EP0520288B1 - Turbine rotor blade for subsonic flow - Google Patents

Turbine rotor blade for subsonic flow Download PDF

Info

Publication number
EP0520288B1
EP0520288B1 EP92110107A EP92110107A EP0520288B1 EP 0520288 B1 EP0520288 B1 EP 0520288B1 EP 92110107 A EP92110107 A EP 92110107A EP 92110107 A EP92110107 A EP 92110107A EP 0520288 B1 EP0520288 B1 EP 0520288B1
Authority
EP
European Patent Office
Prior art keywords
suction
trailing edge
profile contour
concave
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92110107A
Other languages
German (de)
French (fr)
Other versions
EP0520288A1 (en
Inventor
Martin Schönenberger
Said Havakechian
Nils Lannefors
Ulrich Steiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0520288A1 publication Critical patent/EP0520288A1/en
Application granted granted Critical
Publication of EP0520288B1 publication Critical patent/EP0520288B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/914Device to control boundary layer

Definitions

  • the invention relates to a turbomachine blade for subsonic conditions with a profile contour which is convexly curved in the region of the front edge and over the major part of the suction side and with a profile contour which is concavely curved in the region of the pressure side, the entire profile contour having a continuous curve,
  • the profile contour of the known blades is usually either straight or slightly convex in the area of the suction-side trailing edge.
  • Other known ways of reducing the profile loss are to delay the laminar-turbulent reversal of the suction-side boundary layer as much as possible by means of suitable acceleration of the flow. This is based on the fact that a turbulent boundary layer is more lossy than a laminar boundary layer.
  • the invention now has the task of taking measures on the rear edge of a turbomachine blade of the type mentioned in order to keep the lack of impulse thickness as small as possible .
  • profile contour is concave in the suction-side trailing edge region. This measure can favorably influence the development of the boundary layer on the suction side.
  • the concave section extends from the rear edge over a length which essentially corresponds to the distance between two adjacent blades in the narrowest cross section.
  • the cylinder development can be viewed as a straight vane grille. It can be seen that it is a turbine blading for subsonic conditions with a continuous course of the entire profile contour.
  • Se denotes the chord of the blades, S their suction side and D their pressure side.
  • the ratio of the blade pitch T to the chord length Se is approximately 0.8.
  • the blades are staggered at an angle ⁇ of approx. 55 °.
  • the area of the front edge and the majority of the suction side are provided with a convexly curved profile contour.
  • the area of the pressure side has a concavely curved profile contour.
  • the narrowest cross-section Q to be flowed through by the working medium is measured at these conditions from the pressure-side rear edge of one blade to the convex blade back of the adjacent blade, regardless of the suction-side design of the rear edge thereof.
  • the invention is now used on this element.
  • the profile contour of the blades is concave on the suction side.
  • This concavity which is explained in more detail in FIG. 2, preferably extends from the actual rear edge over an extension E which corresponds approximately to the above-mentioned dimension Q.
  • the new measure is shown in detail in FIG. It goes without saying that here the disclosure of all the absolute values on which the calculations are based is dispensed with, since these are in any case of insufficient informative value because of their dependence on too many parameters.
  • the previously known profile contours are shown in dash-dotted lines, the same trailing edge thickness being assumed in each case.
  • the dash-dotted contour indicates a straight trailing edge on the suction side, the transition to the convex part not being shown here; the dashed contour corresponds to the convex profile formation, which is a continuation of the convex blade back.
  • the new concave contour K lies between the two.
  • the contour can be explained as follows: A tangent is created from the trailing edge corner to the suction side. From this tangent, the wall now deviates towards the pressure side.
  • the new contour is therefore made up of two parts. First of all, a first section adjoining the suction side with a more indented convexity, which extends to the turning point U and from there to the actual concave section K, which extends to the trailing edge corner.
  • This profile contour must be designed in such a way that the suction-side flow velocity is first decelerated after the maximum reached with a stronger gradient and then with a weaker gradient. There may even be a slight acceleration towards the rear edge.
  • FIGS. 3 and 4 show how this looks qualitatively and quantitatively.
  • the chord length Se of the blades is plotted dimensionlessly on the abscissa of the two diagrams.
  • the abscissa in FIG. 3 bears the Mach number M, that in FIG. 4 the dimensionless ratio J of the lack of impulse thickness to the chord length.
  • the curves indicated with D denote the prevailing conditions on the blade pressure side, while the curves indicated with S indicate represent the prevailing conditions on the blade suction side.
  • the solid curves N are the profile provided with the new measure, while the dashed curves B show the results for a profile with a convex profile of the trailing edge on the suction side.
  • the full curves N D are therefore congruent in both diagrams with the dashed curves B D not shown .
  • Fig. 4 shows how the new measure affects the pulse deficiency thickness.
  • the corresponding boundary layer calculations now show that, analogously to the Mach number distribution in FIG. 3, the larger gradient of the speed decrease according to curve N S initially leads to a greater increase in the pulse deficiency thickness.
  • the subsequent smaller gradient of the decrease in speed towards the rear edge leads to a clear flattening of the lack of impulse thickness.
  • the lack of momentum at the rear edge which is decisive for the loss of profile, is smaller than the comparable value that can be achieved with a convex rear edge, as is clearly shown by curve B S.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Technisches GebietTechnical field

