EP0672943A1 - A silver halide imaging material and a method for obtaining an image according to the silver salt diffusion transfer process - Google Patents

A silver halide imaging material and a method for obtaining an image according to the silver salt diffusion transfer process Download PDF

Info

Publication number
EP0672943A1
EP0672943A1 EP95200289A EP95200289A EP0672943A1 EP 0672943 A1 EP0672943 A1 EP 0672943A1 EP 95200289 A EP95200289 A EP 95200289A EP 95200289 A EP95200289 A EP 95200289A EP 0672943 A1 EP0672943 A1 EP 0672943A1
Authority
EP
European Patent Office
Prior art keywords
layer
image
silver halide
coverage
waterpermeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95200289A
Other languages
German (de)
French (fr)
Other versions
EP0672943B1 (en
Inventor
René c/o Agfa-Gevaert N.V. De Keyzer
Jean-Pierre C/O Agfa-Gevaert N.V. Tahon
Marcel C/O Agfa-Gevaert N.V. Monbaliu
Jean-Marie C/O Agfa-Gevaert N.V. Dewanckele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert NV
Original Assignee
Agfa Gevaert NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert NV filed Critical Agfa Gevaert NV
Priority to EP19950200289 priority Critical patent/EP0672943B1/en
Publication of EP0672943A1 publication Critical patent/EP0672943A1/en
Application granted granted Critical
Publication of EP0672943B1 publication Critical patent/EP0672943B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/7614Cover layers; Backing layers; Base or auxiliary layers characterised by means for lubricating, for rendering anti-abrasive or for preventing adhesion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C8/00Diffusion transfer processes or agents therefor; Photosensitive materials for such processes
    • G03C8/42Structural details
    • G03C8/52Bases or auxiliary layers; Substances therefor

