EP0443147B1 - Method and device for regulating/controlling the smooth running of an internal combustion engine - Google Patents

Method and device for regulating/controlling the smooth running of an internal combustion engine Download PDF

Info

Publication number
EP0443147B1
EP0443147B1 EP90124327A EP90124327A EP0443147B1 EP 0443147 B1 EP0443147 B1 EP 0443147B1 EP 90124327 A EP90124327 A EP 90124327A EP 90124327 A EP90124327 A EP 90124327A EP 0443147 B1 EP0443147 B1 EP 0443147B1
Authority
EP
European Patent Office
Prior art keywords
loop
closed
control
smooth
running
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90124327A
Other languages
German (de)
French (fr)
Other versions
EP0443147A3 (en
EP0443147A2 (en
Inventor
Wolf Wessel
Thomas Dipl.-Ing. Küttner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0443147A2 publication Critical patent/EP0443147A2/en
Publication of EP0443147A3 publication Critical patent/EP0443147A3/en
Application granted granted Critical
Publication of EP0443147B1 publication Critical patent/EP0443147B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/16Introducing closed-loop corrections for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Definitions

  • the invention relates to a method and a device for regulating / controlling the smooth running of an internal combustion engine according to the preambles of the independent claims.
  • Such a method and such a device for regulating / controlling the smooth running of an internal combustion engine is known from GB-A 21 73 925. There, a method and a device for regulating / controlling the smooth running of an internal combustion engine are described. The cylinder-specific control is switched off when the control deviation exceeds a limit.
  • vibrations are also known as shaking and are based, among other things, on manufacturing tolerances. These manufacturing tolerances mean that different quantities are metered into individual cylinders. In the devices according to the state of the art, these vibrations are eliminated by assigning a control to each cylinder, which regulates the fuel metering for smooth running.
  • vibrations occur which cannot be compensated for by a method and a device according to the prior art. It is even the case that the vibrations can be amplified by the smooth running control.
  • the invention is based, to eliminate all vibrations occurring in a system for regulating / controlling the smooth running of an internal combustion engine of the type mentioned. This object is achieved by the features characterized in claims 1 and 8, respectively.
  • FIG. 1 shows schematically a fuel metering device.
  • FIG. 2 shows the individual areas in which the smooth running control or control is active.
  • FIG. 3 shows a rough flow diagram of the method according to the invention.
  • Figures 4a and 4b show a detailed flow chart.
  • Figure 5 various signal profiles are entered in a diagram.
  • the fuel metering device is shown schematically in FIG.
  • An internal combustion engine 10 with a plurality of cylinders receives fuel from a fuel pump 20.
  • An electronic control device 30 calculates control signals for the fuel pump 20 depending on various input variables 35 and the output signals of a sensor 40.
  • a sensor 40 detects the pulses triggered by a segment wheel 50 arranged on the crankshaft.
  • the torque generated by the internal combustion engine is transmitted directly or via a two-mass flywheel 60 to the drive train 70 of the motor vehicle.
  • the electronic control unit 30 calculates a basic fuel quantity and a correction fuel quantity depending on various variables 35.
  • the function of the electronic control unit 30 is e.g. described in detail in DE-OS 36 04 904 or in DE-OS 33 36 028.
  • the correction fuel quantities are continuously determined, stored and added to the basic fuel quantity in the corresponding cylinder.
  • the amount of correction fuel can take positive or negative values.
  • the smoothness is controlled, the correction fuel quantities for the individual cylinders are no longer recalculated. In this case, the stored values are added to the basic fuel quantity.
  • the smooth running control is only activated in idle mode. Outside of idling there is a smooth running control or the fuel metering takes place independently of the smooth running. These different areas are shown by way of example in FIG. 2a and FIG. 2b.
  • the idle speed control is active in the area of the idling speed LLN, whose value is usually around 700 revolutions per minute. Regulation takes place only in a speed range between approx. 550 and 850 revolutions per minute. In the remaining speed ranges, only smooth running is controlled.
  • the smooth running program no longer has any advantages above this limit speed. This is usually the case at around 1,500 revolutions per minute.
  • other operating parameters can be used instead of the speed.
  • a quantity is, for example, the amount of fuel injected per stroke.
  • the smooth running control is only active with an injected fuel quantity between 3 mg / stroke and 11 mg / stroke.
  • the areas in which the smooth running control is active depend on the idling speed. Since different types of internal combustion engines also have different idling speeds, the ranges deviate from the above values depending on the type of internal combustion engine.
  • vibrations with a very high amplitude and / or certain frequencies occur in the motor vehicle internal combustion engine system, the case may arise that these vibrations cannot be compensated for by the smooth running control. This is particularly the case if the vehicle is equipped with a dual mass flywheel. This dual mass flywheel has different resonance frequencies depending on the operating conditions. If these resonance frequencies are excited, these vibrations are transmitted to the entire motor vehicle internal combustion engine system. If these vibrations have a frequency F which is equal to the crankshaft frequency or 1.5 times the crankshaft frequency, these vibrations disturb the smooth-running controller. For example, the case that the amount of correction fuel is continuously increased, although this is not currently necessary. The vibrations are amplified by the increased correction quantities. In this case, the smooth running control must be switched off.
  • FIG. 3 shows a rough flow diagram of the method according to the invention, with which such vibrations can be avoided.
  • a first step / 310 the oscillation frequency F or the control difference DN, ie the difference between the setpoint and actual value, is recorded.
  • An interrogation unit 320 recognizes whether the control difference DN or the oscillation frequency F exceeds a certain value.
  • the smooth running controller is switched off in step 330. This means that the smoothness control is no longer active, but only smoothness control takes place.
  • two time counters VZ1 and VZ2 are initialized. In the query unit 340, the first time counter VZ1 is used to query whether a waiting time has already expired. This time query ensures that further measures are taken if the vibrations last longer than a predetermined time.
  • step 360 further measures are initiated in step 360.
  • measures can include increasing the idle speed, zeroing the integrators of the PI controller or deleting the stored correction amounts.
  • a speed increase between 50 and 100 revolutions per minute has proven to be a favorable value. This increase in speed can bring the system out of the resonance range. If crankshaft frequencies no longer occur, the idle speed is set to the previous value.
  • query 370 is used to check whether the control has been switched off until now.
  • the program ends with step 350.
  • an inquiry 380 is made as to whether a further waiting time VZ2 has elapsed. If this waiting time has already expired, the controller is switched on again in step 390. If the waiting time has not yet expired, the program continues with the controller switched off. Due to this further waiting time a too quick switch back from control to regulation operation prevented. The switch from control to regulating operation takes place only after the waiting time VZ2 or after a number of speed pulses, after the control difference DN or the oscillation frequency falls below a certain value again.
  • step 400 the smoothness target values and the smoothness actual values are calculated. This calculation is e.g. B. in DE-OS 33 36 028 or in DE-OS 36 04 904 described in detail.
  • the control difference DN is then determined on the basis of these values.
  • step 402 the change in control difference DDN is then determined from the current and the previous value of the control difference DN. Based on this change in control difference, the amount DDNB and the sign DDNV are calculated.
  • step 404 a query is made as to whether the segment counter SZ has reached a specific value X. The counting process of the frequency counter FZ is started for a certain number of segments, in our example 2, and stopped again the next time the same number of segments (2) occurs.
  • step 418 the program is continued with step 418 or point A. If the segment counter SZ has reached the predetermined value X, this means that two crankshaft revolutions have passed, then an inquiry 406 is made as to whether the frequency counter FZ is greater than or equal to 4. If this is not the case, the program continues with step 418 or at point A. If the frequency counter FZ assumes the value 4 or a larger value, the control counter SW is set to B in step 408. In query 410 it is then checked whether the frequency counter has the value 4 or 5. If this is not the case, the Idle counter NLL 0 set step 412. If the frequency counter FZ has the value 4 or 5, the idle counter NLL is set to 1 step 414. Steps 412 and 414 are followed by step 416, in which the frequency counter FZ goes back to zero is reset.
  • a check is carried out to determine whether the change in control difference DDN is greater than a threshold S. If the change in control deviation does not exceed the threshold, the program continues with step 428. If the change in control deviation is greater than the threshold, a query is made in 420 as to whether the frequency counter is 0. If this is the case, then in step 422 the frequency counter is set to 1, the sign of the frequency counter VZZ is set to the sign of the change in control deviation DDNV. If the frequency counter is not equal to 0, a query is made in step 424 as to whether the sign of the frequency counter VZZ is equal to the sign of the current control difference DDNV. If the sign of the change in control deviation has not changed, the computer jumps to step 428.
  • step 426 Steps 422, 426 and 424 are followed by step 428.
  • the control counter is reduced by 1.
  • inquiry 430 it is checked whether the control counter is 0. If this is not the case, then step 432 switches over to smooth running control.
  • step 434 If the control counter is 0, it is set to 1 in step 434. Inquiry 436 a check is made as to whether it is necessary to switch to smooth running control for other reasons. This is e.g. B. the case when the speed is outside the idle range. In this case, the control counter is set to B in step 440. If query 436 recognizes that there are no requests for smooth running control, then step 438 switches to smooth running control.
  • FIG. 5a Various counter values and the control difference DN are entered in a diagram in FIG.
  • the values which the segment counter SZ assumes are shown in FIG. 5a.
  • the measuring range MB is determined by means of this count.
  • the measuring range begins at a certain value of the segment counter SZ, in this example at the value 2.
  • the measuring range ends when the segment counter assumes the same value (2) again.
  • the segment counter in a six-cylinder internal combustion engine runs from the value 12 to the value 1. It counts the impulses triggered by the segment degree arranged on the crankshaft. In this example, the counting process runs over two engine revolutions. This means that 12 pulses occur in the course of two crankshaft revolutions.
  • the control difference DN is plotted in FIG. 5b. Changes to the control difference that lead to an increase in the frequency counter are marked with arrows. Each time the control difference changes, the certain conditions are met, as shown in FIG. 5c, the frequency counter FZ is increased by one.
  • the frequency counter is only increased if the change in control deviation exceeds a certain threshold and at the same time the sign of the change in control difference changes.
  • the control difference A1 changes, both conditions are met, therefore the frequency counter increases by one.
  • the control difference changes by a certain amount, but since its sign does not change, the frequency counter retains its old value.
  • the smooth running control only works when external disturbances which cause vibrations have subsided.
  • Such disorders can e.g. B. caused by resonance vibrations of a two-mass flywheel, an accelerator pedal or clutch pedal actuation when a gear is engaged.
  • a switchover from regulation to control takes place immediately. Detuning of the integrators can thereby be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Einrichtung zur Regelung/Steuerung der Laufruhe einer Brennkraftmaschine gemäß den Oberbegriffen der unabhängigen Ansprüche.The invention relates to a method and a device for regulating / controlling the smooth running of an internal combustion engine according to the preambles of the independent claims.

