EP0561220A1 - Process for operating a steam generating system and steam generator - Google Patents

Process for operating a steam generating system and steam generator Download PDF

Info

Publication number
EP0561220A1
EP0561220A1 EP93103393A EP93103393A EP0561220A1 EP 0561220 A1 EP0561220 A1 EP 0561220A1 EP 93103393 A EP93103393 A EP 93103393A EP 93103393 A EP93103393 A EP 93103393A EP 0561220 A1 EP0561220 A1 EP 0561220A1
Authority
EP
European Patent Office
Prior art keywords
steam
water
preheated
evaporator
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93103393A
Other languages
German (de)
French (fr)
Other versions
EP0561220B1 (en
Inventor
Georg Dipl.-Ing. Lösel (FH)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0561220A1 publication Critical patent/EP0561220A1/en
Application granted granted Critical
Publication of EP0561220B1 publication Critical patent/EP0561220B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/003Feed-water heater systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

The invention relates to a process for operating a steam generating system, in particular in a fossil-fuel fired power station, e.g. in a gas and steam turbine system, in which steam is generated from water by indirect heat exchange with hot smoke gas (RG), condensed water (K) first being preheated and the preheated water (W) subsequently being evaporated under great pressure. The process is characterised in that, in the partial-load range of the system, the preheated water (W) under great pressure is cooled by heat exchange with at least a partial flow (t1) of the condensed water (K). Furthermore, the invention relates to a system with a steam generator (1), one heating surface of which is a condensation preheater (3). The system also comprises a heat exchanger (40) which is connected downstream of the condensation preheater (3) on the primary side and is connected upstream of the condensation preheater (3) on the secondary side. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Verfahren zum Betreiben einer Anlage zur Dampferzeugung, insbesondere in einem fossil befeuerten Kraftwerk, z.B. in einer Gas- und Dampfturbinenanlage, bei dem aus Wasser durch indirekten Wärmetausch mit heißem Rauchgas Dampf erzeugt wird, wobei kondensiertes Wasser zunächst vorgewärmt und anschließend das vorgewärmte Wasser unter hohem Druck verdampft wird. Sie richtet sich weiter auf eine nach diesem Verfahren betriebene Anlage.The invention relates to a method for operating a plant for generating steam, in particular in a fossil-fired power plant, e.g. in a gas and steam turbine plant in which steam is generated from water by indirect heat exchange with hot flue gas, with the condensed water first being preheated and then the preheated water being evaporated under high pressure. It continues to focus on a plant operated according to this method.

Bei einer Anlage zur Dampferzeugung wird die in einem heißen Rauchgas enthaltene Wärmemenge im Dampferzeuger zur Erzeugung von Dampf genutzt. Das Rauchgas ist z.B. das einer Gasturbine entströmende heiße Abgas und der Dampferzeuger ist z.B. ein der Gasturbine nachgeschalteter Abhitzekessel. Die in dem Dampferzeuger angeordneten und in Form von Rohren oder Rohrbündeln ausgebildeten Heizflächen sind üblicherweise in den Wasser-Dampf-Kreislauf einer Dampfturbine geschaltet. Dabei umfaßt der Wasser-Dampf-Kreislauf häufig mehrere Druckstufen, die jeweils aus einem Vorwärmer sowie einem Verdampfer und einem Überhitzer aufgebaut sind. Um einen möglichst hohen Anteil der in dem Rauchgas enthaltenen Wärmemenge umzusetzen, ist im Dampferzeuger zusätzlich ein Kondensatvorwärmer zum Aufwärmen des kondensierten Wassers aus der Dampfturbine vorgesehen. Bei einer hohen Temperatur des in den Dampferzeuger eintretenden Rauchgases und bei einer großen, im Wasser-Dampf-Kreislauf verfügbaren Gesamtwassermenge werden besonders niedrige Temperaturen des den Dampferzeuger verlassenden Abgases erreicht. Dies bedeutet, daß bei Vollastbetrieb der Wirkungsgrad der Anlage besonders hoch ist. Dies gilt insbesondere auch dann, wenn der Dampferzeuger mit einer Zusatzfeuerung betrieben wird.In a system for generating steam, the amount of heat contained in a hot flue gas in the steam generator is used to generate steam. The flue gas is e.g. the hot exhaust gas flowing out of a gas turbine and the steam generator is e.g. a waste heat boiler downstream of the gas turbine. The heating surfaces arranged in the steam generator and in the form of tubes or tube bundles are usually connected to the water-steam cycle of a steam turbine. The water-steam cycle often comprises several pressure stages, each of which is made up of a preheater and an evaporator and a superheater. In order to convert as much of the heat quantity contained in the flue gas as possible, a condensate preheater is additionally provided in the steam generator for heating up the condensed water from the steam turbine. With a high temperature of the flue gas entering the steam generator and with a large total amount of water available in the water-steam cycle, particularly low temperatures of the exhaust gas leaving the steam generator are reached. This means that the efficiency of the system is particularly high when operating at full load. This applies in particular when the steam generator is operated with an additional firing.

