electronics advantageously have a program for calculating and storing a sequence of position-related joint coordinate sets intended for the machining process by interpolation from the stored joint coordinate sets in accordance with the deviation of the current position of the large manipulator from the closest grid points within the specified distance grid.

Für die Durchführung des Bearbeitungsvorgangs weist die Auswerteelektronik einen rechnergestützten Schaltungsteil zur Ansteuerung der Antriebsaggregate der Knickmastgelenke nach Maßgabe der Abweichung der an den Koordinatenaufnehmern augenblicklich abgegriffenen Gelenkkoordinaten von den zugehörigen Werten der abgespeicherten Gelenkkoordinatensätze auf. Um Toleranzabweichungen kompensieren zu können, weist das Werkzeug einen auf den Abstand von der zu bearbeitenden Oberfläche, seinen Bearbeitungswiderstand oder seine Eindringtiefe in die zu bearbeitende Oberfläche ansprechenden Sensor auf, wobei von dem Sensorsignal Korrektursignale zur Nachführung der Antriebsaggregate der Knickmastgelenke ableitbar sind.To carry out the machining process, the evaluation electronics have a computer-aided circuit part for controlling the drive units of the articulated boom joints in accordance with the deviation of the joint coordinates instantly tapped at the coordinate pickups from the associated values of the stored joint coordinate sets. In order to be able to compensate for tolerance deviations, the tool has a sensor which responds to the distance from the surface to be machined, its machining resistance or its depth of penetration into the surface to be machined, correction signals for tracking the drive units of the articulated boom joints being derivable from the sensor signal.

Um dazuhin Deformationen des Unterbaus des Großmanipulators während des Waschvorgangs kompensieren zu können, ist den Schwenk- und/oder Neigungsachsen der Entfernungsbildkamera mindestens ein Neigungsheber zugeordnet, von dessen Ausgangssignalen Korrektursignale zur Nachführung der Antriebsaggregate ableitbar sind.In order to be able to compensate for deformations of the base of the large manipulator during the washing process, at least one tilt jack is assigned to the swivel and / or tilt axes of the distance camera, from whose output signals correction signals for tracking the drive units can be derived.

Im folgenden wird die Erfindung anhand eines in der Zeichnung in schematischer Weise dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:

Figur 1
eine Seitenansicht eines fahrbaren Großmanipulators mit einem Bürstenkopf zum Waschen von Flugzeugen in eingeklappter Stellung;
Figur 2a und 2b
zwei schaubildliche Darstellungen des Großmanipulators in Bearbeitungsposition vor einem Flugzeug;
Figur 3
eine Draufsicht auf das aufgerasterte Abstellfeld für den Großmanipulator nach Figur 2a und 2b.
The invention is explained in more detail below with reference to an exemplary embodiment shown schematically in the drawing. Show it:
Figure 1
a side view of a large mobile manipulator with a brush head for washing aircraft in the folded position;
Figure 2a and 2b
two diagrammatic representations of the large manipulator in the processing position in front of an aircraft;
Figure 3
a plan view of the rasterized parking area for the large manipulator according to Figures 2a and 2b.

Der in der Figur 1 dargestellte mobile Großmanipulator 6 stellt ein bevorzugtes Ausführungsbeispiel eines Bearbeitungsgeräts 2 dar und besteht im wesentlichen aus einem auf einem Drehlagerbock 9 eines motorgetriebenen Fahrgestells 8 mit seinem Grundausleger 12 um eine vertikale Achse drehbar gelagerten Knickmast 13, einem am Endausleger 14 des Knickmasts 13 angeordneten Multigelenk 16 und einem am freien Ende des Multigelenks lösbar befestigten Bürstenkopf 18 als Bearbeitungseinheit 4. Die fünf Ausleger 12, 12', 12'', 12''' und 14 des Knickmasts 13 sind an ihren einander zugewandten Enden an Gelenken 20, 22, 24, 26 um horizontale Achsen begrenzt verschwenkbar miteinander verbunden. Das Verschwenken erfolgt mittels Hydrozylindern 27, die an geeigneten Stellen zwischen den Auslegern angeordnet sind. Der Grundausleger 12 ist an einem horizontalen Lager 28 mittels eines Hydroantriebs 30 schwenkbar am Drehlagerbock 9 gelagert. Diese Anordnung ermöglicht es, mit dem Bürstenkopf 18 beliebige Oberflächenkonturen innerhalb der von den Auslegern aufgespannten Ebene abzufahren. Mit Hilfe des motorisch verstellbaren Multigelenks 16 ist es zudem möglich, den Bürstenkopf 18 um mehrere Dreh- und Schubachsen gegenüber dem Endausleger 14 in sechs Freiheitsgraden zu bewegen.The mobile large-scale manipulator 6 shown in FIG. 1 represents a preferred embodiment of a processing device 2 and essentially consists of an articulated mast 13 mounted on a pivot bracket 9 of a motor-driven chassis 8 with its base arm 12 rotatable about a vertical axis, one on the end arm 14 of the articulated mast 13 arranged multi-joint 16 and a brush head 18 detachably attached to the free end of the multi-joint as processing unit 4. The five arms 12, 12 ', 12'',12''' and 14 of the articulated mast 13 are at their mutually facing ends on joints 20, 22, 24, 26 connected to one another to be pivotable to a limited extent about horizontal axes. The pivoting takes place by means of hydraulic cylinders 27, which are arranged at suitable points between the arms. The basic boom 12 is pivotally mounted on a pivot bearing 9 on a horizontal bearing 28 by means of a hydraulic drive 30. This arrangement makes it possible to use the brush head 18 to traverse any surface contours within the plane spanned by the cantilevers. With the aid of the motor-adjustable multi-joint 16, it is also possible to move the brush head 18 in six degrees of freedom in relation to the end arm 14 by several axes of rotation and pushing.

