EP0634215A1 - Device for simultaneous determination of analytes - Google Patents

Device for simultaneous determination of analytes Download PDF

Info

Publication number
EP0634215A1
EP0634215A1 EP94110708A EP94110708A EP0634215A1 EP 0634215 A1 EP0634215 A1 EP 0634215A1 EP 94110708 A EP94110708 A EP 94110708A EP 94110708 A EP94110708 A EP 94110708A EP 0634215 A1 EP0634215 A1 EP 0634215A1
Authority
EP
European Patent Office
Prior art keywords
liquid
transport
zone
analytes
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94110708A
Other languages
German (de)
French (fr)
Inventor
Ada Dr. Goerlach-Graw
Reinhard Dr. Baer
Rolf Lerch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diagnostics GmbH
Original Assignee
Roche Diagnostics GmbH
Boehringer Mannheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Diagnostics GmbH, Boehringer Mannheim GmbH filed Critical Roche Diagnostics GmbH
Publication of EP0634215A1 publication Critical patent/EP0634215A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5023Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures with a sample being transported to, and subsequently stored in an absorbent for analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/807Apparatus included in process claim, e.g. physical support structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/901Drugs of abuse, e.g. narcotics, amphetamine

Definitions

  • the invention relates to a method for determining several analytes in a multi-zone device and a device suitable therefor.
  • So-called dry tests have proven their worth for quick and easy determination of analytes. They contain a reagent or a large number of reagents in dried form on a capillary carrier which is brought into contact with the sample liquid in order to carry out the test. The reagents dissolve in the liquid and result in a signal that is characteristic of the analyte, for example a color change, which can then be used for an evaluation. With simple tests it is sometimes possible to arrange the capillary, reagent-containing supports on a single test element, which is then immersed in the liquid so that all supports are wetted by the liquid.
  • An example of such test elements are urine test strips, the test fields for several analytes, e.g. B. leukocytes, density, pH and the like. contain.
  • EP-A-0 467 165 describes a method and a device for determining several analytes from a pasty sample, e.g. B. proposed by chair.
  • the device contains an eluent application field and a plurality of eluate transfer means which ensure fluid contact with test strips for ensure the desired provisions.
  • a transport route for the pure eluent which is designed in such a way that the eluent flow through the sample is greatly slowed down in order to achieve an effective elution of the relatively heterogeneous solid sample.
  • the pure eluent is placed on this eluent application field and transported from there to the sample application area without changing the ingredients.
  • the eluate which now contains analyte, flows through a transport zone widening in the direction of the test carrier, in which the transport routes are not separated from one another.
  • the method described in EP-A-0 467 165 has the disadvantage that the different test strips and thus also reagents come into contact with the eluate at different times and thus different test results are obtained in some cases for the same test strips on different eluate transfer agents. This can be disadvantageous, in particular for a quantitative evaluation of analyzes. In addition, the problems increase with an increasing number of eluate transfer agents.
  • Analytes of the method according to the invention are, in particular, constituents of body fluids, such as urine, blood, serum, saliva, sweat or plasma or liquids derived therefrom (e.g. diluted with water, buffer or alcohols) or other liquids, such as e.g. B. Solutions of powders to be tested for drug content.
  • body fluids such as urine, blood, serum, saliva, sweat or plasma
  • liquids derived therefrom e.g. diluted with water, buffer or alcohols
  • other liquids e.g. B. Solutions of powders to be tested for drug content.
  • Preferred body fluid is urine.
  • Preferred analytes are dissolved chemical substances, the presence or absence or concentration of which in the respective body fluid is an indication of a disease or a body condition.
  • Particularly preferred are analytes that are detectable immunologically, ie haptens, antigens or antibodies, but also nucleic acids and other biospecifically detectable substances.
  • Preferred analytes in the urine are drugs such as cocaine, cannabis (hashish) or opiates (heroin), or kidney parameters such as albumin, 1M, ⁇ -NAG.
  • the device according to the invention has at least 4 zones which are connected to one another by capillary action, namely 2 or more transport zones and 2 or more sampling zones. It also contains a sample drop point.
  • the sample application point is preferably on a capillary fleece or tissue that is chemically inert to the sample liquid. It is preferred by appropriate labeling, e.g. B. by applying visible signs such as circles, crosses, arrows or the like or by constructive separation, z. B. determined by covering the fleece surrounding the drop point.
  • a device preferably contains as many transport zones as sampling zones, the transport zones being spatially separated from one another at least in the vicinity of the sampling zone, so that no liquid can pass from one transport path to another.
  • the transport zones are constructed from capillary material, in particular a capillary fleece or tissue that is chemically inert to the sample liquid.
  • a transport zone is understood to be an area on which a flat material capable of absorbing liquid extends. This material has a thickness that is less than the width and length of the surface.
  • the sample liquid flows through the length of the transport zone.
  • the transport zones are either spatially separated from one another or their limits are given to one another by segments of the liquid volumes moving within the transport zones towards the associated sampling zone.
  • a sampling zone is understood to be an area of the device which is also capillary-active and which is or can be brought with a test element in an arrangement which enables liquid contact. As soon as the sampling zone receives liquid from the transport zone, the liquid can pass onto the adjacent test element.
  • a capillary volume is defined by the suction volume of the transport zones and the sampling zones. This volume is smaller or at most the same size as the volume of the sample liquid applied.
  • the volume of the liquid applied is particularly preferably as much greater than the capillary volume as it corresponds to the additional suction volume of the test elements adjacent to the sampling zone.
  • transport routes The distances that a certain volume of liquid travels between the sample application point and the sampling zone are referred to below as transport routes.
  • the applied sample liquid is not changed on these transport routes, at least with regard to the analytes.
  • Non-woven fabrics made of synthetic fibers e.g. polyester
  • cellulose fibers can be added if desired
  • the nonwovens are preferably between 0.35 and 1.5 mm thick.
  • test element is understood to be a means for detecting the presence or the amount of an analyte, the preferred elements being constructed in the manner of the test strips. This means that they have a carrier film on which absorbent materials are attached, on which the reagents required for detection are applied. Such a test element is described, for example, in EP-A-0 374 684. If such a test element is brought into contact with the sampling zone, this is preferably done via a zone of the test element which does not yet contain any reagents.
  • test carrier according to EP-A-0 374 684 is to be used to determine an analyte according to the device according to the invention
  • the starting zone 21 described there is brought into contact with the sampling zone 3 of the device according to the invention.
  • the simultaneous determination of several analytes as many test elements are brought into contact with the sampling zones as determinations are necessary.
  • An advantage of the device according to the invention is that the delay zones prevent the test elements from being flooded with sample liquid.
  • the simultaneity of the contact of the test carriers with the sample liquid means that not one of the reagent carriers receives more liquid than another. Since, to carry out reliable determinations, a signal must often be read from the test element within a certain period of time after the test element has been brought into contact with the sample liquid, the simultaneous encounter of the liquid front at all sampling points according to the invention is an essential advantage of the present invention.
  • the simultaneous arrival of the liquid also means that the test elements for different analytes do not necessarily have to be introduced into the device in an order directed at the respective sampling point, but that they can be interchanged. This is particularly important in the case of provisions in which the users themselves can provide evidence as required.
  • test elements for the determination of several analytes can be assembled into profiles as required.
  • the device according to the invention can either be used to create a kidney function profile, ie determination of several analytes characteristic of the kidney function, or a drug profile, e.g. B. Determination of several common drugs (drugs of abuse) can be used.
  • the device according to the invention can therefore be sold in a form in which the test elements are already connected to the sampling zones, e.g. B.
  • test elements in the housing, or in a form that the housing with the sample application zone, the transport route and the sampling zone as a part and a number of test elements in a further container by the person who wants to carry out the analysis, can be inserted into the housing, sold.
  • the sampling zones 4 are arranged essentially completely or partially radially around the sample application point 2 (FIG 1).
  • the shortest connecting routes are of the same length.
  • the transport routes can then first go through a radially symmetrical capillary-active fleece and then in parallel through as many fleeces as there are sampling zones.
  • the latter fleeces are designed so that no liquid flow is possible between them.
  • they can take the form of webs that extend from the edge of the sample application fleece to the sampling zones.
  • the material of the webs preferably overlaps a little with the sample application fleece, as a result of which, when the materials are compressed at the overlap point, there are locations with a smaller flow cross section, which act as delay zone 7.
  • the overlap point is preferably about 1 to 2 mm wide.
  • the delay is the same on all transport routes.
  • the liquid will first flow to the delay zones of the other transport routes after reaching the delay zone of the shortest transport route until the capillary pressure is the same at all delay zones. Then the liquid will pass through all of the delay zones substantially simultaneously. Since the subsequent parts of the transport routes are of the same length and of the same nature, the liquid will reach the test elements at the same time.
  • the ends of the webs located away from the point of application can themselves represent the sampling zones, or separate fleeces can be provided for this.
  • the test elements 5 are in capillary contact with the sampling zones 4. In this embodiment, flooding of the test strips is particularly prevented.
  • FIG. 2 the device is shown in section X - Y.
  • the sampling zones 4 lie on an imaginary straight line, so that all test elements 5 point essentially in the same direction.
  • the delay zones differ in their delay effect if the sampling zones are at different distances from the sample application point 2. Since liquids in uniform capillary-active material would spread radially, the liquid would arrive at the sampling point 4 / I closest to the sample application point first without a delay zone and would pass to the test element. The delay must therefore be greatest on this transport route. The further the other sampling points 4 / I, 4 / II or 4 / III are from the sample application point 2, the weaker the delay must be.
  • the transport routes 3 / I, 3 / II or 3 / III preferably run partially through webs made of nonwoven material.
  • the materials that make up the transport zones and the sampling zones are located in a housing.
  • This housing has an opening 9 in the area of the sample application point, so that the sample liquid can be applied to the material below the sample application point.
  • the housing also has openings 6 in the area of the sampling zones, into which the test elements can be inserted, so that the fleeces or fabrics of the test elements can come into contact with the material of the sampling zone.
  • Any sample liquid-impermeable material can be used as the material for the housing, e.g. B. one, which consists of a plastic or a paper impregnated against moisture absorption.
  • FIG. 4 shows how a delay in the flow of liquid from the sample application point 2 to the sampling zones 4 / I, 4 / II and 4 / III can be achieved.
  • the simultaneous wetting of the sampling zones 4 is achieved in that route B does not represent the shortest transport route for the liquid, but is extended in relation to it, so that routes A, B and C are approximately the same length.
  • FIG. 5 shows how a form of the capillary-active material that is suitable for the simultaneous wetting of the sampling points 4 / I, 4 / II and 4 / III can be determined.
  • the areas F1, F2 and F3, through which sample liquid flows on the way to the individual sampling points, and which lie between the sample application point and the sampling zone, should be essentially of the same size.
  • FIG. 6 the material is shown on a transport path in which a delay in the flow of liquid is achieved by vertical constriction, in this case by constant light compression of the nonwoven material.
  • the pressure can be generated by opposite or offset webs in the bottom and / or cover part of the device. The height of these webs can be used for a different transport delay on different transport routes.
  • FIG. 7 shows a cross section of a transport route in which the materials involved overlap at the sample application point and the sampling zone.
  • Impregnation of an absorbent material to be traversed by the liquid with a temporarily or permanently hydrophobicizing substance slows down the liquid flow.
  • a material with higher hydrophobicity e.g. a paper or a membrane
  • Such hydrophobic barriers can be integrated anywhere in the test strip between the sample application zone and the first reagent zone.
  • the sample liquid is applied at a single sample application point. This can be done, for example, by pipetting or dripping on the liquid. About as much or a little more liquid is preferably added than the entire device has a capillary-active volume. Due to capillary transport, the liquid travels along the transport routes to several sampling zones. By delaying the liquid transport on the transport routes that are closest to the sample application point, a simultaneous wetting of the test elements is achieved.
  • a piece of paper with the contours 10 of FIG. 3 is cut out of a paper TI 532 (from Binzer).
  • This piece of paper is inserted into a housing half 8 which is injection molded from polystyrene and which contains cutouts for the contour of the paper and the test strip 5.
  • the test strips 5 (for example Mikral® test strips from Boehringer Mannheim GmbH) are then inserted in such a way that the starting fleece or the first fleece on which the reagents are located are in direct contact with the sampling zones 4.
  • a second housing half, which contains no cutouts for the paper or the test strips, but which has a recess in the vicinity of the sample application point 2, through which sample liquid can be applied to the sample application point, is then glued on.
  • the entire device has a length of approximately 15 cm, a width of 7 cm and a thickness of 0.5 cm.
  • the dimensions of the capillary-active material should be approximately halved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

