EP0403585B1 - Surveying instrument with receiver for a satellite position measurement system and process for operating it - Google Patents

Surveying instrument with receiver for a satellite position measurement system and process for operating it Download PDF

Info

Publication number
EP0403585B1
EP0403585B1 EP89907139A EP89907139A EP0403585B1 EP 0403585 B1 EP0403585 B1 EP 0403585B1 EP 89907139 A EP89907139 A EP 89907139A EP 89907139 A EP89907139 A EP 89907139A EP 0403585 B1 EP0403585 B1 EP 0403585B1
Authority
EP
European Patent Office
Prior art keywords
receiver
satellite
surveying instrument
measurement
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89907139A
Other languages
German (de)
French (fr)
Other versions
EP0403585A1 (en
Inventor
Hilmar Dr. Ingensand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Geosystems AG
Original Assignee
Leica Heerbrugg AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Heerbrugg AG filed Critical Leica Heerbrugg AG
Priority to AT89907139T priority Critical patent/ATE85703T1/en
Publication of EP0403585A1 publication Critical patent/EP0403585A1/en
Application granted granted Critical
Publication of EP0403585B1 publication Critical patent/EP0403585B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/51Relative positioning

Definitions

  • the invention relates to a measuring device with receiver for a satellite position measuring system, according to the preamble of claim 1, and a method for its operation.
  • Satellite position measuring systems enable terrestrial position determination with geodetic accuracy.
  • the prerequisite is the use of a receiver matched to the system for field measurements of a mobile device.
  • the receiver is directly equipped with an antenna, the position of which is recognized by the system. Because of the quasi-optical propagation properties of the wave range selected for the transmission system, a usable reception of the satellite signals can only be guaranteed if the receiver antenna is in the direct field of view of several satellites of the system. This requirement is not met for all surveying tasks. Points that are covered by obstacles in the zenith area and are therefore not in the reception area of the satellites have so far not been able to be measured with this system.
  • a measuring device consists of a receiver 1 matched to the satellite position measuring system with a corresponding antenna.
  • the receiver is preferably set up to receive the global positioning system GPS.
  • the device also contains a distance meter 2, preferably an electro-optical distance meter or a distance meter based on the ultrasound principle.
  • An electro-optical distance meter is preferably of the type as described in the patent specification CH 641 308 or CH 644 243.
  • the two modules mentioned, receiver 1 and distance meter 2 are geometrically unambiguously mounted on a plumb rod 3, which has a plumb sensor 4 as an additional device for determining the local physical plumb direction.
  • the distance meter 2 is provided with a sighting device 5, which is arranged coaxially to the optical axis of the distance meter.
  • the sighting device is constructed in such a way that the observer can simultaneously observe the vertical position of the plunger 3 and a targeted point in the field of vision.
  • the sighting device can be equipped with a sensor which reacts to the magnetic field of the earth.
  • the distance meter 2 can preferably be tilted about a horizontal axis H.
  • the extent of the tilting rotation is recorded via an angle encoder or an electronic inclinometer alpha.
  • the plumb baton 3 is preferably telescopic. At its lower end, it has a conventional solder rod tip S.
  • the pole 3 can finally be provided with a length measuring system, preferably a scale M, which allows a determination of the distance h between the tip S and the antenna center A.
  • the distance meter 2 arranged directly under the receiver 1 in the example enables distance measurements to distant points, e.g. to reflectors attached there.
  • point 6 represents such a distant point.
  • the distance measurement can also be carried out according to other contactless methods without using a target reflector.
  • a point 6 to be measured is aimed with the sighting device 5, the vertical position of the device in the sighting device being checked at the same time.
  • the distance meter 2 is tilted about the horizontal axis H, this rotation being detected by the angle encoder or inclinometer alpha. With this help, the measured inclined distance is reduced to the horizon.
  • a measuring unit 1-5 is set up in succession in the vicinity of the point 6 to be measured at at least two different auxiliary points 7, 8 which can be reached by the satellite system. From these auxiliary points, routes 9 and 10 to point 6, which is inaccessible to the satellite system, are determined electro-optically in the example. The arches can then be used to create the Clearly determine the coordinates of the point to be measured. If two measuring units are available, one of them is set up at auxiliary points 7 and 8 and the measurement is carried out in the manner described above.