Die Erfindung betrifft eine Turbomaschinenschaufel für subsonische Verhältnisse mit einer im Bereich der Vorderkante und über dem überwiegenden Teil der Saugseite konvex gekrümmten Profilkontur und mit einem im Bereich der Druckseite konkav gekrümmten Profilkontur, wobei die gesamte Profilkontur einen stetigen Kurvenverlauf aufweist,The invention relates to a turbomachine blade for subsonic conditions with a profile contour which is convexly curved in the region of the front edge and over the major part of the suction side and with a profile contour which is concavely curved in the region of the pressure side, the entire profile contour having a continuous curve,

Stand der TechnikState of the art

Bei der Profilauslegung solcher Turbomaschinenschaufeln wird in der Regel darauf geachtet, dass das Geschwindigkeitsmaximum auf der Saugseite und die anschliessende verlustbehaftete Verzögerung kleinstmöglich gehalten wird. Die Profilkontur der bekannten Schaufeln ist üblicherweise im Bereich der saugseitigen Hinterkante entweder gerade oder leicht konvex ausgebildet. Andere bekannte Möglichkeiten, um den Profilverlust zu verringern, bestehen darin, den laminarturbulenten Umschlag der saugseitigen Grenzschicht mittels geeigneter Beschleunigung der Strömung so weit wie möglich hinauszuzögern. Dem liegt die Tatsache zugrunde, dass eine turbulente Grenzschicht stärker verlustbehaftet ist als eine laminare Grenzschicht.When designing such turbomachine blades, it is usually ensured that the maximum speed on the suction side and the subsequent lossy deceleration are kept as small as possible. The profile contour of the known blades is usually either straight or slightly convex in the area of the suction-side trailing edge. Other known ways of reducing the profile loss are to delay the laminar-turbulent reversal of the suction-side boundary layer as much as possible by means of suitable acceleration of the flow. This is based on the fact that a turbulent boundary layer is more lossy than a laminar boundary layer.

Darstellung der ErfindungPresentation of the invention

Ausgehend von der Tatsache, dass der Profilverlust massgeblich durch die vorherrschende Impulsmangeldicke an der Hinterkante einer Schaufel beeinflusst ist, stellt sich der Erfindung nunmehr sie Aufgabe, bei einer Turbomaschinenschaufel der eingangs genannten Art an der Hinterkante Massnahmen zu treffen, um dort die Impulsmangeldicke kleinstmöglich zu halten.Based on the fact that the profile loss is significantly influenced by the prevailing lack of impulse thickness at the rear edge of a blade, the invention now has the task of taking measures on the rear edge of a turbomachine blade of the type mentioned in order to keep the lack of impulse thickness as small as possible .

Erfindungsgemäss wird dies dadurch erreicht, dass die Profilkontur im saugseitigen Hinterkantenbereich konkav ausgebildet ist. Mit dieser Massnahme kann die saugseitige Grenzschichtentwicklung günstig beeinflusst werden.This is achieved according to the invention in that the profile contour is concave in the suction-side trailing edge region. This measure can favorably influence the development of the boundary layer on the suction side.

Es ist besonders zweckmässig, wenn der konkave Abschnitt sich von der Hinterkante aus erstreckt über eine Länge, die im wesentlichen der Distanz zwischen zwei benachbarten Schaufeln im engsten Querschnitt entspricht.It is particularly expedient if the concave section extends from the rear edge over a length which essentially corresponds to the distance between two adjacent blades in the narrowest cross section.