Device for determining analytes having a sample application point, a plurality of separated sample take-off zones which are connected to the sample application point by one capillary transport section each and a plurality of test elements for individual determination of analytes, a delay zone being provided on at least one of the transport sections. <IMAGE>

Description

Gegenstand der Erfindung sind ein Verfahren zur Bestimmung mehrerer Analyten in einer mehrzonigen Vorrichtung sowie eine dafür geeignete Vorrichtung.The invention relates to a method for determining several analytes in a multi-zone device and a device suitable therefor.

In der medizinischen Diagnostik hat in jüngerer Zeit die Entwicklung stattgefunden, dem behandelnden Arzt oder dem Patienten selbst die Diagnose von Krankheitszuständen durch Nachweis von charakteristischen Analyten in Körperflüssigkeiten zu erleichtern. Wenn es sich um komplexe Krankheitsbilder handelt oder wenn die Ursache einer Krankheit noch nicht exakt lokalisiert werden konnte, ist es oft ratsam oder sogar erforderlich, die Bestimmung mehrerer unterschiedlicher Analyten vorzunehmen. So müssen beispielsweise bei Tests auf Drogenmißbrauch wegen der Vielzahl möglicher Drogen und der oft unbekannten Vorgeschichte des Patienten Einzeltests auf viele Drogen durchgeführt werden. Eine ähnliche Problematik stellt sich z.B. bei der Diagnose von Nieren- und Schilddrüsenerkrankungen oder Infektionskrankheiten.In medical diagnostics, there has been a recent development to make it easier for the treating physician or the patient himself to diagnose disease states by detecting characteristic analytes in body fluids. If complex clinical pictures are involved or if the cause of a disease has not yet been pinpointed, it is often advisable or even necessary to determine several different analytes. For example, when testing for drug abuse due to the variety of possible drugs and the often unknown history of the patient, individual tests for many drugs must be performed. A similar problem arises, for example, in the diagnosis of kidney and thyroid diseases or infectious diseases.

Für schnelle und einfache Bestimmungen von Analyten haben sich die sogenannten Trockentests bewährt. Bei ihnen befindet sich ein Reagenz oder eine Vielzahl von Reagenzien in getrockneter Form auf einem kapillaren Träger, der zur Durchführung des Tests mit der Probenflüssigkeit in Kontakt gebracht wird. Die Reagenzien lösen sich in der Flüssigkeit und ergeben ein für den Analyten charakteristisches Signal, beispielsweise eine Farbänderung, anhand derer dann eine Auswertung vorgenommen werden kann. Bei einfachen Tests ist es manchmal möglich, die kapillaren, reagenzienhaltigen Träger auf einem einzigen Testelement anzuordnen, welches dann so in die Flüssigkeit eingetaucht wird, daß alle Träger von der Flüssigkeit benetzt werden. Ein Beispiel für solche Testelemente sind Harnteststreifen, die Testfelder für mehrere Analyten, z. B. Leukozyten, Dichte, pH u.ä. enthalten.So-called dry tests have proven their worth for quick and easy determination of analytes. They contain a reagent or a large number of reagents in dried form on a capillary carrier which is brought into contact with the sample liquid in order to carry out the test. The reagents dissolve in the liquid and result in a signal that is characteristic of the analyte, for example a color change, which can then be used for an evaluation. With simple tests it is sometimes possible to arrange the capillary, reagent-containing supports on a single test element, which is then immersed in the liquid so that all supports are wetted by the liquid. An example of such test elements are urine test strips, the test fields for several analytes, e.g. B. leukocytes, density, pH and the like. contain.

Eine so einfache Vorgehensweise durch einmaliges Eintauchen der Testfelder ist jedoch beispielsweise für immunologische Bestimmungen von Analyten, wie Antigene, Haptene und Antikörper nicht möglich, da diese Bestimmungen Prozesse mit mehrstufiger Reaktionsführung sind. Dabei durchläuft die den Analyten enthaltende Flüssigkeit eine Teststrecke mit mehreren Zonen, auf der ein Austausch der verschiedenen Reagenzien zwischen der Flüssigkeit und den Testfeldern erfolgt. In einer Zone gegen Ende der Teststrecke kann ein für die Anwesenheit des Analyten charakteristisches Signal erhalten und ausgewertet werden.However, such a simple procedure by immersing the test fields once is not possible, for example, for immunological determinations of analytes, such as antigens, haptens and antibodies, since these determinations are processes with a multi-stage reaction procedure. The liquid containing the analyte passes through a test section with several zones, on which the various reagents are exchanged between the liquid and the test fields. A signal characteristic of the presence of the analyte can be obtained and evaluated in a zone towards the end of the test section.

In der EP-A-0 467 165 wird ein Verfahren und eine Vorrichtung zur Bestimmung mehrerer Analyten aus einer pastösen Probe, z. B. von Stuhl, vorgeschlagen. Die Vorrichtung enthält ein Elutionsmittelaufgabefeld und mehrere Eluattransfermittel, die den Fluidkontakt mit Teststreifen für die gewünschten Bestimmungen sicherstellen. Zwischen dem Elutionsmittelaufgabefeld und den Eluattransfermitteln liegt ein Bereich zur Aufgabe der pastösen Probe. Zwischen dem Elutionsmittelaufgabefeld und dem Probenaufgabebereich liegt eine Transportstrecke für das reine Elutionsmittel, welche so angelegt ist, daß der Elutionsmittelstrom durch die Probe stark verlangsamt ist, um eine effektive Elution der relativ heterogenen festen Probe zu erreichen. Zunächst wird das reine Elutionsmittel auf dieses Elutionsmittelaufgabefeld gegeben und von dort ohne Änderung der Inhaltsstoffe bis zum Probenaufgabebereich transportiert. Nach Elution des Analyten aus der Probe im Probenaufgabebereich durchströmt das nun analythaltige Eluat eine sich in Richtung auf die Testträger verbreiternde Transportzone, in der die Transportstrecken nicht voneinander getrennt sind. Das in der EP-A-0 467 165 beschriebene Verfahren hat den Nachteil, daß die verschiedenen Teststreifen und somit auch Reagenzien zu unterschiedlichen Zeiten mit dem Eluat in Kontakt kommen und somit in manchen Fällen für gleiche Teststreifen an verschiedenen Eluattransfermitteln verschiedene Testergebnisse erhalten werden. Insbesondere für eine quantitative Auswertung von Analysen kann dies nachteilhaft sein. Außerdem verstärken sich die Probleme mit steigender Anzahl von Eluattransfermitteln.EP-A-0 467 165 describes a method and a device for determining several analytes from a pasty sample, e.g. B. proposed by chair. The device contains an eluent application field and a plurality of eluate transfer means which ensure fluid contact with test strips for ensure the desired provisions. There is an area between the eluent application field and the eluate transfer agent for the application of the pasty sample. Between the eluent application field and the sample application area lies a transport route for the pure eluent, which is designed in such a way that the eluent flow through the sample is greatly slowed down in order to achieve an effective elution of the relatively heterogeneous solid sample. First, the pure eluent is placed on this eluent application field and transported from there to the sample application area without changing the ingredients. After elution of the analyte from the sample in the sample application area, the eluate, which now contains analyte, flows through a transport zone widening in the direction of the test carrier, in which the transport routes are not separated from one another. The method described in EP-A-0 467 165 has the disadvantage that the different test strips and thus also reagents come into contact with the eluate at different times and thus different test results are obtained in some cases for the same test strips on different eluate transfer agents. This can be disadvantageous, in particular for a quantitative evaluation of analyzes. In addition, the problems increase with an increasing number of eluate transfer agents.