Abstract

A surveying instrument with receiver for a satellite position measurement system comprises a preferably contactless, tiltable distance measurer (2) combined in a geometrically clearly-defined relative position with the satellite receiver (1). Both components of the instrument are mounted in fixed geometric positions on a plumbing staff (3) or on a measurement stand. A plumbing sensor (4) and a sighting device (5) are also provided. The direction of the plumbing staff and the direction of the measurement beam of the distance measurer can be adjusted. The instrument can be used to determine the co-ordinates of points which cannot be surveyed using conventional satellite position measurement systems.

Description

Die Erfindung betrifft ein Vermessungsgerät mit Empfänger für ein Satelliten-Positionsmess-System, nach dem Oberbegriff des Patentanspruchs 1, sowie ein Verfahren zu dessen Betrieb.The invention relates to a measuring device with receiver for a satellite position measuring system, according to the preamble of claim 1, and a method for its operation.

Satelliten-Positionsmess-Systeme ermöglichen eine terrestrische Positionsbestimmung mit geodätischer Genauigkeit. Voraussetzung ist der Einsatz eines auf das System abgestimmten Empfängers, bei Feldmessungen eines Mobilgerätes. Der Empfänger ist direkt mit einer Antenne ausgerüstet, deren Position mit Hilfe des Systems erkannt wird. Wegen der quasi-optischen Ausbreitungseigenschaften des für das Uebertragungssystem gewählten Wellenbereichs kann ein brauchbarer Empfang der Satellitensignale nur gewährleistet werden, wenn die Empfängerantenne im direkten Sichtbereich mehrerer Satelliten des Systems liegt. Diese Voraussetzung ist nicht für alle Vermessungsaufgaben erfüllt. Punkte, die im Zenitbereich durch Hindernisse abgedeckt sind und damit nicht im Empfangbereich der Satelliten liegen, konnten bisher mit diesem Systems nicht vermessen werden.Satellite position measuring systems enable terrestrial position determination with geodetic accuracy. The prerequisite is the use of a receiver matched to the system for field measurements of a mobile device. The receiver is directly equipped with an antenna, the position of which is recognized by the system. Because of the quasi-optical propagation properties of the wave range selected for the transmission system, a usable reception of the satellite signals can only be guaranteed if the receiver antenna is in the direct field of view of several satellites of the system. This requirement is not met for all surveying tasks. Points that are covered by obstacles in the zenith area and are therefore not in the reception area of the satellites have so far not been able to be measured with this system.

Aus der Druckschrift "Microwave Journal, Band 29, Nr.4, M.R. Stiglitz, The global positioning system, Seiten 34 ff." wird neben den allgemeinen Möglichkeiten der Koordinatenbestimmung mit einem Satelliten-Positionsmeß-System auch eine kombinierte Koordinatenbestimmung mit zwei separat arbeitenden Satelliten-Systemen beschrieben. Die Vermessung bzw. Bestimmung von Punkten, welche sich außerhalb des Satelliten-Empfangsbereich/Sichtbereich befinden, ist in dieser Schrift nicht angegeben. Ferner fehlen Hinweise darauf, wie an sich bekannte geodätische Meßinstrumente mit einem derartigen Satelliten-Positionsmeß -System kombiniert werden können.From the publication "Microwave Journal, Volume 29, No. 4, M.R. Stiglitz, The global positioning system, pages 34 ff." In addition to the general possibilities of coordinate determination with a satellite position measuring system, a combined coordinate determination with two separately working satellite systems is also described. The measurement or determination of points which are outside the satellite reception area / viewing area is not specified in this document. Furthermore, there are no indications of how known geodetic measuring instruments can be combined with such a satellite position measuring system.