Ein solches Verfahren und eine solche Einrichtung zur Regelung/Steuerung der Laufruhe einer Brennkraftmaschine ist aus der GB-A 21 73 925 bekannt. Dort wird ein Verfahren und eine Einrichtung zur Regelung/Steuerung der Laufruhe einer Brennkraftmaschine beschrieben. Die zylinderspezifische Regelung wird abgeschaltet, wenn die Regelabweichung einen Grenzwert überschreitet.Such a method and such a device for regulating / controlling the smooth running of an internal combustion engine is known from GB-A 21 73 925. There, a method and a device for regulating / controlling the smooth running of an internal combustion engine are described. The cylinder-specific control is switched off when the control deviation exceeds a limit.

Auch aus der DE-OS 33 36 028 (US-A-4 688 535) ist eine Einrichtung zur Regelung/Steuerung der Laufruhe einer Brennkraftmaschine bekannt. Das dort beschriebene Verfahren beseitigt Schwingungen des Fahrzeugs im unteren Drehzahlbereich, insbesondere im Leerlauf.From DE-OS 33 36 028 (US-A-4 688 535) a device for regulating / controlling the smooth running of an internal combustion engine is known. The method described there eliminates vibrations of the vehicle in the lower speed range, especially when idling.

Solche Schwingungen werden auch als Schütteln bezeichnet und beruhen unter anderem auf Fertigungstoleranzen. Diese Fertigungstoleranzen bewirken, daß einzelnen Zylindern unterschiedliche Mengen zugemessen werden. Bei den Einrichtungen gemäß dem Stand werden diese Schwingungen beseitigt, indem jedem Zylinder eine Regelung zugeordnet wird, die die Kraftstoffzumessung auf möglichst große Laufruhe regelt.Such vibrations are also known as shaking and are based, among other things, on manufacturing tolerances. These manufacturing tolerances mean that different quantities are metered into individual cylinders. In the devices according to the state of the art, these vibrations are eliminated by assigning a control to each cylinder, which regulates the fuel metering for smooth running.

