EP0585026B1 - Use of fatty acids for increasing gut calcium absorption - Google Patents

Use of fatty acids for increasing gut calcium absorption Download PDF

Info

Publication number
EP0585026B1
EP0585026B1 EP93306444A EP93306444A EP0585026B1 EP 0585026 B1 EP0585026 B1 EP 0585026B1 EP 93306444 A EP93306444 A EP 93306444A EP 93306444 A EP93306444 A EP 93306444A EP 0585026 B1 EP0585026 B1 EP 0585026B1
Authority
EP
European Patent Office
Prior art keywords
gla
acid
calcium
dgla
administration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93306444A
Other languages
German (de)
French (fr)
Other versions
EP0585026A1 (en
Inventor
David Frederick C/O Scotia Pharm. Ltd. Horrobin
Brenda Elizabeth c/o Scotia Pharm. Ltd. Reynolds
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scotia Holdings PLC
Original Assignee
Scotia Holdings PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scotia Holdings PLC filed Critical Scotia Holdings PLC
Publication of EP0585026A1 publication Critical patent/EP0585026A1/en
Application granted granted Critical
Publication of EP0585026B1 publication Critical patent/EP0585026B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/201Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having one or two double bonds, e.g. oleic, linoleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/12Drugs for disorders of the metabolism for electrolyte homeostasis
    • A61P3/14Drugs for disorders of the metabolism for electrolyte homeostasis for calcium homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Definitions