Aufgabe der Erfindung war es, ein Verfahren und eine Vorrichtung zur Bestimmung von in einer Flüssigkeit enthaltenen Analyten bereitzustellen, welches eine im wesentlichen gleichzeitige, an verschiedenen Entnahmestellen gleichmäßige Bestimmung der Analyten auf mehreren Testelementen ermöglicht. Gegenstand der Erfindung ist daher ein Verfahren zur Bestimmung von Analyten enthaltend

  • einen Probenaufgabepunkt,
  • mehrere getrennte Probenentnahmezonen, die durch jeweils eine Transportstrecke mit dem Probenaufgabepunkt verbunden sind,
  • mehrere Testelemente zur Einzelbestimmung von Analyten,
wobei auf mindestens einer der Transportstrecken eine Verzögerungszone vorgesehen ist, sowie eine zur Ausführung des Verfahrens geeignete Vorrichtung.The object of the invention was to provide a method and a device for the determination of analytes contained in a liquid, which enables an essentially simultaneous determination of the analytes on several test elements which are uniform at different sampling points. The invention therefore relates to a method for determining analytes containing
  • a sample drop point,
  • several separate sampling zones, each connected to the sample drop-off point by a transport route,
  • several test elements for the individual determination of analytes,
wherein a delay zone is provided on at least one of the transport routes, and a device suitable for carrying out the method.

Analyten des erfindungsgemäßen Verfahrens sind vor allem Bestandteile von Körperflüssigkeiten, wie von Harn, Blut, Serum, Speichel, Schweiß oder Plasma oder davon abgeleitete (z. B. mit Wasser, Puffer oder Alkoholen verdünnte) Flüssigkeiten oder andere Flüssigkeiten, wie z. B. Lösungen von Pulvern, die auf Drogengehalt geprüft werden sollen.Analytes of the method according to the invention are, in particular, constituents of body fluids, such as urine, blood, serum, saliva, sweat or plasma or liquids derived therefrom (e.g. diluted with water, buffer or alcohols) or other liquids, such as e.g. B. Solutions of powders to be tested for drug content.

Bevorzugte Körperflüssigkeit ist Harn. Bevorzugte Analyten sind gelöste chemische Stoffe, deren Anwesenheit oder Abwesenheit oder Konzentration in der jeweiligen Körperflüssigkeit ein Hinweis auf eine Erkrankung oder einen Körperzustand darstellt. Besonders bevorzugt sind Analyten, die immunologisch nachweisbar sind, also Haptene, Antigene oder Antikörper, jedoch auch Nukleinsäuren und andere biospezifisch nachweisbare Stoffe. Bevorzugte Analyten im Harn sind Drogen, wie Cocain, Cannabis (Haschisch) oder Opiate (Heroin), oder Nierenparameter wie Albumin, 1M, β-NAG.Preferred body fluid is urine. Preferred analytes are dissolved chemical substances, the presence or absence or concentration of which in the respective body fluid is an indication of a disease or a body condition. Particularly preferred are analytes that are detectable immunologically, ie haptens, antigens or antibodies, but also nucleic acids and other biospecifically detectable substances. Preferred analytes in the urine are drugs such as cocaine, cannabis (hashish) or opiates (heroin), or kidney parameters such as albumin, 1M, β-NAG.

Die erfindungsgemäße Vorrichtung weist mindestens 4 Zonen auf, die miteinander kapillaraktiv verbunden sind nämlich 2 oder mehr Transportzonen und 2 oder mehr Probenentnahmezonen. Außerdem enthält sie einen Probenaufgabepunkt.The device according to the invention has at least 4 zones which are connected to one another by capillary action, namely 2 or more transport zones and 2 or more sampling zones. It also contains a sample drop point.

Der Probenaufgabepunkt liegt bevorzugt auf einem gegenüber der Probenflüssigkeit chemisch inerten kapillaren Vlies oder Gewebe. Er ist bevorzugt durch entsprechende Kennzeichnung, z. B. durch Aufbringen von sichtbaren Zeichen wie Kreisen, Kreuzen, Pfeilen oder ähnlichem oder durch konstruktive Abtrennung, z. B. durch Abdecken des den Aufgabepunkt umgebenden Vlieses festgelegt.The sample application point is preferably on a capillary fleece or tissue that is chemically inert to the sample liquid. It is preferred by appropriate labeling, e.g. B. by applying visible signs such as circles, crosses, arrows or the like or by constructive separation, z. B. determined by covering the fleece surrounding the drop point.

Die Transportzonen erstrecken sich von dem Probenaufgabepunkt bis zu den Probentnahmezonen. Bevorzugt enthält eine erfindungsgemäße Vorrichtung so viele Transportzonen wie Probeentnahmezonen, wobei die Transportzonen zumindest in der Nähe der Probenentnahmezone voneinander räumlich getrennt sind, sodaß keine Flüssigkeit von einer Transportstrecke auf eine andere übertreten kann. Die Transportzonen sind aus kapillarem Material, insbesondere einen gegenüber der Probenflüssigkeit chemisch inerten kapillaren Vlies oder Gewebe aufgebaut. Als Transportzone wird im Folgenden eine Fläche verstanden, auf der sich ein flaches, zur Flüssigkeitsaufnahme fähiges Material erstreckt. Dieses Material hat eine Dicke, die geringer ist als die Breite und Länge der Fläche. Die Probenflüssigkeit durchfließt die Länge der Transportzone. Die Transportzonen sind untereinander entweder räumlich getrennt oder ihre Grenzen gegeneinander sind dadurch gegeben, daß sich Segmente der Flüssigkeitsvolumina innerhalb der Transportzonen auf die zugehörige Probenentnahmezone hinbewegen.The transport zones extend from the sample drop point to the sampling zones. A device according to the invention preferably contains as many transport zones as sampling zones, the transport zones being spatially separated from one another at least in the vicinity of the sampling zone, so that no liquid can pass from one transport path to another. The transport zones are constructed from capillary material, in particular a capillary fleece or tissue that is chemically inert to the sample liquid. In the following, a transport zone is understood to be an area on which a flat material capable of absorbing liquid extends. This material has a thickness that is less than the width and length of the surface. The sample liquid flows through the length of the transport zone. The transport zones are either spatially separated from one another or their limits are given to one another by segments of the liquid volumes moving within the transport zones towards the associated sampling zone.

Als Probenentnahmezone wird ein ebenfalls kapillaraktiver Bereich der Vorrichtung verstanden, der mit einem Testelement in einer einen Flüssigkeitskontakt ermöglichenden Anordnung steht oder gebracht werden kann. Sobald die Probenentnahmezone Flüssigkeit aus der Transportzone erhält, kann ein Übertritt der Flüssigkeit auf das angrenzende Testelement erfolgen.A sampling zone is understood to be an area of the device which is also capillary-active and which is or can be brought with a test element in an arrangement which enables liquid contact. As soon as the sampling zone receives liquid from the transport zone, the liquid can pass onto the adjacent test element.

Durch das Saugvolumen der Transportzonen und der Probenentnahmezonen wird ein kapillares Volumen definiert. Dieses Volumen ist kleiner oder höchstens gleich groß wie das Volumen der aufgegebenen Probenflüssigkeit. Besonders bevorzugt ist das Volumen der aufgegebenen Flüssigkeit soviel größer als das kapillare Volumen, wie es dem zusätzlichen Saugvolumen der an die Probeentnahmezone angrenzenden Testelemente entspricht.A capillary volume is defined by the suction volume of the transport zones and the sampling zones. This volume is smaller or at most the same size as the volume of the sample liquid applied. The volume of the liquid applied is particularly preferably as much greater than the capillary volume as it corresponds to the additional suction volume of the test elements adjacent to the sampling zone.

Die Strecken, welche ein bestimmtes Flüssigkeitsvolumen zwischen dem Probenaufgabepunkt und der Probenentnahmezone zurücklegt, werden im folgenden als Transportstrecken bezeichnet. Auf diesen Transportstrecken wird die aufgegebene Probenflüssigkeit zumindest im Hinblick auf die Analyten nicht verändert.The distances that a certain volume of liquid travels between the sample application point and the sampling zone are referred to below as transport routes. The applied sample liquid is not changed on these transport routes, at least with regard to the analytes.

Als kapillaraktives Material eignen sich insbesondere Vliese aus Synthesefasern (z. B. Polyester), denen gewünschtenfalls Zellulosefasern beigemischt sein können. Solche Materialien sind für die Konstruktion von Teststreifen bestens bekannt. Die Vliese sind bevorzugt zwischen 0,35 und 1,5 mm dick.Non-woven fabrics made of synthetic fibers (e.g. polyester), to which cellulose fibers can be added if desired, are particularly suitable as the capillary-active material. Such materials are well known for the construction of test strips. The nonwovens are preferably between 0.35 and 1.5 mm thick.