Definitions

  • the present invention relates to an imaging element having a silver halide emulsion layer and to a method for obtaining an image therewith using the silver salt diffusion transfer method.
  • DTR process The principle of the silver complex diffusion transfer process (hereinafter referred to as DTR process) is well known from the description in US-P 2,352.014 and in the book “Photographic Silver Halide Diffusion Processes” by André Rott and Edith Weyde - The Focal Press - London and New York, (1972).
  • the silver complex is imagewise transferred by diffusion from a silver halide emulsion layer to an image receptive layer and transformed therein into a silver image generally in the presence of physical development nuclei.
  • the imagewise exposed silver halide emulsion layer is arranged so as to be in contact with or is brought into contact with the image receptive layer in the presence of a developing agent and a solvent for the silver halide, thereby to convert the unexposed silver halide into a soluble silver complex.
  • the silver halide In the exposed areas of the silver halide emulsion layer, the silver halide is developed into silver which is insoluble and hence cannot diffuse.
  • the unexposed areas of the silver halide emulsion layer the silver halide is converted into a soluble silver complex and is transferred to an image receptive layer wherein the silver complex forms a silver image generally in the presence of development nuclei.
  • the DTR-image can be formed in the image-receiving layer of a sheet or web material which is a separate element with respect to the photographic silver halide emulsion material (a so-called two-sheet DTR element) or in the image-receiving layer of a so-called single-support-element. also called mono-sheet element, which contains at least one photographic silver halide emulsion layer integral with an image-receiving layer in water permeable relationship therewith.
  • the DTR process can be utilized in a wide field such as reproduction of documents, making of printing plates, preparation of black copies, and instant photography.
  • an imaging material hereinafter also called negative material, having a photosensitive silver halide emulsion layer is brought into close contact with an image-receiving material, hereinafter also called positive material having an image receptive layer in a DTR processing solution generally containing a silver-complexing agent, thereby to form a silver image in the receptive layer of the positive material.
  • the silver image in these cases is required to be pure black or bluish black in color and sufficiently high in density. It is also important that the silver image be high in contrast and sharpness, excellent in image reproducibility, and preferably formed with a high transfer speed.
  • EP-A 402.523 it has been described that the running characteristics of a processing liquid can be improved by setting the total amount of hydrophilic colloid on the photosensitive side of an imaging element consisting of a base-layer and an emulsion layer between 6 and 8g/m2 while keeping the swelling ratio between 3.5:1 and 5.5:1.
  • EP-A 93200410.4 it has been described that the running characteristics of a processing liquid can be improved by using a imaging element, conprising a base-layer and an emulsion layer with a specified composition.
  • an imaging material comprising on a support a waterpermeable base layer comprising a hydrophilic colloid, a photosensitive silver halide emulsion layer comprising a hydrophilic colloid and being in waterpermeable contact with said waterpermeable base layer and a waterpermeable top layer, that is essentially free from silver halide emulsion, comprising a hydrophilic colloid and being in waterpermeable contact with said photosensitive layer characterized in that the coverage of the hydrophilic colloids comprised in said top layer is not more than 0.4 g/m2.
  • an imaging material comprising on a support a photosensitive silver halide emulsion layer comprising a hydrophilic colloid and a waterpermeable top layer, essentially free from silver halide emulsion, comprising a hydrophilic colloid and being in waterpermeable contact with said photosensitive layer characterized in that the coverage of the hydrophilic colloids comprised in said top layer is not more than 0.4 g/m2 and in that the coverage of the hydrophilic colloids comprised in said photosensitive layer is not more than 2.4 g/m2, the quality of the obtained image using the DTR-process is improved. Especially the density and the speed of transfer are improved.
  • the DTR-material according to the present invention further offers the advantage that it can be used in a wide range of processing conditions without a substantial loss of image quality.
  • a waterpermeable layer is such that it does not substantially inhibit or restrain the diffusion of water or of compounds contained in an aqueous solution e.g. developing agents or the complexed silver.
  • Layers being in waterpermeable contact with each other are layers that are contiguous to each other or only separated from each other by (a) waterpermeable layer(s).
  • the coverage of the hydrophilic colloid(s) of the waterpermeable top layer depends on the nature of the colloid(s) used and the required mechanical strength but is in the present invention not more than 0.4 g/m2.
  • Essentially free from silver halide emulsion means that said top layer contains less than 0.1 g/m2 , preferably none silver halide emulsion.
  • Such top layer does not inhibit or restrain the diffusion transfer of the complexed silver but acts as an anti-stress layer, as a protective layer against mechanical damage of the imaging element during handling, as a layer improving the contact between the negative and the positive materials during processing, etc..
  • Such layer may be transferred at least partially to the image-receiving layer without deleterious action on the image formation.
  • the photosensitive silver halide emulsion layer can be coated from any photosensitive silver halide emulsion comprising a hydrophilic colloid binder provided the coverage of hydrophilic colloid contained in said layer is not more than 2.4 g/m2, more preferably not more than 2.2 g/m2.
  • the weight ratio of hydrophilic colloid binder to silver halide expressed as equivalent amount of silver nitrate to binder is preferably in the range of 3:1 to 1:3 .
  • the sum of the coverage of the hydrophilic colloids contained in said top layer, that is essentially free from silver halide emulsion and the emulsion layer is not more than 2.5 g/m2, more preferred not more than 2.2 g/m2.
  • the photosensitive silver halide used in the present invention may be any type of photographic silver halide emulsion material suited for use in diffusion transfer reversal processing, preference being given to silver halide emulsion layers the silver halide of which is mainly silver chloride because of its relatively easy complexing with thiosulphate ions.
  • the silver halide grains can have any size or shape and may be prepared by any technique known in the art, e.g. by single-jet or double jet precipitation. Negative type or direct-positive type silver halide grains may be used. Negative and positive working type silver halide emulsions are known in the art and are described e.g. in Research Disclosure, November 1976, item 15162.
  • the spectral photosensitivity of the silver halide can be adjusted by proper spectral sensitization by means of the usual mono- or polymethine dyes such as acidic or basic cyanines, hemicyanines, oxonols, hemioxonols, styryl dyes or others, also tri-or polynuclear methine dyes e.g. rhodacyanines or neocyanines.
  • Such spectral sensitizers have been described by e.g. F.M. HAMER in "The Cyanine Dyes and Related Compounds" (1964) Interscience Publishers, John Wiley & Sons, New York.
  • the silver halide emulsions may contain the usual stabilizers Suitable stabilizers are azaindenes, preferably tetra- or penta-azaindenes, especially those substituted with hydroxy or amino groups. Compounds of this kind have been described by BIRR in Z. Wiss. Photogr. Photophys. Photochem. 47, 2-27 (1952). Other suitable stabilizers are i.a. heterocyclic mercapto compounds e.g. phenylmercaptotetrazole, quaternary benzothiazole derivatives and benzotriazole.
  • the silver halide emulsions may further contain either or not in combination with one or more developing agents pH controlling ingredients, and other ingredients such as antifogging agents, development accelerators, wetting agents, and hardening agents for gelatin.
  • the silver halide emulsion layer may comprise light-screening dyes that absorb scattering light and thus promote the image sharpness and, as a consequence thereof, the sharpness of the final printed copy.
  • Light-absorbing dyes that can be used as light-screening dyes have been described in i.a. US-P 4,092,168, 4,311,787, DE-A 2,453,217 and GB-A 1,907,440. More details about the composition, preparation and coating of silver halide emulsions can be found in e.g. Product Licensing Index, Vol. 92, December 1971, publication 9232, p. 107-109.
  • the imaging element of the present embodiment may contain other additional layers comprising a hydrophilic colloid in waterpermeable relationship with the silver halide emulsion layer.
  • the total sum of the coverage of the hydrophilic colloids comprised in the photosensitive layer and in all other layers of the imaging material comprising a hydrophilic colloid and being in waterpermeable contact with the photosensitive layer is not more than 6.3 g/m2, more preferably not more than 5.6 g/m2.
  • the base-layer between the support and the photosensitive silver halide emulsion layer.
  • the sum of the coverage of the hydrophilic colloids contained in said base layer, the top layer, that is essentially free from silver halide emulsion and and the emulsion layer is not more than 6 g/m2, more preferably not more than 5.5 g/m2.
  • said base-layer serves as an antihalation layer so that the reflectance of the support containing said antihalation layer is not more than 25% and preferably not more than 15%.
  • This layer can therefore contain the same light-absorbing dyes as described above for the emulsion layer; as alternative finely divided carbon black can be used for the same antihalation purposes as described in US-P 2,327,828.
  • the support it self may be selected such that it can serve as antihalation means as described in e.g. US-P 4,165,237.
  • light reflecting pigments e.g. titaniumdioxide can be present.
  • this layer can contain hardening agents, matting agents, e.g. silica particles, and wetting agents.
  • these matting agents and/or light reflection pigments may also be present in the silver halide emulsion layer the most part however preferably being present in said base-layer.
  • the light reflecting pigments may be present in a separate layer provided between the antihalation layer and the photosensitive silver halide emulsion layer.
  • the hydrophilic colloid binder which is comprised in the various layers of the imaging material, is usually gelatin. But instead of or together with gelatin, use can be made of one or more other natural and/or synthetic hydrophilic colloids, e.g. albumin, casein, zein, polyvinyl alcohol, alginic acids or salts thereof, cellulose derivatives such as carboxymethyl cellulose, modified gelatin, e.g. phthaloyl gelatin etc..
  • the nature of the binder is such that the amount of liquid taken up by the imaging element when soaked for 1 min. in a 0.1 N aqueous solution of NaOH is preferably between 3.5 ml and 7 ml for 1 g binder.
  • the support for the imaging element may be any opaque or transparent support.
  • Transparent supports are made e.g. of cellulose triacetate, polyvinyl chloride, polycarbonates, polystyrene or polyesters such as polyethylene terephthalate being provide with a suitable subbing layer(s) for adhering thereto a hydrophilic colloid layer.
  • Opaque paper supports are usually made of paper coated with a water-impermeable layer of a polyolefine such as polyethylene.
  • a backing layer is provided at the non-light sensitive side of the support.
  • This layer which can serve as anti-curl layer can contain i.a. matting agents e.g. silica particles, lubricants, antistatic agents, light absorbing dyes, opacifying agents, e.g. titanium oxide and the usual ingredients like hardeners and wetting agents.
  • the backing layer can consist of one single layer or a double layer pack.
  • the imaging material can be used in conjunction with any type of image-receiving material suited for use in diffusion transfer reversal processing, said image-receiving material comprising on at least one side of the support an image receiving layer containing physical development nuclei.
  • the support of the image-receiving material may be opaque or transparent, e.g. a paper support or resin support.
  • Suitable physical development nuclei for use in accordance with the present invention are those commonly employed in the DTR-process e.g. noble metal nuclei of e.g. silver, palladium, gold, platinum and sulphides, selenides or tellurides of heavy metals e.g. PdS, Ag2S, AgNiS, CoS etc.. Preferably used are Ag2S or AgNiS nuclei.
  • the image receiving layer comprises for best imaging results the physical development nuclei in the presence of a protective hydrophilic colloid, e.g. gelatin and/or colloidal silica, polyvinyl alcohol etc.
  • a protective hydrophilic colloid e.g. gelatin and/or colloidal silica, polyvinyl alcohol etc.
  • the coverage of said nuclei is preferably in the range of 0.1 mg/m2 to 10 mg/m2, and the coverage of binder is preferably in the range of 0.4 to 1.5 g/m2.
  • the image-receiving element may contain in operative contact with the development nuclei thioether compounds, e.g. those described in DE-P 1,124,354, in US-P 4,013,471 and 4,072,526, and in EP-A 026,520.
  • DTR-positive materials now available on the market comprises two or even three layers on the side of the support that contains an image receiving layer .
  • Such materials normally contain on top of a nuclei containing layer a layer which itself preferably contains no nuclei and mainly serves to ensure good contact between the negative and positive material during transfer.
  • a matting agent as is disclosed in e.g. EP-A 584407.
  • the transfer behaviour of the complexed silver largely depends on the thickness of the image-receiving layer and upperlying layers and on the kind of binding agent or the mixture of binding agents used in said layers.
  • the reduction of the silver salts diffusing into the image receiving layer must take place rapidly before lateral diffusion becomes substantial.
  • the sum of the coverage of the hydrophilic colloids contained in said image receiving layer and said top layer is preferably less than 2 g/m2 and most preferably not more than 1.8 g/m2 and the coverage of the hydrophilic colloids contained in said top layer is preferably less than 0.45 g/m2.
  • the sum of the coverage of the hydrophilic colloids contained in the top layers of the image-receiving element and the imaging element is preferably not more than 0.80 g/m2.
  • the nuclei containing layer is present on a nuclei-free waterpermeable underlying undercoat layer or undercoat layer system comprising a hydrophilic colloid and having preferably a coverage in the range of 0.05 to 1 g/m2 of hydrophilic colloid
  • the undercoat optionally incorporates substances that improve the image quality, e.g. incorporates a substance improving the image-tone or the whiteness of the image background.
  • the undercoat may contain a fluorescent substance, silver complexing agent(s) and/or development inhibitor releasing compounds known for improving image sharpness.
  • the image-receiving layer is applied on an undercoat playing the role of a timing layer in association with an acidic layer serving for the neutralization of alkali of the image-receiving layer.
  • a timing layer By the timing layer the time before neutralization occurs is established, at least in part, by the time it takes for the alkaline processing composition to penetrate through the timing layer.
  • Materials suitable for neutralizing layers and timing layers are disclosed in Research Disclosure July 1974, item 12331 and July 1975, item 13525.
  • gelatin is used preferably as hydrophilic colloid.
  • gelatin is present preferably for at least 60 % by weight and is optionally used in conjunction with an other hydrophilic colloid, e.g. polyvinyl alcohol, cellulose derivatives, preferably carboxymethyl cellulose, dextran, gallactomannans, alginic acid derivatives, e.g. alginic acid sodium salt and/or watersoluble polyacrylamides.
  • Said other hydrophilic colloid may be used also in the top layer for at most 10 % by weight and in the undercoat in an amount lower than the gelatin content.
  • the image-receiving layer and/or a hydrophilic colloid layer in water-permeable relationship therewith may comprise a silver halide developing agent and/or silver halide solvent, e.g. sodium thiosulphate in an amount of approximately 0.1 g to approximately 4 g per m2.