  • This invention relates to fatty acid treatments, and in particular to enhancing absorption of calcium from the gut,
  • the acids which in nature are of the all-cis configuration, are systematically named as derivatives of the corresponding octadecanoic, eicosanoic or docosanoic acids, e.g. delta-9,12-octadecadienoic acid or delta-4,7,10,13,16,19 docosahexaenoic acid, but numerical designations such as, correspondingly, 18:2 n-6 or 22:6 n-3 are convenient.
  • n-3 series only 18:3 n-3 has a commonly used trivial name, alpha-linolenic acid, though the name stearidonic acid is coming into use for the 18:4 n-3 acid and the names eicosapentaenoic acid and docosahexanenoic acid as such are also used.
  • the alpha isomer of linolenic acid was characterised earlier than gamma-linolenic acid and reference in the literature simply to linolenic acid, especially in the earlier literature, is to the alpha-acid.
  • Laval-Jeantet et al disclose the stimulating effect of linoleic and alpha-linolenic acids on calcium absorption (Pathologie Biologie, vol. 24(3), 1976, pages 213-225).
  • EP-0261814 discloses that the conversion of gammalinolenic acid to dihomogammalinolenic acid is inhibited by low calcium levels.
  • the document teaches the co-administration of both calcium and these fatty acids to ensure that lack of either is not a limiting factor and proposes that this treatment may be of benefit in bone disorders involving calcium loss from the bones.
  • GLA gamma-linolenic acid
  • EPA eicosapentaenoic acid
  • GLA is the first metabolite of linoleic acid, the major essential fatty acid in the diet. Linoleic acid is converted to GLA by the enzyme delta-6-desaturase. However, this step is slow and rate limiting even in the normal body and as a result there are advantages in the administration of GLA directly.
  • the invention in one aspect lies in the use of GLA and/or its immediate and rapidly produced metabolite dihomogammalinolenic acid (DGLA), in the preparation of a medicament for, or in a method of, securing increase of gut calcium absorption.
  • DGLA immediate and rapidly produced metabolite dihomogammalinolenic acid
  • LA linoleic acid
  • the invention therefore includes the use of linoleic acid, and as noted below has particular reference to calcium deficiency disease.
  • the invention may be regarded as lying in a method of increasing the systemic calcium pool by stimulating both an increased absorption of and a reduction of urinary excretion of calcium, wherein an effective daily amount of GLA or DGLA, or LA, is administered in any convenient form to animals or humans particularly those suffering from or at risk of calcium deficiency disease.
  • the invention further includes the use of GLA, DGLA or LA in the preparation of a medicament for such a method.
  • the invention may be regarded simply as the treatment or prevention condition defining disease in either animals or humans.
  • GLA in the body is very rapidly converted to dihomo-gamma-linolenic acid (DGLA); DGLA therefore has a very similar effect to GLA.
  • DGLA dihomo-gamma-linolenic acid
  • GLA or DGLA may be used in any appropriate form, including but not limited to triglyceride, diglyceride, monoglyceride, free fatty acid, any appropriate ester, any appropriate salt including the lithium, sodium, potassium, calcium, zinc, magnesium or other salt, phospholipid, amide or any other pharmacologically acceptable form.
  • the preferred dose range is 0.01 to 1,000 mg/kg/day, more preferably 0.5 to 50 mg/kg/day, very preferably 2 to 30 mg/kg/day of GLA or DGLA, and medicaments are readily prepared in dosage unit form to administer such amounts (related to a 70 kg human adult).
  • the GLA or DGLA may be used with any essential fatty acids of the n-6 or n-3 series, including, for example, arachidonic acid, alpha-linolenic acid, eicosapentaenoic acid or docosahexaenoic acid, in like doses.
  • GLA in combination with EPA and/or its metabolite DHA is desirable, producing particularly advantageous effects.
  • parenteral sub-cutaneous, intramuscular, intravenous or by any other appropriate route
  • enteral topical in the form of appropriate GLA-containing ointments, creams, lotions, patches, etc. vaginal or rectal are among suitable routes of administration.
  • the acids may be used as such or as pharmaceutically acceptable and physiologically equivalent derivatives as, for example, detailed herein for GLA and DGLA, and reference to any of the acids is to be taken as including reference to the acids when in the form of such derivatives. Equivalence is demonstrated by entry into the pathway quoted herein, as evidenced by effects corresponding to those of the acids themselves or their natural glyceride esters.
  • the method is suitably that plasma samples (1 ml) are extracted with chloroform:methanol (2:1). The extract is filtered through sodium sulphate, evaporated to dryness, and taken up in 0.5 ml chloroform:methanol. The lipid fractions are separated by thin layer chromatography or silica gel plates. The phospholipid fraction, taken to reflect essential fatty acid contents most sensitively, is methylated using boron trifluoride-methanol. The resulting methyl esters of the fatty acids are separated and measured using a Hewlett-Packard 5880 gas chromatograph with a six foot column packed with 10% Silar on Chromosorb WAW 106/230. The carrier gas is helium (30 ml/min).
  • Oven temperature is programmed to rise from 164°C to 190°C at 2°C/min.
  • Detector temperature is 220°C and injector temperature 200°C.
  • Retention times and peak areas are automatically computed by Hewlett-Packard Level 4 integrator. Peaks are identified by comparison with standard fatty acid methyl esters.
  • the invention is chiefly described in terms of methods of treatment and in the use of GLA or DGLA in the preparation of pharmaceutical compositions, but it will be understood that the gamma-linolenic and other EFAs, being in the nature of dietary supplements, can be incorporated in a dietary margarine or other foodstuff and such are to be understood as within the term pharmaceutical composition or medicament herein (including the claims) when for the purposes set out.
  • compositions may be produced for use in the invention by associating the natural or synthetic acids, as such or as derivatives, with an acceptable pharmaceutical vehicle. It is, however, at present convenient to provide at least GLA in the form of an available oil having a high GLA content, hence reference to "oils" herein.
  • oils are available in the seed of evening primrose species such as Oenothera biennis L. and Oenothera lamarckiana , the oil extract therefrom containing about 8% GLA and about 72% linoleic acid in the form of their glycerides, together with other glycerides (percentages based on total fatty acids).
  • GLA is borage species such as Borago officinalis which provide a richer source than Oenothera oil.
  • Oils from the seeds of members of the Ribes family are also often rich in GLA. Recent studies on fungi which can be cultivated by fermentation promise a fungal oil source. Some algae also produce GLA and may be harvested or cultured. Synthesis is also possible.
  • the oil is extracted from the seed by one of the conventional methods of extraction such as cold pressure, screw pressure after partially cooking the seed, or solvent extraction.
  • seed oil extracts referred to above can be used as such or can, for example, if desired, be fractionated to yield an oily composition containing the triglycerides of gamma-linolenic and linoleic acids as the main fatty acid components, the gamma-linolenic acid content being, if desired, a major proportion. Seed oil extracts appear to have a stabilising effect upon DGLA if present.
  • DGLA can be prepared by chemical synthesis or by fungal or algal fermentation.
  • natural sources of 22:4 and 22:5 n-6 acids include adrenal glands (22:5) and kidneys (22:4) obtained from slaughter houses, which also give arachidonic acid (AA) sources.
  • n-3 acids have long been available from marine oils, particularly the 20:5 n-3 (EPA) and 22:6 n-3 (DHA) acids, and more recently from microbial and algal fermentation. They can be isolated from these sources by, for example, saponification under mild non-oxidising conditions followed by preparative gas liquid chromatography. Synthesis is difficult but not impossible and provides another source.
  • EPA 20:5 n-3
  • DHA 22:6 n-3
  • compositions are conveniently in a form suitable for oral, topical, parenteral or other route of administration in a suitable pharmaceutical vehicle, well known generally for any particular kind of preparation.
  • a suitable pharmaceutical vehicle well known generally for any particular kind of preparation.
  • tablets, capsules, ingestible liquid or powder preparations can be prepared as required, and topical preparations also when the gamma-linolenic acid or other acids are absorbed through the skin.
  • injectable solutions of hydrolysed Oenothera or other oil may be prepared using albumin to solubilise the free acid.
  • Emulsions and salts can also be administered by infusion or injection.
  • a preservative is incorporated into the preparation.
  • Alpha-tocopherol in a concentration of about 0.1% by weight has been found suitable for the purpose and is one of a number of possible stabilisers well known in the field and including also for example ascorbyl palmitate and stearate.
  • any dosage unit should not exceed that appropriate to the rate and manner of administration to be employed but on the other hand should also desirably be adequate to allow the desired rate of administration to be achieved by a small number of doses.
  • the rate of administration will moreover depend on the precise pharmacological action desired.
  • composition may also be in the form of whips, emulsions, suspensions, pessaries, suppositories, transdermal devices or any other appropriate forms.
  • compositions and their administration for the purposes discussed herein.

