EP0689704B1 - Remote control method and device - Google Patents

Remote control method and device Download PDF

Info

Publication number
EP0689704B1
EP0689704B1 EP94910392A EP94910392A EP0689704B1 EP 0689704 B1 EP0689704 B1 EP 0689704B1 EP 94910392 A EP94910392 A EP 94910392A EP 94910392 A EP94910392 A EP 94910392A EP 0689704 B1 EP0689704 B1 EP 0689704B1
Authority
EP
European Patent Office
Prior art keywords
remote control
control signals
microprocessor
bit
tlrc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94910392A
Other languages
German (de)
French (fr)
Other versions
EP0689704A1 (en
Inventor
Norbert Eigeldinger
Eberhard Hauser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Thomson Brandt GmbH
Original Assignee
Deutsche Thomson Brandt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Thomson Brandt GmbH filed Critical Deutsche Thomson Brandt GmbH
Publication of EP0689704A1 publication Critical patent/EP0689704A1/en
Application granted granted Critical
Publication of EP0689704B1 publication Critical patent/EP0689704B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/16Electric signal transmission systems in which transmission is by pulses
    • G08C19/28Electric signal transmission systems in which transmission is by pulses using pulse code

Definitions

  • the present invention relates to a method and a Device for learning remote control signals for electronic devices, in particular consumer electronics according to the preamble of Claim 1 or according to the preamble of Claim 9.
  • a remote control transmitter is generally known. He sends in Signal wired or wireless, for example infrared light, Microwaves, ultrasonic waves or the like, more specific Frequencies and codes using a transmitter over a transmission path to a receiving device that the sent Recognizes signal codes and then certain, in the Executes commands contained in signal codes.
  • a disadvantage of the known learning remote control transmitters is the fact that data formats, the so-called toggle bits contained in their data word, not correctly recognized by them and also not perceived different carrier frequency ranges will.
  • such "learning" remote control transmitters work usually in the range of approximately 30 kHz to approximately 40 kHz, so that data formats with a carrier frequency in the range from for example 390 kHz to approx. 500 kHz not determined and cannot be reproduced correctly in broadcast mode.
  • Toggle bits are usually at the beginning of a data word transferred and either take the logic state "1" or "0". Their condition remains until the corresponding one Data word is no longer sent.
  • toggle bits the task of multiple, identical and long-lasting key presses to be able to distinguish perfectly from one another.
  • Conventional "learning" remote controls would do the same Data word that after a short interruption by a button is sent again, but this time with the toggle bit state "0" (if it was previously "1"), no longer recognize as the same command.
  • Infrared remote control transmitter can therefore in particular then fail if the original remote control transmitter, its infrared format from the learner remote control transmitter should be recognized and saved in the data word Togglebit contains. Error detections and / or operating errors are thus mapped out. Frequent complaints in this regard are known from publications e.g. in video 5/92, Page 42 and stereoplay no. 3/91, page 72.
  • EP-A-0 380 371 is a "learning" remote control known in which a received remote control signal in one Memory can be entered.
  • the "learning" remote control has the ability to receive the remote control signal to analyze and then in the appropriate form reproduce.
  • This "learning" remote control also the ability to toggle bits in the received Detect remote control signals.
  • everyone will received remote control signal to be learned corresponding bit pattern assigned, which is also stored becomes. After the repeated transmission of what is to be learned Remote control signal are both stored bit patterns compared with each other. This will position a Toggle bits detected.
  • the present invention is based on the object, too recognize and reproduce such transmission formats can have at least one toggle bit in their data word contain. It is advantageously irrelevant whether one or more toggle bits are contained in the data word and on the position of toggle bits in the data word.
  • the invention solves the problem in that at later times at least one other remote control signal for the same Remote command from the first remote control transmitter transmitted and received by the second remote control transmitter and is stored, the value of the further remote control signal is compared with the value of the first remote control signal and based on the comparison, the remote control command assigned remote control signal is formed.
  • an inventive device for learning and sending remote control signals realized be that with the help of a first memory initially at least two containing the same command, different remote control signals are saved with With the help of a comparator the values of the previously saved Remote control signals for time differences be examined with the help of a second memory (RAM) Results from the comparison are stored there with the help of an encoder at a later date Values of the original remote control signals are formed.
  • Figure 1 shows a block diagram of an arrangement of a toggle bit learning Remote control with a "fast" microprocessor.
  • Figure 2 shows a block diagram of an arrangement of a toggle bit learning Remote control with two carrier frequency oscillators.
  • Figure 3 shows a block diagram of an arrangement of a toggle bit learning Remote control with two infrared receivers and two carrier frequency oscillators.
  • FIG. 4 shows a pulse diagram of an infrared data word.
  • the original infrared format is forwarded from an infrared receiver IR to a first input E1 of a control device, which can be a microprocessor MP, for processing.
  • a switch SW which has one pole at reference potential and the other at a second input E2 of the microprocessor MP, switches the operating mode "LEARN" or "SEND" on.
  • a keyboard matrix KB is connected to a third input E3 of the microprocessor MP via a first line bus LB1.
  • An external memory RAM is connected to a bidirectional line bus I 2 C with an input or output IO of the microprocessor MP.
  • a first output A1 of the microprocessor MP supplies its data words to an infrared transmitter IS, which amplifies the data words and emits them as infrared light.
  • a display device AZ of optical and / or acoustic type is controlled by a second output A2 of the microprocessor MP via a second line bus LB2.
  • TLRC toggle bit Learning Remote Control
  • TLRC toggle bit Learning Remote Control
  • the microprocessor MP controls the display device AZ, the advantageously light-emitting Diodes or an LCD display can contain.
  • the Display device AZ shows the user whether the TLRC is on Ready to receive the first data word of the original remote control stands. The user now selects a button the keypad KB of the TLRC, so that it commands the Original remote control can take over.
  • the microprocessor prompts by means of the display device AZ MP prompts the user to repeat the same process. After the second reading of the data word, the in two tables read within the microprocessor MP and stored two data words by comparison Examine toggle bits.
  • FIG. 4 shows a typical example of a pulse diagram of an infrared remote control transmitter.
  • the pulse diagram at points A0, A1 and D6 has time-dependent bit states of a logical "1" of, for example, a length of 5.06 milliseconds.
  • Logical bit states of a "0" are transmitted with a duration of 2.53 milliseconds, for example.
  • the time-dependent bit states are compared at the same table position.
  • both times in the present example differ by less than 150 microseconds, both times are regarded as identical and an internal table pointer is increased by one digit. If the time difference is greater than 150 microseconds, there are different logical states at this position in the data words read. This is considered a toggle bit position. The position is stored in an information byte and a bit is set in the same byte, which indicates that it is a data format with at least one toggle bit. This is important for the examination of the table for further toggle bits and the transmission mode. After comparing a table position, the internal table pointer of the microprocessor MP is incremented and the next table position is examined.
  • the information obtained from this is stored in an information byte and the differing times are stored in the internal RAM of the microprocessor MP.
  • the tolerance time of 150 microseconds in the present example is a factor of 3 greater than the maximum inaccuracy measured when the same times are sent repeatedly from one and the same original remote control transmitter.
  • a second toggle bit By incrementing the table pointer, it is checked in the further comparison whether a second toggle bit is present.
  • a maximum of only two toggle bits are permitted and these must follow one another directly. If it is an approved position, the current bit position must be 1 (one) larger than the position stored in the information byte. If this is not the case, there is an error, for example due to a reading error.
  • the receiver software of the remotely controllable device simply changes a single toggle bit to recognize the same, repeated keystroke. Therefore only the position of the first detected toggle bit is saved. The different times are stored in the internal RAM of the microprocessor MP in reserved memory locations. This is necessary because the data word must be regenerated before sending.
  • FIG. 1 An embodiment shown in Figure 1 as a control device contain fast microprocessor MP, which the incoming Frequencies up to 500 kHz, which corresponds to a period of 2 microseconds, can measure and reproduce safely.
  • the arrangement in FIG. 1 provides only a single broadband infrared receiver IR with an infrared receiving diode, which forwards carrier frequencies between 30 kHz and 500 kHz to its output.
  • the high-speed microprocessor MP connected downstream of the infrared receiver IR can measure the frequencies directly and store their values or convert them into two decision criteria. One decision is on the lower, the other on the upper carrier frequency range. This means that, for example, a bit is set to "1" in the information byte when it is detected, and this frequency-designating bit is set to "0" in the information byte when it is detected.
  • the microprocessor MP stores all the information relevant for regeneration of the data word, such as the measured sequence of times, toggle bit times and information bytes, via the I 2 C bus in the external memory RAM .
  • the user sets the switch SW to the "SEND" position and actuates a key on the keypad KB of the togglebit-learning remote control transmitter TLRC corresponding to the command to be executed.
  • the microprocessor MP then reads the information from the external memory RAM via I 2 C-Bus, regenerates the original data word in all essential details, as well as the modulation of the carrier frequency, and essentially sends it in its original condition via the infrared transmitter IS Receiving device.
  • a second exemplary embodiment in FIG. 2 contains two carrier frequency oscillators. It differs from the first exemplary embodiment shown in FIG. 1 in that between the output A1 of the microprocessor MP and the input of the infrared transmitter IS there is now an oscillator stage OSC with two parallel oscillators LO and HO, which can be selected through the output A1 of the microprocessor MP can be controlled via a third line bus LB3. As described for the first exemplary embodiment, this arrangement contains only a single broadband infrared receiver IR with an infrared receiving diode, and a microprocessor MP, which, however, does not contain an internal carrier frequency oscillator here.
  • the microprocessor MP can be more cost-effective to design the microprocessor MP as a slow microprocessor and to connect this to a double oscillator stage OSC, which consists on the one hand of an oscillator with a low frequency LO (approx. 36 kHz) and on the other hand of an oscillator with a high frequency HO (400 kHz) exists.
  • OSC double oscillator stage
  • the microprocessor MP either activates one or the other oscillator. Everything else remains as described above for the first embodiment, which is why the reference numerals used there have been retained.
  • the infrared commands are first read in with the aid of a first infrared receiver LF with a lower pass band for frequencies from 30 kHz to 40 kHz (eg type IS1U60 from Sharp).
  • the carrier frequency range can be determined together with the second infrared receiver HF, which responds to frequencies in the range from 390 kHz to 500 kHz (eg type TFMT 4040 from Telefunken).
  • a switch is made from the first infrared receiver LF to the second infrared receiver HF during the reading process of the data words.
  • the negative edges of the data words which are received via the second IR receiver HF and are keyed at a carrier frequency in the range from 390 kHz to 455 kHz, trigger interrupts.
  • the interrupts are counted in an interrupt routine within the microprocessor MP. If the carrier frequency is in the lower range, that is to say between 30 kHz and 40 kHz, no signal is passed through, due to the pass band of the IR receiver HF. However, if the user specifies an insufficient distance between the TLRC remote control learning toggle bit and the original remote control or if the lighting conditions are unfavorable, there is a possibility that a few interrupts will be counted despite the lower carrier frequency range.
  • the total information of the data words as well as the information about the toggle bit, the different times of the toggle bit states, number, position, carrier frequency range as well as other data relevant to the program are stored in the external memory RAM using the I 2 C bus read, and stored there until called. If the data are to be sent, switch SW must be set from "LEARN” to "SEND” so that the microprocessor MP can read the data from the external memory RAM.
  • the data from the external memory RAM are processed in the microprocessor on the basis of the information from the information byte to form the complete data word.
  • the state of the toggle bit (s) is also changed or incremented by 1 each time a key on this key is assigned to the data field KB.
  • the microprocessor activates either the 36 kHz carrier frequency oscillator LO or the 400 kHz carrier frequency oscillator HO so that the data word corresponding to the original can be sent to the receiving device via the infrared transmitter IS.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Selective Calling Equipment (AREA)