Im Bereich des Drehlagerbocks 9 ist eine optoelektronische Entfernungsbildkamera 40 in Form eines 3-D-Laserscanners angeordnet, die einen dreidimensionalen Raum innerhalb des Blickfensters 42 erfaßt und bezüglich der Entfernung von einem Meßobjekt 44 digitalisiert. Die Entfernungsbildkamera 40 ist in ausreichender Höhe über dem Fahrgestell 8 angeordnet, um vom Blickfenster 42 signifikante Stellen des Meßobjekts 44 einmessen zu können. Die Entfernungsbildkamera 40 arbeitet mit einem Laserstrahl, der mit einer bestimmten Taktfrequenz über den Öffnungswinkel des Blickfensters 42 durchgefahren wird. Die Auswertung der Entfernungssignale, die sich aus einer Zeitdifferenzmessung ergeben, läßt erkennen, ob und in welcher Entfernung eine reflektierende Fläche vorhanden ist.An optoelectronic distance camera 40 in the form of a 3-D laser scanner is arranged in the area of the pivot bracket 9, which detects a three-dimensional space within the viewing window 42 and digitizes the distance from a measurement object 44. The distance image camera 40 is arranged at a sufficient height above the chassis 8 in order to be able to measure significant points of the measurement object 44 from the viewing window 42. The distance image camera 40 works with a laser beam which is passed through at a certain clock frequency over the opening angle of the viewing window 42. The evaluation of the distance signals, which result from a time difference measurement, shows whether and at what distance a reflecting surface is present.

Um die Entfernungsmessung mit der Entfernungsbildkamera 40 und die Auslenkung des Knickmasts 13 unter Berücksichtigung verschiedener Knickmastkonfigurationen aufeinander abzustimmen, ist eine Normalisierung des Manipulators bezüglich der Entfernungsbildkamera 40 notwendig. Bei der Normalisierung werden die Nullagen der Manipulatorachsen 20, 22, 24, 26, 28 festgelegt. Diese Nullagen werden über eine geschlossene kinematische Kette bestimmt, die unter Verwendung eines Meßwürfels die Meßergebnisse der Entfernungsbildkamera zu den Auslenkungen des Knickmasts in Beziehung setzt. Der Meßwürfel wird dabei so orientiert, daß über die Entfernungsbildkamera 40 eine Ecke angepeilt wird und diese Ecke als Referenzpunkt für die Positionierung des Endauslegers 14 des Knickmasts 13 verwendet wird. Hierbei werden die Winkellagen der Gelenke bei einer Mehrzahl Knickmast-Konfigurationen bestimmt. Dadurch ergeben sich Parameter für ein Gleichungssystem, aufgrund dessen die Koordinatentransformation zwischen der Elektronenbildkamera 40 und dem Manipulator 13 festgelegt werden kann. Mit diesen Messungen werden die Nullagen der einzelnen Gelenke ermittelt, unter Berücksichtigung der Deformationen in den einzelnen Auslegern (12, 12', 12'', 12''', 14), die von vornherein nicht exakt definierbar sind. Die Messungen werden bei verschiedenen Abständen des Meßwürfels von der Entfernungsbildkamera 40 druchgeführt, um die verschiedenen Konstellationen des Manipulators unter Berücksichtigung der Nullagenfehler und der Deformationen sowie der Orientierung der Entfernungsbildkamera 40 bezüglich des Manipulatorsystems zu berücksichtigen.In order to coordinate the distance measurement with the distance image camera 40 and the deflection of the articulated mast 13 taking into account different articulated mast configurations, a normalization of the manipulator with respect to the distance image camera 40 is necessary. During normalization, the zero positions of the manipulator axes 20, 22, 24, 26, 28 are determined. These zero positions are determined via a closed kinematic chain, which uses a measuring cube to relate the measurement results of the distance image camera to the deflections of the articulated mast. The measuring cube is oriented in such a way that a corner is aimed at by the distance image camera 40 and this corner is used as a reference point for the positioning of the end arm 14 of the articulated mast 13. The angular positions of the joints are determined in a plurality of articulated mast configurations. This results in parameters for a system of equations, on the basis of which the coordinate transformation between the electron image camera 40 and the manipulator 13 can be determined. With these measurements, the zero positions of the individual joints are determined, taking into account the deformations in the individual cantilevers (12, 12 ', 12'',12''', 14) that cannot be precisely defined from the start. The measurements are carried out at different distances of the measuring cube by the distance image camera 40 in order to take into account the different constellations of the manipulator taking into account the zero position errors and the deformations and the orientation of the distance image camera 40 with respect to the manipulator system.

Um den Großmanipulator 6 in eine Waschposition vor dem Flugzeug 44 zu bringen, muß dieser im Zuge des Anfahrvorganges definiert abgestellt werden, damit alle bei einem Waschprogramm zu durchfahrenden Oberflächenstellen in der Reichtweite des Knickmasts 13 mit der Waschbürste 18 liegen. Um unnötige Komplikationen beim Anfahren und Positionieren des Großmanipulators zu vermeiden, wird in jeder Waschposition ein gegebenenfalls virtuelles Abstellfeld 46 mit einem Durchmesser von etwa 4 m definiert, das seinerseits in ein rechtwinkliges Raster mit einem Rasterabstand zwischen den einzelnen Rasterpunkten 48 und 40 cm unterteilt ist (Figur 3). Der Rasterabstand braucht dabei nicht genauer sein als die Genauigkeit des zu vermessenden Objekts. Dabei ist zu berücksichtigen, daß bei Flugzeugen schon aufgrund von Toleranzen zwischen den einzelnen Exemplaren eines bestimmten Typs und aufgrund unterschiedlicher Betankung, Beladung und Temperaturzustände sich Maßdifferenzen von 50 cm und mehr ergeben können. Anstelle eines kreisrunden Abstellfeldes 46 sind auch Felder denkbar, die die Form eines Polygons, insbesondere eines Rechtsecks oder eines Quadrats, aufweist, Es ist dem Fachmann ohne weiteres ersichtlich, daß die geometrische Form des Abstellfeldes 46 konstellationsabhängig in weiten Grenzen frei gewählt werden kann, und daß die vorliegend beschriebene kreisrunde Ausgestaltung nur exemplarischen Charakter besitzt und das beschriebene Verfahren keinesfalls darauf beschränkt ist. Desweiteren beschränkt das in Figur 3 dargestellte äquidistante Raster die Allgemeinheit der folgenden Ausführungen nicht, da diese in entsprechender Art und Weise für ein nicht-äquidistantes Raster und sogar für eine chaotisch verteilte Menge von Rasterpunkten Gültigkeit haben.In order to bring the large manipulator 6 into a washing position in front of the aircraft 44, this must be parked in a defined manner in the course of the take-off process, so that all surface points to be traveled through in a washing program lie within the range of the articulated mast 13 with the washing brush 18. In order to avoid unnecessary complications when starting and positioning the large manipulator, a possibly virtual parking area 46 with a diameter of approximately 4 m is defined in each washing position, which in turn is divided into a rectangular grid with a grid spacing between the individual grid points 48 and 40 cm ( Figure 3). The grid spacing need not be more precise than the accuracy of the object to be measured. It should be borne in mind that in the case of airplanes, dimensional differences of 50 cm and more can result from tolerances between the individual specimens of a certain type and from different refueling, loading and temperature conditions. Instead of a circular storage field 46, fields are also conceivable that have the shape of a polygon, in particular a rectangle or a square. It is readily apparent to the person skilled in the art that the geometric shape of the storage field 46 can be freely selected within wide limits depending on the configuration, and that the circular configuration described here has only an exemplary character and the method described is in no way limited to this. Furthermore, this limits in FIG. 3 The equidistant grid shown does not affect the generality of the following explanations, since these are valid in a corresponding manner for a non-equidistant grid and even for a chaotically distributed set of grid points.