Abstract

Increasing gut calcium absorption in humans or animals by the administration of GLA, DGLA or LA as such or in salt or other pharmacologically acceptable form, optionally in association with EPA, DHA or other EFA in similar forms, specifically useful in the treatment of osteoporosis.

Description

    FIELD OF INVENTION
  • This invention relates to fatty acid treatments, and in particular to enhancing absorption of calcium from the gut,
  • FATTY ACIDS
  • The pathways of conversion of the main series of polyunsaturated fatty acids in the body are as in Table 1 below:
    Figure imgb0001
  • The above pathways are not normally reversible nor, in man, are n-3 and n-6 series acids interconvertible.
  • The acids, which in nature are of the all-cis configuration, are systematically named as derivatives of the corresponding octadecanoic, eicosanoic or docosanoic acids, e.g. delta-9,12-octadecadienoic acid or delta-4,7,10,13,16,19 docosahexaenoic acid, but numerical designations such as, correspondingly, 18:2 n-6 or 22:6 n-3 are convenient. Initials, for example, EPA for the 20:5 n-3 acid (eicosapentaenoic acid) or DHA for the 22:6 n-3 acid (docosahexaenoic acid), are also used but do not serve when n-3 and n-6 acids of the same chain length and degree of unsaturation exist as for example with the 22:5 acids. Trivial names in more or less common use in the n-6 series are as shown. Of the n-3 series only 18:3 n-3 has a commonly used trivial name, alpha-linolenic acid, though the name stearidonic acid is coming into use for the 18:4 n-3 acid and the names eicosapentaenoic acid and docosahexanenoic acid as such are also used. The alpha isomer of linolenic acid was characterised earlier than gamma-linolenic acid and reference in the literature simply to linolenic acid, especially in the earlier literature, is to the alpha-acid.
  • CALCIUM ABSORPTION, DISCUSSION AND EXPERIMENTAL
  • Efficient absorption of calcium in humans and animals is significant for at least two reasons:
    • 1. Low calcium absorption coupled with normal or excessive urine calcium excretion can lead to a negative calcium balance.
    • 2. Calcium is required for normal bone strength, and inadequate gut calcium absorption can contribute to weakening of the bones and the development of osteoporosis, a major medical problem.
  • It is known that lipid-calcium interactions are important in human nutrition. Laval-Jeantet et al disclose the stimulating effect of linoleic and alpha-linolenic acids on calcium absorption (Pathologie Biologie, vol. 24(3), 1976, pages 213-225). EP-0261814 discloses that the conversion of gammalinolenic acid to dihomogammalinolenic acid is inhibited by low calcium levels. The document teaches the co-administration of both calcium and these fatty acids to ensure that lack of either is not a limiting factor and proposes that this treatment may be of benefit in bone disorders involving calcium loss from the bones.
  • We have previously discovered a new and safe way of reducing calcium excretion by the administration of gamma-linolenic acid (GLA), or GLA in combination with eicosapentaenoic acid (EPA), the subject of EP-A1-0,517,425. As discussed above, GLA is the first metabolite of linoleic acid, the major essential fatty acid in the diet. Linoleic acid is converted to GLA by the enzyme delta-6-desaturase. However, this step is slow and rate limiting even in the normal body and as a result there are advantages in the administration of GLA directly.
  • Studies conducted in animals and in man showed that the optimal effect on reducing urine calcium excretion was achieved using a combination of GLA and EPA, although both fatty acids individually also elicited a response.
  • Because of this, a further human clinical study was conducted in 30 recurrent, hypercalcuric stone formers. On entry into the trial all patients were taken off any previous treatment and stabilised on a standard calcium diet (800 mg calcium per day) which was maintained for the study period. After 14 days on the standard calcium diet, patients were allocated to one of 3 groups and given the following treatment for 12 weeks.
  • Group 1
    6g cold water marine fish oil (FO) per day (300 mg EPA);
    Group 2
    6g evening primrose oil (EPO) per day (540 mg GLA);
    Group 3
    6g of an 80:20 combination of EPO and FO (475 mg GLA, 238 mg EPA).
  • At the end of the 14 day stabilisation period a baseline Ca45 absorption test was conducted and this was repeated after 12 weeks of treatment as above. The Ca45 absorption test results are summarised below:-
    Treatment Baseline 12 weeks
    FO 0.36 ± 0.04 0.44 ± 0.06
    EPO 0.38 ± 0.03 0.55 ± 0.07
    EPO/FO 0.43 ± 0.07 0.68 ± 0.11
  • There was a significant increase in fractional Ca45 absorption in both the EPO and EPO/FO treated patients although the latter were higher.
  • THE INVENTION
  • Based on the above, the invention in one aspect lies in the use of GLA and/or its immediate and rapidly produced metabolite dihomogammalinolenic acid (DGLA), in the preparation of a medicament for, or in a method of, securing increase of gut calcium absorption. Because linoleic acid (LA) is a precursor of GLA it has some effect though its conversion is slow. The invention therefore includes the use of linoleic acid, and as noted below has particular reference to calcium deficiency disease.
  • Alternatively, the invention may be regarded as lying in a method of increasing the systemic calcium pool by stimulating both an increased absorption of and a reduction of urinary excretion of calcium, wherein an effective daily amount of GLA or DGLA, or LA, is administered in any convenient form to animals or humans particularly those suffering from or at risk of calcium deficiency disease. The invention further includes the use of GLA, DGLA or LA in the preparation of a medicament for such a method.
  • Equally in the use of GLA and/or DGLA in preparation of medicaments or in treatment as above, the invention may be regarded simply as the treatment or prevention condition defining disease in either animals or humans.
  • As noted, GLA in the body is very rapidly converted to dihomo-gamma-linolenic acid (DGLA); DGLA therefore has a very similar effect to GLA.
  • As discussed further below GLA or DGLA may be used in any appropriate form, including but not limited to triglyceride, diglyceride, monoglyceride, free fatty acid, any appropriate ester, any appropriate salt including the lithium, sodium, potassium, calcium, zinc, magnesium or other salt, phospholipid, amide or any other pharmacologically acceptable form.
  • The preferred dose range is 0.01 to 1,000 mg/kg/day, more preferably 0.5 to 50 mg/kg/day, very preferably 2 to 30 mg/kg/day of GLA or DGLA, and medicaments are readily prepared in dosage unit form to administer such amounts (related to a 70 kg human adult).
  • The GLA or DGLA may be used with any essential fatty acids of the n-6 or n-3 series, including, for example, arachidonic acid, alpha-linolenic acid, eicosapentaenoic acid or docosahexaenoic acid, in like doses. In particular, in view of results on human gut calcium absorption, GLA in combination with EPA and/or its metabolite DHA is desirable, producing particularly advantageous effects.
  • ROUTES OF ADMINISTRATION
  • Oral, parenteral (sub-cutaneous, intramuscular, intravenous or by any other appropriate route), enteral, topical in the form of appropriate GLA-containing ointments, creams, lotions, patches, etc. vaginal or rectal are among suitable routes of administration.
  • DERIVATIVES OF EFAs