Wesentlich für die Erfindung ist, daß auf mindestens einer der Transportstrecken eine Verzögerungszone vorgesehen ist. Bevorzugt befindet sich die Verzögerungszone in der Transportzone. Die Verzögerungszone bewirkt, daß der Flüssigkeitsstrom nicht mehr so schnell vom Probenaufgabepunkt zu mindestens einer Probenentnahmezone gelangt, wie ohne die Verzögerungszone. Eine erste Möglichkeit, die Verzögerung zu bewirken, besteht darin, die Transportstrecken, die zu den unterschiedlichen Probenentnahmezonen führen, gleich lang zu machen. Eine zweite Möglichkeit besteht darin, die Flächen der Transportzonen gleich groß zu machen. Zur Erreichung gleichlanger Transportstrecken muß ggf. eine oder mehrere Transportstrecken verglichen mit der kürzesten Verbindung zwischen Probenaufgabepunkt und Probenentnahmezone verlängert werden oder eine oder mehrere Hydrophobsperren eingebracht werden. Zur Realisierung gleicher Volumina sind prinzipiell folgende Maßnahmen geeignet:

  • 1. (horizontale) Vergrößerung der Breite des Materials der Transportzone an mindestens einer Stelle im Vergleich zu einer anderen Transportzone,
  • 2. (vertikale) Verengung der Dicke des Materials der Transportzone an mindestens einer Stelle verglichen mit einer anderen Transportzone,
  • 3. Verringerung des Durchflußquerschnitts auf der Transportstrecke durch Zusammendrücken des Materials der Transportzone an mindestens einer Stelle mit einer anderen Transportzone.
It is essential for the invention that a delay zone is provided on at least one of the transport routes. The delay zone is preferably located in the transport zone. The delay zone means that the liquid flow no longer reaches the sample application point to at least one sampling zone as quickly as without the delay zone. A first way of causing the delay is to make the transport routes leading to the different sampling zones the same length. A second way is to make the areas of the transport zones the same size. To achieve transport routes of the same length, one or more transport routes may have to be extended compared to the shortest connection between the sample application point and the sampling zone or one or more hydrophobic barriers must be introduced. In principle, the following measures are suitable for realizing the same volumes:
  • 1. (horizontal) enlargement of the width of the material of the transport zone in at least one place in comparison to another transport zone,
  • 2. (vertical) narrowing of the thickness of the material of the transport zone in at least one place compared to another transport zone,
  • 3. Reduction of the flow cross-section on the transport route by compressing the material of the transport zone at least at one point with another transport zone.

Diese Maßnahmen können auch miteinander kombiniert werden.These measures can also be combined with one another.

Insbesondere wenn es nicht möglich ist (z. B. wenn sehr viele Probenentnahmezonen vorhanden sind) die gewünschte Verzögerung durch Verwendung gleich großer Volumina sicherzustellen, empfiehlt es sich, den Durchflussquerschnitt auf einer oder mehreren Transportstrecken zu verringern oder Hydrophobsperren aufzubringen.Especially if it is not possible (e.g. if there are a large number of sampling zones) to ensure the desired delay by using volumes of the same size, it is advisable to reduce the flow cross-section on one or more transport routes or to apply hydrophobic barriers.

Je kürzer die kürzeste Verbindung zwischen Probenaufgabepunkt und Probenentnahmezone ist, desto größer muß die bewirkte Verzögerung sein. Sind die kürzesten Verbindungen zwischen verschiedenen Probenentnahmezonen und der Probenaufgabepunkt gleich groß, so müssen die bewirkten Verzögerungen auf allen Transportstrecken auch ungefähr gleich groß sein.The shorter the shortest connection between the sample application point and the sampling zone, the greater the delay caused. Are the shortest connections between different sampling zones and the sample drop point of equal size, the delays caused on all transport routes must also be of approximately the same size.

Als Testelement wird ein Mittel zum Nachweis der Anwesenheit oder der Menge eines Analyten verstanden, wobei die bevorzugten Elemente nach Art der Teststreifen aufgebaut sind. Das heißt, sie besitzen eine Trägerfolie, auf welcher saugfähige Materialien befestigt sind, auf welche die zum Nachweis erforderlichen Reagenzien aufgebracht sind. Ein solches Testelement ist beispielsweise beschrieben in der EP-A-0 374 684. Wenn ein solches Testelement in Kontakt mit der Probenentnahmezone gebracht wird, geschieht dies bevorzugt über eine Zone des Testelementes, welches noch keine Reagenzien enthält. Für den Fall, daß ein Testträger gemäß EP-A-0 374 684 zur Bestimmung eines Analyten gemäß der erfindungsgemäßen Vorrichtung verwendet werden soll, wird die dort beschriebene Startzone 21 mit der Probenentnahmezone 3 der erfindungsgemäßen Vorrichtung in Kontakt gebracht. Für die simultane Bestimmung mehrerer Analyten werden so viele Testelemente mit den Probenentnahmezonen in Kontakt gebracht, wie Bestimmungen erforderlich sind.A test element is understood to be a means for detecting the presence or the amount of an analyte, the preferred elements being constructed in the manner of the test strips. This means that they have a carrier film on which absorbent materials are attached, on which the reagents required for detection are applied. Such a test element is described, for example, in EP-A-0 374 684. If such a test element is brought into contact with the sampling zone, this is preferably done via a zone of the test element which does not yet contain any reagents. In the event that a test carrier according to EP-A-0 374 684 is to be used to determine an analyte according to the device according to the invention, the starting zone 21 described there is brought into contact with the sampling zone 3 of the device according to the invention. For the simultaneous determination of several analytes, as many test elements are brought into contact with the sampling zones as determinations are necessary.

Ein Vorteil der erfindungsgemäßen Vorrichtung ist, daß durch die Verzögerungszonen eine Überschwemmung der Testelemente mit Probenflüssigkeit vermieden wird. Außerdem bewirkt die Gleichzeitigkeit des in Kontaktbringens der Testträger mit der Probenflüssigkeit, daß nicht einer der Reagenzträger mehr Flüssigkeit erhält als ein anderer. Da zur Durchführung verlässlicher Bestimmungen oft eine Ablesung eines Signals von dem Testelement innerhalb einer bestimmten Zeitspanne nach in Kontaktbringen des Testelements mit der Probenflüssigkeit vorgenommen werden muß, ist das erfindungsgemäße gleichzeitige Antreffen der Flüssigkeitsfront an allen Probenentnahmestellen ein wesentlicher Vorteil der vorliegenden Erfindung. Das gleichzeitige Eintreffen der Flüssigkeit bewirkt außerdem, daß die Testelemente für verschiedene Analyten nicht unbedingt in einer auf die jeweilige Probenentnahmestelle abgerichteten Reihenfolge in die Vorrichtung eingebracht werden müssen, sondern daß sie untereinander vertauscht werden können. Dies spielt insbesondere bei Bestimmungen eine Rolle, bei denen die Benutzer selbst, je nach Bedarf, Nachweise durchführen können. Ein weiterer Vorteil der gleichmäßigen Benetzung ist es, daß Testelemente zur Bestimmung mehrerer Analyten, je nach Bedarf, zu Profilen zusammengestellt werden können. So kann beispielsweise die erfindungsgemäße Vorrichtung durch Einsetzen entsprechender Testelemente entweder für die Erstellung eines Nierenfunktionsprofils, d. h. Bestimmung von mehreren für die Nierenfunktion charakteristischen Analyten, oder eines Drogenprofils, z. B. Bestimmung mehrerer gebräuchlicher Drogen (Drugs of Abuse), verwendet werden. Die erfindungsgemäße Vorrichtung kann daher in einer Form verkauft werden, bei der die Testelemente schon mit den Probenentnahmezonen verbunden sind, z. B. durch Einbezug der Testelemente in das Gehäuse, oder in einer Form, daß das Gehäuse mit der Probenaufgabezone, der Transportstrecke und der Probenentnahmezone als ein Teil und eine Anzahl von Testelementen in einem weiteren Behälter, der von demjenigen, der die Analyse durchführen möchte, in das Gehäuse eingesteckt werden können, verkauft werden.An advantage of the device according to the invention is that the delay zones prevent the test elements from being flooded with sample liquid. In addition, the simultaneity of the contact of the test carriers with the sample liquid means that not one of the reagent carriers receives more liquid than another. Since, to carry out reliable determinations, a signal must often be read from the test element within a certain period of time after the test element has been brought into contact with the sample liquid, the simultaneous encounter of the liquid front at all sampling points according to the invention is an essential advantage of the present invention. The simultaneous arrival of the liquid also means that the test elements for different analytes do not necessarily have to be introduced into the device in an order directed at the respective sampling point, but that they can be interchanged. This is particularly important in the case of provisions in which the users themselves can provide evidence as required. Another advantage of the uniform wetting is that test elements for the determination of several analytes can be assembled into profiles as required. For example, by using appropriate test elements, the device according to the invention can either be used to create a kidney function profile, ie determination of several analytes characteristic of the kidney function, or a drug profile, e.g. B. Determination of several common drugs (drugs of abuse) can be used. The device according to the invention can therefore be sold in a form in which the test elements are already connected to the sampling zones, e.g. B. by including the test elements in the housing, or in a form that the housing with the sample application zone, the transport route and the sampling zone as a part and a number of test elements in a further container by the person who wants to carry out the analysis, can be inserted into the housing, sold.