Zwar ist es bereits bei transonischen und supersonischen Schaufelprofilen bekannt, den saugseitigen Austrittsbereich konkav auszubilden. Jedoch liegen dort im funktionellen Zusammenwirken mit dem entsprechend konfigurierten druckseitigen Austrittsbereich der Nachbarschaufel Lavalverhältnisse vor.In the case of transonic and supersonic blade profiles, it is already known to make the suction-side exit region concave. However, there are Laval conditions in the functional interaction with the correspondingly configured pressure-side outlet area of the neighboring blade.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer axialdurchströmten Turbinenbeschaufelung dargestellt.
Es zeigen:

Fig.1
die teilweise Abwicklung eines zylindrischen Schnittes durch eine Schaufelung;
Fig.2
eine vergleichende Darstellung von bekannten und neuer Hinterkantenausbildung;
Fig.3
ein Schaubild Machzahl-Verteilung über den abgewickelten druck- und saugseitigen Profilkonturen;
Fig.4
ein Schaubild Impulsmangeldicken-Verteilung über den abgewickelten druck- und saugseitigen Profilkonturen.
In the drawing, an embodiment of the invention is shown using a turbine blading with axial flow.
Show it:
Fig. 1
the partial development of a cylindrical cut by a blade;
Fig. 2
a comparative representation of known and new trailing edge training;
Fig. 3
a diagram of Mach number distribution over the developed pressure and suction profile contours;
Fig. 4
a diagram of the pulse deficiency thickness distribution over the developed pressure and suction profile contours.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Gemäss Fig.1 kann die Zylinderabwicklung als gerades Schaufelgitter betrachtet werden. Erkennbar ist, dass es sich um eine Turbinenbeschaufelung für subsonische Verhältnisse handelt mit stetigem Verlauf der gesamten Profilkontur. Mit Se ist die Sehne der Schaufeln bezeichnet, mit S deren Saugseite und mit D ihre Druckseite. Beim gezeigten Beispiel beträgt das Verhältnis der Schaufelteilung T zur Sehnenlänge Se ca. 0.8. Die Schaufeln sind mit einem Winkel ϑ von ca. 55° gestaffelt. Der Bereich der Vorderkante und der überwiegende Teil der Saugseite sind mit konvex gekrümmter Profilkontur versehen. Der Bereich der Druckseite weist eine konkav gekrümmte Profilkontur auf. Der engste vom Arbeitsmittel zu durchströmende Querschnitt Q bemisst sich bei diesen Verhältnissen ab der druckseitigen Hinterkante einer Schaufel bis zum konvexen Schaufelrücken der benachbarten Schaufel, unabhängig von der saugseitigen Ausbildung deren Hinterkante. An diesem Element setzt nun die Erfindung ein.According to FIG. 1, the cylinder development can be viewed as a straight vane grille. It can be seen that it is a turbine blading for subsonic conditions with a continuous course of the entire profile contour. Se denotes the chord of the blades, S their suction side and D their pressure side. In the example shown, the ratio of the blade pitch T to the chord length Se is approximately 0.8. The blades are staggered at an angle ϑ of approx. 55 °. The area of the front edge and the majority of the suction side are provided with a convexly curved profile contour. The area of the pressure side has a concavely curved profile contour. The narrowest cross-section Q to be flowed through by the working medium is measured at these conditions from the pressure-side rear edge of one blade to the convex blade back of the adjacent blade, regardless of the suction-side design of the rear edge thereof. The invention is now used on this element.

Im Abströmbereich ist die Profilkontur der Schaufeln saugseitig konkav ausgebildet. Diese in Fig.2 näher erläuterte Konkavität erstreckt sich vorzugsweise von der eigentlichen Hinterkante über eine Erstreckung E, die in etwa dem oben erwähnten Mass Q entspricht.In the outflow area, the profile contour of the blades is concave on the suction side. This concavity, which is explained in more detail in FIG. 2, preferably extends from the actual rear edge over an extension E which corresponds approximately to the above-mentioned dimension Q.