Es daher Aufgabe der vorliegenden Erfindung, die Vermessung von Punkten mit Hilfe eines Satelliten-Systems zu ermöglichen, die nicht im direkten Sichtbereich der Satelliten liegen. Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche. Ein erfindungsgemäßes Verfahren zum Betrieb des Gerätes ist in Patentanspruch 4 angegeben.It is therefore an object of the present invention to enable the measurement of points with the aid of a satellite system which are not in the direct field of view of the satellites. This object is achieved by the features of claim 1. Advantageous developments of the invention are the subject of the dependent claims. A method according to the invention for operating the device is specified in claim 4.

Durch die dort definierten Maßnahmen wird es möglich, auch solche Punkte koordinatenmäßig zu bestimmen, welche unter Einsatz von Satelliten-Positionsmeß-Systemen bisher nicht vermessen werden konnten. Damit wird z. B. die Feldvermessung wesentlich vereinfacht, da nur noch Geräte für die Vermessung nach dem Satellitensystem mitgeführt werden müssen.The measures defined there make it possible to determine, in terms of coordinates, those points which have so far not been able to be measured using satellite position measuring systems. So that z. B. the field measurement considerably simplified, since only devices for the measurement according to the satellite system have to be carried.

Einzelheiten der Erfindung werden im folgenden anhand schematisch dargestellten Ausführungsbeispielen mit Hilfe der Zeichnungen näher erläutert. Es zeigen:

  • Fig. 1 das Beispiel eines Vermessungsgerätes zur Vermessung von Punkten, die nicht im Empfangsbereich eines Satelliten-Positionsmeß-Systems liegen, und
  • Fig. 2 das Beispiel einer Feldmessung unter Einsatz mindestens eines Gerätes nach Fig. 1, mit zwei Hilfs-Meßpunkten, die im Empfangsbereich eines Satelliten-Positionsmeß-Systems liegen.
Details of the invention are explained below with reference to schematically illustrated embodiments with the help of the drawings. Show it:
  • Fig. 1 shows the example of a measuring device for measuring points that are not in the reception area of a satellite position measuring system, and
  • Fig. 2 shows the example of a field measurement using at least one device according to Fig. 1, with two auxiliary measuring points, which are in the reception area of a satellite position measuring system.

Gemäß Fig. 1 besteht ein erfindungsgemäßes Meßgerät aus einem auf das Satelliten-Positionsmeß-System abgestimmten Empfänger 1 mit entsprechender Antenne. Im Beispiel ist der Empfänger vorzugsweise für den Empfang des Global-Positioning-System GPS eingerichtet. Das Gerät enthält ferner einen Distanzmesser 2, vorzugsweise einen elektrooptischen oder einen auf dem Ultraschallprinzip beruhenden Distanzmesser. Ein elektrooptischer Distanzmesser ist vorzugsweise vom Typ, wie er in der Patentschrift CH 641 308 oder CH 644 243 beschrieben ist. Die beiden erwähnten Module Empfänger 1 und Distanzmesser 2 sind geometrisch eindeutig auf einem Lotstab 3 montiert, der als Zusatzeinrichtung einen Lotsensor 4 zur Bestimmung der lokalen physikalischen Lotrichtung aufweist.1, a measuring device according to the invention consists of a receiver 1 matched to the satellite position measuring system with a corresponding antenna. In the example, the receiver is preferably set up to receive the global positioning system GPS. The device also contains a distance meter 2, preferably an electro-optical distance meter or a distance meter based on the ultrasound principle. An electro-optical distance meter is preferably of the type as described in the patent specification CH 641 308 or CH 644 243. The two modules mentioned, receiver 1 and distance meter 2, are geometrically unambiguously mounted on a plumb rod 3, which has a plumb sensor 4 as an additional device for determining the local physical plumb direction.