Es haben sich zwei bevorzugte Ausführungsformen für die Vorrichtung herausgestellt. Bei der ersten Form sind die Probenentnahmezonen 4 im wesentlichen vollständig oder teilweise radial um den Probenaufgabepunkt 2 angeordnet (FIG 1). Im besonders bevorzugten Fall sind dann die kürzesten Verbindungsstrecken gleich lang. Die Transportstrecken können dann zunächst durch ein radialsymetrisches kapillaraktives Vlies und dann parallel durch so viele Vliese gehen, wie Probenentnahmezonen vorhanden sind. Die letztgenannten Vliese sind so gestaltet, daß zwischen ihnen kein Flüssigkeitsstrom möglich ist. Sie können beispielsweise die Form von Stegen annehmen, die vom Rand des Probenaufgabevlieses bis zu den Probenentnahmezonen reichen. Bevorzugt überlappt das Material der Stege ein wenig mit dem Probenaufgabevlies, wodurch sich bei Zusammendrücken der Materialien an der Überlappungsstelle Stellen mit geringerem Durchflußquerschnitt ergeben, die als Verzögerungszone 7 wirken. Die Überlappungsstelle ist bevorzugt ca. 1 bis 2 mm breit. Im gezeigten Fall der FIG. 1 ist die Verzögerung auf allen Transportstrecken gleich groß. Für den Fall, daß die Probenflüssigkeit nicht exakt auf den Probenaufgabepunkt dosiert wird, wird die Flüssigkeit nach Erreichen der Verzögerungszone der kürzesten Transportstrecke zunächst bis zu den Verzögerungszonen der übrigen Transportstrecken fließen, bis der Kapillardruck an allen Verzögerungszonen gleich ist. Dann wird die Flüssigkeit durch alle Verzögerungszonen im wesentlichen gleichzeitig hindurchtreten. Da die anschließenden Teile der Transportstrecken gleich lang und gleich beschaffen sind, wird die Flüssigkeit die Testelemente gleichzeitig erreichen. Die von der Aufgabestelle entfernt liegenden Enden der Stege können selbst schon die Probenentnahmezonen darstellen, oder es können dafür separate Vliese vorgesehen sein. Die Testelemente 5 stehen in kapillarem Kontakt mit den Probenentnahmezonen 4. In dieser Ausführungsform wird insbesondere einem Überfluten der Teststreifen vorgebeugt.Two preferred embodiments for the device have been found. In the first form, the sampling zones 4 are arranged essentially completely or partially radially around the sample application point 2 (FIG 1). In the particularly preferred case, the shortest connecting routes are of the same length. The transport routes can then first go through a radially symmetrical capillary-active fleece and then in parallel through as many fleeces as there are sampling zones. The latter fleeces are designed so that no liquid flow is possible between them. For example, they can take the form of webs that extend from the edge of the sample application fleece to the sampling zones. The material of the webs preferably overlaps a little with the sample application fleece, as a result of which, when the materials are compressed at the overlap point, there are locations with a smaller flow cross section, which act as delay zone 7. The overlap point is preferably about 1 to 2 mm wide. In the case shown in FIG. 1 the delay is the same on all transport routes. In the event that the sample liquid is not dosed exactly to the sample application point, the liquid will first flow to the delay zones of the other transport routes after reaching the delay zone of the shortest transport route until the capillary pressure is the same at all delay zones. Then the liquid will pass through all of the delay zones substantially simultaneously. Since the subsequent parts of the transport routes are of the same length and of the same nature, the liquid will reach the test elements at the same time. The ends of the webs located away from the point of application can themselves represent the sampling zones, or separate fleeces can be provided for this. The test elements 5 are in capillary contact with the sampling zones 4. In this embodiment, flooding of the test strips is particularly prevented.

In FIG. 2 ist die Vorrichtung im Schnitt X - Y gezeigt.In FIG. 2 the device is shown in section X - Y.

In einer zweiten, besser handhabbaren Ausführungszone (FIG 3) liegen die Probenentnahmezonen 4 auf einer gedachten geraden Linie, sodaß alle Testelemente 5 im wesentlichen in dieselbe Richtung zeigen. In diesem Fall unterscheiden sich die Verzögerungszonen in ihrer Verzögerungswirkung, wenn die Probenentnahmezonen unterschiedlichen Abstand vom Probenaufgabepunkt 2 haben. Da sich Flüssigkeiten in uniformem kapillaraktivem Material radial ausbreiten würden, käme ohne Verzögerungszone die Flüssigkeit an der der Probenaufgabepunkt am nächsten liegenden Probenentnahmestelle 4/I zuerst an und würde auf das Testelement übergehen. Auf dieser Transportstrecke muß daher die Verzögerung am stärksten sein. Je weiter die übrigen Probeentnahmestellen 4/I, 4/II bzw. 4/III von der Probenaufgabestelle 2 entfernt sind, desto schwächer muß die Verzögerung sein. Auch hier laufen die Transportstrecken 3/I, 3/II bzw. 3/III bevorzugt teilweise durch Stege aus Vliesmaterial.In a second, more manageable execution zone (FIG. 3), the sampling zones 4 lie on an imaginary straight line, so that all test elements 5 point essentially in the same direction. In this case, the delay zones differ in their delay effect if the sampling zones are at different distances from the sample application point 2. Since liquids in uniform capillary-active material would spread radially, the liquid would arrive at the sampling point 4 / I closest to the sample application point first without a delay zone and would pass to the test element. The delay must therefore be greatest on this transport route. The further the other sampling points 4 / I, 4 / II or 4 / III are from the sample application point 2, the weaker the delay must be. Here, too, the transport routes 3 / I, 3 / II or 3 / III preferably run partially through webs made of nonwoven material.

Die Materialien, aus denen die Transportzonen und die Probenentnahmezonen bestehen, befinden sich in einem Gehäuse. Dieses Gehäuse besitzt im Bereich des Probenaufgabepunkts eine Öffnung 9, sodaß die Probenflüssigkeit auf das Material unter dem Probenaufgabepunkt aufgegeben werden kann. Das Gehäuse weist ferner Öffnungen 6 im Bereich der Probenentnahmezonen auf, in welche die Testelemente eingeführt werden können, sodaß die Vliese oder Gewebe der Testelemente in Kontakt mit dem Material der Probenentnahmezone kommen können. Als Material für das Gehäuse kann jedes probenflüssigkeitsun-durchlässige Material eingesetzt werden, z. B. eines, welches aus einem Kunststoff oder einem gegen Feuchtigkeitsaufnahme imprägnierten Papier besteht.The materials that make up the transport zones and the sampling zones are located in a housing. This housing has an opening 9 in the area of the sample application point, so that the sample liquid can be applied to the material below the sample application point. The housing also has openings 6 in the area of the sampling zones, into which the test elements can be inserted, so that the fleeces or fabrics of the test elements can come into contact with the material of the sampling zone. Any sample liquid-impermeable material can be used as the material for the housing, e.g. B. one, which consists of a plastic or a paper impregnated against moisture absorption.

Figur 4 zeigt, wie eine Verzögerung des Flüssigkeitsstroms vom Probenaufgabepunkt 2 zu den Probenentnahmezonen 4/I, 4/II und 4/III erreicht werden kann. Die gleichzeitige Benetzung der Probenentnahmezonen 4 wird dadurch erreicht, daß Strecke B nicht den kürzesten Transportweg der Flüssigkeit darstellt, sondern diesem gegenüber verlängert ist, so daß die Strecken A, B und C etwa gleich lang sind.FIG. 4 shows how a delay in the flow of liquid from the sample application point 2 to the sampling zones 4 / I, 4 / II and 4 / III can be achieved. The simultaneous wetting of the sampling zones 4 is achieved in that route B does not represent the shortest transport route for the liquid, but is extended in relation to it, so that routes A, B and C are approximately the same length.

In Figur 5 ist gezeigt, wie eine für die gleichzeitige Benetzung der Probenentnahmestellen 4/I, 4/II und 4/III geeignete Form des kapillaraktiven Materials ermittelt werden kann. Die Flächen F1, F2 und F3, die von Probenflüssigkeit auf dem Weg zu den einzelnen Probenentnahmestellen durchflossen werden, und die zwischen Probenaufgabepunkt und Probenentnahmezone liegen, sollen dazu im wesentlichen gleich groß sein.FIG. 5 shows how a form of the capillary-active material that is suitable for the simultaneous wetting of the sampling points 4 / I, 4 / II and 4 / III can be determined. The areas F1, F2 and F3, through which sample liquid flows on the way to the individual sampling points, and which lie between the sample application point and the sampling zone, should be essentially of the same size.

In Figur 6 ist das Material auf einem Transportweg gezeigt, bei dem eine Verzögerung des Flüssigkeitsstromes durch vertikale Verengung, in diesem Fall durch konstantes leichtes Zusammenpressen des Vliesmaterials erreicht wird. Der Druck kann durch gegenüber oder versetzt liegende Stege in Boden und/oder Deckelteil der Vorrichtung erzeugt werden. Die Höhe dieser Stege kann für eine unterschiedliche Transportverzögerung auf unterschiedlichen Transportstrecken benutzt werden.In FIG. 6 the material is shown on a transport path in which a delay in the flow of liquid is achieved by vertical constriction, in this case by constant light compression of the nonwoven material. The pressure can be generated by opposite or offset webs in the bottom and / or cover part of the device. The height of these webs can be used for a different transport delay on different transport routes.

In Figur 7 ist ein Querschnitt einer Transportstrecke gezeigt, bei der die beteiligten Materialien am Probenaufgabepunkt und der Probenentnahmezone überlappen. Bei konstantem Abstand von Deckel- und Bodenteil der Vorrichtung wird eine pressende Überlappung erreicht, die wiederum eine Verzögerung bedingt. Der Effekt kann durch zusätzliche inerte Materialien verstärkt werden.FIG. 7 shows a cross section of a transport route in which the materials involved overlap at the sample application point and the sampling zone. With a constant distance from the lid and bottom part of the device, a pressing overlap is achieved, which in turn causes a delay. The effect can be enhanced by additional inert materials.