Beim Betrieb einer derartigen Anlage ist allerdings bei verschiedenen Betriebszuständen die in den Dampferzeuger eingebrachte Wärmemenge unterschiedlich, wobei die Heizflächen im Dampferzeuger für Vollastbetrieb ausgelegt sind. Im Teillastbereich, d.h. im Bereich unterhalb des Vollastbetriebes der Anlage, ist durch eine Verminderung der Rauchgastemperatur die in den Dampferzeuger eingebrachte Warmemenge abgesenkt, auch wenn dabei der Massenstrom des Rauchgases annähernd konstant bleibt. Die dadurch bedingte Verminderung der erzeugten Dampfmenge hat eine Reduzierung der in dem Wasser-Dampf-Kreislauf verfügbaren Gesamtwassermenge zur Folge. Dies kann in unerwünschter Weise zu einer frühzeitigen Verdampfung des vorgewärmten und unter hohem Druck stehenden Wassers führen. Eine derartige Dampfbildung in einem Hochdruck-Vorwärmer (Economizer) oder an dessen Austritt wirkt sich besonders nachteilig auf die Massenverteilung am Eingang der üblicherweise zueinander parallel angeordneten Rohre im Hochdruck-Verdampfer des Dampferzeugers aus. Eine instabile Strömung in den Rohren, insbesondere in den Rohren des Hochdruck-Verdampfers, verringert vor allem die Wirksamkeit der Heizflächen mit der Folge, daß der Wirkungsgrad der Anlage sinkt. Instabile Strömungsverhältnisse können darüber hinaus auch zu Schäden an den Heizflächen führen.When operating such a system, however, the amount of heat introduced into the steam generator differs in different operating states, the heating surfaces in the steam generator being designed for full-load operation. In the part-load range, ie in the range below the full-load operation of the system, a reduction in the flue gas temperature means that the steam generator has been brought in Reduced heat quantity, even if the mass flow of the flue gas remains almost constant. The resulting reduction in the amount of steam produced results in a reduction in the total amount of water available in the water-steam cycle. This can undesirably lead to premature evaporation of the preheated and high-pressure water. Such steam formation in a high-pressure preheater (economizer) or at its outlet has a particularly disadvantageous effect on the mass distribution at the inlet of the pipes which are usually arranged parallel to one another in the high-pressure evaporator of the steam generator. An unstable flow in the tubes, especially in the tubes of the high-pressure evaporator, primarily reduces the effectiveness of the heating surfaces, with the result that the efficiency of the system decreases. Unstable flow conditions can also damage the heating surfaces.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Anlage zur Dampferzeugung sowie eine derartige Anlage derart auszubilden, daß bei allen Betriebszuständen, insbesondere auch im Teillastbereich, ein möglichst hoher Wirkungsgrad und stabile Strömungsverhältnisse im Bereich der Heizflächen erreicht werden.The invention is therefore based on the object of designing a method for operating a system for generating steam and such a system in such a way that the highest possible efficiency and stable flow conditions in the area of the heating surfaces are achieved in all operating states, in particular also in the part-load range.

Bezüglich des Verfahrens wird diese Aufgabe erfindungsgemäß dadurch gelöst, daß mindestens im Teillastbereich das vorgewärmte und bereits unter hohem Druck stehende Wasser durch Wärmetausch mit mindestens einem Teilstrom des kondensierten Wassers gekühlt wird.With regard to the method, this object is achieved according to the invention in that, at least in the part-load range, the preheated water, which is already under high pressure, is cooled by heat exchange with at least a partial flow of the condensed water.

In vorteilhafter Weiterbildung des Verfahrens werden die Temperatur des Wassers vor der Verdampfung und die Temperatur des Dampfes ermittelt, wobei die Differenz dieser Temperaturen als Größe zum Einstellen des Teilstroms dient. Dadurch wird wiederum die Temperatur des vorgewärmten und unter hohem Druck stehenden Wassers beeinflußt.In an advantageous development of the method, the temperature of the water before evaporation and the temperature of the steam are determined, the difference between these temperatures serving as a variable for setting the partial flow. This in turn affects the temperature of the preheated water under high pressure.

Zur Einstellung der Temperatur des kondensierten Wassers vor Eintritt in den Dampferzeuger wird zweckmäßigerweise dem kondensierten Wasser ein Teilstrom des vorgewärmten und unter hohem Druck stehenden Wassers zugemischt.To adjust the temperature of the condensed water before entering the steam generator, a partial stream of the preheated and high-pressure water is expediently mixed into the condensed water.

Bezüglich der Anlage zur Dampferzeugung, die einen von heißem Rauchgas durchströmten Dampferzeuger umfaßt, dessen eine Heizfläche ein Kondensatvorwärmer ist, wird die genannte Aufgabe erfindungsgemäß gelöst durch einen Wärmetauscher, der primärseitig dem Kondensatovorwärmer nachgeschaltet und sekundärseitig dem Kondensatvorwärmer vorgeschaltet ist.With regard to the system for steam generation, which comprises a steam generator through which hot flue gas flows, one heating surface of which is a condensate preheater, the stated object is achieved according to the invention by a heat exchanger which is connected on the primary side to the condensate preheater and is connected upstream of the condensate preheater.

Zur Einstellung der Temperatur des den Wärmetauscher primärseitig durchströmenden vorgewärmten und unter hohem Druck stehenden Wassers ist in vorteilhafter Ausgestaltung der Anlage zur Dampferzeugung auf der Zuströmseite und auf der Abströmseite eines Hochdruck-Verdampfers jeweils ein Temperatursensor vorgesehen. Die Temperatursensoren sind über ein Regelglied zweckmäßigerweise mit einem in eine Kondensatleitung geschalteten Ventil verbunden. Der Wärmetauscher liegt zweckmäßigerweise in einer Teilstromleitung, die ein Bypass zur Kondensatleitung ist.In order to set the temperature of the preheated and high-pressure water flowing through the heat exchanger on the primary side, a temperature sensor is provided in an advantageous embodiment of the system for generating steam on the inflow side and on the outflow side of a high-pressure evaporator. The temperature sensors are expediently connected via a control element to a valve connected in a condensate line. The heat exchanger is expediently in a partial flow line which is a bypass to the condensate line.