Abstract

A togglebit learning remote control (TLRC) is described. Prior art "learning" remote control transmitters can neither learn nor transmit data formats with "toggle bits". The aim is to develop an infra-red remote control transmitter (TLRC) which both understands the former external formats and those with toggle bits and different carrier frequency ranges and transmits these data formats to the appropriate devices with or without a toggle bit. A device for receiving and transmitting infra-red formats consisting of an infra-red receiver (IR) with a fast microprocessor (MP) and/or with two carrier frequency oscillators (LO) and (HO) to generate two modulation frequencies and/or two infra-red receivers (LF) and (HF). An externally formatted data word with toggle bits is subjected, after being read in at least twice, to a comparison inside the microprocessor (MP) from which the presence of toggle bits and their number and position and the carrier frequency of the data word are found. Application to remotely controllable electrical devices.

Description

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum Lernen von Fernbedienungssignalen für elektronische Geräte, insbesondere der Unterhaltungselektronik nach dem Oberbegriff des Anspruchs 1 bzw. nach dem Oberbegriff des Anspruchs 9.The present invention relates to a method and a Device for learning remote control signals for electronic devices, in particular consumer electronics according to the preamble of Claim 1 or according to the preamble of Claim 9.

Ein Fernbedienungsgeber ist allgemein bekannt. Er schickt ein Signal drahtgebunden oder drahtlos, beispielsweise Infrarotlicht, Mikrowellen, Ultraschallwellen oder dergleichen, bestimmter Frequenzen und Codes mittels einer Sendeeinrichtung über eine Sendestrecke zu einem Empfangsgerät, das die gesendeten Signalcodes erkennt und daraufhin bestimmte, in den Signalcodes enthaltene Befehle ausführt.A remote control transmitter is generally known. He sends in Signal wired or wireless, for example infrared light, Microwaves, ultrasonic waves or the like, more specific Frequencies and codes using a transmitter over a transmission path to a receiving device that the sent Recognizes signal codes and then certain, in the Executes commands contained in signal codes.

Weiterhin ist bekannt, beispielsweise aus EP 289625 B1, daß es Fernbedienungsgeber gibt, die fremde Übertragungsformate, wie Infrarotformate anderer Hersteller oder für andere Geräte, erkennen, diese speichern und bei Bedarf wieder senden können. Solche Infrarot-Fernbedienungsgeber nennt man auch "lernende" Fernbedienungsgeber. Lernende Fernbedienungsgeber sind immer dann nützlich, wenn zwei oder mehrere fernbedienbare, voneinander unabhängige Geräte, insbesondere solche unterschiedlicher Hersteller, mit einem einzigen Infrarot-Fernbedienungsgeber betrieben werden sollen. Um sie zur Speicherung eines fremden Infrarotformats vorzubereiten, wird auf dem "lernenden" Fernbedienungsgeber eine von mehreren möglichen Tasten gedrückt. Nach erfolgter Sendung eines Fremdformats eines Originalfernbedienungsgebers, können weitere Kommandos des Fremdformats auf Tasten des "lernenden" Fernbedienungsgebers gelegt werden. Das Fremdformat des Originalfernbedienungsgebers ist somit erkannt und gespeichert.It is also known, for example from EP 289625 B1, that there are remote control transmitters that use foreign transmission formats, such as infrared formats from other manufacturers or for other devices, recognize it, save it and send it again if necessary can. Such infrared remote control transmitters are also called "learning" remote control transmitter. Learning remote control transmitter are useful whenever two or more remote-controlled, devices that are independent of one another, in particular devices of different types Manufacturer, with a single infrared remote control transmitter to be operated. To save them of a foreign infrared format is prepared on the "learning" remote control transmitter one of several possible Buttons pressed. After a foreign format has been sent of an original remote control transmitter, additional commands can the foreign format on buttons of the "learning" remote control transmitter be placed. The foreign format of the original remote control transmitter is thus recognized and saved.