In Fig.2 ist die neue Massnahme im Detail dargestellt. Es versteht sich, dass hier auf die Bekanntgabe von all den Berechnungen zugrundeliegenden Absolutwerten verzichtet wird, da diese wegen ihrer Abhängigkeit von allzu zahlreichen Parametern ohnehin ungenugende Aussagekraft besitzen. Zu Vergleichzwecken sind strichpunktiert die bisher bekannten Profilkonturen dargestellt, wobei jeweils von einer gleichen Hinterkantenstärke ausgegangen wird. Die strichpunktierte Kontur weist auf eine gerade saugseitige Hinterkante hin, wobei hier der Übergang zum konvexen Teil nicht gezeigt ist; die strichlierte Kontur entspricht der konvexen Profilausbildung, die eine Fortsetzung des konvexen Schaufelrückens ist. Zwischen beiden liegt die neue konkave Kontur K. Als unverbindliche Bemessungsregel kann die Kontur folgendermassen erläutert werden: Von der Hinterkantenecke aus wird eine Tangente an die Saugseite angelegt. Von dieser Tangente aus weicht jetzt die Wandung Richtung Druckseite aus. Die neue Kontur setzt sich demnach aus zwei Teilen zusammen. Zunächst einem ersten, an die Saugseite angrenzenden Abschnitt mit stärker eingezogener Konvexität, die bis zum Wendepunkt U hin reicht und von dort an den eigentlichen konkaven Abschnitt K, der sich bis zur Hinterkantenecke erstreckt. Diese Profilkontur muss so gestaltet werden, dass die saugseitige Strömungsgeschwindigkeit nach dem erreichten Maximum zunächst mit einem stärkeren Gradienten und danach mit einem schwächeren Gradienten verzögert wird. Gegebenenfalls kann sogar zur Hinterkante hin eine leichte Beschleunigung auftreten.The new measure is shown in detail in FIG. It goes without saying that here the disclosure of all the absolute values on which the calculations are based is dispensed with, since these are in any case of insufficient informative value because of their dependence on too many parameters. For comparison purposes, the previously known profile contours are shown in dash-dotted lines, the same trailing edge thickness being assumed in each case. The dash-dotted contour indicates a straight trailing edge on the suction side, the transition to the convex part not being shown here; the dashed contour corresponds to the convex profile formation, which is a continuation of the convex blade back. The new concave contour K lies between the two. As a non-binding design rule, the contour can be explained as follows: A tangent is created from the trailing edge corner to the suction side. From this tangent, the wall now deviates towards the pressure side. The new contour is therefore made up of two parts. First of all, a first section adjoining the suction side with a more indented convexity, which extends to the turning point U and from there to the actual concave section K, which extends to the trailing edge corner. This profile contour must be designed in such a way that the suction-side flow velocity is first decelerated after the maximum reached with a stronger gradient and then with a weaker gradient. There may even be a slight acceleration towards the rear edge.

Wie dies qualitativ und quantitativ aussieht, zeigen die Diagramme in den Fig. 3 und 4. Auf den Abzissen der beiden Diagramme ist dimensionslos die Sehnenlänge Se der Schaufeln aufgetragen. Die Abzisse in Fig.3 trägt die Machzahl M, jene in Fig.4 das dimensionslose Verhältnis J der Impulsmangeldicke zur Sehnenlänge. Die mit D indizierten Kurvenzüge bezeichnen die jeweils vorliegenden Verhältnisse auf der Schaufeldruckseite, während die mit S indizierten Kurvenzüge die jeweils vorliegenden Verhältnisse auf der Schaufelsaugseite darstellen.The diagrams in FIGS. 3 and 4 show how this looks qualitatively and quantitatively. The chord length Se of the blades is plotted dimensionlessly on the abscissa of the two diagrams. The abscissa in FIG. 3 bears the Mach number M, that in FIG. 4 the dimensionless ratio J of the lack of impulse thickness to the chord length. The curves indicated with D denote the prevailing conditions on the blade pressure side, while the curves indicated with S indicate represent the prevailing conditions on the blade suction side.

Hinsichtlich der untersuchten Profile handelt es bei den ausgezogenen Kurven N um das mit der neuen Massnahme versehene Profil, während die gestrichelten Kurven B die Ergebnisse bei einem Profil mit konvexem Verlauf der saugseitigen Hinterkante zeigen. Der besseren Übersicht wegen sei hier die Annahme erlaubt, dass auf den Druckseiten beider untersuchter Profile jeweils die gleichen Verhältnisse herrschen; die Vollkurven ND sind demnach in beiden Diagrammen deckungsgleich mit den nichtgezeigten gestrichelten Kurven BD.With regard to the profiles examined, the solid curves N are the profile provided with the new measure, while the dashed curves B show the results for a profile with a convex profile of the trailing edge on the suction side. For the sake of a better overview, the assumption should be made here that the same conditions prevail on the printed pages of both profiles examined; the full curves N D are therefore congruent in both diagrams with the dashed curves B D not shown .