  • a silver halide developing agent and/or silver halide solvent e.g. sodium thiosulphate in an amount of approximately 0.1 g to approximately 4 g per m2.
  • the image-receiving layer or a hydrophilic colloid layer in water-permeable relationship therewith may comprise colloidal silica.
  • At least one of the layers of the present image-receiving material substances can be contained, which play a role in the determination of the colour tone of the diffusion transfer silver image.
  • Substances providing a neutral colour tone are called black-toning agents, e.g. as described in GB A 561,875 and BE A 502,525.
  • the processing liquid that will be described in detail below and/or the image-receiving material contains at least one image toning agent.
  • the image toning agent(s) may gradually transfer by diffusion from said image-receiving element into the processing liquid and keep therein the concentration of said agents almost steady.
  • concentration of said agents almost steady.
  • such can be realized by using the silver image toning agents in a coverage in the range from 1 mg/m2 to 20 mg/m2 in a hydrophilic waterpermeable colloid layer.
  • Still further toning agents suitable for use in accordance with the preferred embodiment of the present invention are the toning agents described in EP-A 218752, 208346, 218753, 546599 and US-P 4.683189.
  • the development nuclei containing layer and/or hydrophilic colloid layer in waterpermeable relationship therewith or a back layer at the side of the support opposite to that carrying the image receiving layer contains at least part of the silver image toning agents.
  • Such procedure results actually in automatic replenishment of toning agent in the processing liquid.
  • an optical brightening agent in the present image-receiving material preference is given to an optical brightening agent that is inherently by its structure resistant to diffusion or is made resistant to diffusion by use in conjunction with another substance wherein it is dissolved or whereto it is adsorbed.
  • the hydrophilic colloid comprising layers of the present image-receiving material and imaging material may have been hardened to achieve enhanced mechanical strength.
  • Appropriate hardening agents for hardening the natural and/or synthetic hydrophilic colloid binding agents in the image-receiving layer include e.g. formaldehyde, glyoxal, mucochloric acid, and chrome alum.
  • Hardening can also be effected by incorporating a hardener precursor in said layers, the hardening of the hydrophilic colloid therein being triggered by the treatment with the alkaline processing liquid.
  • Other suitable hardening agents for hardening the hydrophilic colloid binding agents in the image-receiving layer are vinylsulphonyl hardeners, e.g. as described in Research Disclosure 22,507 of Jan. 1983.
  • the silver complex diffusion transfer reversal processing is by nature a wet processing including development of the exposed silver halide in the emulsion layer of the photosensitive element, the complexing of residual undeveloped silver halide and the diffusion transfer of the silver complexes into the image-receiving material wherein physical development takes place.
  • the processing proceeds in alkaline aqueous medium.
  • the developing agent or a mixture of developing agents can be incorporated into the alkaline processing solution and/or into the imaging material.
  • the developing agent(s) can be present in the silver halide emulsion layer or is (are) preferably present in a hydrophilic colloid layer in water-permeable relationship therewith, e.g. in the anti-halation layer adjacent to the silver halide emulsion layer of the photosensitive element.
  • the processing solution is merely an aqueous alkaline solution that initiates and activates the development.
  • Suitable developing agents for the exposed silver halide are e.g. hydroquinone-type and 1-phenyl-3-pyrazolidone-type developing agents as well as p-monomethylaminophenol.
  • a hydroquinone-type and 1-phenyl-3-pyrazolidone-type developing agent whereby the latter is preferably incorporated in one of the layers comprised on the support of the imaging material.
  • a preferred class of 1-phenyl-3-pyrazolidone-type developing agents is disclosed in EP-A 498968.
  • the silver halide solvent preferably sodium or ammonium thiosulphate, may be supplied from the non-light-sensitive image-receiving element as mentioned above, but it is normally at least partly already present in the alkaline processing solution.
  • the amount of silver halide solvent is in the range of e.g. 10 g/l to 50 g/l.
  • Preferred alkaline substances are inorganic alkali e.g. sodium hydroxide, sodium or potassium carbonate, sodium phosphate, sodium borate or alkanolamines or mixtures thereof.
  • Preferably used alkanolamines are tertiary alkanolamines e.g. those described in EP-A 397925, 397926, 397927, 398435 and US-P 4,632,896.
  • a combination of alkanolamines having both a pK a above or below 9 or a combination of alkanolamines whereof at least one has a pK a above 9 and another having a pK a of 9 or less may also be used as disclosed in the Japanese patent applications laid open to the public numbers 73949/61, 73953/61, 169841/61, 212670/60, 73950/61, 73952/61, 102644/61, 226647/63, 229453/63, US-P 4,362,811, 4,568,634 etc..
  • the concentration of these alkanolamines is preferably from 0.1 mol/l to 0.9 mol/l.
  • the alkaline processing solution usually contains preserving agents e.g. sodium sulphite, thickening agents e.g. hydroxyethylcellulose and carboxymethylcellulose, fog-inhibiting agents such as potassium bromide, black-toning agents especially heterocyclic mercapto compounds, detergents e.g. acetylenic detergents such as SURFYNOL 104, SURFYNOL 465, SURFYNOL 440 etc. all available from Air Reduction Chemical Company, New York, USA.
  • preserving agents e.g. sodium sulphite
  • thickening agents e.g. hydroxyethylcellulose and carboxymethylcellulose
  • fog-inhibiting agents such as potassium bromide
  • black-toning agents especially heterocyclic mercapto compounds
  • detergents e.g. acetylenic detergents such as SURFYNOL 104, SURFYNOL 465, SURFYNOL 440 etc. all available from Air
  • the DTR-process is normally carried out at a temperature in the range of 10°C to 35°C.
  • the pH of the processing solution is preferably in the range of 9 to 14, more preferably in the range of 10 to 13.
  • the image receiving elements according to the present invention are particularly suited for the reproduction of documents or the preparation of black copies. They can be used likewise for the reproduction of line and screen images and for the production of identification documents according to the DTR-process as described in EP-A 584407.
  • a paper support having a weigth of 110 g/m2 being coated at both sides with a polyethylene layer and provided at one side with a pack of two backing layers was coated at the other side with an antihalation layer containing carbon black in such an amount that the optical density for visual light corresponded to 0.6 and gelatin in an amount of 3.9 g/m2 and wherein also hydroquinone and 1-phenyl-4-methyl-pyrazolidin-3-one were present in a coverage of 0.57 g/m2 and 0.32 g/m2.
  • an orthochromatically sensitized negative working gelatino silver halide emulsion layer was coated containing an amount of silver chlorobromide (1.8 mol % bromide) equivalent to 2.0 g/m2 of silver nitrate and an amount of gelatin of 2.66 g/m2.
  • the average grain size of the silver chlorobromide was 0.3 ⁇ m.
  • the silver halide emulsion layer was overcoated with a thin protective gelatin layer at a coverage of 0.5 g/m2.
  • the layer nearest to the support of the backing layer pack contained 4 g/m2 of gelatin, 1.5 g/m2 of a colloidal silica and 0.021 g/m2 of wetting agent F15C7-COONH4.
  • the second backing layer contained 0.3 g/m2 of gelatin, 0.5 g/m2 of the antistatic agent co(tetraallyloxyethane / methacrylate / acrylic acid-K-salt) polymer and 0.05 g/m2 of hardening agent triacrylformal.
  • Imaging material N2 was prepared similar to imaging material N1 with the exception that the gelatine coverage in the top layer was 0.4 g/m2.
  • Imaging material N3 was prepared similar to imaging material N1 with the exception that the gelatine coverage in the antihalation layer, the silver halide emulsion layer and the top layer were respectively 2.5 g/m2, 1.0 g/m2 and 0.4 g/m2.
  • a subbed polyethylene terephthalate film support was coated at both sides at a dry coverage of 1.77 g/m2 with an image-receiving layer containing silver-nickel sulphide nuclei dispersed in gelatin. This layer was applied by slide hopper coating so that the nuclei were in an undermost coating of 1.22 g gelatin/m2 and a top layer was provided of 0.55 g gelatin/m2.
  • the image-receiving material P2 was prepared similar to the image-receiving material P1 with the exception that the gelatine coverage in the image-receiving layer and the top layer were respectively 0.5 g/m2 and 0.4 g/m2.
  • the photographic materials were exposed through a sensitometric wedge in a contact exposure apparatus operating with a light source having a colour temperature of 3200 °K.
  • the exposed photographic materials were pre-moistened with a processing liquid, the contact time with said liquid being 6 seconds before being pressed together with an image-receiving material as defined above.
  • the transfer processor employed was a COPYPROOF (registered trade name of AGFA-GEVAERT N.V.) type CP 380.
  • COPYPROOF registered trade name of AGFA-GEVAERT N.V.
  • the imaging elements N1 and N2 (comparative imaging materials) having a gelatine coverage in the top layer of 0.5 g/m2 respectively 0.4 g/m2 and a gelatine coverage in the emulsion layer of 2.66 g/m2 show at different contact times a lower transfer speed and give images with a lower D max than the imaging element N3 (imaging material according to the invention) having a gelatine coverage in the top layer of 0.4 g/m2 and in the emulsion layer of 1.0 g/m2 .
  • Using a positive material with a thinner top layer also helps in obtaining these properties, but not to the same extent.
  • a polyethyleneterephthalate film support (with a hydrophilic adhesion layer) of 0.1mm thickness and provided at one side with a pack of two backing layers was coated at the other side with an antihalation layer containing carbon black in such an amount that the optical density for visual light corresponded to 0.8 and gelatin in an amount of 4.7 g/m2.
  • an orthochromatically sensitized direct-positive working gelatino silver halide emulsion layer was coated containing an amount of silver chlorobromide (1.8 mol % bromide) equivalent to 2.75 g/m2 of silver nitrate and an amount of gelatin of 3.26 g/m2.
  • the average grain size of the silver chlorobromide was 0.25 ⁇ m.
  • the silver halide emulsion layer was overcoated with a thin protective gelatin layer at a coverage of 0.5 g/m2.
  • the backing layer nearest to the support contained 4.5 g/m2 of gelatin and 1.5 g/m2 of carbon black.
  • the second backing layer contained 0.6 g/m2 of gelatin, 1 g/m2 of the antistatic agent co(tetraallyloxyethane / methacrylate / acrylic acid-K-salt) polymer and 0.1 g/m2 of hardening agent triacrylformal
  • Imaging material N5 was prepared similar to imaging material N4 with the exception that the gelatine coverage in the antihalation layer, the silver halide emulsion layer and the top layer were respectively 3.0 g/m2, 2.0 g/m2 and 0.4 g/m2, Composition of the processing liquid: A3 A4 Hydroxyethylcellulose (g) 1 1 EDTA (g) 2 2 Na2SO3 (anhydrous) (g) 45 45 Na2S203 (anhydrous) (g) 14 21 Hydroquinone 13 13 1-Phenyl-4-methyl- pyrazolidin-3-one 4.7 4.7 KBr (g) 0.5 0.5 1-Phenyl-5-mercapto-tetrazole (g) 0.08 0.1 1-(3,4 dichlorophenyl)-1-H-tetrazole-5-thiol (g) 0.04 0.02 MMEA (ml) 30 0 Boric acid 0 31 Sodium hydroxide 1.9 66 Water up to 1 litre 1 litre pH 10.9 1
  • the photographic materials were exposed, processed and the obtained test wedge prints in the image-receiving materials evaluated as described in example 1 with the exception that the transfers were carried out at a processing temperature of 32 °C at contact times of 15 and 30 seconds.
  • the imaging element N4 (comparative imaging material) having a gelatine coverage in the top layer of 0.5 g/m2 and in the emulsion layer of 3.26 g/m2 shows at different contact times a lower transfer speed and gives images with a lower D max than the imaging element N5 (imaging material according to the invention) having a gelatine coverage in the top layer of 0.4 g/m2 and in the emulsion layer of 2.0 g/m2 .
  • a positive material with a thinner top layer also helps in obtaining these properties, but not to the same extent.
  • the best results are obtained with the combination of the imaging element N5 (imaging material according to the invention) with the thin-layer positive material P2. These results are obtained not only by using the processing liquid A3, containing an alkanolamine, but also by using the processing liquid A4, which is free of alkanolamines and comprises as alkaline substance sodium borate.
  • a polyethyleneterephthalate film support (with a hydrophilic adhesion layer) of 0.1mm thickness and provided at one side with a pack of two backing layers was coated at the other side with an antihalation layer containing carbon black in such an amount that the optical density for visual light corresponded to 0.6 and gelatin in an amount of 3.9 g/m2.
  • an orthochromatically sensitized negative working gelatino silver halide emulsion layer was coated containing an amount of silver chlorobromide (1.8 mol % bromide) equivalent to 2.5 g/m2 of silver nitrate and an amount of gelatin of 3.0 g/m2.
  • the average grain size of the silver chlorobromide was 0.3 ⁇ m.
  • the silver halide emulsion layer further contained hydroquinone and 1-phenyl-4-methyl-pyrazolidone at a coverage of 0.9 g and 0.25 g/m2 respectively.
  • the silver halide layer was then covered with a gelatin layer containing 0.5 g/m2 of gelatin.
  • the backing layer packet was identical to the backing layer packet of imaging material N1
  • Imaging material N7 was prepared similar to imaging material N6 with the exception that the gelatine coverage in the antihalation layer, the silver halide emulsion layer and the top layer were respectively 3.06 g/m2, 2.14 g/m2 and 0.33 g/m2,
  • Imaging material N8 was prepared similar to imaging material N1 with the exception that the gelatine coverage in the antihalation layer, the silver halide emulsion layer and the top layer were respectively 2.6 g/m2, 1.86 g/m2 and 0.35 g/m2,
  • the image-receiving material P3 was prepared similar to the image-receiving material P1 with the exception that the gelatine coverage in the image-receiving layer and the top layer were respectively 1.4 g/m2 and 0.4 g/m2,
  • One side of a paper support having a weight of 110 g/m2 and being coated at both sides with a polyethylene layer was coated at a dry coverage of 1.7 g/m2 with an image-receiving layer containing silver-nickel sulphide nuclei and gelatin.
  • This layer was applied by slide hopper coating so that the nuclei were in an undermost coating of 1.3 g gelatin/m2 and a top layer was provided of 0.4 g of gelatin/m2.
  • the photographic materials were exposed, processed and the obtained test wedge prints in the image-receiving materials evaluated as described in example 1 with the exception that the transfer contact time was 20 seconds for the paper type image receiving material P4 and 60 seconds for the resin film type image receiving materials P1 and P3 and that transfers were carried out at different processing liquid temperatures being 16, 22 and 32 °C respectively.
  • the imaging element N6 (comparative imaging material) having a gelatine coverage in the top layer of 0.5 g/m2 and in the emulsion layer of 3.0 g/m2 shows at different contact times a lower transfer speed and gives images with a lower D max than the imaging element N7 (imaging material according to the invention) having a gelatine coverage in the top layer of 0.33 g/m2 and in the emulsion layer of 2.14 g/m2 .
  • Using a positive material with a thinner top layer increases these effects. Particularly good results are obtained with the combination of the imaging element N7 (imaging material according to the invention) with the thin-top layer positive material P3.
  • exhaustion of the processing liquid has a less detrimental effect on D max of the images, obtained from the imaging element N7 (imaging material according to the invention) than on D max of the images, obtained from the imaging element N6 (comparative imaging material) which allows a longer use of the processing liquid while still obtaining images of acceptable quality.
  • imaging materials N7 and N8 are obtained by using the processing liquids A5 (a developing solution) or A6 (an activating solution) , which are free of alkanolamines and comprises as alkaline substance sodium phosphate and/or sodium carbonate.