Die über die Entfernungsbildkamera 40 erzeugten Bilddaten werden in einer Auswerteschaltung und einem Bordrechner ausgewertet. In einem Speichermedium des Bordrechners ist für jeden zu bearbeitenden Flugzeugtyp und für jedes anzufahrende Abstellfeld 46 entweder das komplette Flugzeug 44 oder ein signifikanter Ausschnitt des Flugzeugs 44 bezogen auf das Blickfenster 42 der Entfernungsbildkamera 40 als Referenzbild abgespeichert. Als Anfahrhilfe wird beim Anfahren des Abstellfeldes 46 von der Entfernungsbildkamera 40 laufend ein Entfernungsbild des betreffenden Flugzeugausschnitts erzeugt und mit dem abgespeicherten Referenzbild verglichen. Daraus lassen sich Richtungs- und Positionsdaten ableiten, die dem Fahrer Anweisungen für die Fahrtrichtung und die Entfernung geben. Grundsätzlich können die sich hieraus ergebenden Abweichungssignale auch unmittelbar in Fahr- und Lenksignale für das Fahrgestell 8 umgesetzt werden. Ziel der Anfahrhilfe ist es, den Großmanipulator 6 auf dem Abstellfeld 46 in Reichweite des Flugzeugs 44 zu positionieren und hinsichtlich des Kurswinkels zu orientieren. Nach Erreichen des Abstellfeldes 46 wird das Fahrgestell 8 durch Ausschwenken und Absenken der Stützbeine 50 auf dem Untergrund abgestützt und dadurch relativ zum Flugzeug 44 positioniert.The image data generated by the distance image camera 40 are evaluated in an evaluation circuit and an on-board computer. In a storage medium of the on-board computer, either the complete aircraft 44 or a significant section of the aircraft 44 relating to the viewing window 42 of the distance image camera 40 is stored as a reference image for each aircraft type to be processed and for each parking area 46 to be approached. As a starting aid, a distance image of the aircraft section in question is continuously generated by the distance image camera 40 when the parking area 46 is started and compared with the stored reference image. From this, direction and position data can be derived, which give the driver instructions for the direction of travel and the distance. In principle, the resulting deviation signals can also be directly converted into driving and steering signals for the chassis 8. The aim of the traction help is to position the large manipulator 6 on the parking area 46 within the reach of the aircraft 44 and to orient it with regard to the heading angle. After reaching the parking area 46, the chassis 8 is supported on the ground by swiveling and lowering the support legs 50 and thereby positioned relative to the aircraft 44.

Sodann kann die Einmessung des Großmanipulators 6, d.h. die Bestimmung der Position innerhalb des Rasterfeldes 46 und die Orientierung relativ zum Flugzeug 44 durchgeführt werden. Dies erfolgt ebenfalls mit Hilfe der Entfernungsbildkamera 40 durch Vergleich mit einem abgespeicherten Referenzmuster. Da die Entfernungsbildkamera 40 am Knickmast 13 angeordnet ist, muß sichergestellt sein, daß dessen Lage bei der Bestimmung des Kurswinkels mit berücksichtigt wird. Nach erfolgter Einmessung werden die Neigungsgeber an der Entfernungsbildkamera 40 erfaßt und zu Null gesetzt. Bei einer Bewegung des Knickmastes 13 wird dann der Relativwinkel aufgrund der Neigung der Standfläche im Bewegungsprogramm berücksichtigt.Then the measurement of the large manipulator 6, ie the determination of the position within the grid field 46 and the orientation relative to the aircraft 44, can be carried out. This is also done with the aid of the distance image camera 40 by comparison with a stored reference pattern. Because the distance camera 40 is arranged on the articulated mast 13, it must be ensured that its position is taken into account when determining the course angle. After the measurement has been carried out, the inclination sensors are detected on the distance image camera 40 and set to zero. When the articulated mast 13 moves, the relative angle due to the inclination of the standing surface is then taken into account in the movement program.

Durch das Rasterfeld 46 werden fiktive Aufstellungsorte 1 bis 109 (Figur 3) festgelegt, für die jeweils ein offline (also auf einem externen Rechner) erstelltes komplettes Waschprogramm abgelegt ist. Als Waschprogrammdaten sind eine Vielzahl von Datensätzen, die die Winkellagen eines jeden Gelenks definieren, abgespeichert (Gelenkkoordinatensätze). Mehrere derartiger Gelenkkoordinatensätze bilden einen Bearbeitungsweg 52 entlang der Flugzeugoberfläche, die den geometrischen Ort des Bürstenkopfes 18 beim Waschvorgang definieren. Das Waschprogramm wird auf dem externen Rechner so überprüft, daß keine Kollision mit dem Objekt 1 und mit eventuell vorhandenen Docks und Hallenteilen stattfinden kann. Der Abstand zwischen den einzelnen Koordinatenstützpunkten beträgt auf der Flugzeugoberfläche im Mittel 30 cm. Bei der Einmessung wird nun die genaue Position der Entfernungsbildkamera 40 bezüglich des Flugzeugs 44 bestimmt und damit der exakte Platz innerhalb des Rasterfelds 46. Vom nächstliegenden Rasterpunkt 11a aus werden dann die Gelenkkoordinaten durch Interpolation auf die aktuelle Position P umgerechnet. Diese Daten werden in einer Datei im Arbeitsspeicher der Manipulatorsteuerung als aktuelles Waschprogramm abgelegt, bevor das Waschprogramm über die Manipulatorsteuerung ausgelöst wird. Durch die vier Nachbarpunkte 48 innerhalb des Rasterfeldes 46 und die zugelassenen Toleranzen von beispielsweise +/- 50 cm wird außerdem der Kollisionsraum der einzelnen Gelenke festgelegt. Dieser vier Nachparpunkte, umgesetzt in Gelenkkoordinaten, beschreiben also den Raum, in dem sich die Enden der Knickmastausleger bewegen dürfen.The grid field 46 defines fictitious locations 1 to 109 (FIG. 3), for each of which a complete washing program created offline (ie on an external computer) is stored. A large number of data records which define the angular positions of each joint are stored as wash program data (joint coordinate sets). Several sets of joint coordinates of this type form a machining path 52 along the aircraft surface, which define the geometric location of the brush head 18 during the washing process. The washing program is checked on the external computer in such a way that there can be no collision with object 1 and with any existing docks and hall parts. The distance between the individual coordinate bases on the aircraft surface is on average 30 cm. During the measurement, the exact position of the distance image camera 40 with respect to the aircraft 44 is determined, and thus the exact location within the grid field 46. From the nearest grid point 11a, the joint coordinates are then converted to the current position P by interpolation. This data is stored in a file in the working memory of the manipulator control as the current washing program before the washing program is triggered via the manipulator control. The collision space of the individual joints is also determined by the four neighboring points 48 within the grid field 46 and the permitted tolerances of, for example, +/- 50 cm. These four savings points, implemented in Joint coordinates, i.e. describe the space in which the ends of the articulated boom can move.