In bestimmten Betriebszuständen, insbesondere bei Systemen mit einem Zwei- Massen- Schwungrad, treten Schwingungen auf, die mit einem Verfahren und einer Einrichtung gemäß dem Stand der Technik nicht ausgeglichen werden können. Es ist sogar so, daß durch die Laufruheregelung die Schwingungen noch verstärkt werden können.In certain operating states, in particular in systems with a dual mass flywheel, vibrations occur which cannot be compensated for by a method and a device according to the prior art. It is even the case that the vibrations can be amplified by the smooth running control.

Aufgabe der ErfindungObject of the invention

Der Erfindung liegt die Aufgabe zugrunde, bei einem System zur Regelung/Steuerung der Laufruhe einer Brennkraftmaschine der eingangs genannten Art, alle auftretenden Schwingungen zu beseitigen. Diese Aufgabe wird durch die im Anspruch 1 bzw. 8 gekennzeichneten Merkmale gelöst.The invention is based, to eliminate all vibrations occurring in a system for regulating / controlling the smooth running of an internal combustion engine of the type mentioned. This object is achieved by the features characterized in claims 1 and 8, respectively.

Vorteile der ErfindungAdvantages of the invention

Bei einem System zur Regelung/Steuerung der Laufruhe einer Brennkraftmaschine der eingangs genannten Art, können auftretenden Schwingungen beseitigt werden.In a system for regulating / controlling the smooth running of an internal combustion engine of the type mentioned at the outset, vibrations that occur can be eliminated.

Die Erfindung wird nachstehend, anhand der in der Zeichnung dargestellten Ausführungsformen, erläutert.The invention is explained below with reference to the embodiments shown in the drawing.

Zeichnungendrawings

Figur 1 zeigt schematisch eine Kraftstoffzumesseinrichtung. In Figur 2 sind die einzelnen Bereiche, in denen die Laufruheregelung bzw. Steuerung aktiv ist, aufgezeigt. Figur 3 zeigt ein grobes Flußdiagramm des erfindungsgemäßen Verfahrens. Die Figuren 4a und 4b zeigen ein detailliertes Flußdiagramm. In Figur 5 sind in einem Diagramm verschiedene Signalverläufe eingetragen.Figure 1 shows schematically a fuel metering device. FIG. 2 shows the individual areas in which the smooth running control or control is active. FIG. 3 shows a rough flow diagram of the method according to the invention. Figures 4a and 4b show a detailed flow chart. In Figure 5, various signal profiles are entered in a diagram.

Beschreibung eines AusführungsbeispielsDescription of an embodiment

In Figur 1 ist schematisch die Kraftstoffzumesseinrichtung dargestellt. Eine Brennkraftmaschine 10 mit mehreren Zylindern erhält von einer Kraftstoffpumpe 20 Kraftstoff zugemessen. Ein elektronisches Steuergerät 30 berechnet abhängig von verschiedenen Eingangsgrößen 35 und den Ausgangssignalen eines Sensors 40 Steuersignale für die Kraftstoffpumpe 20. Ein Sensor 40 erfaßt die von einem, auf der Kurbelwelle angeordneten, Segmentrad 50 ausgelösten Impulse.The fuel metering device is shown schematically in FIG. An internal combustion engine 10 with a plurality of cylinders receives fuel from a fuel pump 20. An electronic control device 30 calculates control signals for the fuel pump 20 depending on various input variables 35 and the output signals of a sensor 40. A sensor 40 detects the pulses triggered by a segment wheel 50 arranged on the crankshaft.

Das von der Brennkraftmaschine erzeugte Drehmoment wird direkt oder über ein Zwei- Massen- Schwungrad 60 auf den Antriebsstrang 70 des Kraftfahrzeuges übertragen. Das elektronische Steuergerät 30 berechnet abhängig von verschiedenen Größen 35 eine Grundkraftstoffmenge und eine Korrekturkraftstoffmenge. Die Funktion des elektronischen Steuergeräts 30 ist z.B. in der DE-OS 36 04 904 oder in der DE-OS 33 36 028 detailliert beschrieben.The torque generated by the internal combustion engine is transmitted directly or via a two-mass flywheel 60 to the drive train 70 of the motor vehicle. The electronic control unit 30 calculates a basic fuel quantity and a correction fuel quantity depending on various variables 35. The function of the electronic control unit 30 is e.g. described in detail in DE-OS 36 04 904 or in DE-OS 33 36 028.

Es kann der Fall eintreten, daß den einzelnen Zylindern bei gleichem Ansteuersignal unterschiedliche Kraftstoffmengen zugemessen werden oder daß einzelne Zylinder bei gleicher Kraftstoffmenge ein unterschiedliches Drehmoment liefern. Um eine Laufunruhe zu vermeiden, müssen diese Unterschiede ausgeglichen werden. Dies wird dadurch erreicht, daß jedem Zylinder ein Regler zugeordnet ist. Besonders vorteilhaft ist, wenn diese Regler PI- Verhalten aufweisen. Aus den unterschiedlichen Abständen der Segmentimpulse von Verbrennung zu Verbrennung errechnen die einzelnen Regler eine Korrekturkraftstoffmenge für jeden einzelnen Zylinder. Diese Korrekturkraftstoffmengen werden in der elektronischen Steuereinheit 30 zylinderspezifisch abgespeichert.It can happen that different amounts of fuel are metered into the individual cylinders with the same control signal or that individual cylinders deliver a different torque with the same amount of fuel. To avoid uneven running, these differences must be compensated for. This is achieved by assigning a controller to each cylinder. It is particularly advantageous if these controllers have PI behavior. The individual controllers calculate a corrective fuel quantity for each individual cylinder from the different intervals of the segment pulses from combustion to combustion. These correction fuel quantities are stored in the electronic control unit 30 in a cylinder-specific manner.