Nachteilig bei den bekannten lernenden Fernbedienungsgebern ist die Tatsache, daß Datenformate, die sogenannte Togglebits in ihrem Datenwort enthalten, von ihnen nicht richtig erkannt und auch unterschiedliche Träger-Frequenzbereiche nicht wahrgenommen werden. Außerdem arbeiten solche "lernende" Fernbedienungsgeber gewöhnlich im Bereich von ca. 30 kHz bis ca. 40 kHz, so daß Datenformate mit einer Trägerfrequenz im Bereich von beispielsweise 390 kHz bis ca. 500 kHz nicht ermittelt und im Sendebetrieb nicht richtig nachgebildet werden können.A disadvantage of the known learning remote control transmitters is the fact that data formats, the so-called toggle bits contained in their data word, not correctly recognized by them and also not perceived different carrier frequency ranges will. In addition, such "learning" remote control transmitters work usually in the range of approximately 30 kHz to approximately 40 kHz, so that data formats with a carrier frequency in the range from for example 390 kHz to approx. 500 kHz not determined and cannot be reproduced correctly in broadcast mode.

Togglebits werden in der Regel zu Beginn eines Datenwortes übertragen und nehmen entweder den logischen Zustand "1" oder "0" an. Ihr Zustand bleibt solange erhalten, bis das entsprechende Datenwort nicht mehr gesendet wird. Togglebits haben die Aufgabe, mehrfache, gleiche sowie langandauernde Tastendrücke einwandfrei voneinander unterscheiden zu können. Herkömmliche "lernende" Fernbedienungsgeber würden das gleiche Datenwort, das nach einer kurzen Unterbrechung durch einen erneuten Tastendruck nochmals gesendet wird, dieses Mal jedoch mit dem Togglebit-Zustand "0" (wenn es zuvor "1" war), nicht mehr als gleiches Kommando erkennen.Toggle bits are usually at the beginning of a data word transferred and either take the logic state "1" or "0". Their condition remains until the corresponding one Data word is no longer sent. Have toggle bits the task of multiple, identical and long-lasting key presses to be able to distinguish perfectly from one another. Conventional "learning" remote controls would do the same Data word that after a short interruption by a button is sent again, but this time with the toggle bit state "0" (if it was previously "1"), no longer recognize as the same command.

Dies ist immer dann der Fall, wenn z.B. ein Programmplatz 11, 22, 33 etc. durch jeweils zweimaliges Betätigen von Zifferntasten 1, 2, 3 etc. angewählt werden soll. Ähnliches gilt auch für eine "TON AUS"-Taste, die durch zweimaligen Druck den Ton aus- und danach wieder einschaltet. Ohne eine Zustandsänderung des Togglebits kann die Empfängersoftware das erneut gesendete Kommando nicht als neues erkennen. In diesem Fall hat ein weiteres Senden des gleichen Kommandos mit dem gleichen Togglebitzustand keine bzw. eine ungewünschte Auswirkung (z.B. kann der Zustand "TON AUS" nicht aufgehoben werden oder statt des gewünschten Programmplatzes "11" wird auf den Programmplatz "1" umgeschaltet). Ein vielfältiger Einsatz der bekannten lernenden Fernbedienungen ist somit unmöglich.This is always the case if e.g. a program position 11, 22, 33 etc. by pressing the number keys twice 1, 2, 3 etc. should be selected. The same applies for a "SOUND OFF" button, which is activated by pressing the Turn the sound off and then on again. Without a change of state of the toggle bit, the receiver software can do this again do not recognize the sent command as a new one. In this case has another send of the same command with the same Toggle bit status no or an undesired effect (e.g. the "SOUND OFF" state cannot be canceled or instead of the desired program position "11", the program position is changed "1" switched). A varied use of the known learning remote controls is therefore impossible.

Der Betrieb eines nach dem bekannten Lernverfahren arbeitenden Infrarot-Fernbedienungsgebers kann folglich insbesondere dann zum Mißerfolg führen, wenn der Original-Fernbedienungsgeber, dessen Infrarotformat von dem Lernenden Fernbedienungsgeber erkannt und gespeichert werden soll, im Datenwort ein Togglebit enthält. Fehlerkennungen und/oder Fehlbedienungen sind somit vorgezeichnet. Häufige Beanstandungen diesbezüglich sind bekannt durch Veröffentlichungen z.B. in Video 5/92, Seite 42 und Stereoplay Nr. 3/91, Seite 72.The operation of a working according to the known learning method Infrared remote control transmitter can therefore in particular then fail if the original remote control transmitter, its infrared format from the learner remote control transmitter should be recognized and saved in the data word Togglebit contains. Error detections and / or operating errors are thus mapped out. Frequent complaints in this regard are known from publications e.g. in video 5/92, Page 42 and stereoplay no. 3/91, page 72.

Aus der EP-A-0 380 371 ist eine "lernende" Fernbedienung bekannt, in der ein empfangenes Fernbedienungssignal in einem Speicher eingetragen werden kann. Die "lernende" Fernbedienung hat dabei die Fähigkeit, daß empfangene Fernbedienungssignal zu analysieren und in entsprechender Form dann zu reproduzieren. Dabei besitzt diese "lernende" Fernbedienung auch die Fähigkeit sogenannte Toggle-Bits in den empfangenen Fernbedienungssignalen zu erkennen. Dabei wird jedem empfangenem zu lernendem Fernbedienungssignal ein entsprechendes Bit-Muster zugeordnet, das auch abgespeichert wird. Nach der wiederholten Aussendung des zu lernenden Fernbedienungssignals werden beide abgespeicherte Bit-Muster miteinander verglichen. Dadurch wird die Position eines Togglebits erkannt.EP-A-0 380 371 is a "learning" remote control known in which a received remote control signal in one Memory can be entered. The "learning" remote control has the ability to receive the remote control signal to analyze and then in the appropriate form reproduce. This "learning" remote control also the ability to toggle bits in the received Detect remote control signals. Everyone will received remote control signal to be learned corresponding bit pattern assigned, which is also stored becomes. After the repeated transmission of what is to be learned Remote control signal are both stored bit patterns compared with each other. This will position a Toggle bits detected.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, auch solche Übertragungsformate erkennen und reproduzieren zu können, die in ihrem Datenwort wenigstens ein Togglebit enthalten. Dabei ist es vorteilhafterweise gleichgültig, ob ein oder mehr Togglebits im Datenwort enthalten sind und an welcher Position sich Togglebits im Datenwort befinden.The present invention is based on the object, too recognize and reproduce such transmission formats can have at least one toggle bit in their data word contain. It is advantageously irrelevant whether one or more toggle bits are contained in the data word and on the position of toggle bits in the data word.

Die Erfindung löst die Aufgabe dadurch, daß zu späteren Zeiten mindestens ein weiteres Fernbedienungssignal für den selben Fernbedienungsbefehl von dem ersten Fernbedienungsgeber ausgesendet und vom zweiten Fernbedienungsgeber empfangen und gespeichert wird, der Wert des weiteren Fernbedienungssignals mit dem Wert des ersten Fernbedienungssignals verglichen wird und auf Grund des Vergleichs das dem Fernbedienungsbefehl zugeordnete Fernbedienungssignal gebildet wird.The invention solves the problem in that at later times at least one other remote control signal for the same Remote command from the first remote control transmitter transmitted and received by the second remote control transmitter and is stored, the value of the further remote control signal is compared with the value of the first remote control signal and based on the comparison, the remote control command assigned remote control signal is formed.