Das Verfahren sieht vor, daß das dem Referenzpunkt A vorgegebene Programm durch ein Programm ersetzt wird, welches für den der aktuellen Position P nächstgelegenen Rasterpunkt 11a abgelegt worden ist. Bei diesem Verfahren wird also das der aktuellen Position P nächstliegende Programm verwendet, wodurch der Vorteil erzielt wird, daß eine on-line Anpassung des Programms an die noch bestehende Abweichung nicht erforderlich ist, wodurch eine deutliche Verminderung der Rüstzeit erreicht wird.The method provides that the program specified for reference point A is replaced by a program which has been stored for raster point 11a closest to current position P. In this method, the program closest to the current position P is used, whereby the advantage is achieved that an on-line adaptation of the program to the still existing deviation is not necessary, whereby a significant reduction in the set-up time is achieved.

Die oben beschriebene Verfahrensvariante erlaubt die Korrektur eines Positionierungsfehlers bei der Aufstellung des Großmanipulators 6 relativ zu dem zu bearbeitenden Objekt 1 bis auf einen Rest-Positionsfehler, welcher kleiner oder gleich dem halben Abstand zwischen zwei einander diagonal gegenüberliegenden Rasterpunkten 11 des Abstellfeldes 46 ist. Für eine Vielzahl von Anwendungen ist eine derartige Genauigkeit ausreichend. Es versteht sich hier von selbst, daß dieser Rest-Positionsfehler noch weiter verkleinert werden kann, indem ein engmaschigeres Gitternetz, also ein Raster mit einem verminderten Abstand zwischen zwei Rasterpunkten 11, verwendet wird.The variant of the method described above allows a positioning error to be corrected when the large manipulator 6 is set up relative to the object 1 to be processed, except for a residual position error which is less than or equal to half the distance between two diagonally opposite raster points 11 of the storage field 46. Such accuracy is sufficient for a variety of applications. It goes without saying here that this residual position error can be reduced even further by using a more closely meshed grid, that is to say a grid with a reduced distance between two grid points 11.

Wenn diese Vorbereitungen getroffen sind, kann der eigentliche Waschvorgang beginnen. Hierzu wird der Knickmast zunächst über ein Ausfaltprogramm entfaltet. Durch sukzessiven Abruf der Gelenkkoordinaten aus der Arbeitsdatei erhält man Sollwerte, die durch die Waschbürste angefahren werden, wobei der Ist- und Sollwertvergleich an jedem einzelnen Gelenk durch zugeordnete Koordinatengeber erfolgt. Wegen Deformationen des Flugzeugs 44 und des Unterbaus, Ungenauigkeiten des Verfahrens und dynamische Fehler des Geräts muß eine Feinkompensation durchgeführt werden. Um das geforderte Waschergebnis zu erzielen, muß der Manipulator 6 mit einer Genauigkeit von ca. 10 mm hinsichtlich der vorgeschriebenen Eindringtiefe der Waschbürste in die Oberfläche verfahren werden. Dies ist nur durch eine zusätzliche Sensorik zu erreichen, die die genannten Fehler durch Messung des Anpreßdruckes und durch Zustellung der Hilfsachsen des Multigelenks 16 kompensiert. Bei den Hilfsachsen handelt es sich um eine Schwenkachse, die Orientierungsfehler des Bürstenkopfs 18 ausgleicht.Once these preparations have been made, the actual washing process can begin. For this purpose, the articulated mast is first unfolded using a folding program. By successively calling up the joint coordinates from the work file, target values are obtained which are approached by the washing brush, the actual and target value comparison being carried out on each individual joint by means of assigned coordinate transmitters. Because of deformations of the aircraft 44 and the substructure, inaccuracies in the method and dynamic errors in the Fine compensation must be carried out on the device. In order to achieve the required washing result, the manipulator 6 must be moved with an accuracy of approximately 10 mm with regard to the prescribed penetration depth of the washing brush into the surface. This can only be achieved by an additional sensor system which compensates for the errors mentioned by measuring the contact pressure and by delivering the auxiliary axes of the multi-joint 16. The auxiliary axes are pivot axes that compensate for orientation errors of the brush head 18.

Grundsätzlich ist es möglich, die Entfernungsbildkamera 40 auch während des Ablaufs eines Waschprogramms mitlaufen zu lassen und zur Kollisionsüberwachung einzusetzen. Die Entfernungsbildkamera 40 kann hierbei einzelne Gelenke und das Flugzeug 44 vermessen und hinsichtlich Kollisionen kontrollieren. Dies könnte wichtig sein, wenn beispielsweise ein Meßwertaufnehmer an einem der Gelenke ausfällt und falsche Meßwerte liefert, die vom Bediener und vom Rechner nicht erkannt werden.In principle, it is possible to have the distance image camera 40 run during a washing program and to use it for collision monitoring. The distance image camera 40 can measure individual joints and the aircraft 44 and control them for collisions. This could be important if, for example, a transducer fails at one of the joints and supplies incorrect measured values that are not recognized by the operator and the computer.