Der Distanzmesser 2 ist mit einer Visiereinrichtung 5 versehen, welche koaxial zur optischen Achse des Distanzmessers angeordnet ist. Die Visiereinrichtung ist dergestalt konstruiert, daß der Beobachter gleichzeitig die Vertikalstellung des Lotstabes 3 und einen angezielten Punkt im Sichtfeld beobachten kann. Die Visiereinrichtung kann mit einem auf das Magnetfeld der Erde reagierenden Sensor ausgerüstet sein.The distance meter 2 is provided with a sighting device 5, which is arranged coaxially to the optical axis of the distance meter. The sighting device is constructed in such a way that the observer can simultaneously observe the vertical position of the plunger 3 and a targeted point in the field of vision. The sighting device can be equipped with a sensor which reacts to the magnetic field of the earth.

Vorzugsweise ist der Distanzmesser 2 um eine Horizontalachse H kippbar. Das Maß der Kippdrehung wird über einen Winkelgeber oder einen elektronischen Neigungsmesser alpha erfaßt.The distance meter 2 can preferably be tilted about a horizontal axis H. The extent of the tilting rotation is recorded via an angle encoder or an electronic inclinometer alpha.

Ferner ist der Lotstab 3 vorzugswseise teleskopartig ausziehbar ausgebildet. An seinem unteren Ende weist er eine übliche Lotstabspitze S auf. Der Lotstab 3 kann schließlich mit einem Längen-Messsystem, vorzugsweise einem Massstab M versehen sein, der eine Bestimmung des Abstandes h zwischen der Lotstabspitze S und dem Antennenzentrum A erlaubt.Furthermore, the plumb baton 3 is preferably telescopic. At its lower end, it has a conventional solder rod tip S. The pole 3 can finally be provided with a length measuring system, preferably a scale M, which allows a determination of the distance h between the tip S and the antenna center A.

Der im Beispiel direkt unter dem Empfänger 1 angeordnete Distanzmesser 2 ermöglicht Streckenmessungen zu entfernten Punkten, z.B. zu dort angebrachten Reflektoren. Im Beispiel nach Fig. 2 stellt Punkt 6 einen solchen entfernten Punkt dar. Die Distanzmessung kann aber auch nach anderen berührungslosen Verfahren ohne Verwendung eines Zielreflektors vorgenommen werden.The distance meter 2 arranged directly under the receiver 1 in the example enables distance measurements to distant points, e.g. to reflectors attached there. In the example according to FIG. 2, point 6 represents such a distant point. However, the distance measurement can also be carried out according to other contactless methods without using a target reflector.

Ein einzumessender Punkt 6 wird mit der Visiereinrichtung 5 angezielt, wobei gleichzeitig der lotrechte Stand des Gerätes in der Visiereinrichtung kontrolliert wird. Für geneigte Visuren wird der Distanzmesser 2 um die Horizontalachse H gekippt, wobei diese Drehung vom Winkelgeber oder Neigungsmesser alpha erfasst wird. Mit dieser Hilfe wird die gemessene Schrägstrecke auf den Horizont reduziert.A point 6 to be measured is aimed with the sighting device 5, the vertical position of the device in the sighting device being checked at the same time. For inclined sightings, the distance meter 2 is tilted about the horizontal axis H, this rotation being detected by the angle encoder or inclinometer alpha. With this help, the measured inclined distance is reduced to the horizon.