Abstract

The present invention provides a method for obtaining an image according to the silver salt diffusion transfer process comprising the steps of:
  • image-wise exposing an imaging material comprising on a support a photosensitive silver halide emulsion layer comprising a hydrophilic colloid and a waterpermeable top layer, that is essentially free from silver halide emulsion, comprising a hydrophilic colloid and being in waterpermeable contact with said photosensitive layer,
  • developing said imaging material whilst in contact with an image receiving material comprising on a support an image receiving layer containing physical development nuclei using an aqueous alkaline processing solution in the presence of developing agent(s) and silver halide solvent(s) and
  • separating said imaging material and image receiving material from each other,
characterized in that the coverage of the hydrophilic colloids comprised in said top layer is not more than 0.4 g/m² and in that the coverage of the hydrophilic colloids comprised in said photosensitive layer is not more than 2.4 g/m².
The invention also provides an imaging material comprising a silver halide emulsion layer in water permeable contact with a water permeable base layer and a water permeable top layer which comprises not more than 0.4g/m² hydrophilic colloids.

Description

    1. Field of the invention.
  • The present invention relates to an imaging element having a silver halide emulsion layer and to a method for obtaining an image therewith using the silver salt diffusion transfer method.
  • 2. Background of the invention.
  • The principle of the silver complex diffusion transfer process (hereinafter referred to as DTR process) is well known from the description in US-P 2,352.014 and in the book "Photographic Silver Halide Diffusion Processes" by André Rott and Edith Weyde - The Focal Press - London and New York, (1972).
  • In the DTR process, the silver complex is imagewise transferred by diffusion from a silver halide emulsion layer to an image receptive layer and transformed therein into a silver image generally in the presence of physical development nuclei. For this purpose, the imagewise exposed silver halide emulsion layer is arranged so as to be in contact with or is brought into contact with the image receptive layer in the presence of a developing agent and a solvent for the silver halide, thereby to convert the unexposed silver halide into a soluble silver complex. In the exposed areas of the silver halide emulsion layer, the silver halide is developed into silver which is insoluble and hence cannot diffuse. In the unexposed areas of the silver halide emulsion layer, the silver halide is converted into a soluble silver complex and is transferred to an image receptive layer wherein the silver complex forms a silver image generally in the presence of development nuclei.
  • The DTR-image can be formed in the image-receiving layer of a sheet or web material which is a separate element with respect to the photographic silver halide emulsion material (a so-called two-sheet DTR element) or in the image-receiving layer of a so-called single-support-element. also called mono-sheet element, which contains at least one photographic silver halide emulsion layer integral with an image-receiving layer in water permeable relationship therewith. The DTR process can be utilized in a wide field such as reproduction of documents, making of printing plates, preparation of black copies, and instant photography.
  • Particularly in reproducing documents or preparing black copies, an imaging material, hereinafter also called negative material, having a photosensitive silver halide emulsion layer is brought into close contact with an image-receiving material, hereinafter also called positive material having an image receptive layer in a DTR processing solution generally containing a silver-complexing agent, thereby to form a silver image in the receptive layer of the positive material. The silver image in these cases is required to be pure black or bluish black in color and sufficiently high in density. It is also important that the silver image be high in contrast and sharpness, excellent in image reproducibility, and preferably formed with a high transfer speed.
  • Many attempts have been made to improve said properties of the silver image. Most of these attempts were related to the composition of the positive material. Indeed, the influence of the positive material on the afore-mentioned properties of the silver image has been recognized for years (ref. the already mentioned book of A. Rott and E. Weyde, p. 48 -54, 61). So, it is disclosed in e.g. EP-A 218,752, 546,598 and 546,599 that the density of the silver image can be improved by adding specified ingredients to the positive material. It is furthermore disclosed in EP-A 306,561 that a silver image with a higher density, a better tone and a high transfer speed is obtained with a specified composition and layer thickness of the positive material.
  • The influence of the negative material on the afore-mentioned properties of the silver image seems to be restricted. The important role of the silver halide content of the emulsion layer on the maximum density of the silver image has been mentioned (ref. the already mentioned book of A. Rott and E. Weyde. p. 45). In US-P 5.057.395 it has been described that the tone of the silver image and the running characteristics of a processing liquid can be improved by using an imaging element consisting of a base-layer and an emulsion layer, and an image-receiving element, each with a specified composition, in the presence of specified organic compounds. In EP-A 402.523 it has been described that the running characteristics of a processing liquid can be improved by setting the total amount of hydrophilic colloid on the photosensitive side of an imaging element consisting of a base-layer and an emulsion layer between 6 and 8g/m² while keeping the swelling ratio between 3.5:1 and 5.5:1. In EP-A 93200410.4 it has been described that the running characteristics of a processing liquid can be improved by using a imaging element, conprising a base-layer and an emulsion layer with a specified composition.
  • The influence of the processing liquid on the afore-mentioned properties of the silver image has also been examined. Most of the DTR-processing solutions now available on the market and suitable for obtaining a silver image according to the above-described method comprise alkanolamines. Such solutions, having a favourable influence on one or more of said properties are disclosed in e.g. US-P 4,568,634, 4,632,896, EP-A 496,126 and JP Pi 61-73954, 61-73953 and 61-73949. However, alkanolamines are ecologically suspected compounds and have an unpleasant smell.
  • So, in spite of all these teachings, there remains a need for a silver salt diffusion transfer material improved for one or more of the above-mentioned properties.
  • 3. Summary of the invention.
  • It is an object of the present invention to provide a method for obtaining an image of high density and high transfer speed in a wide range of processing conditions using the silver salt diffusion transfer process.
  • It is a further object of the present invention to provide a silver salt diffusion transfer material for making images of high density and high transfer speed in a wide range of processing conditions.
  • Further objects of the present invention will be clear from the description hereinafter.
  • According to the present invention there is provided a method for obtaining an image according to the silver salt diffusion transfer process comprising the steps of:
    • image-wise exposing an imaging material comprising on a support a photosensitive silver halide emulsion layer comprising a hydrophilic colloid and a waterpermeable top layer, that is essentially free from silver halide emulsion, comprising a hydrophilic colloid and being in waterpermeable contact with said photosensitive layer,
    • developing said imaging material whilst in contact with an image receiving material comprising on a support an image receiving layer containing physical development nuclei using an aqueous alkaline processing solution in the presence of developing agent(s) and silver halide solvent(s) and
    • separating said imaging material and image receiving material from each other,
    characterized in that the coverage of the hydrophilic colloids comprised in said top layer is not more than 0.4 g/m² and in that the coverage of the hydrophilic colloids comprised in said photosensitive layer is not more than 2.4 g/m².
  • According to the present invention there is also provided an imaging material comprising on a support a waterpermeable base layer comprising a hydrophilic colloid, a photosensitive silver halide emulsion layer comprising a hydrophilic colloid and being in waterpermeable contact with said waterpermeable base layer and a waterpermeable top layer, that is essentially free from silver halide emulsion, comprising a hydrophilic colloid and being in waterpermeable contact with said photosensitive layer characterized in that the coverage of the hydrophilic colloids comprised in said top layer is not more than 0.4 g/m².
  • 4. Detailed description of the invention
  • It has been found that when an imaging material comprising on a support a photosensitive silver halide emulsion layer comprising a hydrophilic colloid and a waterpermeable top layer, essentially free from silver halide emulsion, comprising a hydrophilic colloid and being in waterpermeable contact with said photosensitive layer characterized in that the coverage of the hydrophilic colloids comprised in said top layer is not more than 0.4 g/m² and in that the coverage of the hydrophilic colloids comprised in said photosensitive layer is not more than 2.4 g/m², the quality of the obtained image using the DTR-process is improved. Especially the density and the speed of transfer are improved. The DTR-material according to the present invention further offers the advantage that it can be used in a wide range of processing conditions without a substantial loss of image quality.
  • The nature of a waterpermeable layer is such that it does not substantially inhibit or restrain the diffusion of water or of compounds contained in an aqueous solution e.g. developing agents or the complexed silver. Layers being in waterpermeable contact with each other are layers that are contiguous to each other or only separated from each other by (a) waterpermeable layer(s).
  • The coverage of the hydrophilic colloid(s) of the waterpermeable top layer, that is essentially free from silver halide emulsion depends on the nature of the colloid(s) used and the required mechanical strength but is in the present invention not more than 0.4 g/m². Essentially free from silver halide emulsion means that said top layer contains less than 0.1 g/m² , preferably none silver halide emulsion. Such top layer does not inhibit or restrain the diffusion transfer of the complexed silver but acts as an anti-stress layer, as a protective layer against mechanical damage of the imaging element during handling, as a layer improving the contact between the negative and the positive materials during processing, etc.. Such layer may be transferred at least partially to the image-receiving layer without deleterious action on the image formation.
  • In the imaging material according to the present invention, the photosensitive silver halide emulsion layer can be coated from any photosensitive silver halide emulsion comprising a hydrophilic colloid binder provided the coverage of hydrophilic colloid contained in said layer is not more than 2.4 g/m², more preferably not more than 2.2 g/m². The weight ratio of hydrophilic colloid binder to silver halide expressed as equivalent amount of silver nitrate to binder is preferably in the range of 3:1 to 1:3 .