Bei aktiver Regelung der Laufruhe werden die Korrekturkraftstoffmengen laufend ermittelt, abgespeichert und bei der Zumessung in den entsprechenden Zylinder zu der Grundkraftstoffmenge hinzuaddiert. Die Korrekturkraftstoffmenge kann dabei positive oder negative Werte annehmen. Bei einer Steuerung der Laufruhe werden die Korrekturkraftstoffmengen für die einzelnen Zylinder nicht mehr neu berechnet. In diesem Fall werden die abgespeicherten Werte zu der Grundkraftstoffmenge hinzuaddiert.When the smooth running control is active, the correction fuel quantities are continuously determined, stored and added to the basic fuel quantity in the corresponding cylinder. The amount of correction fuel can take positive or negative values. When the smoothness is controlled, the correction fuel quantities for the individual cylinders are no longer recalculated. In this case, the stored values are added to the basic fuel quantity.

Üblicherweise ist die Laufruheregelung nur im Leerlaufbetrieb aktiviert. Außerhalb des Leerlaufs erfolgt eine Laufruhesteuerung bzw. die Kraftstoffzumessung erfolgt unabhängig von der Laufruhe. Diese unterschiedlichen Bereiche sind beispielhaft in Figur 2a und Figur 2b dargestellt. Im Bereich der Leerlaufdrehzahl LLN, deren Wert liegt üblicherweise bei etwa 700 Umdrehungen pro Minute, ist die Laufruheregelung aktiv. Eine Regelung findet also nur in einem Drehzahlbereich zwischen ca. 550 und 850 Umdrehungen pro Minute statt. In den restlichen Drehzahlbereichen erfolgt nur eine Steuerung der Laufruhe.Normally the smooth running control is only activated in idle mode. Outside of idling there is a smooth running control or the fuel metering takes place independently of the smooth running. These different areas are shown by way of example in FIG. 2a and FIG. 2b. The idle speed control is active in the area of the idling speed LLN, whose value is usually around 700 revolutions per minute. Regulation takes place only in a speed range between approx. 550 and 850 revolutions per minute. In the remaining speed ranges, only smooth running is controlled.

Oberhalb einer bestimmten Grenzdrehzahl wirken sich die Fertigungstoleranzen nicht mehr aus. Daher bringt oberhalb dieser Grenzdrehzahl das Laufruheprogramm keine Vorteile mehr. Dies ist üblicherweise bei ca. 1.500 Umdrehungen pro Minute der Fall. Zur Einteilung der Bereiche, in denen die Laufruheregelung bzw. Laufruhesteuerung aktiviert ist, können anstelle der Drehzahl auch andere Betriebskenngrößen herangezogen werden. Eine solche Größe ist z.B. die pro Hub eingespritzte Kraftstoffmenge. Wie in Figur 2b gezeigt ist die Laufruheregelung nur bei einer eingespritzten Kraftstoffmenge zwischen 3 mg/Hub und 11 mg/Hub aktiv.The manufacturing tolerances no longer have an effect above a certain limit speed. Therefore, the smooth running program no longer has any advantages above this limit speed. This is usually the case at around 1,500 revolutions per minute. To divide the areas in which the smooth running control or smooth running control is activated, other operating parameters can be used instead of the speed. Such a quantity is, for example, the amount of fuel injected per stroke. As shown in FIG. 2b, the smooth running control is only active with an injected fuel quantity between 3 mg / stroke and 11 mg / stroke.

Die Bereiche, in denen die Laufruheregelung aktiv ist, hängen von der Leerlaufdrehzahl ab. Da unterschiedliche Typen von Brennkraftmaschinen auch unterschiedliche Leerlaufdrehzahlen aufweisen, weichen die Bereiche je nach Typ der Brennkraftmaschine von den obigen Werten ab.The areas in which the smooth running control is active depend on the idling speed. Since different types of internal combustion engines also have different idling speeds, the ranges deviate from the above values depending on the type of internal combustion engine.

Treten in dem System Kraftfahrzeug Brennkraftmaschine Schwingungen mit sehr hoher Amplitude und/oder bestimmten Frequenzen auf, so kann der Fall eintreten, daß diese Schwingungen durch die Laufruheregelung nicht ausgeglichen werden können. Dies ist insbesondere dann der Fall, wenn das Fahrzeug mit einem Zwei- Massen- Schwungrad ausgerüstet ist. Dieses Zwei- Massen- Schwungrad hat je nach Betriebsbedingungen verschiedene Resonanzfrequenzen. Werden diese Resonanzfrequenzen angeregt, so übertragen sich diese Schwingungen auf das gesamte System Kraftfahrzeug Brennkraftmaschine. Besitzen diese Schwingungen eine Frequenz F die gleich der Kurbelwellenfrequenz oder dem 1,5- Fachen der Kurbenwellenfrequenz ist, so stören diese Schwingungen den Laufruheregler. Es tritt z.B. der Fall ein, daß die Korrekturkraftstoffmenge laufend vergrößert wird, obwohl dies momentan nicht notwendig ist. Durch die erhöhten Korrekturmengen werden die Schwingungen noch verstärkt. In diesem Fall muß die Laufruheregelung abgeschaltet werden.If vibrations with a very high amplitude and / or certain frequencies occur in the motor vehicle internal combustion engine system, the case may arise that these vibrations cannot be compensated for by the smooth running control. This is particularly the case if the vehicle is equipped with a dual mass flywheel. This dual mass flywheel has different resonance frequencies depending on the operating conditions. If these resonance frequencies are excited, these vibrations are transmitted to the entire motor vehicle internal combustion engine system. If these vibrations have a frequency F which is equal to the crankshaft frequency or 1.5 times the crankshaft frequency, these vibrations disturb the smooth-running controller. For example, the case that the amount of correction fuel is continuously increased, although this is not currently necessary. The vibrations are amplified by the increased correction quantities. In this case, the smooth running control must be switched off.

In Figur 3 ist ein grobes Flußdiagramm des erfindungsgemäßen Verfahrens aufgezeigt, mit dem solche Schwingungen vermieden werden können. In einem ersten Schritt/310 wird die Schwingungsfrequenz F oder die Regeldifferenz DN, d. h. die Differenz zwischen Soll- und Ist- Wert, erfaßt. Eine Abfrageeinheit 320 erkennt, ob die Regeldifferenz DN bzw. die Schwingungsfrequenz F einen bestimmten Wert überschreitet.FIG. 3 shows a rough flow diagram of the method according to the invention, with which such vibrations can be avoided. In a first step / 310, the oscillation frequency F or the control difference DN, ie the difference between the setpoint and actual value, is recorded. An interrogation unit 320 recognizes whether the control difference DN or the oscillation frequency F exceeds a certain value.