Es ist bekannt, in einem fossil befeuerten Dampferzeuger, insbesondere in einem Benson-Dampferzeuger, dem eigentlichen Hochdruck-Verdampfer einen weiteren Verdampfer, d.h. einen sogenannten Restverdampfer oder Vorüberhitzer, nachzuschalten. Innerhalb des Restverdampfers liegt der Ort oder Punkt vollständiger Verdampfung, ab dem die Überhitzung des Dampfes einsetzt. Bei einer symmetrischen Anordnung der entsprechenden Verdampfer- oder Heizflächenrohre und der dazugehörigen Verbindungsrohre sowie bei genügend hoher Turbulenz in einem den entsprechenden Rohren vorgeschalteten Sammelbehälter wird eine gute Verteilung des Wasser-Dampf-Gemisches am Eingang der Rohre des Restverdampfers erreicht. Dabei war bisher der Restverdampfer in Strömungsrichtung des heißen Rauchgases hinter dem ersten Hochdruck-Verdampfer angeordnet und lag somit in einem Bereich vergleichsweise kühler Rauchgastemperatur.It is known that in a fossil-fired steam generator, in particular in a Benson steam generator, the actual high-pressure evaporator has a further evaporator, i.e. a so-called residual evaporator or pre-heater. Inside the residual evaporator is the place or point of complete evaporation from which the steam overheats. With a symmetrical arrangement of the corresponding evaporator or heating surface tubes and the associated connecting tubes and with sufficiently high turbulence in a collecting tank upstream of the corresponding tubes, a good distribution of the water / steam mixture is achieved at the inlet of the tubes of the residual evaporator. So far, the residual evaporator was arranged in the flow direction of the hot flue gas behind the first high-pressure evaporator and was therefore in a region of comparatively cool flue gas temperature.

In vorteilhafter Ausgestaltung der erfindungsgemäßen Anlage ist der Restverdampfer in Strömungsrichtung des Rauchgases vor dem eigentlichen Hochdruck-Verdampfer angeordnet. Dabei ist innerhalb des Wasser-Dampf-Kreislaufs der Hochdruck-Verdampfer dem Restverdampfer vorgeschaltet und dem Kondensat-Vorwärmer nachgeschaltet. Mit dieser Schaltung ist eine sichere Einhaltung des vorgegebenen Abstands zwischen der Temperatur des Rauchgases im Dampferzeuger im Bereich des Ausgangs des Hochdruck-Verdampfers und der Temperatur des gesättigten Dampfes im Hochdruck-Verdampfer gegeben. Dieser auch als "pinch-point" bezeichnete Temperaturabstand bestimmt in erheblichem Maß die Größe der Heizfläche des Hochdruck-Verdampfers. Mit dieser Heizflächenanordnung läßt sich somit, insbesondere bei stabilen Strömungsverhältnissen, eine besonders kleine Heizfläche des Hochdruck-Verdampfers und des Restverdampfers erreichen.In an advantageous embodiment of the system according to the invention, the residual evaporator is arranged upstream of the actual high-pressure evaporator in the flow direction of the flue gas. The high-pressure evaporator is connected upstream of the residual evaporator and downstream of the condensate preheater within the water-steam cycle. This circuit ensures that the specified distance between the temperature of the flue gas in the steam generator in the region of the outlet of the high-pressure evaporator and the temperature of the saturated steam in the high-pressure evaporator is reliably maintained. This temperature gap, also known as "pinch point", determines to a large extent the size of the heating surface of the high pressure evaporator. With this heating surface arrangement, a particularly small heating surface of the high-pressure evaporator and of the residual evaporator can be achieved, especially in stable flow conditions.

Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Sie zeigt schematisch in einem Ausschnitt eine Anlage zur Dampferzeugung mit einem Dampferzeuger, dessen Heizflächen in einen Wasser-Dampf-Kreislauf geschaltet sind.An embodiment of the invention is explained in more detail with reference to a drawing. It shows schematically in a section a plant for steam generation with a steam generator, the heating surfaces of which are connected in a water-steam cycle.

Die dargestellte Anlage zur Dampferzeugung umfaßt einen Dampferzeuger 1, der primärseitig von heißem Rauchgas RG durchströmt wird. Der Dampferzeuger 1 ist z.B. Teil einer Gas- und Dampfturbinenanlage. Das abgekühlte Rauchgas RG verläßt den Dampferzeuger 1 - wie durch den Pfeil 2 angedeutet - in Richtung auf einen nicht dargestellten Kamin. Das Rauchgas RG wird in einem z.B. fossil befeuerten Dampferzeuger selbst erzeugt; es kann aber auch das heiße Abgas aus einer dem Dampferzeuger 1 vorgeschalteten Gasturbine sein. In diesem Fall wird der Dampferzeuger 1 auch als Abhitzekessel oder Abhitzedampferzeuger bezeichnet.The illustrated system for steam generation comprises a steam generator 1, through which hot flue gas RG flows on the primary side. The steam generator 1 is e.g. Part of a gas and steam turbine plant. The cooled flue gas RG leaves the steam generator 1 - as indicated by the arrow 2 - in the direction of a chimney, not shown. The flue gas RG is e.g. fossil-fired steam generator self-generated; but it can also be the hot exhaust gas from a gas turbine upstream of the steam generator 1. In this case, the steam generator 1 is also referred to as a waste heat boiler or waste heat steam generator.

Der Dampferzeuger 1 umfaßt einen Kondensatvorwärmer 3, eine Niederdruck-Heizeinrichtung 10, eine Hochdruck-Heizeinrichtung 20 und einen Zwischen-Überhitzer 25.The steam generator 1 comprises a condensate preheater 3, a low-pressure heating device 10, a high-pressure heating device 20 and an intermediate superheater 25.

Die Niederdruck-Heizeinrichtung 10 umfaßt einen Vorwärmer 12 und einen Verdampfer 14, die zusammen mit einer Wasser-Dampf-Trommel 16 und einem nicht dargestellten Niederdruckteil einer Dampfturbine zur Niederdruckstufe eines Wasser-Dampf-Kreislaufs 18 gehören.The low-pressure heating device 10 comprises a preheater 12 and an evaporator 14, which together with a water-steam drum 16 and a low-pressure part of a steam turbine, not shown, belong to the low-pressure stage of a water-steam circuit 18.

Die Hochdruck-Heizeinrichtung 20 umfaßt zwei in Reihe geschaltete Verdampfer 22, 24 und einen Hochdruck-Überhitzer 26, die zusammen mit einem Hochdruck-Vorwärmer oder Economizer 28 und einem Wasser-Dampf-Behälter 30 sowie einem nicht dargestellten Hochdruckteil der Dampfturbine die Hochdruckstufe des Wasser-Dampf-Kreislaufs 18 bilden.The high-pressure heating device 20 comprises two evaporators 22, 24 connected in series and a high-pressure superheater 26, which together with a high-pressure preheater or economizer 28 and a water-steam container 30 and a high-pressure part of the steam turbine, not shown, the high-pressure stage of the water - Form steam circuit 18.