Im Falle einer Verzögerung durch Hydrophobsperren sind prinzipiell mindestens zwei Möglichkeiten denkbar. Die Imprägnierung eines von der Flüssigkeit zu durchquerenden saugfähigen Materials mit einer temporär oder dauerhaft hydrophobisierenden Substanz (z.B. Nadelimprägnierung 5 mm breit mit 3%iger Mowiol/Polyvinylalkohollösung) verlangsamt den Flüssigkeitsstrom. In einer zweiten Möglichkeit kann ein Material mit höherer Hydrophobizität (z. B. ein Papier oder eine Membran) in die Transportstrecke eingebaut werden. Derartige Hydrophobsperren können an beliebiger Stelle zwischen Probenauftragszone und erster Reagenzzone im Teststreifen integriert sein.In the event of a delay due to hydrophobic barriers, at least two possibilities are possible in principle. Impregnation of an absorbent material to be traversed by the liquid with a temporarily or permanently hydrophobicizing substance (e.g. needle impregnation 5 mm wide with 3% Mowiol / polyvinyl alcohol solution) slows down the liquid flow. In a second possibility, a material with higher hydrophobicity (e.g. a paper or a membrane) can be installed in the transport route. Such hydrophobic barriers can be integrated anywhere in the test strip between the sample application zone and the first reagent zone.

In einem erfindungsgemäßen Verfahren zur Bestimmung mehrerer in einer Probenflüssigkeit enthaltene Analyten wird die Probenflüssigkeit auf einem einzigen Probenaufgabepunkt aufgegeben. Dies kann beispielsweise durch Pipettieren oder Auftröpfeln der Flüssigkeit geschehen. Bevorzugt wird ungefähr so viel oder etwas mehr Flüssigkeit aufgegeben, als die gesamte Vorrichtung kapillaraktives Volumen aufweist. Durch kapillaren Transport wandert die Flüssigkeit über die Transportstrecken zu mehreren Probenentnahmezonen. Durch Verzögerung des Flüssigkeitstransports auf den Transportstrecken, die dem Probenaufgabepunkt am nächsten liegen, wird eine gleichzeitige Benetzung der Testelemente erreicht.In a method according to the invention for determining a plurality of analytes contained in a sample liquid, the sample liquid is applied at a single sample application point. This can be done, for example, by pipetting or dripping on the liquid. About as much or a little more liquid is preferably added than the entire device has a capillary-active volume. Due to capillary transport, the liquid travels along the transport routes to several sampling zones. By delaying the liquid transport on the transport routes that are closest to the sample application point, a simultaneous wetting of the test elements is achieved.

Die folgenden Beispiele sollen die Erfindung näher erläutern:The following examples are intended to illustrate the invention:

Beispielexample

Aus einem Papier TI 532 (Firma Binzer) wird ein Stück Papier mit den Konturen 10 der Figur 3 ausgeschnitten. Dieses Papierstück wird in eine mittels Spritzguß aus Polystyrol hergestellte Gehäusehälfte 8, welche Aussparungen für die Kontur des Papiers sowie der Teststreifen 5 enthält, eingelegt. Anschließend werden die Teststreifen 5 (beispielswiese Mikral®-Teststreifen von Boehringer Mannheim GmbH) so eingelegt, daß das Startvlies oder das erste Vlies auf dem sich Reagenzien befinden, mit den Probeentnahmezonen 4 in direktem Kontakt stehen. Danach wird eine zweite Gehäusehälfte, die keine Ausspaarungen für das Papier bzw. die Teststreifen enthält, die aber in der Umgebung des Probenaufgabepunkts 2 eine Ausnehmung hat, durch die Probenflüssigkeit auf den Probenaufgabepunkt aufgegeben werden kann, aufgeklebt. Die gesamte Vorrichtung hat eine Länge von ca. 15 cm, eine Breite von 7 cm und eine Dicke von 0,5 cm.A piece of paper with the contours 10 of FIG. 3 is cut out of a paper TI 532 (from Binzer). This piece of paper is inserted into a housing half 8 which is injection molded from polystyrene and which contains cutouts for the contour of the paper and the test strip 5. The test strips 5 (for example Mikral® test strips from Boehringer Mannheim GmbH) are then inserted in such a way that the starting fleece or the first fleece on which the reagents are located are in direct contact with the sampling zones 4. A second housing half, which contains no cutouts for the paper or the test strips, but which has a recess in the vicinity of the sample application point 2, through which sample liquid can be applied to the sample application point, is then glued on. The entire device has a length of approximately 15 cm, a width of 7 cm and a thickness of 0.5 cm.

Zur Durchführung eines Tests auf mehrere Analyten in einer Probe werden ca. 10 ml Urin auf den Probenaufgabepunkt aufpipettiert. Nach einer vorgegebenen Zeit, die von den Reagenzien der eingesteckten Teststreifen abhängt, wird die zu diesem Zeitpunkt entwickelte Farbe mit einer Vergleichsskala verglichen und daraus einen Wert für die Anwesenheit oder Menge des Analyten entnommen.To perform a test for multiple analytes in a sample, approx. 10 ml urine is pipetted onto the sample application point. After a predetermined time, which depends on the reagents of the inserted test strips, the color developed at this point in time is compared with a comparison scale and a value for the presence or amount of the analyte is taken therefrom.

Sofern nur 2-3 ml Probenflüssigkeit zur Verfügung stehen, sollten die Dimensionen des kapillaraktiven Materials ungefähr halbiert werden.If only 2-3 ml of sample liquid are available, the dimensions of the capillary-active material should be approximately halved.

Dieselbe Vorschrift kann auch für die Herstellung und Verwendung der in Figur 1 und 2 gezeigten Vorrichtung eingesetzt werden.The same regulation can also be used for the production and use of the device shown in FIGS. 1 and 2.

BezugszeichenlisteReference list

11
erfindungsgemäße Vorrichtungdevice according to the invention
22nd
ProbenaufgabepunktSample drop point
33rd
TransportstreckeTransport route
44th
ProbenentnahmezoneSampling zone
55
TestelementTest element
66
Ausnehmung für TestelementRecess for the test element
77
VerzögerungszoneDelay zone
4/I, 4/II, 4/III4 / I, 4 / II, 4 / III
ProbenentnahmezonenSampling zones
88th
Gehäusecasing
99
GehäuseöffnungHousing opening
1010th
Kontur des kapillaraktiven VliesesContour of the capillary active fleece
F1, F2, F3F1, F2, F3
Flächen des kapillaraktiven Materials zwischen 2 und 4Areas of the capillary active material between 2 and 4

Claims (10)

Verfahren zur Bestimmung mehrerer in einer Probenflüssigkeit enthaltener Analyten mit Hilfe einer mehrzonigen Vorrichtung - durch Aufgabe der Flüssigkeit auf einen einzigen Probenaufgabepunkt; - kapillarer Transport der Flüssigkeit zu mehreren Probenentnahmezonenüber mehrere Transportstrecken, wobei mindestens eine der Transportstrecken eine Verzögerungszone enthält; und - Aufgabe der Flüssigkeit an den Probenentnahmezonen auf Testelemente, welche Reagenzien zur Bestimmung der Analyten enthalten. Method for determining several analytes contained in a sample liquid using a multi-zone device - by applying the liquid to a single sample application point; - capillary transport of the liquid to several sampling zones over several transport routes, at least one of the transport routes containing a delay zone; and - Application of the liquid at the sampling zones on test elements which contain reagents for the determination of the analytes. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Flüssigkeitstransport bis zum Erreichen der Reagenzien auf den Testelementen ohne Stillstand erfolgt.A method according to claim 1, characterized in that the liquid is transported on the test elements without stopping until the reagents are reached. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Flüssigkeit die Reagenzien auf verschiedenen Testelementen zur im wesentlichen gleichen Zeit erreicht.A method according to claim 1, characterized in that the liquid reaches the reagents on different test elements at substantially the same time. Vorrichtung zur Bestimmung von Analyten enthaltend - eine Probenaufgabepunkt, - mehrere getrennte Probenentnahmezonen, die durch jeweils eine kapillare Transportstrecke mit dem Probenaufgabepunkt verbunden sind, - mehrere Testelemente zur Einzelbestimmung von Analyten, dadurch gekennzeichnet, daß auf mindestens einer der Transportstrecken eine Verzögerungszone vorgesehen ist.Containing device for the determination of analytes - a sample drop point, several separate sampling zones, each of which is connected to the sample application point by a capillary transport route, - several test elements for the individual determination of analytes, characterized in that a delay zone is provided on at least one of the transport routes. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Transportstrecken gleich lang sind.Device according to claim 4, characterized in that the transport routes are of equal length. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Transportstrecken radial angeordnet sind.Apparatus according to claim 5, characterized in that the transport routes are arranged radially. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Transportstrecken ungleich lang sind.Apparatus according to claim 4, characterized in that the transport routes are of unequal length. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der Querschnitt der Transportstrecke im Bereich der Verzögerungszone gegenüber der Transportstrecke ohne Verzögerungszone verkleinert ist.Apparatus according to claim 4, characterized in that the cross section of the transport route in the region of the delay zone is reduced compared to the transport route without a delay zone. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Verzögerungszone ein flüssigkeitstransportverzögerndes Material enthält.Device according to Claim 4, characterized in that the delay zone contains a material which delays liquid transport. Verwendung von Verzögerungszonen zur gleichzeitigen Benetzung von Testelementen mit einer Probenflüssigkeit.Use of delay zones for the simultaneous wetting of test elements with a sample liquid.
EP94110708A 1993-07-15 1994-07-09 Device for simultaneous determination of analytes Withdrawn EP0634215A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4323672A DE4323672A1 (en) 1993-07-15 1993-07-15 Device for the simultaneous determination of analytes
DE4323672 1993-07-15

Publications (1)

Publication Number Publication Date
EP0634215A1 true EP0634215A1 (en) 1995-01-18

Family

ID=6492845

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94110708A Withdrawn EP0634215A1 (en) 1993-07-15 1994-07-09 Device for simultaneous determination of analytes

Country Status (4)