Erreicht die Frequenz F der Schwingung einen Grenzwert, das heißt wird sie gleich oder größer wie die Kurbelwellenfrequenz, wird der Laufruheregler im Schritt 330 ausgeschaltet. Dies bedeutet, daß die Laufruheregelung nicht mehr aktiv ist, sondern es erfolgt nur noch eine Laufruhesteuerung. Gleichzeitig erfolgt die Initialisierung zweier Zeitzähler VZ1 und VZ2. In der Abfrageeinheit 340 wird mittels des ersten Zeitzählers VZ1 abgefragt, ob eine Wartezeit schon abgelaufen ist. Diese Zeitabfrage stellt sicher, daß weitere Maßnahmen erfolgen, wenn die Schwingungen länger als eine vorgegebene Zeit anhalten.If the frequency F of the vibration reaches a limit value, that is to say it becomes equal to or greater than the crankshaft frequency, the smooth running controller is switched off in step 330. This means that the smoothness control is no longer active, but only smoothness control takes place. At the same time, two time counters VZ1 and VZ2 are initialized. In the query unit 340, the first time counter VZ1 is used to query whether a waiting time has already expired. This time query ensures that further measures are taken if the vibrations last longer than a predetermined time.

Ergibt die Messung der Schwingungsfrequenz F, daß während einer Anzahl von Kurbenwellenumdrehungen bzw. über einen vorgegebenen Zeitraum immer nur Kurbenwellenfrequenzen auftreten, so werden in Schritt 360 weitere Maßnahmen eingeleitet. Solche Maßnahmen können sein, eine Erhöhung der Leerlaufdrehzahl, ein Nullsetzen der Integratoren des PI-Reglers oder ein Löschen der abgespeicherten Korrekturmengen. Als günstiger Wert hat sich eine Drehzahlerhöhungen zwischen 50 und 100 Umdrehungen pro Minute erwiesen. Durch diese Drehzahlerhöhung kann das System aus dem Resonanzbereich gebracht werden. Falls keine Kurbelwellenfrequenzen mehr auftreten, wird die Leerlaufdrehzahl auf den vorhergehenden Wert gesetzt.If the measurement of the oscillation frequency F shows that only crankshaft frequencies occur during a number of crankshaft revolutions or over a predetermined period of time, further measures are initiated in step 360. Such measures can include increasing the idle speed, zeroing the integrators of the PI controller or deleting the stored correction amounts. A speed increase between 50 and 100 revolutions per minute has proven to be a favorable value. This increase in speed can bring the system out of the resonance range. If crankshaft frequencies no longer occur, the idle speed is set to the previous value.

Erkennt die Abfrage 320, daß die Schwingungsfrequenz bzw. die Regeldifferenz kleiner als eine Schwelle ist, so wird mittels der Anfrage 370 überprüft, ob die Regelung bis jetzt ausgeschalten war. Bei eingeschaltetem Regler endet das Programm mit dem Schritt 350. Bei ausgeschaltetem Regler erfolgt eine Anfrage 380 dahingehend, ob eine weitere Wartezeit VZ2 verstrichen ist. Ist diese Wartezeit schon abgelaufen, so wird im Schritt 390 der Regler wieder eingeschaltet. Ist die Wartezeit noch nicht abgelaufen, so läuft das Programm mit ausgeschaltetem Regler weiter. Durch diese weitere Wartezeit wird ein zu schnelles Zurückschalten vom Steuer- auf Regelbetrieb verhindert. Die Umschaltung von Steuer- auf Regelbetrieb erfolgt erst nach der Wartezeit VZ2 oder nach einer Anzahl von Drehzahlimpulsen, nachdem die Regeldifferenz DN bzw. die Schwingunsfrequenz einen bestimmten Wert wieder unterschreitet.If query 320 recognizes that the oscillation frequency or the control difference is less than a threshold, query 370 is used to check whether the control has been switched off until now. When the controller is switched on, the program ends with step 350. When the controller is switched off, an inquiry 380 is made as to whether a further waiting time VZ2 has elapsed. If this waiting time has already expired, the controller is switched on again in step 390. If the waiting time has not yet expired, the program continues with the controller switched off. Due to this further waiting time a too quick switch back from control to regulation operation prevented. The switch from control to regulating operation takes place only after the waiting time VZ2 or after a number of speed pulses, after the control difference DN or the oscillation frequency falls below a certain value again.

Ein detailliertes Flußdiagramm des Unterprogramms Laufruheregelung ist in den Figuren 4a und 4b dargestellt. Im Schritt 400 werden die Laufruhe- Sollwerte und die Laufruhe- Istwerte berechnet. Diese Berechnung ist z. B. in der DE-OS 33 36 028 oder in der DE-OS 36 04 904 detailliert beschrieben. Ausgehend von diesen Werten wird dann die Regeldifferenz DN bestimmt. In Schritt 402 wird dann die Regeldifferenzänderung DDN aus dem aktuellen und dem vorhergehenden Wert der Regeldifferenz DN ermittelt. Ausgehend von dieser Regeldifferenzänderung wird deren Betrag DDNB und deren Vorzeichen DDNV errechnet. Im Schritt 404 erfolgt die Anfrage, ob der Segmentzähler SZ einen bestimmten Wert X erreicht hat. Dabei wird bei einer bestimmten Segmentzahl, in unserem Beispiel 2, der Zählvorgang des Frequenzzählers FZ gestartet und beim nächsten Auftreten der gleichen Segmentzahl (2) wieder gestopt.A detailed flow chart of the smooth running control subroutine is shown in FIGS. 4a and 4b. In step 400, the smoothness target values and the smoothness actual values are calculated. This calculation is e.g. B. in DE-OS 33 36 028 or in DE-OS 36 04 904 described in detail. The control difference DN is then determined on the basis of these values. In step 402, the change in control difference DDN is then determined from the current and the previous value of the control difference DN. Based on this change in control difference, the amount DDNB and the sign DDNV are calculated. In step 404, a query is made as to whether the segment counter SZ has reached a specific value X. The counting process of the frequency counter FZ is started for a certain number of segments, in our example 2, and stopped again the next time the same number of segments (2) occurs.