Der Zwischenüberhitzer 25 ist in nicht näher dargestellter Weise mit einem Mitteldruckteil der Dampfturbine verbunden.The reheater 25 is connected in a manner not shown to a medium pressure part of the steam turbine.

Beim Betrieb der Anlage strömt kondensiertes Wasser K aus einem der (nicht gezeigten) Dampfturbine nachgeschalteten (nicht gezeigten) Kondensator über eine Kondensatleitung 4 und durch den Kondensatvorwärmer 3 in einen Speisewasserbehälter 6. In die Kondensatleitung 4 ist ein Drei-Wege-Ventil 7 geschaltet. Zur Einstellung einer geeigneten Speisewassertemperatur wird ein Teil des im Kondensatvorwärmer 3 vorgewärmten kondensierten Wassers K über eine Umwälzpumpe 8 erneut durch den Kondensatvorwärmer 3 gefördert.When the system is operating, condensed water K flows from a condenser (not shown) connected downstream of the steam turbine (not shown) via a condensate line 4 and through the condensate preheater 3 into a feed water tank 6. A three-way valve 7 is connected to the condensate line 4. To set a suitable feed water temperature, part of the condensed water K preheated in the condensate preheater 3 is again conveyed through the condensate preheater 3 via a circulation pump 8.

Aus dem Speisewasserbehälter 6 strömt Wasser über eine Speisewasserpumpe 9 in den Niederdruck-Vorwärmer 12 und von dort in die Wasser-Dampf-Trommel 16. In der Trenntrommel 16 werden Wasser und Dampf voneinander getrennt. Das Wasser wird über eine Pumpe 11 durch den Niederdruck-Verdampfer 14 geführt und von dort als Dampf in die Trenntrommel 16 zurückgefördert. Der Dampf wird über eine Leitung 13 dem Niederdruckteil der Dampfturbine zugeführt.From the feed water tank 6, water flows via a feed water pump 9 into the low-pressure preheater 12 and from there into the water-steam drum 16. In the separating drum 16, water and steam are separated from one another. The water is fed through a pump 11 through the low-pressure evaporator 14 and from there it is returned to the separating drum 16 as steam. The steam is fed to the low-pressure part of the steam turbine via a line 13.

Dem Speisewasserbehälter 6 wird außerdem über eine Hochdruck-Pumpe 21 vorgewärmtes Wasser W entnommen, das unter hohem Druck über eine Leitung 23 in den Economizer 28 gefördert wird. Von dort strömt das vorgewärmte und unter hohem Druck stehende Wasser W in die Verdampfer 22 und 24. Der aus dem auch als Restverdampfer oder Vorüberhitzer bezeichneten Verdampfer 24 abströmende Dampf wird über eine Leitung 27 in den Wasser-Dampf-Trennbehälter 30 gefördert.Pre-heated water W is also taken from the feed water tank 6 via a high-pressure pump 21 and is conveyed under high pressure via a line 23 into the economizer 28. From there, the preheated and high-pressure water W flows into the evaporators 22 and 24. The steam flowing out of the evaporator 24, also referred to as the residual evaporator or preheater, is conveyed via a line 27 into the water-steam separation container 30.

Bei Inbetriebnahme der Anlage werden der Economizer 28 und die Verdampfer 22 und 24 zunächst mit einem vorgegebenen Wasserstrom durchspeist, wobei das Wasser in dem Wasser-Dampf-Trennbehälter 30 gesammelt und von dort über eine Leitung 29 in einen Entspannungsbehälter 31 abgeführt wird. In die Leitung 29 ist ein Ventil 32 geschaltet. Aus dem Entspannungsbehälter 31 wird das Wasser unter atmosphärischem Druck über eine Leitung 33 abgeführt.When the system is started up, the economizer 28 and the evaporators 22 and 24 are first fed through with a predetermined water flow, the water being collected in the water-steam separating container 30 and being discharged from there via a line 29 into an expansion tank 31. A valve 32 is connected in line 29. The water is discharged from the expansion tank 31 under atmospheric pressure via a line 33.

Mit zunehmender Beheizung der Heizflächen des Dampferzeugers 1 durch das Rauchgas RG steigen die Dampfentwicklung sowie der Druck im Trennbehälter 30 an. Gleichzeitig wird dort die anfallende Wassermenge kleiner. Das im Trennbehälter 30 anfallende Wasser wird nun ganz oder teilweise über eine Leitung 34, in die ein Ventil 35 geschaltet ist, in den Speisewasserbehälter 6 zurückgefördert. Wenn die Beheizung und die Wassermenge im vorgegebenen Gleichgewicht sind, fällt im Trennbehälter 30 kein Wasser mehr an.With increasing heating of the heating surfaces of the steam generator 1 by the flue gas RG, the steam development and the pressure in the separation container 30 increase. At the same time, the amount of water that accumulates there becomes smaller. The water accumulating in the separation container 30 is now wholly or partly conveyed back into the feed water container 6 via a line 34 into which a valve 35 is connected. When the heating and the amount of water are in the predetermined equilibrium, no more water is produced in the separation container 30.