Country Link
US (1) US5556789A (en)
EP (1) EP0634215A1 (en)
JP (1) JPH0777525A (en)
DE (1) DE4323672A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033519A1 (en) * 1996-03-11 1997-09-18 American Bio Medica Corporation Device for the collection, testing and shipment of body fluid samples
US5780248A (en) * 1993-07-15 1998-07-14 Ortho Diagnostic Systems, Inc. Foil sealed cassette for agglutination reactions and liner therefor
GB2339616A (en) * 1996-03-11 2000-02-02 American Bio Medica Corp Drug testing and sample transporting device
EP2381258A1 (en) * 2010-04-26 2011-10-26 Securetec Detektions-Systeme AG Microfluidic system with sample pre-treatment
WO2013152087A3 (en) * 2012-04-04 2014-01-16 University Of Cincinnati Sweat simulation, collection and sensing systems
US9867539B2 (en) 2014-10-15 2018-01-16 Eccrine Systems, Inc. Sweat sensing device communication security and compliance
US10136831B2 (en) 2013-10-18 2018-11-27 University Of Cincinnati Sweat sensing with chronological assurance
EP3417075A4 (en) * 2016-02-15 2019-01-09 EMPE Diagnostics AB Diagnostic device and related method
US10182795B2 (en) 2013-10-18 2019-01-22 University Of Cincinnati Devices for integrated, repeated, prolonged, and/or reliable sweat stimulation and biosensing
US10471249B2 (en) 2016-06-08 2019-11-12 University Of Cincinnati Enhanced analyte access through epithelial tissue
US10485460B2 (en) 2015-02-13 2019-11-26 University Of Cincinnati Devices for integrated indirect sweat stimulation and sensing
US10639015B2 (en) 2014-05-28 2020-05-05 University Of Cincinnati Devices with reduced sweat volumes between sensors and sweat glands
US10888244B2 (en) 2013-10-18 2021-01-12 University Of Cincinnati Sweat sensing with chronological assurance
US10932761B2 (en) 2014-05-28 2021-03-02 University Of Cincinnati Advanced sweat sensor adhesion, sealing, and fluidic strategies
US11129554B2 (en) 2014-05-28 2021-09-28 University Of Cincinnati Sweat monitoring and control of drug delivery
US11253190B2 (en) 2016-07-01 2022-02-22 University Of Cincinnati Devices with reduced microfluidic volume between sensors and sweat glands
US11317835B2 (en) 2014-09-22 2022-05-03 University Of Cincinnati Sweat sensing with analytical assurance

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2750505B1 (en) * 1996-06-27 1998-10-16 Appligene Oncor PROCESS FOR THE PREPARATION OF ANALYSIS MEDIA FOR CHEMICAL OR BIOLOGICAL SUBSTANCES HAVING ORDERED SET OF REACTION AREAS
JPH1014397A (en) * 1996-07-03 1998-01-20 Daisuke Goie Grafting for tree
US6391265B1 (en) * 1996-08-26 2002-05-21 Biosite Diagnostics, Inc. Devices incorporating filters for filtering fluid samples
GB2322192B (en) * 1997-02-14 2001-01-31 Unilever Plc Assay devices
US8071384B2 (en) 1997-12-22 2011-12-06 Roche Diagnostics Operations, Inc. Control and calibration solutions and methods for their use
US6303081B1 (en) * 1998-03-30 2001-10-16 Orasure Technologies, Inc. Device for collection and assay of oral fluids
ES2501241T3 (en) * 1998-03-30 2014-10-01 Orasure Technologies, Inc. Collection device for oral fluid analysis
US8062908B2 (en) * 1999-03-29 2011-11-22 Orasure Technologies, Inc. Device for collection and assay of oral fluids
US5869003A (en) * 1998-04-15 1999-02-09 Nason; Frederic L. Self contained diagnostic test unit
US6248294B1 (en) * 1998-04-15 2001-06-19 Frederic L. Nason Self contained diagnostic test unit
US6248598B1 (en) 1998-09-17 2001-06-19 Stuart C. Bogema Immunoassay that provides for both collection of saliva and assay of saliva for one or more analytes with visual readout
JP4749549B2 (en) 1998-11-30 2011-08-17 アボット・ラボラトリーズ Analytical testing instrument with improved calibration and communication process
US6773671B1 (en) 1998-11-30 2004-08-10 Abbott Laboratories Multichemistry measuring device and test strips
US6203757B1 (en) * 1998-12-02 2001-03-20 Bionike, Inc. Fluid sample distriution system for test device
WO2000042430A1 (en) * 1999-01-15 2000-07-20 Medtox Scientific, Inc. Lateral flow test strip
DE10003734A1 (en) * 2000-01-28 2001-08-02 Bosch Gmbh Robert Detection method and device
DE10102065C2 (en) * 2001-01-17 2003-04-17 Sartorius Gmbh Diagnostic membrane and method for producing a diagnostic membrane
US6723500B2 (en) * 2001-12-05 2004-04-20 Lifescan, Inc. Test strips having reaction zones and channels defined by a thermally transferred hydrophobic barrier
DE10305050A1 (en) * 2003-02-07 2004-08-19 Roche Diagnostics Gmbh Analytical test element and method for blood tests
FI118904B (en) * 2003-03-28 2008-04-30 Ani Biotech Oy Multi-channel test equipment, method of preparation thereof and its use
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
US7452457B2 (en) 2003-06-20 2008-11-18 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US8148164B2 (en) 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US7488601B2 (en) 2003-06-20 2009-02-10 Roche Diagnostic Operations, Inc. System and method for determining an abused sensor during analyte measurement
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US8058077B2 (en) 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
DE10330982A1 (en) * 2003-07-09 2005-02-17 Prisma Diagnostika Gmbh Apparatus and method for the simultaneous determination of blood group antigens
JP4334969B2 (en) * 2003-10-02 2009-09-30 パナソニック株式会社 Blood component analysis sensor
WO2005078118A1 (en) 2004-02-06 2005-08-25 Bayer Healthcare Llc Oxidizable species as an internal reference for biosensors and method of use
US7569126B2 (en) 2004-06-18 2009-08-04 Roche Diagnostics Operations, Inc. System and method for quality assurance of a biosensor test strip
US20060008920A1 (en) * 2004-07-09 2006-01-12 Branan Medical Corporation Combination assay for alcohol and drugs of abuse
KR101503072B1 (en) 2005-07-20 2015-03-16 바이엘 헬스케어 엘엘씨 Gated amperometry
DE602005021967D1 (en) * 2005-09-06 2010-08-05 Roche Diagnostics Gmbh Device with compressible matrix and homogeneous flow profile
KR101577176B1 (en) 2005-09-30 2015-12-14 바이엘 헬스케어 엘엘씨 Gated voltammetry analyte determination
US7592181B2 (en) * 2006-09-25 2009-09-22 Diagnostica, Inc. Occult blood testing device
CN101261270B (en) * 2007-03-09 2012-11-07 中国人民解放军军事医学科学院微生物流行病研究所 Immunity-chromatography multiple detection test paper disk and immunity-chromatography multiple detection method
JP4868409B2 (en) * 2007-05-29 2012-02-01 富士フイルム株式会社 Inspection sheet
JP4865664B2 (en) * 2007-09-28 2012-02-01 富士フイルム株式会社 Method of mixing two or more liquids in a porous carrier
WO2009076302A1 (en) 2007-12-10 2009-06-18 Bayer Healthcare Llc Control markers for auto-detection of control solution and methods of use
US20110294228A1 (en) * 2009-01-16 2011-12-01 Bowsher Ronald R Detection devices and methods
JP5847158B2 (en) * 2010-04-07 2016-01-20 バイオセンシア パテンツ リミテッド Flow control device for assays
WO2014081460A1 (en) * 2012-11-20 2014-05-30 Kisner Mark Chemical sequencing and control to expand and enhance detection capabilities utilizing a colorimetric test
JP6003772B2 (en) * 2013-03-29 2016-10-05 ソニー株式会社 Microchip and manufacturing method of microchip
FR3012982B1 (en) * 2013-11-08 2015-12-25 Espci Innov METHOD FOR STORING AND CONCENTRATING A VOLATILE COMPOUND
US10646142B2 (en) 2015-06-29 2020-05-12 Eccrine Systems, Inc. Smart sweat stimulation and sensing devices
WO2017070640A1 (en) 2015-10-23 2017-04-27 Eccrine Systems, Inc. Devices capable of sample concentration for extended sensing of sweat analytes
CN105319358B (en) * 2015-11-27 2017-01-18 中华人民共和国陕西出入境检验检疫局 Colloidal gold full red blood cell separation joint detection device and method for multiple types of mosquito-medium infectious diseases
US10674946B2 (en) 2015-12-18 2020-06-09 Eccrine Systems, Inc. Sweat sensing devices with sensor abrasion protection
CN110035690A (en) 2016-07-19 2019-07-19 外分泌腺系统公司 Sweat conductivity, volume perspiration rate and electrodermal response equipment and application
CN107664693A (en) * 2016-07-27 2018-02-06 杭州博拓生物科技股份有限公司 A kind of carrier for preventing detection reagent bar mighty torrent
US10773256B2 (en) * 2016-07-27 2020-09-15 Hangzhou Biotest Biotech Co., Ltd. Apparatus for detecting analyte in sample
US10736565B2 (en) 2016-10-14 2020-08-11 Eccrine Systems, Inc. Sweat electrolyte loss monitoring devices
KR102007164B1 (en) * 2017-03-16 2019-08-05 한국과학기술원 Hybrid Rapid Diagnostic Kits Equipped with Multiple Micro-channels
JP6950955B2 (en) * 2017-12-28 2021-10-13 国立研究開発法人産業技術総合研究所 Assay device
JP6950956B2 (en) * 2017-12-28 2021-10-13 国立研究開発法人産業技術総合研究所 Assay device
RU2707526C1 (en) * 2018-12-19 2019-11-27 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Test system for visual semi-quantitative immunochromatographic analysis
KR20230001355U (en) * 2021-12-24 2023-07-03 주식회사 큐에스택 Urine inspection kit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981000302A1 (en) * 1979-07-23 1981-02-05 Eastman Kodak Co Liquid transport device
EP0034049A1 (en) * 1980-02-06 1981-08-19 EASTMAN KODAK COMPANY (a New Jersey corporation) Test device for analysis of a plurality of analytes
WO1988007666A1 (en) * 1987-04-03 1988-10-06 Cardiovascular Diagnostics Inc. Element and method for performing biological assays accurately, rapidly and simply
WO1990011519A1 (en) * 1989-03-23 1990-10-04 Bunce Roger A Liquid transfer devices
WO1990011830A1 (en) * 1989-04-11 1990-10-18 Ares-Serono Research & Development Limited Partnership Multianalyte test vehicle
US5149505A (en) * 1989-07-18 1992-09-22 Abbott Laboratories Diagnostic testing device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960691A (en) * 1986-09-29 1990-10-02 Abbott Laboratories Chromatographic test strip for determining ligands or receptors
US5238847A (en) * 1987-05-20 1993-08-24 Boehringer Mannheim Gmbh Test kit and process for the determination of an analyte in a pasty sample
US5051237A (en) * 1988-06-23 1991-09-24 P B Diagnostic Systems, Inc. Liquid transport system
DE3842702A1 (en) * 1988-12-19 1990-06-21 Boehringer Mannheim Gmbh TEST CARRIER FOR ANALYTICAL EXAMINATION OF A SAMPLING LIQUID WITH THE AID OF A SPECIFIC BINDING REACTION OF TWO BIOAFFIN BINDING PARTNERS AND A CORRESPONDING TEST PROCEDURE
US5110724A (en) * 1990-04-02 1992-05-05 Cholestech Corporation Multi-analyte assay device
US5238652A (en) * 1990-06-20 1993-08-24 Drug Screening Systems, Inc. Analytical test devices for competition assay for drugs of non-protein antigens using immunochromatographic techniques
DE4022655A1 (en) * 1990-07-17 1992-01-23 Boehringer Mannheim Gmbh TEST KIT FOR DETERMINING ANALYTES IN A PASTOESE SAMPLE, ESPECIALLY IN CHAIR
JPH04324347A (en) * 1991-04-24 1992-11-13 Terumo Corp Testing device
GB9123922D0 (en) * 1991-11-11 1992-01-02 Bunce Roger A Liquid transfer devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981000302A1 (en) * 1979-07-23 1981-02-05 Eastman Kodak Co Liquid transport device
EP0034049A1 (en) * 1980-02-06 1981-08-19 EASTMAN KODAK COMPANY (a New Jersey corporation) Test device for analysis of a plurality of analytes
WO1988007666A1 (en) * 1987-04-03 1988-10-06 Cardiovascular Diagnostics Inc. Element and method for performing biological assays accurately, rapidly and simply
WO1990011519A1 (en) * 1989-03-23 1990-10-04 Bunce Roger A Liquid transfer devices
WO1990011830A1 (en) * 1989-04-11 1990-10-18 Ares-Serono Research & Development Limited Partnership Multianalyte test vehicle
US5149505A (en) * 1989-07-18 1992-09-22 Abbott Laboratories Diagnostic testing device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780248A (en) * 1993-07-15 1998-07-14 Ortho Diagnostic Systems, Inc. Foil sealed cassette for agglutination reactions and liner therefor
WO1997033519A1 (en) * 1996-03-11 1997-09-18 American Bio Medica Corporation Device for the collection, testing and shipment of body fluid samples
GB2314625A (en) * 1996-03-11 1998-01-07 American Bio Medica Corp Device for the collection, testing and shipment of body fluid samples
DE19780221T1 (en) * 1996-03-11 1998-04-23 American Bio Medica Corp Device for collecting, testing and sending body fluid samples
GB2314625B (en) * 1996-03-11 1999-12-08 American Bio Medica Corp Device for the collection, testing and shipment of body fluid samples
GB2339616A (en) * 1996-03-11 2000-02-02 American Bio Medica Corp Drug testing and sample transporting device
GB2339616B (en) * 1996-03-11 2000-08-30 American Bio Medica Corp Device for the testing of body fluid samples
AT408696B (en) * 1996-03-11 2002-02-25 American Bio Medica Corp DEVICE FOR COLLECTING, TESTING AND SENDING BODY LIQUID SAMPLES
EP2381258A1 (en) * 2010-04-26 2011-10-26 Securetec Detektions-Systeme AG Microfluidic system with sample pre-treatment
WO2011134946A1 (en) 2010-04-26 2011-11-03 Securetec Detektions-Systeme Ag Microfluidic system with sample pretreatment
WO2013152087A3 (en) * 2012-04-04 2014-01-16 University Of Cincinnati Sweat simulation, collection and sensing systems
US11460430B2 (en) 2012-04-04 2022-10-04 University Of Cincinnati Sweat simulation, collecting and sensing systems
US10136831B2 (en) 2013-10-18 2018-11-27 University Of Cincinnati Sweat sensing with chronological assurance
US11266381B2 (en) 2013-10-18 2022-03-08 University Of Cincinnati Devices for integrated, repeated, prolonged, and/or reliable sweat stimulation and biosensing
US10888244B2 (en) 2013-10-18 2021-01-12 University Of Cincinnati Sweat sensing with chronological assurance
US10182795B2 (en) 2013-10-18 2019-01-22 University Of Cincinnati Devices for integrated, repeated, prolonged, and/or reliable sweat stimulation and biosensing
US10368847B2 (en) 2013-10-18 2019-08-06 University Of Cincinnati Devices for integrated, repeated, prolonged, and/or reliable sweat stimulation and biosensing
US10639015B2 (en) 2014-05-28 2020-05-05 University Of Cincinnati Devices with reduced sweat volumes between sensors and sweat glands
US10932761B2 (en) 2014-05-28 2021-03-02 University Of Cincinnati Advanced sweat sensor adhesion, sealing, and fluidic strategies
US11129554B2 (en) 2014-05-28 2021-09-28 University Of Cincinnati Sweat monitoring and control of drug delivery
US11317835B2 (en) 2014-09-22 2022-05-03 University Of Cincinnati Sweat sensing with analytical assurance
US10201279B2 (en) 2014-10-15 2019-02-12 University Of Cincinnati, A University Of The State Of Ohio Sweat sensing device communication security and compliance
US10258262B2 (en) 2014-10-15 2019-04-16 University Of Cincinnati, A University Of The State Of Ohio Sweat sensing device communication security and compliance
US9867539B2 (en) 2014-10-15 2018-01-16 Eccrine Systems, Inc. Sweat sensing device communication security and compliance
US10485460B2 (en) 2015-02-13 2019-11-26 University Of Cincinnati Devices for integrated indirect sweat stimulation and sensing
CN109219667A (en) * 2016-02-15 2019-01-15 安普诊断公司 Diagnostic device and correlation technique
EP3417075A4 (en) * 2016-02-15 2019-01-09 EMPE Diagnostics AB Diagnostic device and related method
CN109219667B (en) * 2016-02-15 2023-02-28 安普诊断公司 Diagnostic device and related method
US11788040B2 (en) 2016-02-15 2023-10-17 Empe Diagnostics Ab Diagnostic device and related method
US10471249B2 (en) 2016-06-08 2019-11-12 University Of Cincinnati Enhanced analyte access through epithelial tissue
US11253190B2 (en) 2016-07-01 2022-02-22 University Of Cincinnati Devices with reduced microfluidic volume between sensors and sweat glands