Hat der Segmentzähler einen vorgegebenen Wert X noch nicht erreicht, so wird das Programm mit Schritt 418 bzw. Punkt A fortgesetzt. Hat der Segmentzähler SZ den vorgegebenen Wert X erreicht, dies bedeutet es sind zwei Kurbelwellenumdrehungen vorüber, so erfolgt eine Anfrage 406, ob der Frequenzzähler FZ größer gleich 4 ist. Ist dies nicht der Fall, so arbeitet das Programm mit Schritt 418 bzw. am Punkt A weiter. Nimmt der Frequenzzähler FZ den Wert 4 oder einen größeren Wert an, so wird im Schritt 408 der Steuerungszähler SW auf B gesetzt. In der Anfrage 410 wird dann überprüft, ob der Frequenzzähler den Wert 4 oder 5 besitzt. Ist dies nicht der Fall, so wird der Leerlaufzähler NLL 0 gesetzt Schritt 412. Besitzt der Frequenzzähler FZ den Wert 4 oder 5, so wird der Leerlaufzähler NLL auf 1 gesetzt Schritt 414. An die Schritte 412 und 414 schließt sich jeweils der Schritt 416 an, in dem der Frequenzzähler FZ wieder auf Null zurückgesetzt wird.If the segment counter has not yet reached a predetermined value X, the program is continued with step 418 or point A. If the segment counter SZ has reached the predetermined value X, this means that two crankshaft revolutions have passed, then an inquiry 406 is made as to whether the frequency counter FZ is greater than or equal to 4. If this is not the case, the program continues with step 418 or at point A. If the frequency counter FZ assumes the value 4 or a larger value, the control counter SW is set to B in step 408. In query 410 it is then checked whether the frequency counter has the value 4 or 5. If this is not the case, the Idle counter NLL 0 set step 412. If the frequency counter FZ has the value 4 or 5, the idle counter NLL is set to 1 step 414. Steps 412 and 414 are followed by step 416, in which the frequency counter FZ goes back to zero is reset.

In der Anfrage 418 Figur 4b erfolgt eine Überprüfung dahingehend, ob die Regeldifferenzänderung DDN größer als eine Schwelle S ist. Überschreitet die Regeldiffernzänderung die Schwelle nicht, so setzt das Programm mit Schritt 428 fort. Ist die Regeldifferenzänderung größer als die Schwelle, so erfolgt in 420 eine Anfrage, ob der Frequenzzähler 0 ist. Ist dies der Fall, so wird im Schritt 422 der Frequenzzähler auf 1, das Vorzeichen des Frequenzzähler VZZ auf das Vorzeichen der Regeldiffernzänderung DDNV gesetzt. Ist der Frequenzzähler ungleich 0, so wird im Schritt 424 abgefragt, ob das Vorzeichen des Frequenzzählers VZZ gleich dem Vorzeichen der aktuellen Regeldifferenzänderung DDNV ist. Hat sich das Vorzeichen der Regeldiffernzänderung nicht geändert, so springt der Rechner zum Schritt 428. Ändert sich dagegen das Vorzeichen, so wird der Frequenzzähler FZ um 1 erhöht und das Vorzeichen des Frequenzzählers VZZ mit dem aktuellen Wert neu besetzt, siehe Schritt 426. An die Schritte 422, 426 und 424 schließt sich der Schritt 428 an. In diesem Schritt wird der Steuerungszähler um 1 vermindert. In der Anfrage 430 wird überprüft, ob der Steuerungszähler gleich 0 ist. Ist dies nicht der Fall, so wird im Schritt 432 auf Laufruhesteuerung umgeschaltet.In inquiry 418, FIG. 4b, a check is carried out to determine whether the change in control difference DDN is greater than a threshold S. If the change in control deviation does not exceed the threshold, the program continues with step 428. If the change in control deviation is greater than the threshold, a query is made in 420 as to whether the frequency counter is 0. If this is the case, then in step 422 the frequency counter is set to 1, the sign of the frequency counter VZZ is set to the sign of the change in control deviation DDNV. If the frequency counter is not equal to 0, a query is made in step 424 as to whether the sign of the frequency counter VZZ is equal to the sign of the current control difference DDNV. If the sign of the change in control deviation has not changed, the computer jumps to step 428. If, on the other hand, the sign changes, the frequency counter FZ is increased by 1 and the sign of the frequency counter VZZ is reset with the current value, see step 426 Steps 422, 426 and 424 are followed by step 428. In this step the control counter is reduced by 1. In inquiry 430 it is checked whether the control counter is 0. If this is not the case, then step 432 switches over to smooth running control.

Ist der Steuerungszähler gleich 0, so wird er im Schritt 434 auf 1 gesetzt. In der Anfrage 436 wird überprüft, ob aus anderen Gründen auf Laufruhesteuerung umgeschaltet werden muß. Dies ist z. B. der Fall, wenn die Drehzahl außerhalb des Leerlaufbereichs liegt. In diesem Fall wird im Schritt 440 der Steuerungszähler auf B gesetzt. Erkennt die Abfrage 436, daß keine Anforderung auf Laufruhesteuerung vorliegen, so wird im Schritt 438 auf Laufruheregelung umgeschaltet.If the control counter is 0, it is set to 1 in step 434. Inquiry 436 a check is made as to whether it is necessary to switch to smooth running control for other reasons. This is e.g. B. the case when the speed is outside the idle range. In this case, the control counter is set to B in step 440. If query 436 recognizes that there are no requests for smooth running control, then step 438 switches to smooth running control.

In Figur 5 sind in einem Diagramm verschiedene Zählerwerte und die Regeldifferenz DN eingetragen. Die Werte, die der Segmentzähler SZ annimmt, sind in Figur 5a dargestellt. Mittels dieser Zählung wird der Meßbereich MB festgelegt. Der Meßbereich beginnt bei einem bestimmten Wert des Segmentzählers SZ, in diesem Beispiel beim Wert 2. Der Meßbereich endet, wenn der Segmentzähler wieder den gleichen Wert (2) annimmt. Der Segmentzähler läuft in unserem Beispiel bei einer Sechs- Zylinder- Brennkraftmaschine von dem Wert 12 auf den Wert 1. Er zählt dabei, die von dem auf der Kurbelwelle angeordneten Segmentgrad ausgelösten, Impulse. Bei diesem Beispiel läuft der Zählvorgang über zwei Motorumdrehungen. Dies bedeutet es treten im Verlaufe zweier Kurbelwellenumdrehungen 12 Impulse auf.Various counter values and the control difference DN are entered in a diagram in FIG. The values which the segment counter SZ assumes are shown in FIG. 5a. The measuring range MB is determined by means of this count. The measuring range begins at a certain value of the segment counter SZ, in this example at the value 2. The measuring range ends when the segment counter assumes the same value (2) again. In our example, the segment counter in a six-cylinder internal combustion engine runs from the value 12 to the value 1. It counts the impulses triggered by the segment degree arranged on the crankshaft. In this example, the counting process runs over two engine revolutions. This means that 12 pulses occur in the course of two crankshaft revolutions.