Im Teillastbereich der Anlage wird das dem Economizer 28 und den Verdampfern 22 und 24 zuströmende vorgewärmte und unter hohem Druck stehende Wasser W durch Wärmetausch mit dem kondensierten Wasser K, mindestens einem Teilstrom t₁ des kondensierten Wassers K, gekühlt. Dazu ist ein Wärmetauscher 40 vorgesehen, der einerseits in der Leitung 23 und andererseits in einer Teilstromleitung 41 der Kondensatleitung 4 liegt. Die Teilstromleitung 41 ist sowohl eingangsseitig über das Drei-Wege-Ventil 7 als auch ausgangsseitig mit der Kondensatleitung 4 verbunden. Der Wärmetauscher 40 ist somit primärseitig dem Kondensatvorwärmer 3 nachgeschaltet und sekundärseitig dem Kondensatvorwärmer 3 vorgeschaltet.In the partial load range of the system, the economizer 28 and the evaporators 22 and 24 flowing in preheated and under high pressure water W are cooled by heat exchange with the condensed water K, at least a partial stream t 1 of the condensed water K. For this purpose, a heat exchanger 40 is provided, which is located on the one hand in line 23 and on the other hand in a partial flow line 41 of the condensate line 4. The partial flow line 41 is connected to the condensate line 4 both on the input side via the three-way valve 7 and on the output side. The heat exchanger 40 is thus connected on the primary side to the condensate preheater 3 and on the secondary side to the condensate preheater 3.

Zum Einstellen der Temperatur T₃ des vorgewärmten und unter hohem Druck stehenden Wassers W wird der Teilstrom t₁ des kondensierten Wassers K geregelt. Dazu ist das Drei-Wege-Ventil 7 mit einer Regeleinrichtung 43 verbunden. Die Regeleinrichtung 43 ist über Anschlüsse 44 und 45 mit Temperatursensoren 46 bzw. 47 verbunden. Mit dem Temperatursensor 46 wird die Temperatur T₁ des in den Verdampfer 22 eintretenden Wassers ermittelt. Mit dem Temperatursensor 47 wird die Temperatur T₂ des aus dem Verdampfer 22 abströmenden Dampfes oder Wasser-Dampf-Gemisches ermittelt. Die in der Regeleinrichtung 43 ermittelte Differenz aus diesen beiden Temperaturen T₁ und T₂ dient als Regelgröße zum Einstellen des Drei-Wege-Ventils 7 und damit des Teilstroms t₁. Dabei wird beachtet, daß die Temperatur T₃ des vorgewärmten und unter hohem Druck stehenden Wassers W derart eingestellt ist, daß sie bei Eintritt des Wassers in den Verdampfer 22 nur wenig aber doch sicher unterhalb der Siedetemperatur liegt.To adjust the temperature T₃ of the preheated and high-pressure water W, the partial stream t₁ of the condensed water K is regulated. For this purpose, the three-way valve 7 is connected to a control device 43. The control device 43 is connected to temperature sensors 46 and 47 via connections 44 and 45. With the temperature sensor 46, the temperature T 1 of the water entering the evaporator 22 is determined. With the temperature sensor 47, the temperature T₂ of the steam or water-steam mixture flowing out of the evaporator 22 is determined. The difference determined from the two temperatures T 1 and T 2 in the control device 43 serves as a controlled variable for setting the three-way valve 7 and thus the partial flow t 1. It is noted that the temperature T₃ of the preheated and high-pressure water W is set such that when the water enters the evaporator 22 it is only slightly below the boiling point, but certainly.

Um eine zusätzliche Erwärmung des kondensierten Wassers K zu erreichen, wird diesem ein einstellbarer Teilstrom t₂ des vorgewärmten und unter hohem Druck stehenden Wassers W zugemischt. Dazu ist ausgangsseitig an die Hochdruck-Pumpe 21 eine Leitung 50 angeschlossen, die mit der Kondensatleitung 4 verbunden ist. In die Leitung 50 ist ein Ventil 51 geschaltet.In order to achieve additional heating of the condensed water K, an adjustable partial flow t₂ of the preheated and high-pressure water W is mixed with it. For this purpose, a line 50 is connected on the output side to the high-pressure pump 21 and is connected to the condensate line 4. A valve 51 is connected in line 50.

Durch den Wärmetausch zwischen dem vorgewärmten und unter hohem Druck stehenden Wassers W und dem Teilstrom t₁ des kondensierten Wassers K innerhalb des Wärmetauschers 40 wird auch im Teillastbereich der Anlage eine gleichmäßige Strömungsverteilung am Eintritt des Verdampfers 22 erreicht. Dies wiederum wirkt sich besonders vorteilhaft auf den Gesamtwirkungsgrad der Anlage aus.Due to the heat exchange between the preheated and high-pressure water W and the partial flow t 1 of the condensed water K within the heat exchanger 40, a uniform flow distribution at the inlet of the evaporator 22 is also achieved in the part-load range of the system. This in turn has a particularly advantageous effect on the overall efficiency of the system.

Die Heizflächen des Dampferzeugers 1 sind üblicherweise jeweils aus Rohrbündeln mit einer Vielzahl von Einzelrohren ausgebildet. Um den Dampferzeuger 1 in einfacher Weise vor Ort aus einzelnen Modulen aufbauen zu können, münden die Rohre der einzelnen Heizflächen sowohl eingangsseitig als auch ausgangsseitig in Sammelbehältern, die in der Zeichnung an den Eingängen und Ausgängen der Heizflächen durch Kreise dargestellt sind. Beim Zusammenbau des Dampferzeugers 1 und beim Aufbau der gesamten Anlage werden die Sammelbehälter entsprechend der jeweils vorgegebenen Schaltung über Verbindungsrohre miteinander verbunden und in den Wasser-Dampf-Kreislauf 18 geschaltet. Dadurch ist es möglich, je nach Bedarf verschiedene Module mit unterschiedlichen Heizflächen zusammenzusetzen.The heating surfaces of the steam generator 1 are usually each formed from tube bundles with a large number of individual tubes. In order to be able to build the steam generator 1 in a simple manner on site from individual modules, the tubes of the individual heating surfaces open both on the input side and on the output side into collecting containers, which are represented by circles in the drawing at the inputs and outputs of the heating surfaces. When the steam generator 1 is being assembled and the entire system is being set up, the collecting containers are connected to one another in accordance with the respectively predetermined circuit via connecting pipes and connected to the water-steam circuit 18. This makes it possible to assemble different modules with different heating surfaces as required.