Alternativ oder ergänzend hierzu kann vorgesehen sein, daß Lage- und Abmessungstoleranzen sowie Deformationstoleranzen des Flugszeugs 44 und/oder Toleranzen des Großmanipulators 6 kompensiert werden. Als Beispiel für derartige Toleranzen des Flugzeugs 44 sollen exemplarisch die Dimensionsabweichungen, die auch bei Flugzeugen der gleichen Baureihe und des gleichen Bautyps auftreten von den der Ablaufsteuerung zugrunde gelegten Normabmessungen, die von Luftlinie zu Luftlinie eventuell leicht unterschiedlich sein können, z.B. in der Anordnung von Antennen, Sensorik, Triebwerken, Fairings und Landeklappen etc., sowie die Deformationstoleranzen, welche durch unterschiedliche Beladungszustände des Flugzeugs 44 und Umwelteinflüsse, z.B. Temperatur, hervorgerufen werden, erwähnt werden. Diese rasterpunktspezifischen Programme werden on-line an diese Rahmenbedingungen angepaßt.As an alternative or in addition to this, it can be provided that position and dimension tolerances as well as deformation tolerances of the aircraft 44 and / or tolerances of the large manipulator 6 are compensated for. As an example of such tolerances of the aircraft 44, the dimensional deviations that also occur in aircraft of the same series and of the same type from the standard dimensions on which the sequence control is based, which may be slightly different from the air line to the air line, for example in the arrangement of antennas, are exemplary , Sensors, engines, fairings and flaps etc., as well as the deformation tolerances which are caused by different loading conditions of the aircraft 44 and environmental influences, for example temperature, are mentioned. This Grid-point-specific programs are adapted online to these framework conditions.

Zusammenfassend ist folgendes festzustellen: Die Erfindung bezieht sich auf ein Verfahren und eine Anordnung insbesondere zur Oberflächenreinigung von Flugzeugen 44, bei welchem ein auf einem Fahrgestell 8 angeordneter Großmanipulator 6 in eine vorgegebene Position innerhalb der Reichweite zum Flugzeug 44 verfahren und dort abgestellt wird und bei welchem ein rotierender Bürstenkopf 18 mittels eines aus mehreren an Dreh- und/oder Schubgelenken gegeneinander verschwenk- oder verschiebbaren Auslegern 12, 12', 12'', 12''', 14 und einem am Endausleger 14 angeordneten Multigelenk 16 bestehenden, auf dem Fahrgestell 8 angeordneten Knickmasts 13 über die Objektoberfläche bewegt wird. Um auch bei ungenauer Positionierung des Großmanipulators 6 vor dem Flugzeug 44 einen zuverlässigen und kollisionsfreien Waschvorgang zu gewährleisten, wird der Großmanipulator 6 innerhalb eines begrenzten zweidimensionalen gegebenenfalls virtuellen Abstellfeldes 46 im Abstand vom Flugzeug 44 stationiert, während die Gelenke 20 bis 28 des Knickmastes 13 und/oder des Multigelenks 16 im Zuge der Oberflächenbearbeitung nach Maßangabe einer der aktuellen Position des Großmanipulators 6 innerhalb des Abstellfeldes 46 zugeordneten Folge von Gelenkkoordiantensätzen angesteuert werden und der Bürstenkopf 18 dabei entlang einem vorgegebenen Bearbeitungsweg über die Objektoberfläche bewegt wird.In summary, the following can be stated: The invention relates to a method and an arrangement, in particular for the surface cleaning of aircraft 44, in which a large manipulator 6 arranged on a chassis 8 is moved into a predetermined position within the range of the aircraft 44 and is parked there and in which a rotating brush head 18 by means of a multi-joint 16 consisting of a plurality of arms 12, 12 ′, 12 ″, 12 ″, 14 that can be pivoted or displaced relative to one another on rotary and / or sliding joints, and a multi-joint 16 arranged on the end arm 14 on the chassis 8 arranged articulated mast 13 is moved over the object surface. In order to ensure a reliable and collision-free washing process even when the large manipulator 6 is positioned in front of the aircraft 44 in an inaccurate manner, the large manipulator 6 is stationed within a limited two-dimensional, possibly virtual, parking area 46 at a distance from the aircraft 44, while the joints 20 to 28 of the articulated mast 13 and / or the multi-joint 16 can be controlled in the course of the surface machining in accordance with the measurement of a sequence of joint coordinate sets assigned to the current position of the large manipulator 6 within the storage field 46 and the brush head 18 is moved along a predetermined machining path over the object surface.

Claims (30)