Im Prinzip kann eine erfindungsgemäße Vorrichtung zum Lernen und Aussenden von Fernbedienungssignalen dadurch realisiert werden, daß mit Hilfe eines ersten Speichers zunächst wenigstens zwei den gleichen Befehl enthaltende, unterschiedliche Fernbedienungssignale gespeichert werden, mit Hilfe eines Vergleichers die Werte der zuvor gespeicherten Fernbedienungssignale auf zeitliche Unterschiede hin untersucht werden, mit Hilfe eines zweiten Speichers (RAM) die aus dem Vergleich resultierenden Ergebnisse dort abgelegt werden und mit Hilfe eines Kodierers zu späterem Zeitpunkt die Werte der Ursprungs-Fernbedienungssignale gebildet werden.In principle, an inventive device for learning and sending remote control signals realized be that with the help of a first memory initially at least two containing the same command, different remote control signals are saved with With the help of a comparator the values of the previously saved Remote control signals for time differences be examined with the help of a second memory (RAM) Results from the comparison are stored there with the help of an encoder at a later date Values of the original remote control signals are formed.

Dabei kann zusätzlich vorgesehen sein, daß mit Hilfe derselben Vorrichtung weitere, unterschiedliche Befehle enthaltende, nach gleichem Verfahren bearbeitete Fernbedienungssignale gespeichert, verglichen und ausgesendet werden können.It can also be provided that with the help of the same Device containing further, different commands Remote control signals processed according to the same procedure can be saved, compared and sent out.

Die Erfindung wird nachstehend an Ausführungsbeispielen anhand der Zeichnung näher erläutert.The invention is illustrated below using exemplary embodiments the drawing explained in more detail.

Figur 1 zeigt ein Blockschaltbild einer Anordnung einer togglebit-lernenden Fernbedienung mit einem "schnellen" Mikroprozessor.Figure 1 shows a block diagram of an arrangement of a toggle bit learning Remote control with a "fast" microprocessor.

Figur 2 zeigt ein Blockschaltbild einer Anordnung einer togglebit-lernenden Fernbedienung mit zwei Trägerfrequenz-Oszillatoren.Figure 2 shows a block diagram of an arrangement of a toggle bit learning Remote control with two carrier frequency oscillators.

Figur 3 zeigt ein Blockschaltbild einer Anordnung einer togglebit-lernenden Fernbedienung mit zwei Infrarot-Empfängern sowie zwei Trägerfrequenz-Oszillatoren.Figure 3 shows a block diagram of an arrangement of a toggle bit learning Remote control with two infrared receivers and two carrier frequency oscillators.

Figur 4 zeigt ein Impulsdiagramm eines Infrarot-Datenwortes.FIG. 4 shows a pulse diagram of an infrared data word.

Bevor auf die Beschreibung der Ausführungsbeispiele eingegangen wird, sei darauf hingewiesen, daß die in den Figuren einzeln dargestellten Blöcke lediglich zum besseren Verständnis der Erfindung dienen. Üblicherweise sind einzelne oder mehrere dieser Blöcke zu Einheiten zusammengefaßt. Diese können in integrierter oder Hybridtechnik oder als programmgesteuerter Mikrorechner, bzw. als Teil eines zu seiner Steuerung geeigneten Programms realisiert sein.
Die in den einzelnen Stufen enthaltenen Elemente können jedoch auch getrennt ausgeführt werden.
Before going into the description of the exemplary embodiments, it should be pointed out that the blocks shown individually in the figures serve only for a better understanding of the invention. Usually, one or more of these blocks are combined into units. These can be implemented in integrated or hybrid technology or as a program-controlled microcomputer or as part of a program suitable for its control.
The elements contained in the individual stages can, however, also be carried out separately.

Zunächst wird der Aufbau des Ausführungsbeispiels der Figur 1 beschrieben.
Hierin wird das Original-Infrarot Format von einem Infrarot-Empfänger IR an einen ersten Eingang E1 eines Steuergeräts, das ein Mikroprozessor MP sein kann, zur Verarbeitung weitergeleitet. Ein Schalter SW, der mit einem Pol auf Bezugspotential liegt und mit seinem anderen auf einem zweiten Eingang E2 des Mikroprozessors MP, schaltet die Betriebsart "LEARN" oder "SEND" ein. über einen ersten Leitungsbus LB1 liegt eine Tastaturmatrix KB an einem dritten Eingang E3 des Mikroprozessors MP. Ein externer Speicher RAM ist mit einem bidirektionalen Leitungsbus I2C mit einem Ein- bzw. Ausgang IO des Mikroprozessors MP verbunden. Ein erster Ausgang A1 des Mikroprozessors MP liefert seine Datenworte an einen Infrarot-Sender IS, der die Datenworte verstärkt und als Infrarotlicht ausstrahlt. Eine Anzeigevorrichtung AZ optischer und/oder akustischer Art wird von einem zweiten Ausgang A2 des Mikroprozessors MP über einen zweiten Leitungsbus LB2 angesteuert.
First, the structure of the embodiment of Figure 1 will be described.
Here, the original infrared format is forwarded from an infrared receiver IR to a first input E1 of a control device, which can be a microprocessor MP, for processing. A switch SW, which has one pole at reference potential and the other at a second input E2 of the microprocessor MP, switches the operating mode "LEARN" or "SEND" on. A keyboard matrix KB is connected to a third input E3 of the microprocessor MP via a first line bus LB1. An external memory RAM is connected to a bidirectional line bus I 2 C with an input or output IO of the microprocessor MP. A first output A1 of the microprocessor MP supplies its data words to an infrared transmitter IS, which amplifies the data words and emits them as infrared light. A display device AZ of optical and / or acoustic type is controlled by a second output A2 of the microprocessor MP via a second line bus LB2.

Im folgenden wird das Datenwort auf Togglebits hin untersucht. Von dem in Figur 1 dargestellten togglebit-lernenden Fernbedienungsgeber, fortan als TLRC bezeichnet (TLRC = Togglebit Learning Remote Control) werden Infrarot-Datenworte zweimal hintereinander eingelesen. Dazu betätigt der Benutzer zunächst auf der TLRC den Schalter SW, der die TLRC in Lernbereitschaft versetzt. Der Mikroprozessor MP steuert daraufhin die Anzeigevorrichtung AZ an, die vorteilhafterweise lichtemittierende Dioden oder ein LCD-Display enthalten kann. Die Anzeigevorrichtung AZ zeigt dem Benutzer an, ob die TLRC auf Empfangsbereitschaft für das erste Datenwort der Original-Fernbedienung steht. Der Benutzer wählt nun eine Taste auf dem Tastenfeld KB der TLRC aus, damit diese das Kommando der Originalfernbedienung übernehmen kann. Anschließend wird mit der Originalfernbedienung das Kommando solange zur TLRC gesendet, bis es von dem Mikroprozessor MP gelesen und in einer Speichertabelle des Mikroprozessors MP abgelegt wurde. Der Mikroprozessor MP steuert daraufhin die Anzeigevorrichtung AZ entsprechend an, um den Benutzer über die erfolgreiche Speicherung zu informieren.In the following, the data word is examined for toggle bits. From the toggle bit learning shown in Figure 1 Remote control transmitter, henceforth referred to as TLRC (TLRC = toggle bit Learning Remote Control) are infrared data words read twice in succession. To do this, the user actuates first on the TLRC the switch SW, which the TLRC is ready to learn transferred. The microprocessor MP then controls the display device AZ, the advantageously light-emitting Diodes or an LCD display can contain. The Display device AZ shows the user whether the TLRC is on Ready to receive the first data word of the original remote control stands. The user now selects a button the keypad KB of the TLRC, so that it commands the Original remote control can take over. Then with the original remote control sent the command to the TLRC as long as until it is read by the microprocessor MP and in a Memory table of the microprocessor MP was stored. Of the Microprocessor MP then controls the display device AZ accordingly to inform the user of the successful Inform storage.