Befindet sich der einzumessende Punkt 6 nicht im direkten Sichtbereich der Satelliten, wird z.B. eine Messeinheit 1-5 nacheinander in der Nähe des zu vemessenden Punktes 6 an mindestens zwei verschiedenen vom Satellitensystem erreichbaren Hilfspunkten 7, 8 aufgestellt. Von diesen Hilfspunkten aus werden die Strecken 9 und 10 zu dem für das Satellitensystem unzugänglichen Punkt 6 im Beispiel elektrooptisch bestimmt. Mittels Bogenschlagverfahrens lassen sich dann die Koordinaten des einzumessenden Punktes eindeutig ermitteln. Stehen zwei Messeinheiten zur Verfügung, wird je eine von ihnen an den Hilfspunkten 7 und 8 aufgestellt und die Messung im übrigen auf die beschriebene Weise durchgeführt.If the point 6 to be measured is not in the direct field of view of the satellites, a measuring unit 1-5, for example, is set up in succession in the vicinity of the point 6 to be measured at at least two different auxiliary points 7, 8 which can be reached by the satellite system. From these auxiliary points, routes 9 and 10 to point 6, which is inaccessible to the satellite system, are determined electro-optically in the example. The arches can then be used to create the Clearly determine the coordinates of the point to be measured. If two measuring units are available, one of them is set up at auxiliary points 7 and 8 and the measurement is carried out in the manner described above.

Mit dem beschriebenen Verfahren ist es möglich, "quasi-kinematische" Messungen, also Messungen, die jeweils in Perioden von einigen Sekunden'abgeschlossen sind, durch zusätzliche Streckenmessungen geometrisch zu stützen, indem die Position der Messeinheit über Rückwärtsschnittverfahren bestimmt werden kann.With the described method it is possible to geometrically support "quasi-kinematic" measurements, that is to say measurements that are each completed in periods of a few seconds, by additional distance measurements, in that the position of the measuring unit can be determined using backward cutting methods.

Claims (4)

  1. Surveying instrument with a receiver (1) for a satellite position measurement system with a distance measuring device 12), preferably measuring contactlessly, for geodetical determination of measurement points (6), characterised thereby that the satellite receiver (1) and the distance measuring device (2) are arranged in geometrically unambiguously defined relative position with respect to each other on a common plumb rod (3), which distance measuring device (2) is constructed to be tiltable and in addition a sighting equipment (5) for the sighting of the measurement point (6) as well as a verticality sensor (4) for the setting up of the vertical direction of the measuring instrument are provided.
  2. Surveying instrument according to claim 1, characterised thereby that the plumb rod (3) is equipped with a length measuring system (M) for determination of the distance (h) between the tip (S) of the plumb rod and the antenna centre (A) of the satellite receiver (1).
  3. Surveying instrument according to claim 1, characterised thereby that the satellite receiver (1) and the distance measuring device (2) are each constructed with an interface for data and/or command transmission.
  4. Method for the determination of a measurement point (6), which is not disposed in direct visual range, with a surveying instrument according to claim 1, characterised thereby that at least two auxiliary points (7, 8), which are disposed in the reception range of the satellite, are measured, wherein the measuring point (6) is sighted from each auxiliary point (7, 8) by the sighting equipment (5) and at the same time the vertical state of the measuring system is checked by the verticality sensor (4) and the respective distance of the auxiliary points (7, 8) to the measurement point (6) is determined and the position of the measurement point (6) is ascertained by computer from these ascertained values.
EP89907139A 1988-07-06 1989-06-20 Surveying instrument with receiver for a satellite position measurement system and process for operating it Expired - Lifetime EP0403585B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89907139T ATE85703T1 (en) 1988-07-06 1989-06-20 SURVEYING DEVICE WITH RECEIVER FOR SATELLITE POSITION MEASUREMENT SYSTEM AND METHOD OF ITS OPERATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2569/88 1988-07-06
CH2569/88A CH674898A5 (en) 1988-07-06 1988-07-06

Publications (2)

Publication Number Publication Date
EP0403585A1 EP0403585A1 (en) 1990-12-27
EP0403585B1 true EP0403585B1 (en) 1993-02-10

Family

ID=4236752

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89907139A Expired - Lifetime EP0403585B1 (en) 1988-07-06 1989-06-20 Surveying instrument with receiver for a satellite position measurement system and process for operating it

Country Status (5)