  • It is further preferred that the sum of the coverage of the hydrophilic colloids contained in said top layer, that is essentially free from silver halide emulsion and the emulsion layer is not more than 2.5 g/m², more preferred not more than 2.2 g/m².
  • The photosensitive silver halide used in the present invention may be any type of photographic silver halide emulsion material suited for use in diffusion transfer reversal processing, preference being given to silver halide emulsion layers the silver halide of which is mainly silver chloride because of its relatively easy complexing with thiosulphate ions. The silver halide grains can have any size or shape and may be prepared by any technique known in the art, e.g. by single-jet or double jet precipitation. Negative type or direct-positive type silver halide grains may be used. Negative and positive working type silver halide emulsions are known in the art and are described e.g. in Research Disclosure, November 1976, item 15162.
  • The spectral photosensitivity of the silver halide can be adjusted by proper spectral sensitization by means of the usual mono- or polymethine dyes such as acidic or basic cyanines, hemicyanines, oxonols, hemioxonols, styryl dyes or others, also tri-or polynuclear methine dyes e.g. rhodacyanines or neocyanines. Such spectral sensitizers have been described by e.g. F.M. HAMER in "The Cyanine Dyes and Related Compounds" (1964) Interscience Publishers, John Wiley & Sons, New York.
  • The silver halide emulsions may contain the usual stabilizers Suitable stabilizers are azaindenes, preferably tetra- or penta-azaindenes, especially those substituted with hydroxy or amino groups. Compounds of this kind have been described by BIRR in Z. Wiss. Photogr. Photophys. Photochem. 47, 2-27 (1952). Other suitable stabilizers are i.a. heterocyclic mercapto compounds e.g. phenylmercaptotetrazole, quaternary benzothiazole derivatives and benzotriazole.
  • The silver halide emulsions may further contain either or not in combination with one or more developing agents pH controlling ingredients, and other ingredients such as antifogging agents, development accelerators, wetting agents, and hardening agents for gelatin.
  • The silver halide emulsion layer may comprise light-screening dyes that absorb scattering light and thus promote the image sharpness and, as a consequence thereof, the sharpness of the final printed copy. Light-absorbing dyes that can be used as light-screening dyes have been described in i.a. US-P 4,092,168, 4,311,787, DE-A 2,453,217 and GB-A 1,907,440. More details about the composition, preparation and coating of silver halide emulsions can be found in e.g. Product Licensing Index, Vol. 92, December 1971, publication 9232, p. 107-109.
  • The imaging element of the present embodiment may contain other additional layers comprising a hydrophilic colloid in waterpermeable relationship with the silver halide emulsion layer. Preferably, the total sum of the coverage of the hydrophilic colloids comprised in the photosensitive layer and in all other layers of the imaging material comprising a hydrophilic colloid and being in waterpermeable contact with the photosensitive layer is not more than 6.3 g/m², more preferably not more than 5.6 g/m².
  • It is especially advantageous to include a base-layer between the support and the photosensitive silver halide emulsion layer. Preferably, the sum of the coverage of the hydrophilic colloids contained in said base layer, the top layer, that is essentially free from silver halide emulsion and and the emulsion layer is not more than 6 g/m², more preferably not more than 5.5 g/m². In a preferred embodiment of the present invention said base-layer serves as an antihalation layer so that the reflectance of the support containing said antihalation layer is not more than 25% and preferably not more than 15%. This layer can therefore contain the same light-absorbing dyes as described above for the emulsion layer; as alternative finely divided carbon black can be used for the same antihalation purposes as described in US-P 2,327,828. Alternatively the support it self may be selected such that it can serve as antihalation means as described in e.g. US-P 4,165,237. On the other hand, in order to gain sensitivity, light reflecting pigments, e.g. titaniumdioxide can be present. Further this layer can contain hardening agents, matting agents, e.g. silica particles, and wetting agents. At least part of these matting agents and/or light reflection pigments may also be present in the silver halide emulsion layer the most part however preferably being present in said base-layer. As a further alternative the light reflecting pigments may be present in a separate layer provided between the antihalation layer and the photosensitive silver halide emulsion layer.
  • The hydrophilic colloid binder, which is comprised in the various layers of the imaging material, is usually gelatin. But instead of or together with gelatin, use can be made of one or more other natural and/or synthetic hydrophilic colloids, e.g. albumin, casein, zein, polyvinyl alcohol, alginic acids or salts thereof, cellulose derivatives such as carboxymethyl cellulose, modified gelatin, e.g. phthaloyl gelatin etc.. The nature of the binder is such that the amount of liquid taken up by the imaging element when soaked for 1 min. in a 0.1 N aqueous solution of NaOH is preferably between 3.5 ml and 7 ml for 1 g binder.
  • The support for the imaging element may be any opaque or transparent support. Transparent supports are made e.g. of cellulose triacetate, polyvinyl chloride, polycarbonates, polystyrene or polyesters such as polyethylene terephthalate being provide with a suitable subbing layer(s) for adhering thereto a hydrophilic colloid layer. Opaque paper supports are usually made of paper coated with a water-impermeable layer of a polyolefine such as polyethylene.
  • In a preferred embodiment in connection with the present invention a backing layer is provided at the non-light sensitive side of the support. This layer which can serve as anti-curl layer can contain i.a. matting agents e.g. silica particles, lubricants, antistatic agents, light absorbing dyes, opacifying agents, e.g. titanium oxide and the usual ingredients like hardeners and wetting agents. The backing layer can consist of one single layer or a double layer pack.
  • The imaging material can be used in conjunction with any type of image-receiving material suited for use in diffusion transfer reversal processing, said image-receiving material comprising on at least one side of the support an image receiving layer containing physical development nuclei.
  • The support of the image-receiving material may be opaque or transparent, e.g. a paper support or resin support.
  • Suitable physical development nuclei for use in accordance with the present invention are those commonly employed in the DTR-process e.g. noble metal nuclei of e.g. silver, palladium, gold, platinum and sulphides, selenides or tellurides of heavy metals e.g. PdS, Ag₂S, AgNiS, CoS etc.. Preferably used are Ag₂S or AgNiS nuclei.
  • The image receiving layer comprises for best imaging results the physical development nuclei in the presence of a protective hydrophilic colloid, e.g. gelatin and/or colloidal silica, polyvinyl alcohol etc.
  • The coverage of said nuclei is preferably in the range of 0.1 mg/m² to 10 mg/m², and the coverage of binder is preferably in the range of 0.4 to 1.5 g/m².
  • The image-receiving element may contain in operative contact with the development nuclei thioether compounds, e.g. those described in DE-P 1,124,354, in US-P 4,013,471 and 4,072,526, and in EP-A 026,520.
  • Most of the DTR-positive materials now available on the market comprises two or even three layers on the side of the support that contains an image receiving layer . Such materials normally contain on top of a nuclei containing layer a layer which itself preferably contains no nuclei and mainly serves to ensure good contact between the negative and positive material during transfer. Preferably, such top layer comprises a matting agent as is disclosed in e.g. EP-A 584407.
  • The transfer behaviour of the complexed silver largely depends on the thickness of the image-receiving layer and upperlying layers and on the kind of binding agent or the mixture of binding agents used in said layers. In order to obtain a sharp image with high spectral density the reduction of the silver salts diffusing into the image receiving layer must take place rapidly before lateral diffusion becomes substantial. For this reason the sum of the coverage of the hydrophilic colloids contained in said image receiving layer and said top layer is preferably less than 2 g/m² and most preferably not more than 1.8 g/m² and the coverage of the hydrophilic colloids contained in said top layer is preferably less than 0.45 g/m².
  • The sum of the coverage of the hydrophilic colloids contained in the top layers of the image-receiving element and the imaging element is preferably not more than 0.80 g/m².
  • According to a particular embodiment the nuclei containing layer is present on a nuclei-free waterpermeable underlying undercoat layer or undercoat layer system comprising a hydrophilic colloid and having preferably a coverage in the range of 0.05 to 1 g/m² of hydrophilic colloid
  • The undercoat optionally incorporates substances that improve the image quality, e.g. incorporates a substance improving the image-tone or the whiteness of the image background. For example, the undercoat may contain a fluorescent substance, silver complexing agent(s) and/or development inhibitor releasing compounds known for improving image sharpness.
  • According to a special embodiment the image-receiving layer is applied on an undercoat playing the role of a timing layer in association with an acidic layer serving for the neutralization of alkali of the image-receiving layer. By the timing layer the time before neutralization occurs is established, at least in part, by the time it takes for the alkaline processing composition to penetrate through the timing layer. Materials suitable for neutralizing layers and timing layers are disclosed in Research Disclosure July 1974, item 12331 and July 1975, item 13525.
  • In the image-receiving layer and/or in said top layer and/or in the undercoat layer gelatin is used preferably as hydrophilic colloid. In the image-receiving layer gelatin is present preferably for at least 60 % by weight and is optionally used in conjunction with an other hydrophilic colloid, e.g. polyvinyl alcohol, cellulose derivatives, preferably carboxymethyl cellulose, dextran, gallactomannans, alginic acid derivatives, e.g. alginic acid sodium salt and/or watersoluble polyacrylamides. Said other hydrophilic colloid may be used also in the top layer for at most 10 % by weight and in the undercoat in an amount lower than the gelatin content.
  • The image-receiving layer and/or a hydrophilic colloid layer in water-permeable relationship therewith may comprise a silver halide developing agent and/or silver halide solvent, e.g. sodium thiosulphate in an amount of approximately 0.1 g to approximately 4 g per m².
  • The image-receiving layer or a hydrophilic colloid layer in water-permeable relationship therewith may comprise colloidal silica.