  • As indicated above, the acids may be used as such or as pharmaceutically acceptable and physiologically equivalent derivatives as, for example, detailed herein for GLA and DGLA, and reference to any of the acids is to be taken as including reference to the acids when in the form of such derivatives. Equivalence is demonstrated by entry into the pathway quoted herein, as evidenced by effects corresponding to those of the acids themselves or their natural glyceride esters. Thus, indirect identification of useful derivatives is by their having the valuable effect in the body of the acid itself, but conversion can be shown directly by gas chromatographic analysis of concentrations in blood, body fat, or other tissue by standard techniques, for example those of Pelick et al, page 23, "Analysis of Lipids and Lipoproteins" Ed Perkins, American Oil Chemists Society, Champaign, Illinois, U.S.A.
  • In outline the method is suitably that plasma samples (1 ml) are extracted with chloroform:methanol (2:1). The extract is filtered through sodium sulphate, evaporated to dryness, and taken up in 0.5 ml chloroform:methanol. The lipid fractions are separated by thin layer chromatography or silica gel plates. The phospholipid fraction, taken to reflect essential fatty acid contents most sensitively, is methylated using boron trifluoride-methanol. The resulting methyl esters of the fatty acids are separated and measured using a Hewlett-Packard 5880 gas chromatograph with a six foot column packed with 10% Silar on Chromosorb WAW 106/230. The carrier gas is helium (30 ml/min). Oven temperature is programmed to rise from 164°C to 190°C at 2°C/min. Detector temperature is 220°C and injector temperature 200°C. Retention times and peak areas are automatically computed by Hewlett-Packard Level 4 integrator. Peaks are identified by comparison with standard fatty acid methyl esters.
  • DIETARY COMPOSITIONS
  • The invention is chiefly described in terms of methods of treatment and in the use of GLA or DGLA in the preparation of pharmaceutical compositions, but it will be understood that the gamma-linolenic and other EFAs, being in the nature of dietary supplements, can be incorporated in a dietary margarine or other foodstuff and such are to be understood as within the term pharmaceutical composition or medicament herein (including the claims) when for the purposes set out.
  • If desired, pharmaceutical compositions may be produced for use in the invention by associating the natural or synthetic acids, as such or as derivatives, with an acceptable pharmaceutical vehicle. It is, however, at present convenient to provide at least GLA in the form of an available oil having a high GLA content, hence reference to "oils" herein.
  • One source of oils currently available is the seed of evening primrose species such as Oenothera biennis L. and Oenothera lamarckiana, the oil extract therefrom containing about 8% GLA and about 72% linoleic acid in the form of their glycerides, together with other glycerides (percentages based on total fatty acids). Other sources of GLA are borage species such as Borago officinalis which provide a richer source than Oenothera oil. Oils from the seeds of members of the Ribes family are also often rich in GLA. Recent studies on fungi which can be cultivated by fermentation promise a fungal oil source. Some algae also produce GLA and may be harvested or cultured. Synthesis is also possible.
  • The oil is extracted from the seed by one of the conventional methods of extraction such as cold pressure, screw pressure after partially cooking the seed, or solvent extraction.
  • Fractionation of a typical sample of evening primrose oil as used in the work reported herein in the form of methyl esters shows the relative proportions:
    Palmitate 6.15
    Stearate 1.6
    Oleate 10.15
    Linoleate 72.6
    Gamma-linolenate 8.9
  • The seed oil extracts referred to above can be used as such or can, for example, if desired, be fractionated to yield an oily composition containing the triglycerides of gamma-linolenic and linoleic acids as the main fatty acid components, the gamma-linolenic acid content being, if desired, a major proportion. Seed oil extracts appear to have a stabilising effect upon DGLA if present.
  • SOURCES OF OTHER ACIDS
  • DGLA can be prepared by chemical synthesis or by fungal or algal fermentation. For the higher n-6 acids, natural sources of 22:4 and 22:5 n-6 acids include adrenal glands (22:5) and kidneys (22:4) obtained from slaughter houses, which also give arachidonic acid (AA) sources.
  • Tile n-3 acids have long been available from marine oils, particularly the 20:5 n-3 (EPA) and 22:6 n-3 (DHA) acids, and more recently from microbial and algal fermentation. They can be isolated from these sources by, for example, saponification under mild non-oxidising conditions followed by preparative gas liquid chromatography. Synthesis is difficult but not impossible and provides another source.
  • PHARMACEUTICAL PRESENTATION
  • As mentioned briefly above, the compositions are conveniently in a form suitable for oral, topical, parenteral or other route of administration in a suitable pharmaceutical vehicle, well known generally for any particular kind of preparation. Thus, for example, tablets, capsules, ingestible liquid or powder preparations can be prepared as required, and topical preparations also when the gamma-linolenic acid or other acids are absorbed through the skin. Injectable solutions of hydrolysed Oenothera or other oil may be prepared using albumin to solubilise the free acid. Emulsions and salts can also be administered by infusion or injection.
  • Advantageously, a preservative is incorporated into the preparation. Alpha-tocopherol in a concentration of about 0.1% by weight has been found suitable for the purpose and is one of a number of possible stabilisers well known in the field and including also for example ascorbyl palmitate and stearate.
  • It will be understood that the absolute quantity of active materials present in any dosage unit should not exceed that appropriate to the rate and manner of administration to be employed but on the other hand should also desirably be adequate to allow the desired rate of administration to be achieved by a small number of doses. The rate of administration will moreover depend on the precise pharmacological action desired.
  • The composition may also be in the form of whips, emulsions, suspensions, pessaries, suppositories, transdermal devices or any other appropriate forms.
  • EXAMPLES
  • The following are examples of compositions and their administration for the purposes discussed herein.
    • 1. Administration of 100 mg to 2,000 mg of GLA per day in the form of soft or hard gelatin capsules or tablets providing:
      • a. 40 to 80 mg per capsule of GLA in the form of evening primrose oil.
      • b. 50-150 mg per capsule of GLA in the form of borage, blackcurrant, fungal or other appropriate oil.
      • c. 100-150 mg GLA per capsule in the form of triglyceride GLA, or any appropriate salt of GLA, such as the lithium or calcium or magnesium or zinc or potassium salts.
    • 2. Administration of DGLA in a dose of 100 mg to 2,000 mg per day in the forms of 1c above.
    • 3. Administration of GLA or DGLA in association with EPA, with or without DHA, for example as 40 to 80 mg GLA per capsule in the form of evening primrose oil together with 10 mg to 100 mg per capsule of EPA in the form of cold water marine fish oil.
    • 4. Administration of GLA or DGLA in the form of a soluble powder or effervescent granule formed from any appropriate salt of GLA as in 1c above and excipients such as citric acid monohydrate, sodium bicarbonate or other dibasic acids such as tartaric or maleic acid plus sweeteners such as sucrose or sorbitol and flavourings.
    • 5. Administration of GLA or DGLA in the form of liquid evening primrose, borage or other appropriate oil as the oil itself or as a whip or emulsion prepared with appropriate flavours and stabilisers.
    • 6. Administration of GLA or DGLA in any appropriate chemical form, microencapsulated using starch, gelatin, gum arabic or other appropriate formulation.
    • 7. Administration of GLA in the form of pessaries, suppositories, skin patches or any other appropriate route.
    • 8. Calcium-GLA tablets or soft or hard gelatin capsules containing 500 mg of calcium-GLA salt to be taken 1-5 times/day.