Mittels der Anzeigevorrichtung AZ fordert der Mikroprozessor MP den Benutzer auf, den gleichen Vorgang zu wiederholen. Nach dem zweiten Einlesen des Datenwortes lassen sich die in zwei Tabellen innerhalb des Mikroprozessors MP eingelesenen und gespeicherten zwei Datenworte durch einen Vergleich auf Togglebits hin untersuchen. The microprocessor prompts by means of the display device AZ MP prompts the user to repeat the same process. After the second reading of the data word, the in two tables read within the microprocessor MP and stored two data words by comparison Examine toggle bits.

Um Togglebits im Datenwort festzustellen, werden die Tabellen des ersten und des zweiten Einlesevorgangs untersucht. In den Tabellen sind die gemessenen Zeiten, die den logischen Zuständen der Datenbits entsprechen, abgelegt.
Die Figur 4 zeigt ein typisches Beispiel eines Impulsdiagramms eines Infrarot-Fernbedienungsgebers. Wie daraus ersichtlich ist, weist das Impulsdiagramm an den Stellen A0, A1 sowie D6 zeitabhängige Bitzustände einer logischen "1" von beispielsweise der Länge 5,06 Millisekunden auf. Logische Bitzustände einer "0" werden mit einer Zeitdauer von beispielsweise 2,53 Millisekunden übertragen.
Es findet ein Vergleich der zeitabhängigen Bitzustände an der gleichen Tabellenposition statt. Unterscheiden sich im vorliegenden Beispiel die Zeiten um weniger als 150 Mikrosekunden, so werden beide Zeiten als identisch angesehen und ein interner Tabellenzeiger wird um eine Stelle erhöht. Ist die Zeitdifferenz größer als 150 Mikrosekunden, so liegen an dieser Position in den eingelesenen Datenworten unterschiedliche logische Zustände vor. Dies wird als Togglebit-Position gewertet. Die Position wird in einem Informationsbyte abgelegt und ein Bit im selben Byte gesetzt, welches anzeigt, daß es sich um ein Datenformat mit mindestens einem Togglebit handelt. Dies ist für die Untersuchung der Tabelle auf weitere Togglebits und den Sendebetrieb von Bedeutung.
Nach dem Vergleich einer Tabellenposition wird der interne Tabellenzeiger des Mikroprozessors MP inkrementiert und die nächste Tabellenposition untersucht. Sind die Unterschiede jeder einzelne Tabellenposition der beiden Datenworte ermittelt, werden die daraus gewonnenen Informationen in einem Informationsbyte abgelegt und die sich unterscheidenden Zeiten im internen RAM des Mikroprozessors MP abgespeichert. Die Toleranzzeit ist mit 150 Mikrosekunden im vorliegenden Beispiel um den Faktor 3 größer, als die maximal gemessene Ungenauigkeit bei wiederholtem Senden der gleichen Zeiten von ein und demselben Original-Fernbedienungsgeber.
To determine toggle bits in the data word, the tables of the first and the second read-in process are examined. The measured times which correspond to the logical states of the data bits are stored in the tables.
FIG. 4 shows a typical example of a pulse diagram of an infrared remote control transmitter. As can be seen from this, the pulse diagram at points A0, A1 and D6 has time-dependent bit states of a logical "1" of, for example, a length of 5.06 milliseconds. Logical bit states of a "0" are transmitted with a duration of 2.53 milliseconds, for example.
The time-dependent bit states are compared at the same table position. If the times in the present example differ by less than 150 microseconds, both times are regarded as identical and an internal table pointer is increased by one digit. If the time difference is greater than 150 microseconds, there are different logical states at this position in the data words read. This is considered a toggle bit position. The position is stored in an information byte and a bit is set in the same byte, which indicates that it is a data format with at least one toggle bit. This is important for the examination of the table for further toggle bits and the transmission mode.
After comparing a table position, the internal table pointer of the microprocessor MP is incremented and the next table position is examined. Once the differences of each individual table position of the two data words have been determined, the information obtained from this is stored in an information byte and the differing times are stored in the internal RAM of the microprocessor MP. The tolerance time of 150 microseconds in the present example is a factor of 3 greater than the maximum inaccuracy measured when the same times are sent repeatedly from one and the same original remote control transmitter.

Um die Anzahl der erlaubten Togglebits (maximal zwei in gebräuchlichen Infrarot-Datenformaten) zu prüfen, muß auch die Position des Togglebits im Datenwort (=Tabellenplatz) gespeichert sein.By the number of allowed toggle bits (maximum two in common Infrared data formats) must also be checked The position of the toggle bit is saved in the data word (= table position) be.

Durch Inkrementierung des Tabellenzeigers wird beim weiteren Vergleich geprüft, ob ein zweites Togglebit vorliegt. Es sind in diesem Ausführungsbeispiel maximal nur zwei Togglebits erlaubt und diese müssen direkt aufeinanderfolgen. Handelt es sich um eine zugelassene Position, so muß die aktuelle Bitposition um 1 (eins) größer sein als die im Informationsbyte abgespeicherte Position. Ist dies nicht der Fall, liegt ein Fehler vor, der z.B. von einer Störung beim Einlesen herrührt. Der Empfängersoftware des fernbedienbaren Gerätes genügt die Änderung eines einzigen Togglebits, um einen gleichen, wiederholten Tastendruck zu erkennen. Deshalb wird nur die Position des ersten festgestellten Togglebits gespeichert.
Die sich unterscheidenden Zeiten werden im internen RAM des Mikroprozessors MP in reservierten Speicherstellen abgelegt. Dies ist deshalb notwendig, da das Datenwort vor dem Senden wieder regeneriert werden muß.
By incrementing the table pointer, it is checked in the further comparison whether a second toggle bit is present. In this exemplary embodiment, a maximum of only two toggle bits are permitted and these must follow one another directly. If it is an approved position, the current bit position must be 1 (one) larger than the position stored in the information byte. If this is not the case, there is an error, for example due to a reading error. The receiver software of the remotely controllable device simply changes a single toggle bit to recognize the same, repeated keystroke. Therefore only the position of the first detected toggle bit is saved.
The different times are stored in the internal RAM of the microprocessor MP in reserved memory locations. This is necessary because the data word must be regenerated before sending.

Eine weitere Ausgestaltung des Ausführungsbeispiels besteht in der Möglichkeit, mehr als nur einen Trägerfrequenzbereich unterscheiden und verarbeiten zu können. Bekannt sind zwei gebräuchliche Trägerfrequenzbereiche auf dem Gebiet der Unterhaltungselektronik und zwar von ca. 30 kHz bis ca. 40 kHz und von ca. 390 kHz bis ca. 500 kHz. Dadurch wird eine vielseitige Einsatzmöglichkeit des erfindungsgemäßen, lernenden Fernbedienungsgebers TLRC erreicht.There is a further embodiment of the exemplary embodiment in the possibility of more than one carrier frequency range distinguish and process. Two are known Common carrier frequency ranges in the field of consumer electronics from about 30 kHz to about 40 kHz and from approx. 390 kHz to approx. 500 kHz. This makes it versatile Possible application of the learning remote control transmitter according to the invention TLRC reached.

Zur Ermittlung und Erzeugung der Trägerfrequenzen könnte das in Figur 1 gezeigte Ausführungsbeispiel als Steuergerät einen schnellen Mikroprozessor MP enthalten, der die ankommenden Frequenzen bis zu 500 kHz, das entspricht einer Periodendauer von 2 Mikrosekunden, sicher ausmessen und reproduzieren kann. This could be used to determine and generate the carrier frequencies An embodiment shown in Figure 1 as a control device contain fast microprocessor MP, which the incoming Frequencies up to 500 kHz, which corresponds to a period of 2 microseconds, can measure and reproduce safely.