Also Published As

Publication number Publication date
US5556789A (en) 1996-09-17
JPH0777525A (en) 1995-03-20
DE4323672A1 (en) 1995-01-19

Similar Documents

Publication Publication Date Title
EP0634215A1 (en) Device for simultaneous determination of analytes
DE602005005485T2 (en) ASSAY DEVICE AND METHOD WITH CONTROLLED RIVER
DE69906986T2 (en) ANALYTICAL TEST APPARATUS AND METHOD
EP0208952B1 (en) Test strip
EP0073513B2 (en) Method of carrying out an analytical determination, and suitable means therefor
DE69736834T2 (en) DEVICE FOR CHROMATOGRAPHIC ANALYZES AND TESTS
EP0045476B1 (en) Method for separating plasma or serum from blood
DE2512730C2 (en) Apparatus for performing immunological detection reactions and methods using such a device
DE69627182T2 (en) ELEMENT FOR COLLECTING AND TRANSPORTING SAMPLE MATERIAL TO BE ANALYZED AND METHOD FOR DETERMINING ANALYT
DD202072A5 (en) METHOD FOR CARRYING OUT ANALYTICAL PROVISIONS AND ROTORE INSERT ELEMENTS SUITABLE THEREFOR
EP0467175B1 (en) Test kit for determining an analyte in a semi-solid sample, particularly in stools
DE2255471C3 (en) Device for the optical examination of small liquid samples
EP0340562B1 (en) Testing device for agglutination analyses, its manufacturing method and use
EP0443161B1 (en) Test carrier for analysis of a sample fluid
EP1036330A1 (en) Analytic test element with a tapered capillary canal
EP1522343B1 (en) Analytical testelement including a hydrophilic network for forming a capillary channel, its use and method for determining an analyte in a liquid.
EP1315553B1 (en) Device and method for separating undissolved constituents out of biological fluids
EP0535480A1 (en) Slides for use in the analysis of liquids
DE69719737T2 (en) IMMUNOASSAY OF WHOLE BLOOD SAMPLES
WO2000042434A1 (en) Method and device for determining an analyte
EP1035919A1 (en) Device for the capillary transport of liquid
EP0457123B1 (en) Test support for the analytical determination of a component in a sample fluid
DE2224411B2 (en) Thin layer chromatography plate
WO1997018895A2 (en) Disposable applicator and kit
DE3716891A1 (en) TEST KIT FOR DETERMINING ANALYTIC IN THE CHAIR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19960610

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROCHE DIAGNOSTICS GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19990901