  1. A process for the treatment, in particular for the surface cleaning of an object (1), in particular an airplane (44), a ship, a building, etc., by means of a treating device (2) having at least one treating unit (4), in which the treating device (2) is moved into a parking field (46) at a predetermined reference point (A) and is positioned at a distance from the object (1), whereby the predefined reference point (A) of the parking field (46) has a fixed position reference to at least one reference point of the object, in which the treatment operation to be carried out on the object (1) is carried out at least partially by means of an operating-sequence control for the treating unit (4) of the treating device (2), which treating unit enters into active contact with the object (1), whereby the spacial movements of the at least one treating unit (4), which movements are controlled by the operating-sequence control, are guided with respect to the predefined point (A), characterized in that in the parking field (46) of the treating device (2) there is a specific number of grid points (11, 11a) defining grid fields, that for each grid point (11, 11a) there is set up or will be set up an operating-sequence control for the at least one treating unit (4) of the treating device (2), which treating unit enters into active contact with the object (1) to be treated, whereby the spacial movement of the at least one treating unit (4), which movement is controlled by this operating-sequence control of the grid point (11a), is guided with respect to this grid point (11a) of the parking field (46), that the actual position (P) of the treating device (2) is determined with reference to the parking field (46), that from the number of grid points associated with the parking field (46) the grid point (11a) with the least distance from the actual position (P) of the treating device (2) is determined, and that for carrying out the treatment operation for controlling the at least one treating unit (4) the operating-sequence control associated with the grid point (11a) is used, or that from this grid point (11a) through interpolation an operating-sequence control for the actual position (P) is calculated and stored in the storage of the manipulator control as an actual working program, and is then used.
  2. The process according to Claim 1, characterized in that the operating-sequence control associated with the reference point (A) and the ones associated with the grid points (11a) are created off-line.
  3. The process according to Claim 1 or 2 characterized in that operating-sequence controls associated with the predefined reference point (A) and the grid points (11a) have as the characteristic parameter the spacial position difference between the fixed reference point of the object (1) and the fixed grid points (11a).
  4. The process according to one of the Claims 1 to 3, characterized in that the grid points (11a) are arranged in an equi-distant grid.
  5. The process according to one of the preceding claims, characterized in that the parking field (46) is chosen as a circle with the radius R or, preferably, as a regular polygon around the predefined reference point (A).
  6. The process according to one of the Claims 1 to 5, characterized in that at least one operating-sequence control associated with a grid point (11a) of the parking field (46) uses as a further characteristic parameter:
    a) the relative position between the grid point (11a), which lies the closest to the actual position (P) of the treating device (2), and the actual position (P) of the treating device (2); or
    b) deviations of the object (1) from standard dimensions used as the basis for determining the operating-sequence control; or
    c) the measuring signals of a monitoring device of the at least one treating unit (4).
  7. The process according to one of the Claims 1 to 6, characterized in that at least one operating-sequence control is structured in such a manner that it has a base part depending only on the position of the grid point (11a) associated with said operating-sequence control and a correction/adaption part depending on the distance of the actual position (P) of the treating device (2) from said grid point (11a) and/or additional adaption parameters.
  8. The process according to one of the Claims 1 to 7, characterized in that the movements of the at least one treating unit (4) of the treating device (2), which movements are controlled by only the grid-point-dependent part of the operating-sequence control, are carried out, essentially while the on-line corrections of the operating-sequence control, which on-line corrections are needed for the adaption of the operating-sequence control, are determined.
  9. The process according to one of the Claims 1 to 8, characterized in that for determining the actual position (P) of the treating device (2) a distance image of a specified section of the object (1) to be treated is taken with an opto-electronic distance camera (40) and is compared with a reference image of this section.
  10. The process according to Claim 9, characterized in that deviations resulting therefrom are converted into preferably optically and/or acoustically indicatable steering and driving signals outside of the parking field (46) or into positioned-determining locating signals within the parking field (46).
  11. The process according to one of the preceding claims, characterized in that in a treating device (2) consisting of several arms (12, 12', 12'', 12''', 14) pivotal or movable on pivot joints (20, 22, 24, 26, 28) and/or thrust joints, and consisting of an articulated mast (13) arranged on an undercarriage (8), the joints (20 to 28) of the articulated mast (13) and/or of the multiple joint (16) are controlled during the course of the treatment in accordance with a sequence of specified joint-coordinate sets by an operating-sequence control, which sequence is associated with the actual position of the treating device (2) within the parking field (46).
  12. The process according to one of the preceding claims, characterized in that the treating unit (4) is moved along a specified treatment path (52) over the surface of the object.
  13. The process according to one of the preceding claims, characterized in that the position-referenced operating-sequence control is calculated through interpolation from the operating-sequence control stored in a data bank in accordance with the actual position (P) of the treating device (2) within the parking field (46) and is stored in a stored data file prior to the treatment using operating-sequence control read from the stored data file and possibly additional movement-referenced parameters.
  14. The process according to Claim 13, characterized in that the operating-sequence control read from the stored data file follow in accordance with sensor signals preferably extracted at every support point of the treatment path.
  15. The process according to one of the preceding claims, characterized in that the frictional resistance, torsional resistance or the contact pressure read at the treating unit (4) is measured and outputted as a sensor signal.
  16. The process according to one of the preceding claims, characterized in that the distance of the treating unit (4) from the object (1) is measured without contact and is outputted as a sensor signal.
  17. The process according to one of the preceding claims, characterized in that the inclination of the treating device (2) relative to a substructure or relative to the object (1) is measured and is outputted as a sensor signal.
  18. The process according to one of the Claims 14 to 17, characterized in that the following operating-sequence control are monitored with respect to freedom from collision through a comparison with operating-sequence control stored with respect to adjacent grid points (11a) taking into consideration specified tolerance limits.
  19. An arrangement for the treatment, in particular for the surface cleaning of objects (1), like airplanes (44), ship or buildings, comprising a treating device (2) having at least one treating unit (4), comprising an opto-electronic distance camera (40) arranged on the treating device (2) and alignable with respect to the object (1) to be treated, and a calculator-supported evaluating electronic receiving the distance-image signals of the distance camera (40), characterized in that the evaluating electronics has a storage arrangement for storing of distance-image data of the object (1) from the view of several grid points of a specified parking field (46), and a software routine for comparing the distance-image data taken by the distance-image camera (40) with the treating device (2) being positioned in front of the object (1) within reach of an articulated mast (13) with the stored distance-image data, and for the coordinate-like determining of the position (P) of the treating device (2) within the specified parking field (46) and for the association of the position (P) with the closest grid point (11a).
  20. The arrangement according to Claim 19, characterized in that the treating device (2) has several arms (12, 12', 12'', 12''', 14) pivotal with respect to one another on pivot joints (20, 22, 24, 26, 28) by means of hydraulic or motorized driving systems (30), an articulated mast (13) rotatably supported by a base arm (12) about a vertical axis on a pivot-bearing block (9) of the motor-driven undercarriage (8), and has the treating unit (4), preferably designed as a rotating brush head (18) arranged on the last arm (14) of the articulated mast (13) or on the free end of a multiple joint (16) arranged on the last arm (14), has several thrust and/or pivot joints.
  21. The arrangement according to Claim 19 or 20, characterized in that the distance camera (40) is arranged near the pivot-bearing block (9) rigidly or movably, in particular pivotally about a vertical axis and/or inclinable about at least one horizontal axis on the treating device (2).
  22. The arrangement according to one of the Claims 20 or 21, characterized in that with each joint (20 to 28) of the articulated mast (13) and, if necessary, of the multiple joint (15) is associated a coordinate receiver, preferably in the form of an angle or path receiver, at the output of which a value corresponding with the respective joint coordinate can be electrically read.
  23. The arrangement according to Claim 22, characterized in that the evaluating electronics has a calculator-supported circuit for normalizing the joint coordinates in accordance with the tool coordinates measured directly and through the distance camera (40) relative to a stationary, preferably cubic calibration member.
  24. The arrangement according to one of the Claims 19 to 23, characterized in that the parking field (46) is divided by a two-dimensional grid field (46), that with each grid point (11) within the grid field (46) is associated an operating-sequence control, a joint-coordinate data file or a moving program within a data bank, in which is stored a series of individual movements or joint-coordinate sets of the articulated mast (13) along an operating path to be travelled by the treating unit (4) on the surface of the object.
  25. The arrangement according to Claim 24, characterized in that the evaluating electronics has a software routine for calculating and storing a series of operating-sequence controls or joint-coordinate sets designated for the treatment operation through interpolation from the stored operating-sequence controls or joint-coordinate sets in accordance with the deviation of the actual position (P) of the treating device (2) from the adjacent grid points (11a) within the specified grid field (46).
  26. The arrangement according to Claim 24 or 25, characterized in that the evaluating electronics has a calculator-supported circuit for controlling the drive systems (30) of the articulated-mast joints (20 to 28) in accordance with the deviation of the operating-sequence controls or joint coordinates read at the coordinate receivers from the associated values of the stored operating-sequence controls or joint-coordinate sets.
  27. The arrangement according to one of the Claims 24 to 26, characterized in that the treating unit (4) has a sensor, which reacts to the distance from the surface to be treated, to its operating resistance or to its depth of penetration into the surface to be treated, and that from the output signal of the sensor correcting signals can be derived to have the driving systems of the articulated-mast joints follow.
  28. The arrangement according to one of the Claims 24 to 27, characterized in that the at least one inclination indicator reacting preferably to deformations in the substructure of the treating device (2) is associated with the pivot and/or inclination axes of the distance camera (40), from the output signals of the inclination indicator there can be derived correcting signals to have the driving systems of the articulated-mast joints follow.
  29. The arrangement according to one of the Claims 20 to 28, characterized in that the treating device (2) or the arm (12) has at least one redundant degree of freedom.
  30. The arrangement according to one of the Claims 19 to 29, characterized in that the parking field (46) is of a virtual nature.
EP94926196A 1993-08-13 1994-08-15 Process for treating an object, in particular an aeroplane Expired - Lifetime EP0711236B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4327268 1993-08-13
DE4327268 1993-08-13
DE4330846 1993-09-11
DE4330846A DE4330846C1 (en) 1993-09-11 1993-09-11 Method of treating an object, in particular an aeroplane, by means of a treatment device having at least one treatment unit
PCT/EP1994/002716 WO1995005310A1 (en) 1993-08-13 1994-08-15 Process for treating an object, in particular an aeroplane