Die Anordnung in Figur 1 sieht nur einen einzigen breitbandigen Infrarotempfänger IR mit einer Infrarot-Empfangsdiode vor, der Trägerfrequenzen zwischen 30 kHz und 500 kHz an seinen Ausgang weiterleitet. Der dem Infrarotempfänger IR nachgeschaltete schnelle Mikroprozessor MP kann die Frequenzen direkt messen und deren Werte abspeichern oder diese in 2 Entscheidungskriterien umsetzen. Die eine Entscheidung lautet auf unteren, die andere auf oberen Trägerfrequenzbereich. Das bedeutet, daß beispielsweise bei Erkennung auf "oberen" Frequenzbereich, im Informationsbyte ein Bit auf "1" und bei Erkennung auf "unteren" Frequenzbereich dieses frequenzbezeichnende Bit auf "0" gesetzt wird. Nach der Untersuchung der Datenworte auf Togglebits, d.h. Bestimmung von deren Anzahl und Position sowie Frequenzbereich, legt der Mikroprozessor MP alle zur Regenerierung des Datenwortes relevanten Informationen wie zum Beispiel gemessene Zeitenfolge, Togglebitzeiten und Informationsbyte über den I2C-Bus im externen Speicher RAM ab.
Bei Abruf des zu regenerierenden Datenwortes legt der Benutzer den Schalter SW in die Position "SEND" und betätigt eine dem auszuführenden Befehl entsprechende Taste auf dem Tastenfeld KB des togglebit-lernenden Fernbedinungsgebers TLRC. Der Mikroprozessor MP liest daraufhin via I2C-Bus die Informationen aus dem externen Speicher RAM aus, regeneriert in allen wesentlichen Details das ursprüngliche Datenwort, wie auch die Modulation der Trägerfrequenz und sendet es im wesentlichen in seiner Originalbeschaffenheit über die Infrarot-Sendestufe IS zum Empfangsgerät aus.
The arrangement in FIG. 1 provides only a single broadband infrared receiver IR with an infrared receiving diode, which forwards carrier frequencies between 30 kHz and 500 kHz to its output. The high-speed microprocessor MP connected downstream of the infrared receiver IR can measure the frequencies directly and store their values or convert them into two decision criteria. One decision is on the lower, the other on the upper carrier frequency range. This means that, for example, a bit is set to "1" in the information byte when it is detected, and this frequency-designating bit is set to "0" in the information byte when it is detected. After examining the data words for toggle bits, i.e. determining their number and position as well as frequency range, the microprocessor MP stores all the information relevant for regeneration of the data word, such as the measured sequence of times, toggle bit times and information bytes, via the I 2 C bus in the external memory RAM .
When the data word to be regenerated is called up, the user sets the switch SW to the "SEND" position and actuates a key on the keypad KB of the togglebit-learning remote control transmitter TLRC corresponding to the command to be executed. The microprocessor MP then reads the information from the external memory RAM via I 2 C-Bus, regenerates the original data word in all essential details, as well as the modulation of the carrier frequency, and essentially sends it in its original condition via the infrared transmitter IS Receiving device.

Ein zweites Ausführungsbeispiel in Figur 2 enthält zwei Trägerfrequenzoszillatoren.
Es unterscheidet sich von dem in Figur 1 dargestellten ersten Ausführungsbeispiel insofern, daß zwischen dem Ausgang A1 des Mikroprozessors MP und dem Eingang des Infrarotsenders IS nunmehr eine Oszillatorstufe OSC mit zwei parallel liegenden Oszillatoren LO und HO liegt, die wahlweise durch den Ausgang A1 des Mikroprozessors MP über einen dritten Leitungsbus LB3 angesteuert werden können.
Diese Anordnung enthält, ebenso wie zum ersten Ausführungsbeispiel beschrieben, nur einen einzigen breitbandigen Infrarot-empfänger IR mit einer Infrarot-Empfangsdiode, sowie einen Mikroprozessor MP, der hier jedoch keinen internen Trägerfrequenz-Oszillator enthält. Statt dessen kann es kostengünstiger sein, den Mikroprozessor MP als einen langsamen Mikroprozessor auszubilden und diesem eine Doppel-Oszillatorstufe OSC nachzuschalten, die einerseits aus einem Oszillator mit einer tiefen Frequenz LO (ca. 36 kHz) und andererseits aus einem Oszillator mit einer hohen Frequenz HO (400 kHz) besteht. Abhängig von der Trägerfrequenz, die dem Original-Datenformat ursprünglich aufmoduliert war, aktiviert der Mikroprozessor MP entweder den einen oder den anderen Oszillator. Alles andere bleibt so, wie oben bereits zum ersten Ausführungsbeispiel beschrieben, weswegen auch die dort verwendeten Bezugszeichen beibehalten wurden.
A second exemplary embodiment in FIG. 2 contains two carrier frequency oscillators.
It differs from the first exemplary embodiment shown in FIG. 1 in that between the output A1 of the microprocessor MP and the input of the infrared transmitter IS there is now an oscillator stage OSC with two parallel oscillators LO and HO, which can be selected through the output A1 of the microprocessor MP can be controlled via a third line bus LB3.
As described for the first exemplary embodiment, this arrangement contains only a single broadband infrared receiver IR with an infrared receiving diode, and a microprocessor MP, which, however, does not contain an internal carrier frequency oscillator here. Instead, it can be more cost-effective to design the microprocessor MP as a slow microprocessor and to connect this to a double oscillator stage OSC, which consists on the one hand of an oscillator with a low frequency LO (approx. 36 kHz) and on the other hand of an oscillator with a high frequency HO (400 kHz) exists. Depending on the carrier frequency that was originally modulated onto the original data format, the microprocessor MP either activates one or the other oscillator. Everything else remains as described above for the first embodiment, which is why the reference numerals used there have been retained.

Eine vorteilhafte, weil sehr preisgünstige Lösung ist im dritten Ausführungsbeispiel in Figur 3 dargestellt. Dieses stellt eine Erweiterung des zu Figur 2 beschriebenen zweiten Ausführungsbeispiels dar, wobei ein allgemein gebräuchlicher Mikroprozessor (z.B. Typ Motorola MC68HC805C4) Verwendung finden kann. Die Infrarot-Empfängerstufe IR enthält zwei parallelgeschaltete Infrarot-Emfänger LF und HF, welche durch den Anschluß E1 des Mikroprozessors MP über einen vierten Leitungsbus LB4 ansteuerbar sind.An advantageous, because very inexpensive solution is in the third Embodiment shown in Figure 3. This poses an extension of the second embodiment described for Figure 2 is a common microprocessor (e.g. type Motorola MC68HC805C4) are used can. The infrared receiver stage IR contains two connected in parallel Infrared receiver LF and HF, which through the connection E1 of the microprocessor MP via a fourth line bus LB4 can be controlled.