Claims (7)

  1. Use of gamma-linolenic acid (GLA) or dihomogammalinolenic acid (DGLA) as such or in salt or other pharmacologically acceptable form, optionally in association with eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or other n-6 or n-3 series essential fatty acid, additional to the GLA or DGLA, as such or in salt or other pharmacologically acceptable form, in the preparation of a medicament for increasing gut calcium absorption for treating calcium deficiency diseases other than osteoporosis.
  2. Use of GLA or DGLA as such or in salt or other pharmacologically acceptable form, optionally in association with EPA, DHA or other n-6 or n-3 series essential fatty acid, additional to the GLA or DGLA, as such or in salt or other pharmacologically acceptable form, in the preparation of a medicament for increasing the systemic calcium pool by stimulating both an increased absorption of and a reduction of urinary excretion of calcium for treating calcium deficiency diseases other than osteoporosis.
  3. A use according to claims 1 or 2 wherein one or more of the essential fatty acids is/are present in the medicament as calcium salt(s).
  4. A use according to claims 1, 2 or 3 wherein the medicament comprises a dose range of the or each essential fatty acid suited to administration of from 0.01 to 1,000 mg/kg/day.
  5. A use according to claims 1, 2 or 3 wherein the medicament comprises a dose range of the or each essential fatty acid suited to administration of from 0.5 to 50 mg/kg/day.
  6. A use according to claims 1, 2 or 3 wherein the medicament comprises a dose range of the or each essential fatty acid suited to administration of from 2 to 30 mg/kg/day.
  7. A use according to any preceding claim, wherein the medicament is presented in unit dosage form.
EP93306444A 1992-08-21 1993-08-16 Use of fatty acids for increasing gut calcium absorption Expired - Lifetime EP0585026B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9217780 1992-08-21
GB929217780A GB9217780D0 (en) 1992-08-21 1992-08-21 Fatty acid treatment

Publications (2)

Publication Number Publication Date
EP0585026A1 EP0585026A1 (en) 1994-03-02
EP0585026B1 true EP0585026B1 (en) 1997-11-05

Family

ID=10720716

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93306444A Expired - Lifetime EP0585026B1 (en) 1992-08-21 1993-08-16 Use of fatty acids for increasing gut calcium absorption

Country Status (21)