Aus Fig.3 ist nunmehr anhand der Kurve NS gegen die Hinterkante hin die zuerst starke Verringerung der Machzahl mit anschliessender Abflachung bis zum Endwert hin ersichtlich. Ganz im Gegensatz hierzu der Verlauf der Kurve BS, die vom Höchstwert stetig gegen den Endwert absinktFrom FIG. 3, the first sharp reduction in the Mach number with subsequent flattening down to the final value can now be seen from the curve N S towards the rear edge. In contrast to this, the course of the curve B S , which decreases steadily from the maximum value towards the end value

Wie die neue Massnahme sich bezüglich der Impulsmangeldicke auwirkt, ist in Fig.4 dargestellt. Die entsprechenden Grenzschichtrechnungen zeigen nunmehr, dass analog zur Machzahlverteilung in Fig.3 der grössere Gradient der Geschwindigkeitsabnahme gemäss Kurve NS zunächst zu einem stärkeren Anwachsen der Impulsmangeldicke führt. Der anschliessende kleinere Gradient der Geschwindigkeitsabnahme gegen die Hinterkante zu führt indes zu einer deutliche Abflachung der Impulsmangeldicke. Im Ergebnis ist dank der neuen Kontur die für den Profilverlust entscheidende Impulsmangeldicke an der Hinterkante kleiner als der vergleichbare, mit konvexer Hinterkante erzielbarer Wert, wie dies die Kurve BS unmissverständlich zeigt.Fig. 4 shows how the new measure affects the pulse deficiency thickness. The corresponding boundary layer calculations now show that, analogously to the Mach number distribution in FIG. 3, the larger gradient of the speed decrease according to curve N S initially leads to a greater increase in the pulse deficiency thickness. The subsequent smaller gradient of the decrease in speed towards the rear edge, however, leads to a clear flattening of the lack of impulse thickness. As a result, thanks to the new contour, the lack of momentum at the rear edge, which is decisive for the loss of profile, is smaller than the comparable value that can be achieved with a convex rear edge, as is clearly shown by curve B S.

Selbstverständlich ist die Erfindung nicht auf das dargestellte und beschriebene Beispiel beschränkt. Sie kann mit Vorteil bei allen stark oder schwach umlenkenden Turbinenprofilen Anwendung finden.Of course, the invention is not limited to the example shown and described. It can be used with advantage in all strongly or weakly deflecting turbine profiles.

Claims (2)

  1. Turbomachine blade/vane for subsonic conditions with a convex curvature profile contour in the region of the leading edge and over the major part of the suction surface (S) and with a concave curvature profile contour in the region of the pressure surface (D), the whole of the profile contour exhibiting a continuous curve, characterized in that the profile contour in the suction-surface trailing edge region is designed to be concave (K).
  2. Turbomachine blade/vane according to Claim 1, characterized in that the concave section (K) in the trailing edge region extends from the trailing edge over a length (E) which is approximately equal to between once and twice the distance (Q) between two adjacent blades/vanes at the narrowest cross section (throat).
EP92110107A 1991-06-28 1992-06-16 Turbine rotor blade for subsonic flow Expired - Lifetime EP0520288B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH192491 1991-06-28
CH1924/91 1991-06-28

Publications (2)

Publication Number Publication Date
EP0520288A1 EP0520288A1 (en) 1992-12-30
EP0520288B1 true EP0520288B1 (en) 1994-09-07

Family

ID=4221779

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92110107A Expired - Lifetime EP0520288B1 (en) 1991-06-28 1992-06-16 Turbine rotor blade for subsonic flow

Country Status (4)