Das Einlesen der Infrarot-Kommandos erfolgt zunächst mit Hilfe eines ersten Infrarot-Empfängers LF mit einem unteren Durchlaßbereich für Frequenzen von 30 kHz bis 40 kHz (z.B. Typ IS1U60 von Sharp).
Zusammen mit dem zweiten Infrarot-Empfänger HF, der auf Frequenzen im Bereich von 390 kHz bis 500 kHz reagiert (z.B. Typ TFMT 4040 von Telefunken), läßt sich der Trägerfrequenzbereich ermitteln.
Hierzu wird während des Einlesvorgangs der Datenworte vom ersten Infrarot-Empfänger LF auf den zweiten Infrarot-Empfänger HF umgeschaltet. Während eines Zeitfensters (z.B. 261ms) lösen die negativen Flanken der Datenworte, die über den zweiten IR-Empfänger HF empfangen und mit einer Trägerfrequenz im Bereich von 390 kHz bis 455 kHz getastet werden, Interrupts aus. In einer Interrupt-Routine innerhalb des Mikroprozessors MP werden die Interrupts gezählt. Liegt die Trägerfrequenz im unteren Bereich, also zwischen 30 kHz und 40 kHz, wird, bedingt durch den Durchlaßbereich des IR-Empfängers HF, kein Signal durchgelassen. Legt jedoch der Benutzer einen zu geringen Abstand zwischen der togglebit-lernenden Fernbedienung TLRC und der Originalfernbedienung fest oder liegen ungünstige Lichtverhältnisse vor, besteht die Möglichkeit, daß trotz des unteren Trägerfrequenzbereichs einige wenige Interrupts gezählt werden. Dies ist aber nicht weiter von Bedeutung, da beispielsweise bei einer Anzahl von mehr als 6 Interrupts auf "oberen" Trägerfrequenzbereich erkannt werden kann. Bekannte Datenformate im oberen Trägerfrequenzbereich (z.B. Formate von NEC, Philips, Ferguson, SABA, Telefunken und Nordmende) lösen entsprechend ihrer Bitanzahl Interrupts aus.
The infrared commands are first read in with the aid of a first infrared receiver LF with a lower pass band for frequencies from 30 kHz to 40 kHz (eg type IS1U60 from Sharp).
The carrier frequency range can be determined together with the second infrared receiver HF, which responds to frequencies in the range from 390 kHz to 500 kHz (eg type TFMT 4040 from Telefunken).
For this purpose, a switch is made from the first infrared receiver LF to the second infrared receiver HF during the reading process of the data words. During a time window (eg 261 ms), the negative edges of the data words, which are received via the second IR receiver HF and are keyed at a carrier frequency in the range from 390 kHz to 455 kHz, trigger interrupts. The interrupts are counted in an interrupt routine within the microprocessor MP. If the carrier frequency is in the lower range, that is to say between 30 kHz and 40 kHz, no signal is passed through, due to the pass band of the IR receiver HF. However, if the user specifies an insufficient distance between the TLRC remote control learning toggle bit and the original remote control or if the lighting conditions are unfavorable, there is a possibility that a few interrupts will be counted despite the lower carrier frequency range. However, this is of no further importance since, for example, a number of more than 6 interrupts on the "upper" carrier frequency range can be detected. Known data formats in the upper carrier frequency range (eg formats from NEC, Philips, Ferguson, SABA, Telefunken and Nordmende) trigger interrupts according to their number of bits.

Die Gesamtinformation der Datenworte sowie die Information über Togglebit, die unterschiedlichen Zeiten der Togglebit-Zustände, Anzahl, Position, Trägerfrequenzbereich sowie weitere programmplatzrelevante Daten (Kanalzuordnung, Timerdaten, VPS etc.) werden mit Hilfe des I2C-Bus in den externen Speicher RAM eingelesen, und dort bis auf Abruf abgelegt. Sollen die Daten gesendet werden, muß Schalter SW von "LEARN" auf "SEND" gesetzt werden, damit der Mikroprozessor MP die Daten aus dem externen Speicher RAM auslesen kann. Im Mikroprozessor werden die Daten aus dem externen Speicher RAM anhand der Informationen aus dem Informationsbyte zum kompletten Datenwort aufbereitet. Falls ein oder mehr Togglebits im Datenwort vorhanden sind, wird bei jedem erneuten Tastendruck einer diesem Datenwort zugeordneten Taste auf dem Tastenfeld KB auch der Zustand des oder der Togglebit(s) geändert bzw. um 1 inkrementiert. Nach Analysierung der Daten aktiviert der Mikroprozessor entweder den 36-kHz-Trägerfrequenz-Oszillator LO oder den 400-kHz-Trägerfrequenz-Oszillator HO, damit das dem Original entsprechende Datenwort über die Infrarot-Sendestufe IS zum Empfangsgerät geschickt werden kann.The total information of the data words as well as the information about the toggle bit, the different times of the toggle bit states, number, position, carrier frequency range as well as other data relevant to the program (channel assignment, timer data, VPS etc.) are stored in the external memory RAM using the I 2 C bus read, and stored there until called. If the data are to be sent, switch SW must be set from "LEARN" to "SEND" so that the microprocessor MP can read the data from the external memory RAM. The data from the external memory RAM are processed in the microprocessor on the basis of the information from the information byte to form the complete data word. If there are one or more toggle bits in the data word, the state of the toggle bit (s) is also changed or incremented by 1 each time a key on this key is assigned to the data field KB. After analyzing the data, the microprocessor activates either the 36 kHz carrier frequency oscillator LO or the 400 kHz carrier frequency oscillator HO so that the data word corresponding to the original can be sent to the receiving device via the infrared transmitter IS.

Claims (9)

  1. Method of learning the remote control signals from a first remote control unit which initially sends first remote control signals in respect of a data word for a predefined remote control command, said signals being received by a second remote control unit (TLRC) which is designed to receive and to send remote control signals, wherein the value of the first remote control signals from the first remote control unit is stored in the second remote control unit (TLRC) and second or further remote control signals that only differ from the first remote control signals by at least one toggle bit are recognised, characterised in that, after reception, the first and second or further remote control signals are stored in the form of times in mutually associated tables of a microprocessor (MP) or of a memory (RAM) of the second remote control unit (TLRC) and these values are investigated for time differences, whereby one compares whether the difference in the measured times between the rising edges is greater than a predetermined time and that if this is the case, then it is recognised that differing logical states are present at the corresponding position in the received data word and this position is assessed as a toggle bit position.
  2. Method in accordance with Claim 1, wherein the comparison of the measured times is continued after the recognition of the first toggle bit and, inasmuch as a time difference that is greater than the predetermined time is again determined at a further position, it is checked as to whether this relates to a toggle bit, whereby a further toggle bit is recognised if the large time difference is detected for a bit of the data word which is directly adjacent to the first recognised toggle bit and that it is assessed as an error in any other case.
  3. Method in accordance with Claim 1 or 2, wherein the information regarding the toggle bit positions obtained by the comparison of the measured times is stored in an information byte.
  4. Method in accordance with Claim 3, wherein the information byte is stored in the microprocessor (MP) or in the memory (RAM) of the second remote control unit (TLRC) and one part of the information byte, in particular, one single bit, is used for identifying the carrier frequency band which was modulated by the original remote control signals.
  5. Method in accordance with Claim 4, wherein the frequency identifying bit (s) stored in the information byte is/are used for activating an oscillator (LO, HO) that modulates the remote control signals being regenerated onto a carrier frequency which substantially corresponds to that which was modulated by the original remote control signals.
  6. Method in accordance with Claim 4 or 5, wherein one of a plurality of possible carrier frequencies is modulated by the remote control signals that are to be sent in dependence on the information bit or the information bits stored in the memory (RAM).
  7. Method in accordance with Claim 5 or 6, wherein, in the case of the second remote control unit (TLRC), a first carrier in the 36 kHz band and/or the one second carrier frequency in the 400 kHz band is modulated by the remote control signals that are to be sent.
  8. Method in accordance with any of the preceding Claims, wherein a second infra-red receiver (HF) is switched on in the second remote control unit (TLRC) and the negative edges of the data words set off interrupts in the microprocessor (MP) via the second infra-red receiver (HF) during a time window, said interrupts being evaluated by the microprocessor (MP) for determining the carrier frequency, whereby the information obtained therefrom is stored in the form of a bit in the information byte and the total amount of information in the information byte is stored in the microprocessor (MP) or in the external memory (RAM) for the purposes of regenerating the data word at a later time.
  9. Device for learning the remote control signals from a first remote control unit which initially sends first remote control signals in respect of a data word for a predefined remote control command, including a second remote control unit (TLRC), which is designed to receive and to send remote control signals and which receives the first remote control signals and stores values corresponding to the first remote control signals that have been received and also contains means which can recognise the second or further remote control signals that are only distinguished by at least one toggle bit, characterised in that, means are provided which, after reception thereof, store the first and second or further remote control signals in the form of times in mutually associated tables of a microprocessor (MP) or a memory (RAM) and investigate these values for time differences, whereby a comparison is made in a comparator as to whether the difference in the measured times between two rising edges of the remote control signals is greater than a predetermined time and that further means are provided which recognise that differing logical states are present at the corresponding position in the received data word and assess these positions as toggle bit positions if the difference exceeds the predetermined time.
EP94910392A 1993-03-17 1994-03-08 Remote control method and device Expired - Lifetime EP0689704B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4308441A DE4308441A1 (en) 1993-03-17 1993-03-17 Remote control method and apparatus
DE4308441 1993-03-17
PCT/EP1994/000697 WO1994022119A1 (en) 1993-03-17 1994-03-08 Remote control method and device