  • In at least one of the layers of the present image-receiving material substances can be contained, which play a role in the determination of the colour tone of the diffusion transfer silver image. Substances providing a neutral colour tone are called black-toning agents, e.g. as described in GB A 561,875 and BE A 502,525.
  • According to a preferred embodiment the processing liquid that will be described in detail below and/or the image-receiving material contains at least one image toning agent. In said case the image toning agent(s) may gradually transfer by diffusion from said image-receiving element into the processing liquid and keep therein the concentration of said agents almost steady. In practice such can be realized by using the silver image toning agents in a coverage in the range from 1 mg/m² to 20 mg/m² in a hydrophilic waterpermeable colloid layer.
  • A survey of suitable toning agents is given in the above mentioned book of André Rott and Edith Weyde, p. 61-65, preference being given to 1-phenyl-1H-tetrazole-5-thiol, also called 1-phenyl-5-mercapto-tetrazole, tautomeric structures and derivatives thereof.
  • Still further toning agents suitable for use in accordance with the preferred embodiment of the present invention are the toning agents described in EP-A 218752, 208346, 218753, 546599 and US-P 4.683189.
  • According to a practical embodiment in the image-receiving element the development nuclei containing layer and/or hydrophilic colloid layer in waterpermeable relationship therewith or a back layer at the side of the support opposite to that carrying the image receiving layer contains at least part of the silver image toning agents. Such procedure results actually in automatic replenishment of toning agent in the processing liquid. The same applies at least partially for the replenishment of the developing agent(s) and silver halide complexing agent(s).
  • When applying an optical brightening agent in the present image-receiving material preference is given to an optical brightening agent that is inherently by its structure resistant to diffusion or is made resistant to diffusion by use in conjunction with another substance wherein it is dissolved or whereto it is adsorbed.
  • The hydrophilic colloid comprising layers of the present image-receiving material and imaging material may have been hardened to achieve enhanced mechanical strength. Appropriate hardening agents for hardening the natural and/or synthetic hydrophilic colloid binding agents in the image-receiving layer include e.g. formaldehyde, glyoxal, mucochloric acid, and chrome alum. Hardening can also be effected by incorporating a hardener precursor in said layers, the hardening of the hydrophilic colloid therein being triggered by the treatment with the alkaline processing liquid. Other suitable hardening agents for hardening the hydrophilic colloid binding agents in the image-receiving layer are vinylsulphonyl hardeners, e.g. as described in Research Disclosure 22,507 of Jan. 1983.
  • The silver complex diffusion transfer reversal processing is by nature a wet processing including development of the exposed silver halide in the emulsion layer of the photosensitive element, the complexing of residual undeveloped silver halide and the diffusion transfer of the silver complexes into the image-receiving material wherein physical development takes place.
  • The processing proceeds in alkaline aqueous medium.
  • The developing agent or a mixture of developing agents can be incorporated into the alkaline processing solution and/or into the imaging material. When incorporated into the photosensitive element, the developing agent(s) can be present in the silver halide emulsion layer or is (are) preferably present in a hydrophilic colloid layer in water-permeable relationship therewith, e.g. in the anti-halation layer adjacent to the silver halide emulsion layer of the photosensitive element. In case the developing agent or a mixture of developing agents is in its total contained in the photosensitive element, the processing solution is merely an aqueous alkaline solution that initiates and activates the development.
  • Suitable developing agents for the exposed silver halide are e.g. hydroquinone-type and 1-phenyl-3-pyrazolidone-type developing agents as well as p-monomethylaminophenol. Preferably used is a combination of a hydroquinone-type and 1-phenyl-3-pyrazolidone-type developing agent whereby the latter is preferably incorporated in one of the layers comprised on the support of the imaging material. A preferred class of 1-phenyl-3-pyrazolidone-type developing agents is disclosed in EP-A 498968.
  • The silver halide solvent, preferably sodium or ammonium thiosulphate, may be supplied from the non-light-sensitive image-receiving element as mentioned above, but it is normally at least partly already present in the alkaline processing solution. When present in the alkaline processing solution, the amount of silver halide solvent is in the range of e.g. 10 g/l to 50 g/l.
  • Preferred alkaline substances are inorganic alkali e.g. sodium hydroxide, sodium or potassium carbonate, sodium phosphate, sodium borate or alkanolamines or mixtures thereof. Preferably used alkanolamines are tertiary alkanolamines e.g. those described in EP-A 397925, 397926, 397927, 398435 and US-P 4,632,896. A combination of alkanolamines having both a pKa above or below 9 or a combination of alkanolamines whereof at least one has a pKa above 9 and another having a pKa of 9 or less may also be used as disclosed in the Japanese patent applications laid open to the public numbers 73949/61, 73953/61, 169841/61, 212670/60, 73950/61, 73952/61, 102644/61, 226647/63, 229453/63, US-P 4,362,811, 4,568,634 etc.. The concentration of these alkanolamines is preferably from 0.1 mol/l to 0.9 mol/l.
  • The alkaline processing solution usually contains preserving agents e.g. sodium sulphite, thickening agents e.g. hydroxyethylcellulose and carboxymethylcellulose, fog-inhibiting agents such as potassium bromide, black-toning agents especially heterocyclic mercapto compounds, detergents e.g. acetylenic detergents such as SURFYNOL 104, SURFYNOL 465, SURFYNOL 440 etc. all available from Air Reduction Chemical Company, New York, USA.
  • The DTR-process is normally carried out at a temperature in the range of 10°C to 35°C.
  • The pH of the processing solution is preferably in the range of 9 to 14, more preferably in the range of 10 to 13.
  • For particulars about exposure and developing apparatus, which may be applied in the DTR-process according to the present invention reference is made e.g. to the above-mentioned book by A. Rott and E. Weyde and to patent literature cited therein.
  • The image receiving elements according to the present invention are particularly suited for the reproduction of documents or the preparation of black copies. They can be used likewise for the reproduction of line and screen images and for the production of identification documents according to the DTR-process as described in EP-A 584407.
  • The present invention is illustrated by the following examples without limiting it thereto. All parts are by weight unless otherwise specified.
  • EXAMPLE 1 (Comparative example) Preparation of imaging material N1
  • A paper support having a weigth of 110 g/m² being coated at both sides with a polyethylene layer and provided at one side with a pack of two backing layers was coated at the other side with an antihalation layer containing carbon black in such an amount that the optical density for visual light corresponded to 0.6 and gelatin in an amount of 3.9 g/m² and wherein also hydroquinone and 1-phenyl-4-methyl-pyrazolidin-3-one were present in a coverage of 0.57 g/m² and 0.32 g/m². On said antihalation layer an orthochromatically sensitized negative working gelatino silver halide emulsion layer was coated containing an amount of silver chlorobromide (1.8 mol % bromide) equivalent to 2.0 g/m² of silver nitrate and an amount of gelatin of 2.66 g/m2. The average grain size of the silver chlorobromide was 0.3 µm. The silver halide emulsion layer was overcoated with a thin protective gelatin layer at a coverage of 0.5 g/m².
  • The layer nearest to the support of the backing layer pack contained 4 g/m² of gelatin, 1.5 g/m² of a colloidal silica and 0.021 g/m² of wetting agent F₁₅C₇-COONH₄. The second backing layer contained 0.3 g/m² of gelatin, 0.5 g/m² of the antistatic agent co(tetraallyloxyethane / methacrylate / acrylic acid-K-salt) polymer and 0.05 g/m² of hardening agent triacrylformal.
  • Preparation of imaging material N2
  • Imaging material N2 was prepared similar to imaging material N1 with the exception that the gelatine coverage in the top layer was 0.4 g/m².
  • Preparation of imaging material N3
  • Imaging material N3 was prepared similar to imaging material N1 with the exception that the gelatine coverage in the antihalation layer, the silver halide emulsion layer and the top layer were respectively 2.5 g/m², 1.0 g/m² and 0.4 g/m².
  • Preparation of image-receiving material P1
  • A subbed polyethylene terephthalate film support was coated at both sides at a dry coverage of 1.77 g/m² with an image-receiving layer containing silver-nickel sulphide nuclei dispersed in gelatin. This layer was applied by slide hopper coating so that the nuclei were in an undermost coating of 1.22 g gelatin/m² and a top layer was provided of 0.55 g gelatin/m².
  • Preparation of image-receiving material P2
  • The image-receiving material P2 was prepared similar to the image-receiving material P1 with the exception that the gelatine coverage in the image-receiving layer and the top layer were respectively 0.5 g/m² and 0.4 g/m².
    Composition of the processing liquid: A1 A2
    Hydroxyethylcellulose (g) 1 1
    EDTA (g) 2 2
    Na₂SO₃ (anhydrous) (g) 45 60
    Na₂S₂0₃ (anhydrous) (g) 14 21
    KBr (g) 0.5 0.5
    1-Phenyl-5-mercapto-tetrazole (g) 0.08 0.1
    1-(3,4 dichlorophenyl)-1-H-tetrazole-5-thiol (g) 0.04 0.02
    DMEA (ml) 30 0
    MDEA (ml) 35 0
    Boric acid 0 31
    Sodium hydroxide 0 33.5
    Water up to 1 litre 1 litre
    pH 11.4 11.9
    EDTA = ethylenediaminetetraacetic acid tetrasodium salt
    DMEA = dimethylethanolamine
    MDEA = methyldiethanolamine
  • The photographic materials were exposed through a sensitometric wedge in a contact exposure apparatus operating with a light source having a colour temperature of 3200 °K. The exposed photographic materials were pre-moistened with a processing liquid, the contact time with said liquid being 6 seconds before being pressed together with an image-receiving material as defined above. The transfer processor employed was a COPYPROOF (registered trade name of AGFA-GEVAERT N.V.) type CP 380. Several transfers were carried out at a processing temperature of 22 °C at different transfer contact times being 15, 30, 60 and 120 seconds respectively.
  • The obtained test wedge prints in the image-receiving materials were evaluated with regard to maximum density. All wedge prints were measured on a densitometer MACBETH (registered trade name) type IR 924 behind visual filter, having following wavelength (nm)/optical density (D) characteristics : 700 nm / D = 0; 600 nm / D = 0.2; 500 nm / D = 1.25; 420 nm / D = 3.0.
  • For the DTR-prints obtained on paper base image-receiving materials maximum reflection density was measured (Dmax R). The reflection density measurement proceeded according to American National Standard for Photography (Sensitometry) ANSI PH2.17-1985.
  • For the DTR-prints obtained on transparent resin film base image-receiving materials maximum transmission density was measured (Dmax T). The transmission density measurement proceeded according to American National Standard for Photography (Sensitometry) ANSI PH2.19-1986.
  • Evaluation:
  • The results listed in table 1 give the Dmax T as a function of the contacting time for the combinations of the different negative materials, positive materials and processing liquids. Table 1
    Proc. Neg. Pos Contacting time
    15 s 30 s 60 s 120 s
    A1 N1 P1 1.44 2.62 3.49 3.88
    A1 N1 P2 1.74 2.85 3.63 4.08
    A1 N2 P1 1.87 2.93 3.66 4.06
    A1 N2 P2 2.11 3.17 3.83 4.35
    A1 N3 P1 2.26 3.38 3.86 4.28
    A1 N3 P2 2.57 3.55 4.12 4.61
    A2 N1 P1 1.45 2.28 2.82 3.02
    A2 N1 P2 1.51 2.38 2.95 3.13
    A2 N2 P1 1.75 2.68 2.94 3.20
    A2 N2 P2 1.86 2.70 3.04 3.24
    A2 N3 P1 2.04 2.97 3.04 3.40
    A2 N3 P2 2.23 3.09 3.29 3.55
  • The imaging elements N1 and N2 (comparative imaging materials) having a gelatine coverage in the top layer of 0.5 g/m² respectively 0.4 g/m² and a gelatine coverage in the emulsion layer of 2.66 g/m² show at different contact times a lower transfer speed and give images with a lower Dmax than the imaging element N3 (imaging material according to the invention) having a gelatine coverage in the top layer of 0.4 g/m² and in the emulsion layer of 1.0 g/m² . Using a positive material with a thinner top layer also helps in obtaining these properties, but not to the same extent. Indeed, particularly good results are obtained with the combination of the imaging element N3 (imaging material according to the invention) with the thin-top layer positive material P2. These results are obtained not only by using the processing liquid A1, containing alkanolamines, but also by using the processing liquid A2, which is free of alkanolamines and comprises as alkaline substance sodium borate.
  • EXAMPLE 2 Preparation of imaging material N4
  • A polyethyleneterephthalate film support (with a hydrophilic adhesion layer) of 0.1mm thickness and provided at one side with a pack of two backing layers was coated at the other side with an antihalation layer containing carbon black in such an amount that the optical density for visual light corresponded to 0.8 and gelatin in an amount of 4.7 g/m². On said antihalation layer an orthochromatically sensitized direct-positive working gelatino silver halide emulsion layer was coated containing an amount of silver chlorobromide (1.8 mol % bromide) equivalent to 2.75 g/m² of silver nitrate and an amount of gelatin of 3.26 g/m². The average grain size of the silver chlorobromide was 0.25 µm. The silver halide emulsion layer was overcoated with a thin protective gelatin layer at a coverage of 0.5 g/m².
  • The backing layer nearest to the support contained 4.5 g/m² of gelatin and 1.5 g/m² of carbon black. The second backing layer contained 0.6 g/m² of gelatin, 1 g/m² of the antistatic agent co(tetraallyloxyethane / methacrylate / acrylic acid-K-salt) polymer and 0.1 g/m² of hardening agent triacrylformal
  • Preparation of imaging material N5
  • Imaging material N5 was prepared similar to imaging material N4 with the exception that the gelatine coverage in the antihalation layer, the silver halide emulsion layer and the top layer were respectively 3.0 g/m², 2.0 g/m² and 0.4 g/m²,
    Composition of the processing liquid: A3 A4
    Hydroxyethylcellulose (g) 1 1
    EDTA (g) 2 2
    Na₂SO₃ (anhydrous) (g) 45 45
    Na₂S₂0₃ (anhydrous) (g) 14 21
    Hydroquinone 13 13
    1-Phenyl-4-methyl-
    pyrazolidin-3-one 4.7 4.7
    KBr (g) 0.5 0.5
    1-Phenyl-5-mercapto-tetrazole (g) 0.08 0.1
    1-(3,4 dichlorophenyl)-1-H-tetrazole-5-thiol (g) 0.04 0.02
    MMEA (ml) 30 0
    Boric acid 0 31
    Sodium hydroxide 1.9 66
    Water up to 1 litre 1 litre
    pH 10.9 11.9
    EDTA = ethylenediaminetetraacetic acid tetrasodium salt
    MMEA = monomethylethanolamine
  • The photographic materials were exposed, processed and the obtained test wedge prints in the image-receiving materials evaluated as described in example 1 with the exception that the transfers were carried out at a processing temperature of 32 °C at contact times of 15 and 30 seconds.
  • Evaluation:
  • The results listed in table 2 give the Dmax T as a function of the contacting time for the combinations of the different negative materials, positive materials and processing liquids. Table 2
    Proc. Neg. Pos Contacting time
    15 s 30 s
    A3 N4 P1 1.44 2.58
    A3 N4 P2 1.84 2.98
    A3 N5 P1 1.94 3.28
    A3 N5 P2 2.43 3.63
    A4 N4 P1 1.45 2.36
    A4 N4 P2 1.85 2.74
    A4 N5 P1 2.10 2.95
    A4 N5 P2 2.42 3.17
  • The imaging element N4 (comparative imaging material) having a gelatine coverage in the top layer of 0.5 g/m² and in the emulsion layer of 3.26 g/m² shows at different contact times a lower transfer speed and gives images with a lower Dmax than the imaging element N5 (imaging material according to the invention) having a gelatine coverage in the top layer of 0.4 g/m² and in the emulsion layer of 2.0 g/m² . A positive material with a thinner top layer also helps in obtaining these properties, but not to the same extent. The best results are obtained with the combination of the imaging element N5 (imaging material according to the invention) with the thin-layer positive material P2. These results are obtained not only by using the processing liquid A3, containing an alkanolamine, but also by using the processing liquid A4, which is free of alkanolamines and comprises as alkaline substance sodium borate.
  • EXAMPLE 3 Preparation of imaging material N6
  • A polyethyleneterephthalate film support (with a hydrophilic adhesion layer) of 0.1mm thickness and provided at one side with a pack of two backing layers was coated at the other side with an antihalation layer containing carbon black in such an amount that the optical density for visual light corresponded to 0.6 and gelatin in an amount of 3.9 g/m². On said antihalation layer an orthochromatically sensitized negative working gelatino silver halide emulsion layer was coated containing an amount of silver chlorobromide (1.8 mol % bromide) equivalent to 2.5 g/m² of silver nitrate and an amount of gelatin of 3.0 g/m². The average grain size of the silver chlorobromide was 0.3 µm. The silver halide emulsion layer further contained hydroquinone and 1-phenyl-4-methyl-pyrazolidone at a coverage of 0.9 g and 0.25 g/m² respectively. The silver halide layer was then covered with a gelatin layer containing 0.5 g/m² of gelatin.
  • The backing layer packet was identical to the backing layer packet of imaging material N1
  • Preparation of imaging material N7
  • Imaging material N7 was prepared similar to imaging material N6 with the exception that the gelatine coverage in the antihalation layer, the silver halide emulsion layer and the top layer were respectively 3.06 g/m², 2.14 g/m² and 0.33 g/m²,
  • Preparation of imaging material N8
  • Imaging material N8 was prepared similar to imaging material N1 with the exception that the gelatine coverage in the antihalation layer, the silver halide emulsion layer and the top layer were respectively 2.6 g/m², 1.86 g/m² and 0.35 g/m²,
  • Preparation of image-receiving material P3
  • The image-receiving material P3 was prepared similar to the image-receiving material P1 with the exception that the gelatine coverage in the image-receiving layer and the top layer were respectively 1.4 g/m² and 0.4 g/m²,
  • Preparation of image-receiving material P4
  • One side of a paper support having a weight of 110 g/m² and being coated at both sides with a polyethylene layer was coated at a dry coverage of 1.7 g/m² with an image-receiving layer containing silver-nickel sulphide nuclei and gelatin. This layer was applied by slide hopper coating so that the nuclei were in an undermost coating of 1.3 g gelatin/m² and a top layer was provided of 0.4 g of gelatin/m².
    Composition of the processing liquid: A5 A6
    Hydroxyethylcellulose (g) 1 1
    EDTA (g) 2 2
    Na₂SO₃ (anhydrous) (g) 45 45
    Na₂S₂0₃ (anhydrous) (g) 14 21
    KBr (g) 0.5 0.5
    Hydroquinone 13 0
    1-Phenyl-4-methyl-pyrazolidin-3-one 4.7 0
    1-Phenyl-5-mercapto-tetrazole (g) 0.08 0.1
    1-(3,4 dichlorophenyl)-1-H-tetrazole-5-thiol (g) 0.04 0.02
    Na₃PO₄.12H₂O 20 0
    Na₂CO₃ 20 30
    Water up to 1 litre 1 litre
    pH 11.3 10.9
    EDTA = ethylenediaminetetraacetic acid tetrasodium salt
  • The photographic materials were exposed, processed and the obtained test wedge prints in the image-receiving materials evaluated as described in example 1 with the exception that the transfer contact time was 20 seconds for the paper type image receiving material P4 and 60 seconds for the resin film type image receiving materials P1 and P3 and that transfers were carried out at different processing liquid temperatures being 16, 22 and 32 °C respectively.
  • For the evaluation of the exhaustion of the processing liquid the following procedure was used. During 5 days each day 20 m² of a combination of an imaging material with an image-receiving material were processed at 22 °C and with contact times as above mentioned in an unrefreshed processing liquid and the obtained test wedge prints in the image-receiving materials evaluated.
  • Evaluation:
  • The results listed in table 3 give the Dmax T as a function of the processing temperature for the combinations of the different negative materials, positive materials and fresh processing liquids. Table 3
    Proc. Neg. Pos Processing temperature
    16 °C 22 °C 32 °C
    A5 N6 P1 3.02 3.58 3.74
    A5 N7 P1 3.34 3.79 3.85
    A5 N7 P3 3.70 4.05 4.12
    A6 N6 P1 2.73 3.41 3.78
    A6 N7 P1 3.48 3.97 4.31
    A6 N7 P3 3.85 4.30 4.41
  • The results listed in table 4 give the Dmax T as a function of the exhaustion of the processing liquid for the combinations of the different negative materials, positive materials and processing liquids. Table 4
    Proc. Neg. Pos Amount processed material
    0 m² 80 m² 100 m²
    A5 N1 P4 2.07 1.69 -
    A5 N8 P4 2.12 1.89 1.85
    A6 N6 P1 3.44 2.51 2.36
    A6 N7 P1 4.01 3.36 2.99
    A6 N7 P3 4.09 3.35 3.16
    A6 N1 P4 2.13 1.75 1.65
    A6 N8 P4 2.19 2.01 1.95
  • Evaluation
  • The imaging element N6 (comparative imaging material) having a gelatine coverage in the top layer of 0.5 g/m² and in the emulsion layer of 3.0 g/m² shows at different contact times a lower transfer speed and gives images with a lower Dmax than the imaging element N7 (imaging material according to the invention) having a gelatine coverage in the top layer of 0.33 g/m² and in the emulsion layer of 2.14 g/m² . Using a positive material with a thinner top layer increases these effects. Particularly good results are obtained with the combination of the imaging element N7 (imaging material according to the invention) with the thin-top layer positive material P3.
  • Furthermore, exhaustion of the processing liquid has a less detrimental effect on Dmaxof the images, obtained from the imaging element N7 (imaging material according to the invention) than on Dmax of the images, obtained from the imaging element N6 (comparative imaging material) which allows a longer use of the processing liquid while still obtaining images of acceptable quality.
  • The same conclusion is to be drawn by comparing the imaging element N1 (comparative imaging material) having a gelatine coverage in the the top layer of 0.5 g/m² and in the emulsion layer of 2.66 g/m² with the imaging element N8 (imaging material according to the invention) having a gelatine coverage in the top layer of 0.35 g/m² and in the emulsion layer of 1.86 g/m².
  • As shown in this example, these beneficial results with imaging materials N7 and N8 (imaging material according to the invention) are obtained by using the processing liquids A5 (a developing solution) or A6 (an activating solution) , which are free of alkanolamines and comprises as alkaline substance sodium phosphate and/or sodium carbonate.