Country Link
US (1) US5228833A (en)
EP (1) EP0520288B1 (en)
JP (1) JPH05187202A (en)
DE (1) DE59200459D1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019048A1 (en) * 1996-10-28 1998-05-07 Siemens Westinghouse Power Corporation Airfoil for a turbomachine
DE19650656C1 (en) * 1996-12-06 1998-06-10 Mtu Muenchen Gmbh Turbo machine with transonic compressor stage
JP4484396B2 (en) 2001-05-18 2010-06-16 株式会社日立製作所 Turbine blade
US6682301B2 (en) 2001-10-05 2004-01-27 General Electric Company Reduced shock transonic airfoil
KR100713252B1 (en) * 2005-07-08 2007-05-02 부산대학교 산학협력단 Rotor blade for axial-flow turbine
US9790797B2 (en) 2011-07-05 2017-10-17 United Technologies Corporation Subsonic swept fan blade
US9957801B2 (en) 2012-08-03 2018-05-01 United Technologies Corporation Airfoil design having localized suction side curvatures
US10641113B2 (en) * 2015-04-08 2020-05-05 United Technologies Corporation Airfoils
JP6730245B2 (en) 2017-11-17 2020-07-29 三菱日立パワーシステムズ株式会社 Turbine nozzle and axial turbine having this turbine nozzle
CN109356666B (en) * 2018-12-14 2021-05-25 中国航发沈阳发动机研究所 Blade profile design method for large and small blade combined blade cascade of axial flow turbine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE249844C (en) *
US1748892A (en) * 1917-10-20 1930-02-25 Allis Chalmers Mfg Co Hydraulic process and apparatus
GB490501A (en) * 1937-03-04 1938-08-16 Escher Wyss Maschf Ag Improvements in or relating to the blading of steam or gas turbines
US2935246A (en) * 1949-06-02 1960-05-03 Onera (Off Nat Aerospatiale) Shock wave compressors, especially for use in connection with continuous flow engines for aircraft
US2830753A (en) * 1951-11-10 1958-04-15 Edward A Stalker Axial flow compressors with circular arc blades
US2949224A (en) * 1955-08-19 1960-08-16 American Mach & Foundry Supersonic centripetal compressor
US3156407A (en) * 1958-07-07 1964-11-10 Commissariat Energie Atomique Supersonic compressors
US3333817A (en) * 1965-04-01 1967-08-01 Bbc Brown Boveri & Cie Blading structure for axial flow turbo-machines
DE3202855C1 (en) * 1982-01-29 1983-03-31 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Device for reducing secondary flow losses in a bladed flow channel

Also Published As

Publication number Publication date
US5228833A (en) 1993-07-20
EP0520288A1 (en) 1992-12-30
JPH05187202A (en) 1993-07-27
DE59200459D1 (en) 1994-10-13

Similar Documents

Publication Publication Date Title
DE102005025213B4 (en) Blade of an axial flow machine
EP0132638B1 (en) Blade cascade for an axial gas or steam driven turbine
DE3202855C1 (en) Device for reducing secondary flow losses in a bladed flow channel
EP2959161B1 (en) Rotor blade of a wind turbine
EP0866920B1 (en) Process for forming a surface for contact with a flowing fluid and body with such surface regions
DE2358521C2 (en) Gas turbine blade with a corrugated trailing edge area
WO2007113149A1 (en) Guide blade for turbomachinery, in particular for a steam turbine
EP1602575B1 (en) Supporting or guiding element
DE2002348C3 (en) Blade ring for an axial flow turbine
CH617493A5 (en)
DE1628237A1 (en) Supersound grille
EP0520288B1 (en) Turbine rotor blade for subsonic flow
DE2254888A1 (en) WINGS FOR SUBSOUND SPEED
EP2538024A1 (en) Blade of a turbomaschine
EP1642005B1 (en) Turbine blade
DE1072024B (en) Device for converting the kinetic energy of a vortex into pressure
DE102006019946A1 (en) Wing profile for an axial flow compressor comprises an inner arc surface and an arc crest for distributing a flow speed having an ultrasonic maximum value within a specified region on a chord from the leading edge
DE3324753A1 (en) ARRANGEMENT FOR INFLUENCING THE PROPELLER FLOW
DE2050950A1 (en) Supersonic compressor with conical inlet
EP2568166A1 (en) Wind energy assembly rotor blade with a thick profile trailing edge
DE3148995A1 (en) Axial turbine
DE10346666A1 (en) Compressor vane profile with high diversion for compressing gas, has curvature of external bulge at maximum from 10 to 35 per cent vane chord length
EP2669592B1 (en) Valve for assembly in a flow channel of an air conditioning assembly
DE3318413A1 (en) WING FOR AIRCRAFT
DE102007054873B4 (en) Deflection device for preventing the contamination of the boundary layer on wings of a missile in subsonic and trans-sonic flow through the fuselage or similar bodies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19930617

17Q First examination report despatched

Effective date: 19931123

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 59200459

Country of ref document: DE

Date of ref document: 19941013

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941128

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970620

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990511

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990512

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990525

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000616

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050616