Publications (2)

Publication Number Publication Date
EP0711236A1 EP0711236A1 (en) 1996-05-15
EP0711236B1 true EP0711236B1 (en) 1997-03-26

Family

ID=25928616

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94926196A Expired - Lifetime EP0711236B1 (en) 1993-08-13 1994-08-15 Process for treating an object, in particular an aeroplane

Country Status (7)

Country Link
US (1) US5833762A (en)
EP (1) EP0711236B1 (en)
JP (1) JPH09501373A (en)
KR (1) KR960703760A (en)
AU (1) AU7613394A (en)
DE (2) DE59402247D1 (en)
WO (1) WO1995005310A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7498394A (en) * 1993-08-31 1995-03-22 Putzmeister-Werk Maschinenfabrik Gmbh Arrangement for surface treatment, especially the cleaning of the surfaces of large objects
US6480271B1 (en) * 2001-01-08 2002-11-12 The Boeing Company Traversing laser locating system
GB2391799B (en) * 2002-08-11 2007-04-18 Ibrahim Ghulam Murad Ali Robot
DK175991B1 (en) * 2002-10-11 2005-11-07 Slagteriernes Forskningsinst Washing system and washing unit for cleaning surfaces
US7024756B2 (en) * 2003-07-30 2006-04-11 Hitachi Global Storage Technologies Netherlands, B.V. Method of making a perpendicular recording magnetic head pole tip with an etchable adhesion CMP stop layer
US7693325B2 (en) 2004-01-14 2010-04-06 Hexagon Metrology, Inc. Transprojection of geometry data
EP1756399B1 (en) * 2004-06-14 2010-03-31 Gas Turbine Efficiency AB System and devices for collecting and treating waste water from engine washing
US7726613B2 (en) * 2005-02-08 2010-06-01 Park Technologies, L.L.C. Water blast gun support apparatus and methods
DE202008000993U1 (en) 2008-01-23 2009-05-28 Otto Christ Aktiengesellschaft Treatment plant for vehicles, in particular car wash
US7997388B2 (en) * 2008-04-15 2011-08-16 Icx Tactical Platforms Corp. Detection platforms
US20100250003A1 (en) * 2008-04-15 2010-09-30 Nieboer Christopher J Detection platforms
MA33493B1 (en) * 2009-06-12 2012-08-01 Abengoa Solar New Tecnologies S A VEHICLE AND METHOD FOR CLEANING CYLINDRO-PARABOLIC SOLAR COLLECTORS
BRPI1001981A2 (en) 2010-03-31 2011-11-22 Abb Ltda robotic method and system for washing mining trucks, utility vehicles and other dirty environments
DE202011105493U1 (en) * 2011-09-09 2011-12-13 Franz Ehleuter Device for cleaning smooth surfaces
DE102014101969B4 (en) * 2014-02-17 2020-11-05 Alexander Streit Cleaning system
CN103895875B (en) * 2014-03-17 2015-12-09 中国民航大学 A kind of end-effector of aircraft surfaces cleaning machine mechanical arm
US10040101B2 (en) * 2015-01-23 2018-08-07 The Boeing Company Robotic surface-cleaning assemblies and methods
RU169641U1 (en) * 2016-04-18 2017-03-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет путей сообщения" Automated complex for cleaning parts and assemblies of rolling stock
CN105964641B (en) * 2016-07-08 2019-02-12 河南森源重工有限公司 A kind of photovoltaic plant solar panel cleaning vehicle
CN105964573A (en) * 2016-07-12 2016-09-28 河南森源重工有限公司 Cantilever crane structure and solar cell panel cleaning vehicle
DE102016125145A1 (en) * 2016-12-21 2018-06-21 Schwing Gmbh Large manipulator with automated mast construction
DE102017103841A1 (en) 2017-02-24 2018-08-30 Washtec Holding Gmbh METHOD AND APPARATUS FOR TREATING THE SURFACE OF A VEHICLE
CN107309621A (en) * 2017-06-29 2017-11-03 聂文斌 A kind of metal parts positioning grab bucket
US20200353511A1 (en) * 2017-08-20 2020-11-12 Nordic Aerowash Equipment Ab Aircraft Cleaning Robot
US10829354B2 (en) * 2017-12-20 2020-11-10 Cti Systems S.a.r.l. Collision avoidance assistance system for movable work platforms
CN108482706A (en) * 2018-03-30 2018-09-04 邢志平 A kind of passenger plane cleaning vehicle
CN111086002A (en) * 2019-12-30 2020-05-01 芜湖哈特机器人产业技术研究院有限公司 Airplane cleaning robot and control method thereof
US11845103B2 (en) 2021-09-09 2023-12-19 The Boeing Company Liquid applicators and methods of applying liquid to a substrate using the same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3439372A (en) * 1967-07-10 1969-04-22 Rucker Co Airplane washing device
CH547721A (en) * 1972-07-14 1974-04-11 Arato Laszlo CLEANING SYSTEM FOR VEHICLES.
CH603383A5 (en) * 1976-01-29 1978-08-15 Laszlo Arato
US4207642A (en) * 1976-02-05 1980-06-17 Arato Laszlo F Washing plant, particularly for cars and airplanes
SE412353B (en) * 1977-12-01 1980-03-03 Magnusson Ulla Margareta DEPLOY DEPARTURE AND CLEANING SYSTEM
DE2737418A1 (en) * 1977-08-19 1979-03-01 Messerschmitt Boelkow Blohm Cleaning vehicle for aircraft exterior - has extending boom mounting brush and sprays supported on tower with control cab
JPH065486B2 (en) * 1981-03-26 1994-01-19 株式会社安川電機 Robot trajectory control method
US4453085A (en) * 1981-05-11 1984-06-05 Diffracto Ltd. Electro-optical systems for control of robots, manipulator arms and co-ordinate measuring machines
US4654949A (en) * 1982-02-16 1987-04-07 Diffracto Ltd. Method for automatically handling, assembling and working on objects
US4590578A (en) * 1983-07-11 1986-05-20 United Technologies Corporation Off-line programmable robot
JPS60263681A (en) * 1984-06-08 1985-12-27 株式会社日立製作所 Instruction method of robot
JPH0698960B2 (en) * 1985-11-21 1994-12-07 住友重機械工業株式会社 Control device of rotating brush type cleaning device for aircraft
IT1197173B (en) * 1986-09-05 1988-11-30 Ceccato & Co AUTOMATIC WASHING SYSTEM PARTICULARLY FOR AIRCRAFT AND THEIR PARTS
US4826391A (en) * 1988-02-23 1989-05-02 The University Of British Columbia Manipulator arm position sensing
FR2630675B1 (en) * 1988-05-02 1994-09-09 Aerospatiale SYSTEM FOR PERFORMING OPERATIONS ON LARGE OBJECTS, IN PARTICULAR FOR PAINTING AN AIRCRAFT
DE3909762C2 (en) * 1989-03-23 2003-02-06 Msts Logistik Gmbh & Co Garbage collection system with a garbage collection vehicle and garbage containers
JP2730762B2 (en) * 1989-06-21 1998-03-25 鈴木技研工業株式会社 Aircraft cleaning equipment
DE4035519A1 (en) * 1989-11-15 1991-05-16 Putzmeister Maschf Brush head for large manipulators for cleaning complicated shapes - has two motor-driven facing brush rollers adjustable at various angles
DE3942770A1 (en) * 1989-12-23 1991-07-11 Dornier Luftfahrt DISTANCE IMAGE CAMERA
US5359542A (en) * 1991-12-20 1994-10-25 The Boeing Company Variable parameter collision avoidance system for aircraft work platforms
US5628081A (en) * 1992-10-02 1997-05-13 Putzmeister-Werk Maschinenfabrik Gmbh Brush head for large manipulators