In Figur 5b ist die Regeldifferenz DN aufgetragen. Änderungen der Regeldifferenz die zu einer Erhöhung des Frequenzzählers führen, sind mit Pfeilen markiert. Bei jeder Änderung der Regeldifferenz die gewisse Bedingungen erfüllt, wird wie in Figur 5c dargestellt, der Frequenzzähler FZ um eins erhöht.The control difference DN is plotted in FIG. 5b. Changes to the control difference that lead to an increase in the frequency counter are marked with arrows. Each time the control difference changes, the certain conditions are met, as shown in FIG. 5c, the frequency counter FZ is increased by one.

Eine Erhöhung des Frequenzzählers erfolgt nur dann, wenn die Regeldifferenzänderung eine bestimmte Schwelle überschreitet und gleichzeitig das Vorzeichen der Regeldifferenzänderung wechselt. Bei der Änderung A1 der Regeldifferenz sind beide Bedingungen erfüllt, daher erhöht sich der Frequenzzähler um eins. Bei der Änderung A2 ändert sich die Regeldifferenz um einen bestimmten Betrag, da sich ihr Vorzeichen aber nicht verändert, behält der Frequenzzähler seinen alten Wert.The frequency counter is only increased if the change in control deviation exceeds a certain threshold and at the same time the sign of the change in control difference changes. When the control difference A1 changes, both conditions are met, therefore the frequency counter increases by one. With the change A2, the control difference changes by a certain amount, but since its sign does not change, the frequency counter retains its old value.

Besonders vorteilhaft an der Erfindung ist es, daß die Laufruheregelung nur arbeitet, wenn äußere Störungen, die Schwingungen verursachen, abgeklungen sind. Solche Störungen können z. B. durch Resonanzschwingungen eines Zwei- Massen- Schwungrad, eine Fahrpedal- oder Kupplungspedalbetätigung bei eingelegtem Gang verursacht werden. Bei Erkennen solcher Störungen erfolgt sofort eine Umschaltung von Regelung auf Steuerung. Dadurch kann ein Verstimmen der Integratoren verhindert werden.It is particularly advantageous in the invention that the smooth running control only works when external disturbances which cause vibrations have subsided. Such disorders can e.g. B. caused by resonance vibrations of a two-mass flywheel, an accelerator pedal or clutch pedal actuation when a gear is engaged. When such faults are detected, a switchover from regulation to control takes place immediately. Detuning of the integrators can thereby be prevented.

Claims (8)

  1. Method for the closed-loop/open-loop control of the smooth running of an internal combustion engine, in which a closed-loop control difference (DN) is determined as a function of a required value and an actual value, a closed-loop smooth-running control or an open-loop smooth-running control taking place, depending on the operating conditions, characterised in that the closed-loop smooth-running control is switched off if a vibration frequency (F) of the closed-loop control difference (DN) reaches a limiting value.
  2. Method according to Claim 1, characterised in that the closed-loop smooth-running control is only switched on again when the vibration frequency (F) has again become less than a certain value and a delay period has elapsed.
  3. Method according to one of Claims 1 or 2, characterised in that the vibration frequency of the closed-loop control difference is recorded by means of a frequency counter.
  4. Method according to Claim 3, characterised in that a frequency counter increase only takes place if the closed-loop control difference change exceeds a certain threshold and the sign of the closed-loop control difference change reverses at the same time.
  5. Method according to at least one of Claims 1 to 4, characterised in that when the closed-loop smooth-running control is switched off for longer than a specified period, use is made of at least one of the following measures, increasing the required idling speed, setting the integrators of the PI controller to 0 or erasing the stored correction quantities.
  6. Method according to Claim 5, characterised in that the required idling speed is increased by 50 to 100 revolutions per minute.
  7. Method according to one of the preceding claims, characterised in that the correction fuel quantity determined in the case of active smooth-running control is stored and is added to the basic fuel quantity during the metering into the corresponding cylinder.
  8. Device for the closed-loop/open-loop control of the smooth-running of an internal combustion engine in which a closed-loop smooth-running control or an open-loop smooth-running control is active depending on the operating conditions, means being provided which record a closed-loop control difference, characterised in that means are provided which switch off the closed-loop smooth-running control in the case where the vibration frequency of the closed-loop control difference reaches a limiting value.
EP90124327A 1990-02-23 1990-12-15 Method and device for regulating/controlling the smooth running of an internal combustion engine Expired - Lifetime EP0443147B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4005735 1990-02-23
DE4005735A DE4005735A1 (en) 1990-02-23 1990-02-23 METHOD AND DEVICE FOR REGULATING / CONTROLLING THE RUNNING TIME OF AN INTERNAL COMBUSTION ENGINE

Publications (3)

Publication Number Publication Date
EP0443147A2 EP0443147A2 (en) 1991-08-28
EP0443147A3 EP0443147A3 (en) 1992-01-15
EP0443147B1 true EP0443147B1 (en) 1993-11-18

Family

ID=6400817

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90124327A Expired - Lifetime EP0443147B1 (en) 1990-02-23 1990-12-15 Method and device for regulating/controlling the smooth running of an internal combustion engine

Country Status (4)