Claims (8)

Verfahren zum Betreiben einer Anlage zur Dampferzeugung, insbesondere in einem fossil befeuerten Kraftwerk, zum Beispiel in einer Gas- und Dampfturbinenanlage, bei dem aus Wasser durch indirekten Wärmetausch mit heißem Rauchgas (RG) Dampf erzeugt wird, wobei kondensiertes Wasser (K) zunächst vorgewärmt und anschließend das vorgewärmte Wasser (W) unter hohem Druck verdampft wird,
dadurch gekennzeichnet, daß mindestens im Teillastbereich das vorgewärmte und bereits unter hohem Druck stehende Wasser (W) durch Wärmetausch mit mindestens einem Teilstrom (t₁) des kondensierten Wassers (K) gekühlt wird.
Method for operating a plant for steam generation, in particular in a fossil-fired power plant, for example in a gas and steam turbine plant, in which steam is generated from water by indirect heat exchange with hot flue gas (RG), the condensed water (K) first being preheated and then the preheated water (W) is evaporated under high pressure,
characterized in that the preheated and already under high pressure water (W) is cooled by heat exchange with at least a partial stream (t 1) of the condensed water (K) at least in the partial load range.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Temperatur (T₁) des Wassers vor der Verdampfung und die Temperatur (T₂) des Dampfes ermittelt werden, und daß die Differenz dieser Temperaturen (T₁, T₂) als Größe zum Einstellen des Teilstroms (t₁) dient.A method according to claim 1, characterized in that the temperature (T₁) of the water before evaporation and the temperature (T₂) of the steam are determined, and that the difference between these temperatures (T₁, T₂) as a variable for setting the partial flow (t₁) serves. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß dem kondensierten Wasser (K) ein Teilstrom (t₂) des vorgewärmten und unter hohem Druck stehenden Wassers (W) zugemischt wird.Method according to Claim 1 or 2, characterized in that a partial stream (t₂) of the preheated water (W) under high pressure is mixed into the condensed water (K). Anlage zur Dampferzeugung mit einem von heißem Rauchgas (RG) durchströmten Dampferzeuger (1), dessen eine Heizfläche ein Kondensatvorwärmer (3) ist, gekennzeichnet durch einen Wärmetauscher (40), der primärseitig dem Kondensatvorwärmer (3) nachgeschaltet und sekundärseitig dem Kondensatvorwärmer (3) vorgeschaltet ist.System for generating steam with a steam generator (1) through which hot flue gas (RG) flows, one heating surface of which is a condensate preheater (3), characterized by a heat exchanger (40) which is connected downstream of the condensate preheater (3) on the primary side and the condensate preheater (3) on the secondary side is connected upstream. Anlage nach Anspruch 4, dessen andere Heizfläche ein Hochdruck-Verdampfer (22) ist, dadurch gekennzeichnet, daß auf der Zuströmseite und auf der Abströmseite des Hochdruck-Verdampfers (22) jeweils ein Temperatursensor (46 bzw. 47) vorgesehen ist, die über eine Regeleinrichtung (43) mit einem in eine Kondensatleitung (4) geschalteten Ventil (7) verbunden sind.System according to Claim 4, the other heating surface of which is a high-pressure evaporator (22), characterized in that a temperature sensor (46 and 47) is provided on the inflow side and on the outflow side of the high-pressure evaporator (22), respectively, which has a Control device (43) with a valve (7) connected in a condensate line (4). Anlage nach Anspruch 5, dadurch gekennzeichnet, daß dem Hochdruck-Verdampfer (22) ein weiterer Verdampfer (24) nachgeschaltet ist, wobei im Dampferzeuger (1) der weitere Verdampfer (24) in Strömungsrichtung des Rauchgases (RG) vor dem Hochdruck-Verdampfer (22) angeordnet ist.System according to claim 5, characterized in that the high pressure evaporator (22) is followed by a further evaporator (24), wherein the further evaporator (24) is arranged in the direction of flow of the flue gas (RG) in front of the high-pressure evaporator (22) in the steam generator (1). Anlage nach einem der Ansprüche 4 bis 6,
dadurch gekennzeichnet, daß der Wärmetauscher (40) sekundärseitig in einer Teilstromleitung (41) liegt, die ein Bypass zur Kondensatleitung (4) ist.
System according to one of claims 4 to 6,
characterized in that the heat exchanger (40) is located on the secondary side in a partial flow line (41) which is a bypass to the condensate line (4).
Gas- und Dampfturbinenanlage mit einer Anlage zur Dampferzeugung nach einem der Ansprüche 4 bis 7.Gas and steam turbine plant with a plant for generating steam according to one of claims 4 to 7.
EP93103393A 1992-03-16 1993-03-03 Process for operating a steam generating system and steam generator Expired - Lifetime EP0561220B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4208397 1992-03-16
DE4208397 1992-03-16

Publications (2)

Publication Number Publication Date
EP0561220A1 true EP0561220A1 (en) 1993-09-22
EP0561220B1 EP0561220B1 (en) 1995-09-13

Family

ID=6454201

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93103393A Expired - Lifetime EP0561220B1 (en) 1992-03-16 1993-03-03 Process for operating a steam generating system and steam generator

Country Status (4)