Country Link
US (1) US5618558A (en)
EP (1) EP0585026B1 (en)
JP (1) JPH06157303A (en)
KR (1) KR940003553A (en)
CN (1) CN1049334C (en)
AT (1) ATE159856T1 (en)
AU (1) AU666747B2 (en)
CA (1) CA2104567A1 (en)
DE (1) DE69315020T2 (en)
DK (1) DK0585026T3 (en)
ES (1) ES2110060T3 (en)
GB (1) GB9217780D0 (en)
GR (1) GR3025898T3 (en)
HK (1) HK1000997A1 (en)
MY (1) MY109928A (en)
NO (1) NO306655B1 (en)
NZ (1) NZ248422A (en)
RU (1) RU2122409C1 (en)
SG (1) SG80536A1 (en)
TW (1) TW323230B (en)
ZA (1) ZA935976B (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9325445D0 (en) 1993-12-13 1994-02-16 Cortecs Ltd Pharmaceutical formulations
GB9403855D0 (en) * 1994-03-01 1994-04-20 Scotia Holdings Plc Fatty acid derivatives
EP0711503A3 (en) * 1994-11-14 1997-11-26 Scotia Holdings Plc Milk fortified with GLA and/or DGLA
US5804210A (en) * 1996-08-07 1998-09-08 Wisconsin Alumni Research Foundation Methods of treating animals to maintain or enhance bone mineral content and compositions for use therein
GB9617847D0 (en) 1996-08-27 1996-10-09 Scotia Holdings Plc Fatty acid treatment
AU8857298A (en) * 1997-07-16 1999-02-10 Societe Des Produits Nestle S.A. Method for prophylaxis or treatment of bone density loss
GB9901809D0 (en) * 1999-01-27 1999-03-17 Scarista Limited Highly purified ethgyl epa and other epa derivatives for psychiatric and neurological disorderes
US6479545B1 (en) * 1999-09-30 2002-11-12 Drugtech Corporation Formulation for menopausal women
EG22407A (en) * 2000-02-17 2003-01-29 Iams Company Method for improving bone modeling and chondrocyte functioning in growing canines
EP1370257B1 (en) * 2001-03-15 2007-07-25 DSM IP Assets B.V. COMPOSITION FOR THE PREVENTION OF OSTEOPOROSIS consisting of A COMBINATION OF ISOFLAVONES AND POLYUNSATURATED FATTY ACIDS
CN1259044C (en) * 2001-03-30 2006-06-14 日清奥利友集团株式会社 Bone metabolism improving agents
US7098352B2 (en) * 2001-11-16 2006-08-29 Virtus Nutrition Llc Calcium salt saponification of polyunsaturated oils
US7820842B2 (en) * 2004-04-30 2010-10-26 Virtus Nutrition Llc Polyunsaturated fatty acid monovalent and divalent metal salt synthesis
GB2409644B (en) * 2003-12-31 2005-12-21 Igennus Ltd Formulation comprising eicosapentaenoic acid or an ester thereof and a triterpene or an ester thereof
AU2006322990A1 (en) * 2005-10-07 2007-06-14 Ocean Nutrition Canada Ltd. Salts of fatty acids and methods of making and using thereof
DE102007022694A1 (en) * 2007-05-11 2008-11-13 Humana Milchunion Eg Milk fat milk protein composition to improve calcium absorption
DE102007039310A1 (en) * 2007-08-13 2009-02-19 Eberhard-Karls-Universität Tübingen Universitätsklinikum Composition for the prophylaxis and treatment of osteoporosis
US8343753B2 (en) * 2007-11-01 2013-01-01 Wake Forest University School Of Medicine Compositions, methods, and kits for polyunsaturated fatty acids from microalgae
US20110236476A1 (en) 2008-09-02 2011-09-29 Amarin Corporation Plc. Pharmaceutical composition comprising eicosapentaenoic acid and nicotinic acid and methods of using same
KR20140007973A (en) 2009-02-10 2014-01-20 아마린 파마, 인크. Methods of treating hypertriglyceridemia
NZ624963A (en) 2009-04-29 2016-07-29 Amarin Pharmaceuticals Ie Ltd Pharmaceutical compositions comprising epa and a cardiovascular agent and methods of using the same
GB0907413D0 (en) 2009-04-29 2009-06-10 Equateq Ltd Novel methods
NZ627238A (en) 2009-04-29 2016-02-26 Amarin Pharmaceuticals Ie Ltd Stable pharmaceutical composition comprising ethyl eicosapentaenoate
MY172372A (en) 2009-06-15 2019-11-21 Amarin Pharmaceuticals Ie Ltd Compositions and methods for lowering triglycerides
WO2011038122A1 (en) 2009-09-23 2011-03-31 Amarin Corporation Plc Pharmaceutical composition comprising omega-3 fatty acid and hydroxy-derivative of a statin and methods of using same
KR20130026428A (en) * 2010-03-04 2013-03-13 아마린 파마, 인크. Compositions and methods for treating and/or preventing cardiovascular disease
US8178707B2 (en) 2010-03-25 2012-05-15 Jost Chemical Company Co-precipitated salts of fatty acids
CN101978949A (en) * 2010-11-16 2011-02-23 王京南 Gamma-linolenate fat emulsion intravenous injection and preparation method thereof