Also Published As

Publication number Publication date
EP0711236A1 (en) 1996-05-15
KR960703760A (en) 1996-08-31
DE4428734A1 (en) 1995-02-23
WO1995005310A1 (en) 1995-02-23
AU7613394A (en) 1995-03-14
DE59402247D1 (en) 1997-04-30
US5833762A (en) 1998-11-10
JPH09501373A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
EP0711236B1 (en) Process for treating an object, in particular an aeroplane
EP0765271B1 (en) Process and device for treating the surface of large objects
EP0715584B1 (en) Arrangement for surface treatment, especially the cleaning of the surfaces of large objects
DE60216323T2 (en) MACHINE FOR PERFORMING MACHINING OPERATIONS ON A WORKPIECE AND METHOD FOR CONTROLLING THE SAME
DE102017128543B4 (en) NOISE ZONE ADJUSTMENT DEVICE FOR A MOBILE ROBOT
EP0656868B1 (en) Process and device for controlling a portainer
DE102009042014A1 (en) Handling device for moving e.g. scanner for handling articles, has manipulator accommodated at carrier structure of parallel geometry unit, where powered movement axes are provided for displacing carrier structure relative to base
EP2248636B1 (en) System and a method for measuring a manipulator
DE102013014626A1 (en) Determining the position of a displaceable measuring point on a machine
WO2010025910A1 (en) Method for measuring the interior of an airplane
EP2322897A1 (en) Method and device for measuring workpieces comprising a optical and mechanical coordinate measuring machine
DE102018122627B4 (en) Measuring system
DD255300A5 (en) workpiece positioning
DE102004041938A1 (en) Stacking device e.g. reach stacker, for gripping e.g. container, has sensors for recording area of unknown layout of loads, preferably containers, and computer-aided image identification system for processing sensor data
EP1405036B1 (en) Method for operating a co-ordinate measuring device with a rotating-pivoting hinge
DE102018208189B4 (en) Method and device for determining the torsional errors of a machine axis
DE102020208835A1 (en) Probing processes on a coordinate measuring machine with distance determination
DE102019118477A1 (en) Determination of a pitch angle position of an active optical sensor system by means of a time of flight measurement
WO1996027153A1 (en) Process for calibrating the tool centre point of a robot
EP4299858A1 (en) Method for monitoring the stability of a working machine
DE10102943A1 (en) Measurement system for determination of the geometrical data of an object uses cameras to record input data, which is locally evaluated to produce 2-D data, which is then transferred to a central server to produce 3-D data
EP3797936A1 (en) Method for determining a position and/or the orientation of a device top
EP4241113A1 (en) Method for measuring position, position-measuring systems and marking
DE102020104764A1 (en) Mobile order picking robot and procedure for its operation
EP3797935A1 (en) Method for determining a position and/or the orientation of a device top

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960621

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59402247

Country of ref document: DE

Date of ref document: 19970430

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970421

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PUTZMEISTER AKTIENGESELLSCHAFT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980810

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980819

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990815

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010828

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050815