Claims (10)

  1. A method for obtaining an image according to the silver salt diffusion transfer process comprising the steps of:
    - image-wise exposing an imaging material comprising on a support a photosensitive silver halide emulsion layer comprising a hydrophilic colloid and a waterpermeable top layer, that is essentially free from silver halide emulsion, comprising a hydrophilic colloid and being in waterpermeable contact with said photosensitive layer,
    - developing said imaging material whilst in contact with an image receiving material comprising on a support an image receiving layer containing physical development nuclei using an aqueous alkaline processing solution in the presence of developing agent(s) and silver halide solvent(s) and
    - separating said imaging material and image receiving material from each other,
    characterized in that the coverage of the hydrophilic colloids comprised in said top layer is not more than 0.4 g/m² and in that the coverage of the hydrophilic colloids comprised in said photosensitive layer is not more than 2.4 g/m².
  2. A method for obtaining an image according to claim 1 wherein the sum of the coverage of the hydrophilic colloids comprised in the photosensitive layer and in the top layer of said imaging material is not more than 2.5 g/m².
  3. A method for obtaining an image according to claim 1 or 2 wherein the total sum of the coverage of the hydrophilic colloids comprised in said photosensitive layer and in all other layers of said imaging material comprising a hydrophilic colloid and being in waterpermeable contact with said photosensitive layer is not more than 6.3 g/m².
  4. A method for obtaining an image according to claim 3 wherein said total sum is not more than 5.6 g/m².
  5. A method for obtaining an image according to any of claims 1 to 4 wherein said imaging material further comprises a waterpermeable base layer comprising a hydrophilic colloid and being in waterpermeable contact with said photosensitive layer and wherein the sum of the coverage of the hydrophilic colloids comprised in said top layer, said photosensitive layer and said base layer is not more than 6 g/m².
  6. A method for obtaining an image according to any of claims 1 to 5 wherein said image receiving material further comprises a waterpermeable top layer comprising a hydrophilic colloid and being in waterpermeable contact with said image receiving layer and wherein the sum of the coverage of the hydrophilic colloids comprised in said two layers is less than 2 g/m² and the coverage of the hydrophilic colloids comprised in said top layer is not more than 0.45 g/m².
  7. A method for obtaining an image according to any of claims 1 to 6 wherein the sum of the coverage of the hydrophilic colloids comprised in the top layer of the imaging material and of the image receiving material is not more than 0.80 g/m².
  8. A method for obtaining an image according to any of claims 1 to 7 wherein said silver salt diffusion transfer process is carried out using an alkaline processing liquid which is free of alkanolamines and comprises as alkaline substance(s) a sodium or potassium carbonate and/or a sodium or potassium phosphate and/or a sodium or potassium borate.
  9. An imaging material comprising on a support a waterpermeable base layer comprising a hydrophilic colloid, a photosensitive silver halide emulsion layer comprising a hydrophilic colloid and being in waterpermeable contact with said waterpermeable base layer and a waterpermeable top layer, that is essentially free from silver halide emulsion, comprising a hydrophilic colloid and being in waterpermeable contact with said photosensitive layer characterized in that the coverage of the hydrophilic colloids comprised in said top layer is not more than 0.4 g/m².
  10. An imaging material according to claim 9 wherein the total sum of the coverage of the hydrophilic colloids comprised in said photosensitive layer and in all other layers of said imaging material comprising a hydrophilic colloid and being in waterpermeable contact with said photosensitive layer is not more than 6.3 g/m².
EP19950200289 1994-03-04 1995-02-07 A silver halide imaging material and a method for obtaining an image according to the silver salt diffusion transfer process Expired - Lifetime EP0672943B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19950200289 EP0672943B1 (en) 1994-03-04 1995-02-07 A silver halide imaging material and a method for obtaining an image according to the silver salt diffusion transfer process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP94200552 1994-03-04
EP94200552 1994-03-04
EP19950200289 EP0672943B1 (en) 1994-03-04 1995-02-07 A silver halide imaging material and a method for obtaining an image according to the silver salt diffusion transfer process

Publications (2)

Publication Number Publication Date
EP0672943A1 true EP0672943A1 (en) 1995-09-20
EP0672943B1 EP0672943B1 (en) 2000-01-12

Family

ID=26136078

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19950200289 Expired - Lifetime EP0672943B1 (en) 1994-03-04 1995-02-07 A silver halide imaging material and a method for obtaining an image according to the silver salt diffusion transfer process

Country Status (1)

Country Link
EP (1) EP0672943B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816922A1 (en) * 1996-07-04 1998-01-07 Agfa-Gevaert N.V. Imaging element for making an improved printing plate according to the silver salt diffusion transfer process

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB869190A (en) * 1958-01-20 1961-05-31 Agfa Ag A process for the production of direct positives by the silver salt diffusion process
US3383211A (en) * 1963-04-26 1968-05-14 Gevaert Photo Prod Nv Lithographic printing plates
US3396018A (en) * 1963-05-17 1968-08-06 Eastman Kodak Co Diffusion transfer system
US3893855A (en) * 1973-01-29 1975-07-08 Polaroid Corp Photographic ligand for inducing disproportionation of silver {30 1 and processes of use thereof
GB2110400A (en) * 1981-09-21 1983-06-15 Fuji Photo Film Co Ltd Silver halide photographic light-sensitive material
US4530898A (en) * 1984-02-29 1985-07-23 Polaroid Corporation Photographic products and processes providing a negative image
EP0208346A2 (en) * 1985-06-11 1987-01-14 Agfa-Gevaert N.V. Diffusion transfer reversal process
JPS62222250A (en) * 1986-03-24 1987-09-30 Mitsubishi Paper Mills Ltd Silver complex diffusion transfer process
EP0306561A1 (en) * 1987-09-08 1989-03-15 Agfa-Gevaert N.V. Image-receiving material
EP0383283A2 (en) * 1989-02-17 1990-08-22 Konica Corporation Silver halide photographic lightsensitive material
EP0402523A2 (en) * 1989-06-16 1990-12-19 Mitsubishi Paper Mills, Ltd. Photosensitive material for transfer process
US5272046A (en) * 1990-10-25 1993-12-21 Fuji Photo Film Co., Ltd. Processing method for a silver halide photographic material

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB869190A (en) * 1958-01-20 1961-05-31 Agfa Ag A process for the production of direct positives by the silver salt diffusion process
US3383211A (en) * 1963-04-26 1968-05-14 Gevaert Photo Prod Nv Lithographic printing plates
US3396018A (en) * 1963-05-17 1968-08-06 Eastman Kodak Co Diffusion transfer system
US3893855A (en) * 1973-01-29 1975-07-08 Polaroid Corp Photographic ligand for inducing disproportionation of silver {30 1 and processes of use thereof
GB2110400A (en) * 1981-09-21 1983-06-15 Fuji Photo Film Co Ltd Silver halide photographic light-sensitive material
US4530898A (en) * 1984-02-29 1985-07-23 Polaroid Corporation Photographic products and processes providing a negative image
EP0208346A2 (en) * 1985-06-11 1987-01-14 Agfa-Gevaert N.V. Diffusion transfer reversal process
JPS62222250A (en) * 1986-03-24 1987-09-30 Mitsubishi Paper Mills Ltd Silver complex diffusion transfer process
EP0306561A1 (en) * 1987-09-08 1989-03-15 Agfa-Gevaert N.V. Image-receiving material
EP0383283A2 (en) * 1989-02-17 1990-08-22 Konica Corporation Silver halide photographic lightsensitive material
EP0402523A2 (en) * 1989-06-16 1990-12-19 Mitsubishi Paper Mills, Ltd. Photosensitive material for transfer process
US5272046A (en) * 1990-10-25 1993-12-21 Fuji Photo Film Co., Ltd. Processing method for a silver halide photographic material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 12, no. 88 (P - 678)<2935> 23 March 1988 (1988-03-23) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816922A1 (en) * 1996-07-04 1998-01-07 Agfa-Gevaert N.V. Imaging element for making an improved printing plate according to the silver salt diffusion transfer process

Also Published As

Publication number Publication date
EP0672943B1 (en) 2000-01-12

Similar Documents

Publication Publication Date Title
EP0546598B1 (en) Image receiving layer for use in a silver salt diffusion transfer process
US5340692A (en) Image receiving material with nacreous pigment for producing contone images according to the silver salt diffusion transfer process
US5063136A (en) Processing liquid for use in dtr-photography with two toners
US4859566A (en) Image-receiving material
GB2161949A (en) Silver salt diffusion transfer photographic material
EP0672943B1 (en) A silver halide imaging material and a method for obtaining an image according to the silver salt diffusion transfer process
US5283157A (en) Diffusion transfer printing plate
EP0398435B1 (en) Liquid for DTR-photography
EP0588407B1 (en) An image receiving material and method for producing contone images according to the silver salt diffusion transfer process
EP0397926B1 (en) Processing liquid for use in silver halide photography
EP0694811B1 (en) Image receiving material for use in a silver salt diffusion transfer process
US5124229A (en) Processing liquid with combination of toners for silver complex diffusion transfer processing
US5308738A (en) Silver salt diffusing transfer material with light insensitive silver salt layer
EP0218752A1 (en) Silver complex diffusion transfer reversal process
US4310613A (en) Liquid processing composition for silver complex diffusion transfer process
US5204212A (en) Processing liquid for the silver salt diffusion transfer process containing 3-(n,n-diethylamino)propane-1,2-diol
EP0554930B1 (en) A silver halide material suitable for use in a silver salt diffusion transfer process
US5340705A (en) Processing liquid for use in silver complex diffusion transfer processing
US5262271A (en) Negative silver salt diffusion transfer material
EP0611991A1 (en) An imaging element for use in a silver salt diffusion transfer process
JPH05265163A (en) Image-accepting material used for silver slat dispersion transfer method
EP0481132B1 (en) A negative silver salt diffusion transfer material
JPH0412350A (en) Silver complex salt diffusion transfer reversal method
JPH03241347A (en) Manufacture of image receiving material for silver complex salt diffusion transfer method
JPS6170554A (en) Photosensitive element for color diffusion transfer process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL

17P Request for examination filed

Effective date: 19960320

17Q First examination report despatched

Effective date: 19990322

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000112

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000112

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000117

Year of fee payment: 6

REF Corresponds to:

Ref document number: 69514397

Country of ref document: DE

Date of ref document: 20000217

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010207

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020117

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030902