US11712429B2 (en) 2010-11-29 2023-08-01 Amarin Pharmaceuticals Ireland Limited Low eructation composition and methods for treating and/or preventing cardiovascular disease in a subject with fish allergy/hypersensitivity
NZ744990A (en) 2010-11-29 2019-10-25 Amarin Pharmaceuticals Ie Ltd Low eructation composition and methods for treating and/or preventing cardiovascular disease in a subject with fish allergy/hypersensitivity
US8293790B2 (en) 2011-10-19 2012-10-23 Dignity Sciences Limited Pharmaceutical compositions comprising DGLA and benzoyl peroxide and methods of use thereof
US20130131170A1 (en) 2011-11-07 2013-05-23 Amarin Pharmaceuticals Ireland Limited Methods of treating hypertriglyceridemia
US11291643B2 (en) 2011-11-07 2022-04-05 Amarin Pharmaceuticals Ireland Limited Methods of treating hypertriglyceridemia
EP2800469B1 (en) 2012-01-06 2021-08-25 Amarin Pharmaceuticals Ireland Limited Compositions and methods for lowering levels of high-sensitivity (hs-crp) in a subject
EP2866801A4 (en) 2012-06-29 2016-02-10 Amarin Pharmaceuticals Ie Ltd Methods of reducing the risk of a cardiovascular event in a subject on statin therapy
WO2014074552A2 (en) 2012-11-06 2014-05-15 Amarin Pharmaceuticals Ireland Limited Compositions and methods for lowering triglycerides without raising ldl-c levels in a subject on concomitant statin therapy
US20140187633A1 (en) 2012-12-31 2014-07-03 Amarin Pharmaceuticals Ireland Limited Methods of treating or preventing nonalcoholic steatohepatitis and/or primary biliary cirrhosis
US9814733B2 (en) 2012-12-31 2017-11-14 A,arin Pharmaceuticals Ireland Limited Compositions comprising EPA and obeticholic acid and methods of use thereof
US9452151B2 (en) 2013-02-06 2016-09-27 Amarin Pharmaceuticals Ireland Limited Methods of reducing apolipoprotein C-III
US9624492B2 (en) 2013-02-13 2017-04-18 Amarin Pharmaceuticals Ireland Limited Compositions comprising eicosapentaenoic acid and mipomersen and methods of use thereof
US9662307B2 (en) 2013-02-19 2017-05-30 The Regents Of The University Of Colorado Compositions comprising eicosapentaenoic acid and a hydroxyl compound and methods of use thereof
US9283201B2 (en) 2013-03-14 2016-03-15 Amarin Pharmaceuticals Ireland Limited Compositions and methods for treating or preventing obesity in a subject in need thereof
US20140271841A1 (en) 2013-03-15 2014-09-18 Amarin Pharmaceuticals Ireland Limited Pharmaceutical composition comprising eicosapentaenoic acid and derivatives thereof and a statin
US8728546B1 (en) 2013-03-15 2014-05-20 Swing Aerobics Licensing, Inc. Medicament for treatment of cancer, cardiovascular diseases and inflammation
US10966968B2 (en) 2013-06-06 2021-04-06 Amarin Pharmaceuticals Ireland Limited Co-administration of rosiglitazone and eicosapentaenoic acid or a derivative thereof
US20150065572A1 (en) 2013-09-04 2015-03-05 Amarin Pharmaceuticals Ireland Limited Methods of treating or preventing prostate cancer
US9585859B2 (en) 2013-10-10 2017-03-07 Amarin Pharmaceuticals Ireland Limited Compositions and methods for lowering triglycerides without raising LDL-C levels in a subject on concomitant statin therapy
KR102391827B1 (en) 2014-06-04 2022-04-27 디에스 바이오파마 리미티드 Pharmaceutical compositions comprising dgla and use of same
US10561631B2 (en) 2014-06-11 2020-02-18 Amarin Pharmaceuticals Ireland Limited Methods of reducing RLP-C
WO2015195662A1 (en) 2014-06-16 2015-12-23 Amarin Pharmaceuticals Ireland Limited Methods of reducing or preventing oxidation of small dense ldl or membrane polyunsaturated fatty acids
US10406130B2 (en) 2016-03-15 2019-09-10 Amarin Pharmaceuticals Ireland Limited Methods of reducing or preventing oxidation of small dense LDL or membrane polyunsaturated fatty acids
ES2877810T3 (en) * 2016-06-01 2021-11-17 Nestle Sa DGLA in the prophylaxis of allergic diseases
WO2018213663A1 (en) 2017-05-19 2018-11-22 Amarin Pharmaceuticals Ireland Limited Compositions and methods for lowering triglycerides in a subject having reduced kidney function
US11058661B2 (en) 2018-03-02 2021-07-13 Amarin Pharmaceuticals Ireland Limited Compositions and methods for lowering triglycerides in a subject on concomitant statin therapy and having hsCRP levels of at least about 2 mg/L
KR102296068B1 (en) 2018-09-24 2021-09-02 애머린 파마슈티칼스 아일랜드 리미티드 Methods of Reducing the Risk of a Cardiovascular Event in a Subject