Country Link
US (1) US5293842A (en)
EP (1) EP0561220B1 (en)
JP (1) JPH0626606A (en)
DE (1) DE59300573D1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703514A1 (en) 1994-09-24 1996-03-27 Eta SA Fabriques d'Ebauches Time measurement in a communications system, a communications system and a receiver for use in such a system
EP0777035A1 (en) * 1995-11-28 1997-06-04 Asea Brown Boveri Ag Combined plant with multiple pressure boiler
EP0781960A2 (en) * 1995-11-28 1997-07-02 Asea Brown Boveri Ag Purification of a water-steam cycle in an once-through steam generator
EP0894948A1 (en) * 1997-07-28 1999-02-03 Asea Brown Boveri AG Combined gas-steam power plant with once-through steam generator
EP0919767A1 (en) * 1997-12-01 1999-06-02 Asea Brown Boveri AG Combined steam gas power plant with a once-through steam generator
WO1999051916A1 (en) * 1998-04-03 1999-10-14 Abb Alstom Power Inc. Heat recovery steam generator
EP0981014A1 (en) * 1998-08-18 2000-02-23 Asea Brown Boveri AG Power plant and process for starting and for purification of its water-steam cycle
WO2011134749A3 (en) * 2010-04-30 2013-11-21 Siemens Aktiengesellschaft Steam generator
EP2940381A1 (en) * 2014-04-28 2015-11-04 Alstom Technology Ltd System for fluid medium preheating
WO2015165668A1 (en) * 2014-04-28 2015-11-05 Alstom Technology Ltd System and method for fluid medium preheating
US10100680B2 (en) 2013-09-19 2018-10-16 Siemens Aktiengesellschaft Combined cycle gas turbine plant comprising a waste heat steam generator and fuel preheating step
EP3536763A1 (en) * 2018-03-09 2019-09-11 Borsig GmbH Quench system

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762031A (en) * 1997-04-28 1998-06-09 Gurevich; Arkadiy M. Vertical drum-type boiler with enhanced circulation
DE19721854A1 (en) * 1997-05-26 1998-12-03 Asea Brown Boveri Improvement in the degree of separation of steam contaminants in a steam-water separator
JP3373771B2 (en) 1997-10-08 2003-02-04 株式会社東芝 Waste heat recovery boiler
DE19736885A1 (en) * 1997-08-25 1999-03-04 Siemens Ag Steam generator, in particular waste heat steam generator and method for operating this steam generator
US5924389A (en) * 1998-04-03 1999-07-20 Combustion Engineering, Inc. Heat recovery steam generator
DE19926326A1 (en) * 1999-06-09 2000-12-14 Abb Alstom Power Ch Ag Process and plant for heating a liquid medium
JP2002081612A (en) * 2000-09-01 2002-03-22 Toshiba Corp Feed water heater
US6508206B1 (en) * 2002-01-17 2003-01-21 Nooter/Eriksen, Inc. Feed water heater
US6857467B2 (en) * 2003-02-07 2005-02-22 Gestion Lach Inc. Heat exchange system and method
US6662758B1 (en) * 2003-03-10 2003-12-16 Kyungdong Boiler Co, Ltd. Condensing gas boiler for recollecting condensed latent heat using uptrend combustion
CA2430088A1 (en) 2003-05-23 2004-11-23 Acs Engineering Technologies Inc. Steam generation apparatus and method
JP4469222B2 (en) 2004-05-19 2010-05-26 東京電力株式会社 Combined power plant
EP1710498A1 (en) * 2005-04-05 2006-10-11 Siemens Aktiengesellschaft Steam generator
JP4842007B2 (en) * 2006-05-02 2011-12-21 バブコック日立株式会社 Waste heat recovery boiler
JP4842071B2 (en) * 2006-09-26 2011-12-21 バブコック日立株式会社 Operation method of once-through exhaust heat recovery boiler and operation method of power generation equipment
WO2009106563A2 (en) * 2008-02-26 2009-09-03 Alstom Technology Ltd Method for regulating a boiler and control circuit for a boiler
EP2182278A1 (en) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Continuous-flow steam generator
EP2199547A1 (en) * 2008-12-19 2010-06-23 Siemens Aktiengesellschaft Heat steam producer and method for improved operation of same
NL2003596C2 (en) 2009-10-06 2011-04-07 Nem Bv Cascading once through evaporator.
DE102010028720A1 (en) 2010-05-07 2011-11-10 Siemens Aktiengesellschaft Method for operating a steam generator
US9989320B2 (en) 2012-01-17 2018-06-05 General Electric Technology Gmbh Tube and baffle arrangement in a once-through horizontal evaporator
WO2013108216A2 (en) * 2012-01-17 2013-07-25 Alstom Technology Ltd Flow control devices and methods for a once-through horizontal evaporator
EP3048366A1 (en) * 2015-01-23 2016-07-27 Siemens Aktiengesellschaft Waste heat steam generator
CN109477633B (en) * 2016-07-19 2020-10-13 西门子股份公司 Vertical heat recovery steam generator
CN116899245A (en) * 2023-09-13 2023-10-20 山东天力能源股份有限公司 High-concentration magnesium chloride brine evaporation dehydration device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756023A (en) * 1971-12-01 1973-09-04 Westinghouse Electric Corp Heat recovery steam generator employing means for preventing economizer steaming
DE3326234A1 (en) * 1983-07-21 1985-02-07 La Mont Kessel Herpen & Co KG, 1000 Berlin Single-pipe steam generator
EP0299555A1 (en) * 1987-07-03 1989-01-18 Waste Power B.V. Method and apparatus for generating electrical and/or mechanical energy from at least a low-grade fuel
EP0419839A2 (en) * 1989-09-29 1991-04-03 Westinghouse Electric Corporation Deaerator heat exchanger for combined cycle power plant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489679A (en) * 1983-12-12 1984-12-25 Combustion Engineering, Inc. Control system for economic operation of a steam generator
JPS6155501A (en) * 1984-08-24 1986-03-20 株式会社日立製作所 Waste-heat recovery boiler
DE3568605D1 (en) * 1985-01-16 1989-04-13 Hamon Sobelco Sa Process and device for recovering thermal energy from the exhaust gases of thermal-power stations
JPH0718525B2 (en) * 1987-05-06 1995-03-06 株式会社日立製作所 Exhaust gas boiler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756023A (en) * 1971-12-01 1973-09-04 Westinghouse Electric Corp Heat recovery steam generator employing means for preventing economizer steaming
DE3326234A1 (en) * 1983-07-21 1985-02-07 La Mont Kessel Herpen & Co KG, 1000 Berlin Single-pipe steam generator
EP0299555A1 (en) * 1987-07-03 1989-01-18 Waste Power B.V. Method and apparatus for generating electrical and/or mechanical energy from at least a low-grade fuel
EP0419839A2 (en) * 1989-09-29 1991-04-03 Westinghouse Electric Corporation Deaerator heat exchanger for combined cycle power plant