Publications (2)

Publication Number Publication Date
EP0689704A1 EP0689704A1 (en) 1996-01-03
EP0689704B1 true EP0689704B1 (en) 1998-01-21

Family

ID=6483008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94910392A Expired - Lifetime EP0689704B1 (en) 1993-03-17 1994-03-08 Remote control method and device

Country Status (7)

Country Link
US (1) US5670958A (en)
EP (1) EP0689704B1 (en)
JP (1) JP3704148B2 (en)
KR (1) KR100294144B1 (en)
CN (1) CN1047015C (en)
DE (2) DE4308441A1 (en)
WO (1) WO1994022119A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2305276A (en) * 1995-09-15 1997-04-02 Thomson Multimedia Sa Learning remote control IR codes
ITVE20000054A1 (en) * 2000-12-29 2002-06-29 Teleco Automation Srl MULTI-USER REMOTE CONTROL DEVICE
US20020191252A1 (en) * 2001-05-10 2002-12-19 Pugel Michel Anthony Economical extension of the operating distance of an RF remote link accommodating IR remote controls having differing IR carrier frequencies
US6895252B2 (en) 2001-05-10 2005-05-17 Thomson Licensing Sa Economical extension of the operating distance of an RF remote link accommodating information signals having differing carrier frequencies
JP2004336723A (en) * 2003-04-17 2004-11-25 Sharp Corp Terminal apparatus and center apparatus, control method and control program thereof communication system, and recording medium recording these programs
DE102004045689A1 (en) * 2004-09-21 2006-03-30 Hans Seitz Remote control for e.g. television receiver, has storage device adjusting selection commands to preset receiving frequency, another device assigning signals to keys and programming device storing sequence of signals in former device
EP1672647B1 (en) * 2004-12-15 2011-04-27 STMicroelectronics Srl A non-volatile memory device supporting high-parallelism test at wafer level
JP4324803B2 (en) * 2005-07-14 2009-09-02 ソニー株式会社 Remote control transmitter
US8384513B2 (en) * 2006-01-03 2013-02-26 Johnson Controls Technology Company Transmitter and method for transmitting an RF control signal
FR2896367B1 (en) * 2006-01-17 2008-04-11 Canon Europa Nv Naamlooze Venn METHOD FOR SYNCHRONIZING THE ALTERNATE FIELD VALUE OF AN INFRARED CONTROL SIGNAL, COMPUTER PROGRAM PRODUCT, CORRESPONDING STORAGE MEDIUM AND RECEIVER NODE
TW200835303A (en) * 2006-09-07 2008-08-16 Avocent Huntsville Corp Point-to-multipoint high definition multimedia transmitter and receiver
US8533764B2 (en) * 2007-10-19 2013-09-10 Lawrence Lo System and method for regulating bandwidth in a multicast video transmission system
CN101452643B (en) * 2007-11-30 2010-12-08 无锡华润矽科微电子有限公司 Learning type infrared remote-controller
CN101867380B (en) * 2010-02-10 2013-02-27 成都九洲迪飞科技有限责任公司 Handheld transmitter
CN105575082A (en) * 2014-10-14 2016-05-11 庆富造船股份有限公司 Learning-type remote control system
CN104392600A (en) * 2014-11-26 2015-03-04 福建求实智能股份有限公司 Method for storing by collecting different infrared frequencies
CN106982323B (en) * 2017-02-16 2019-12-27 小绿草股份有限公司 Self-timer system and method
CN107539747A (en) * 2017-08-01 2018-01-05 龙口矿业集团有限公司 Novel remote-control belt conveyor
CN111292522B (en) * 2020-02-13 2021-06-18 青岛海信宽带多媒体技术有限公司 Automatic test system and method for infrared receiving of set top box

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623887A (en) * 1984-05-15 1986-11-18 General Electric Company Reconfigurable remote control
JPH01218296A (en) * 1988-02-26 1989-08-31 Nec Home Electron Ltd Remote control receiver with study function
US4866434A (en) * 1988-12-22 1989-09-12 Thomson Consumer Electronics, Inc. Multi-brand universal remote control
MY104831A (en) * 1989-01-27 1994-06-30 Sharp Kk Memory remote control device.
US5142398A (en) * 1989-07-11 1992-08-25 Tandy Corporation Timer system for learning and replaying of infrared signals

Also Published As

Publication number Publication date
KR100294144B1 (en) 2001-09-17
WO1994022119A1 (en) 1994-09-29
CN1047015C (en) 1999-12-01
CN1119474A (en) 1996-03-27
DE4308441A1 (en) 1994-09-22
US5670958A (en) 1997-09-23
KR960701420A (en) 1996-02-24
JP3704148B2 (en) 2005-10-05
JPH08511914A (en) 1996-12-10
EP0689704A1 (en) 1996-01-03
DE59405116D1 (en) 1998-02-26

Similar Documents

Publication Publication Date Title
EP0689704B1 (en) Remote control method and device
DE69838938T2 (en) Method and device for storing coded data signals
EP0106273B1 (en) Safety device
DE19752453B4 (en) Position detecting device and position pointing device and method for detecting two or more position pointing devices
DE69934276T2 (en) Remote control learning device and method with signal envelope pattern recognition
DE3313493C2 (en)
DE3916409C2 (en)
DE3106427A1 (en) REMOTE CONTROL TRANSMITTER
DE2737467C2 (en) Remote control arrangement
EP0519089B1 (en) Loading of operational parameters for a ready-for-use proximity switch
DE4131647A1 (en) SELF-TESTING AND MULTI-FUNCTION REMOTE CONTROL TRANSMITTERS
DE2804296A1 (en) CONTROL CIRCUIT
DE3840493C1 (en)
DE3545293C2 (en)
DE4025302C2 (en)
DE2746532C2 (en) Computerized communications equipment
DE3604236C1 (en) Universally programmable keyboard
WO2001089966A1 (en) Programmable sensor unit
DE2749559A1 (en) REMOTE CONTROL DEVICE
EP1594024B1 (en) Analysis of the behaviour of an output circuit with a load
EP0103711B1 (en) Device for interpreting data words
EP0437731B1 (en) TV receiver apparatus with a transmitter scanning device and a memory for storing individual items of TV transmitter information
EP1301913A1 (en) Data transmission method
DE19619246C1 (en) Receiver for transponder signal which has been FSK modulated and which includes check codes
DE3209382A1 (en) SOUND DETECTOR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950902

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19960227

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980121

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980123

REF Corresponds to:

Ref document number: 59405116

Country of ref document: DE

Date of ref document: 19980226

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20010806

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100316

Year of fee payment: 17

Ref country code: FR

Payment date: 20100408

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100302

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100322

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110308

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59405116

Country of ref document: DE

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110308

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110308