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1417119A (en) * 1972-11-30 1975-12-10 Thiele G H Process for treating bones
GB8621816D0 (en) * 1986-09-10 1986-10-15 Efamol Ltd Therapeutic composition
JPH0625057B2 (en) * 1987-12-14 1994-04-06 日本油脂株式会社 Bone formation promoter
GB9112052D0 (en) * 1991-06-05 1991-07-24 Efamol Holdings Fatty acid treatment

Also Published As

Publication number Publication date
ATE159856T1 (en) 1997-11-15
ES2110060T3 (en) 1998-02-01
US5618558A (en) 1997-04-08
CN1091285A (en) 1994-08-31
DE69315020T2 (en) 1998-04-16
JPH06157303A (en) 1994-06-03
NO306655B1 (en) 1999-12-06
RU2122409C1 (en) 1998-11-27
KR940003553A (en) 1994-03-12
CA2104567A1 (en) 1994-02-22
ZA935976B (en) 1994-03-14
NO932983D0 (en) 1993-08-20
NO932983L (en) 1994-02-22
AU666747B2 (en) 1996-02-22
TW323230B (en) 1997-12-21
GR3025898T3 (en) 1998-04-30
EP0585026A1 (en) 1994-03-02
SG80536A1 (en) 2001-05-22
HK1000997A1 (en) 1998-05-15
GB9217780D0 (en) 1992-10-07
NZ248422A (en) 1997-06-24
MY109928A (en) 1997-09-30
DE69315020D1 (en) 1997-12-11
DK0585026T3 (en) 1998-06-02
AU4466693A (en) 1994-02-24
CN1049334C (en) 2000-02-16

Similar Documents

Publication Publication Date Title
EP0585026B1 (en) Use of fatty acids for increasing gut calcium absorption
US5888541A (en) Fatty acid treatment
US5198468A (en) Essential fatty acid composition
US4666701A (en) Pharmaceutical and dietary compositions
EP0440341B1 (en) EFA compositions and therapy
JP2796838B2 (en) Method of manufacturing a medicament for the treatment of schizophrenia and / or associated tardive movement disorder
JP2893460B2 (en) Fatty acid treatments and compositions
US5318991A (en) Fatty acid treatment to reduce calcium excretion
EP0524796B1 (en) Use of essential fatty acids in the preparation of a medicament for the treatment of AIDS
EP0296751B1 (en) Essential fatty acid compositions
EP0416743A1 (en) Antivirale Verwendung von Zusammensetzungen bestehend aus EFAs und Interferon
US5516801A (en) Fatty acid treatment for ectopic calcium deposition
EP0416855B1 (en) Fatty acids for the treatment and prevention of skin damage caused by radiotherapy
EP0585027B1 (en) Use of fatty acids for treating abnormal tissue calcification
EP0283140A2 (en) Compositions and method for treatment of peptic ulcers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19940722

17Q First examination report despatched

Effective date: 19951124

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCOTIA HOLDINGS PLC

REF Corresponds to:

Ref document number: 159856

Country of ref document: AT

Date of ref document: 19971115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69315020

Country of ref document: DE

Date of ref document: 19971211

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2110060

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 77252

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19980107

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000817

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000822

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20000823

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000824

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20000825

Year of fee payment: 8

Ref country code: SE

Payment date: 20000825

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000828

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000829

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20000831

Year of fee payment: 8

Ref country code: NL

Payment date: 20000831

Year of fee payment: 8

Ref country code: IE

Payment date: 20000831

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20000915

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000925

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20001024

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010816

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010816

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010816

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010816

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010817

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020209

BERE Be: lapsed

Owner name: SCOTIA HOLDINGS P.L.C.

Effective date: 20010831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301

EUG Se: european patent has lapsed

Ref document number: 93306444.6

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010816

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20020228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050816