Country Link
US (1) US5101791A (en)
EP (1) EP0443147B1 (en)
JP (1) JP3286638B2 (en)
DE (2) DE4005735A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9102629L (en) * 1991-09-11 1993-03-12 Electrolux Ab DEVICE IN COMBUSTION ENGINE
US5381771A (en) * 1992-07-28 1995-01-17 Lean Power Corporation Lean burn mixture control system
SE512556C2 (en) * 1995-12-22 2000-04-03 Volvo Ab Method for reducing vibration in a vehicle and device for carrying out the method
DE19725233B4 (en) * 1997-06-14 2005-03-24 Volkswagen Ag Method for adjusting the injection quantity of an internal combustion engine for rudder control
US7111460B2 (en) * 2000-03-02 2006-09-26 New Power Concepts Llc Metering fuel pump
US8069676B2 (en) 2002-11-13 2011-12-06 Deka Products Limited Partnership Water vapor distillation apparatus, method and system
US8511105B2 (en) 2002-11-13 2013-08-20 Deka Products Limited Partnership Water vending apparatus
EP2476471B1 (en) 2002-11-13 2016-07-27 DEKA Products Limited Partnership Liquid distillation with recycle of pressurized vapor
US11826681B2 (en) 2006-06-30 2023-11-28 Deka Products Limited Partneship Water vapor distillation apparatus, method and system
US11884555B2 (en) 2007-06-07 2024-01-30 Deka Products Limited Partnership Water vapor distillation apparatus, method and system
US8006511B2 (en) 2007-06-07 2011-08-30 Deka Products Limited Partnership Water vapor distillation apparatus, method and system
US8359877B2 (en) 2008-08-15 2013-01-29 Deka Products Limited Partnership Water vending apparatus
US9593809B2 (en) 2012-07-27 2017-03-14 Deka Products Limited Partnership Water vapor distillation apparatus, method and system
RU2549748C1 (en) * 2013-10-15 2015-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет" Perfection of diesel piston engine equilibrium at idling by choke
DE102015101005B4 (en) * 2015-01-23 2022-12-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for starting a motor vehicle engine and engine control device for controlling a motor vehicle engine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104566A (en) * 1979-02-02 1980-08-11 Hitachi Ltd Method for electronic ignition time control
DE2951755A1 (en) * 1979-12-21 1981-07-02 Alfred Teves Gmbh, 6000 Frankfurt METHOD AND CIRCUIT ARRANGEMENT FOR CONVERTING VARIABLE PHYSICAL VALUES PRESENTING IN FREQUENCY AND PRESENTED AS A FREQUENCY. SIGNALS
DE3336028C3 (en) * 1983-10-04 1997-04-03 Bosch Gmbh Robert Device for influencing control variables of an internal combustion engine
JPS61118545A (en) * 1984-11-15 1986-06-05 Nippon Denso Co Ltd Fuel injection quantity controller
JPS61212644A (en) * 1985-03-19 1986-09-20 Diesel Kiki Co Ltd Idle operation control device for internal-combustion engine
DE3540811A1 (en) * 1985-11-16 1987-05-21 Daimler Benz Ag FUEL INJECTION DEVICE FOR INTERNAL COMBUSTION ENGINES, IN PARTICULAR PUMP NOZZLE FOR AIR COMPRESSIVE INJECTION INTERNAL COMBUSTION ENGINES
DE3604904A1 (en) * 1986-02-17 1987-08-20 Bosch Gmbh Robert DEVICE FOR REGULATING THE RUNNING TIME OF AN INTERNAL COMBUSTION ENGINE
JPS639641A (en) * 1986-06-27 1988-01-16 Hitachi Ltd Load torque controller for internal combustion engine
GB8700759D0 (en) * 1987-01-14 1987-02-18 Lucas Ind Plc Adaptive control system
JP2674077B2 (en) * 1988-04-12 1997-11-05 トヨタ自動車株式会社 Non-linear feedback control method for internal combustion engine
GB8810878D0 (en) * 1988-05-07 1988-06-08 Lucas Ind Plc Adaptive control system for i c engine
US4869222A (en) * 1988-07-15 1989-09-26 Ford Motor Company Control system and method for controlling actual fuel delivered by individual fuel injectors
DE4013943A1 (en) * 1989-05-01 1990-11-08 Toyota Motor Co Ltd METHOD AND DEVICE FOR SUPPRESSING REVERSIBLE VIBRATIONS OF A MOTOR VEHICLE

Also Published As

Publication number Publication date
DE59003552D1 (en) 1993-12-23
DE4005735A1 (en) 1991-08-29
US5101791A (en) 1992-04-07
JP3286638B2 (en) 2002-05-27
EP0443147A3 (en) 1992-01-15
JPH04219443A (en) 1992-08-10
EP0443147A2 (en) 1991-08-28

Similar Documents

Publication Publication Date Title
EP0443147B1 (en) Method and device for regulating/controlling the smooth running of an internal combustion engine
DE4122139C2 (en) Method for cylinder equalization with regard to the fuel injection quantities in an internal combustion engine
DE3336028C2 (en)
DE19945618B4 (en) Method and device for controlling a fuel metering system of an internal combustion engine
EP0489059B1 (en) Process and apparatus for monitoring the power output of the individual cylinders of a multicylinder internal combustion engine
DE3416369C2 (en) Vehicle speed control device
DE3408223C2 (en)
DE4208002B4 (en) System for controlling an internal combustion engine
DE3929746A1 (en) METHOD AND DEVICE FOR CONTROLLING AND REGULATING A SELF-IGNITIONING INTERNAL COMBUSTION ENGINE
DE19536038A1 (en) Motor vehicle propulsion unit control setting upper limit to torque
EP0525419A1 (en) Device for controlling the output power of a vehicular power unit
DE102010038351B4 (en) Method and device for operating a hybrid drive system
EP0152604A1 (en) Control and regulation method for the operating parameters of an internal-combustion engine
DE3639074A1 (en) DEVICE FOR CONTROLLING THE IDLE OF AN INTERNAL COMBUSTION ENGINE
DE19813138A1 (en) Method and device for controlling an electromagnetic consumer
DE3705278A1 (en) ELECTRONIC CONTROL DEVICE FOR FUEL AMOUNT MODULATION OF AN INTERNAL COMBUSTION ENGINE
EP0651158A1 (en) Method for the suppression of vibrations of the drive train of a automotive vehicle by ignition point control
DE3403260C2 (en)
DE3644639A1 (en) DEVICE FOR CONTROLLING THE IDLE OPERATION OF AN INTERNAL COMBUSTION ENGINE
DE3838963C2 (en) Fuel injection control system for an automotive engine
EP1005609B1 (en) Method for controlling exhaust gas recirculation in an internal combustion engine
DE102006044771B4 (en) Method and control unit for determining an error of an injection quantity of an injection control element of an internal combustion engine which is controlled with a control duration
EP0293367B1 (en) Device for adjusting the smooth running of internal combustion engines
DE3246524C2 (en)
DE4105161C2 (en) Device for controlling the idle speed of an engine of a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17P Request for examination filed

Effective date: 19920623

17Q First examination report despatched

Effective date: 19921030

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931117

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59003552

Country of ref document: DE

Date of ref document: 19931223

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971127

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971218

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981215

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090224

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701