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703514A1 (en) 1994-09-24 1996-03-27 Eta SA Fabriques d'Ebauches Time measurement in a communications system, a communications system and a receiver for use in such a system
EP0777035A1 (en) * 1995-11-28 1997-06-04 Asea Brown Boveri Ag Combined plant with multiple pressure boiler
EP0781960A2 (en) * 1995-11-28 1997-07-02 Asea Brown Boveri Ag Purification of a water-steam cycle in an once-through steam generator
EP0781960A3 (en) * 1995-11-28 1997-10-22 Asea Brown Boveri Purification of a water-steam cycle in an once-through steam generator
US5840130A (en) * 1995-11-28 1998-11-24 Asea Brown Boveri Ag Cleaning of the water/steam circuit in a once-through forced-flow steam generator
DE19544226B4 (en) * 1995-11-28 2007-03-29 Alstom Combined plant with multi-pressure boiler
US6109020A (en) * 1997-07-28 2000-08-29 Asea Brown Boveri Ag Combined cycle power plant with a once through steam generator
EP0894948A1 (en) * 1997-07-28 1999-02-03 Asea Brown Boveri AG Combined gas-steam power plant with once-through steam generator
EP0919767A1 (en) * 1997-12-01 1999-06-02 Asea Brown Boveri AG Combined steam gas power plant with a once-through steam generator
AU743481B2 (en) * 1998-04-03 2002-01-24 Alstom Power Inc. Heat recovery steam generator
WO1999051916A1 (en) * 1998-04-03 1999-10-14 Abb Alstom Power Inc. Heat recovery steam generator
EP0981014A1 (en) * 1998-08-18 2000-02-23 Asea Brown Boveri AG Power plant and process for starting and for purification of its water-steam cycle
US6155054A (en) * 1998-08-18 2000-12-05 Asea Brown Boveri Ag Steam power plant and method of and cleaning its steam/water cycle
CN103562634B (en) * 2010-04-30 2016-03-02 西门子公司 Steam generator
CN103562634A (en) * 2010-04-30 2014-02-05 西门子公司 Steam generator
WO2011134749A3 (en) * 2010-04-30 2013-11-21 Siemens Aktiengesellschaft Steam generator
US9879853B2 (en) 2010-04-30 2018-01-30 Siemens Aktiengesellschaft Steam generator
US10100680B2 (en) 2013-09-19 2018-10-16 Siemens Aktiengesellschaft Combined cycle gas turbine plant comprising a waste heat steam generator and fuel preheating step
EP2940381A1 (en) * 2014-04-28 2015-11-04 Alstom Technology Ltd System for fluid medium preheating
WO2015165668A1 (en) * 2014-04-28 2015-11-05 Alstom Technology Ltd System and method for fluid medium preheating
EP2940381B1 (en) 2014-04-28 2016-12-28 General Electric Technology GmbH System for fluid medium preheating
JP2017514097A (en) * 2014-04-28 2017-06-01 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Fluid medium preheating system
US10393369B2 (en) 2014-04-28 2019-08-27 General Electric Company System and method for fluid medium preheating
EP3536763A1 (en) * 2018-03-09 2019-09-11 Borsig GmbH Quench system
KR20190106798A (en) * 2018-03-09 2019-09-18 보르지크 게엠베하 Quenching system
US10744474B2 (en) 2018-03-09 2020-08-18 Borsig Gmbh Quenching system

Also Published As

Publication number Publication date
DE59300573D1 (en) 1995-10-19
JPH0626606A (en) 1994-02-04
US5293842A (en) 1994-03-15
EP0561220B1 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
EP0561220B1 (en) Process for operating a steam generating system and steam generator
EP0591163B1 (en) Combined gas and steam turbine plant
EP0778397B1 (en) Method of operating a combined power plant with a waste heat boiler and a steam user
EP0515911B1 (en) Method of operating a gas and steam turbine plant and corresponding plant
EP0526816A1 (en) Power plant with gas and steam turbines with solar steam generator
DE4303613C2 (en) Process for generating steam in a once-through steam generator
WO1999001697A1 (en) Waste heat steam generator
EP0898641B1 (en) Gas and steam turbine plant and method of operating the same
EP0523467A1 (en) Method of operating a gas and steam turbines plant and plant for carrying out the method
DE102010041903A1 (en) Continuous steam generator with integrated reheater
EP1390606B1 (en) Device for cooling coolant in a gas turbine and gas and steam turbine with said device
EP0918151B1 (en) Device and method to preheat fuel for a combustor
EP0579061A1 (en) Method of operating a steam and gas turbine system and system for carrying out the method
WO2000020728A1 (en) Gas and steam turbine installation
DE10144841B9 (en) Solar thermal gas and steam power plant and process for converting thermal energy into electrical energy
EP0582898A1 (en) Method of operating a steam and gas turbine system and system for carrying out the method
EP1076761B1 (en) Gas and steam turbine installation
EP0595009A1 (en) Method of operating a power plant and power plant working according to this method
DE4126036A1 (en) Gas and steam turbine plant with solar heated system generator - with generator connected to heat exchanger in h.p. steam line from waste heat steam generator
DE19720789B4 (en) Method and apparatus for generating steam
EP0840837B1 (en) Process for running a gas and steam turbine plant and plant run by this process
EP1425079B1 (en) Method and device for thermal de-gassing of the active substance of a two-phase process
DE102010040208B4 (en) Solar thermal continuous evaporator heating surface with local cross-sectional constriction at its inlet
DE102010040211A1 (en) Solar thermal continuous steam generator for direct evaporation, in particular in a solar tower power plant
DE2523873C3 (en) Steam generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19931005

17Q First examination report despatched

Effective date: 19950220

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59300573

Country of ref document: DE

Date of ref document: 19951019

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951020

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120327

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120312

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120518

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59300573

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59300573

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130305

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130302