Country Link
US (1) US5077557A (en)
EP (1) EP0403585B1 (en)
JP (1) JP2874776B2 (en)
CH (1) CH674898A5 (en)
WO (1) WO1990000718A1 (en)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233357A (en) * 1988-07-06 1993-08-03 Wild Leitz Ag Surveying system including an electro-optic total station and a portable receiving apparatus comprising a satellite position-measuring system
JPH0747751Y2 (en) * 1990-03-07 1995-11-01 株式会社ソキア GPS receiver antenna device with reflector
DE481307T1 (en) * 1990-10-15 1992-12-17 Asahi Seimitsu K.K., Tokio/Tokyo, Jp MEASURING METHOD USING AN EARTH-LOCATING LOCATION SYSTEM AND MEASURING DEVICE SUITABLE FOR IMPLEMENTING THE METHOD.
SE9003500D0 (en) * 1990-11-02 1990-11-02 Geotronics Ab HOEGHASTIGHETSMAETNING
AT403066B (en) * 1991-07-12 1997-11-25 Plasser Bahnbaumasch Franz METHOD FOR DETERMINING THE DEVIATIONS OF THE ACTUAL LOCATION OF A TRACK SECTION
US10361802B1 (en) 1999-02-01 2019-07-23 Blanding Hovenweep, Llc Adaptive pattern recognition based control system and method
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US5347286A (en) * 1992-02-13 1994-09-13 Trimble Navigation Limited Automatic antenna pointing system based on global positioning system (GPS) attitude information
JPH06186320A (en) * 1992-03-28 1994-07-08 Mitsui Constr Co Ltd Survey device
US5739785A (en) * 1993-03-04 1998-04-14 Trimble Navigation Limited Location and generation of high accuracy survey control marks using satellites
US5430537A (en) * 1993-09-03 1995-07-04 Dynamics Research Corporation Light beam distance encoder
US5434789A (en) * 1993-10-06 1995-07-18 Fraker; William F. GPS golf diagnostic system
EP0740798B1 (en) * 1994-01-14 1999-06-09 BICC Public Limited Company Method and apparatus for positioning construction machinery
US5512905A (en) * 1994-10-27 1996-04-30 Trimble Navigation Limited Pole-tilt sensor for surveyor range pole
FR2735240B1 (en) * 1995-06-06 1998-01-30 Soc Et Rech Et Const Electroni METHOD AND DEVICE FOR THE PRECISE DETERMINATION OF A MASK POINT BY SATELLITE RADIOLOCATION.
US5734348A (en) * 1995-08-31 1998-03-31 Nikon Corporation Surveying system using GPS
US5841392A (en) * 1995-10-02 1998-11-24 Nikon Corporation Pulse-echo ranging system with improved target
US5760909A (en) * 1996-03-25 1998-06-02 Trimble Navigation Limited Integrated apparatus and method for EDM and GPS surveying
US5821900A (en) * 1996-05-27 1998-10-13 Nikon Corporation GPS survey instrument
US5760748A (en) * 1996-05-28 1998-06-02 Trimble Navigation Limited Pivoting support bracket to mount a GPS antenna above a theodolite or a total station mounted on a tripod
US6072429A (en) * 1997-01-31 2000-06-06 Trimble Navigation Limited Integrated position determination system and radio transceiver incorporating common components
US5903235A (en) * 1997-04-15 1999-05-11 Trimble Navigation Limited Handheld surveying device and method
US6067046A (en) * 1997-04-15 2000-05-23 Trimble Navigation Limited Handheld surveying device and method
JPH1114355A (en) * 1997-06-19 1999-01-22 Nikon Corp Surveying device and surveying method
US7268700B1 (en) 1998-01-27 2007-09-11 Hoffberg Steven M Mobile communication device
US6014109A (en) * 1998-02-11 2000-01-11 Trimble Navigation Limited Offset-antenna total station
US6016118A (en) * 1998-03-05 2000-01-18 Trimble Navigation Limited Real time integration of a geoid model into surveying activities
GB9810405D0 (en) * 1998-05-15 1998-07-15 Measurement Devices Ltd Survey apparatus
US6031601A (en) * 1998-07-08 2000-02-29 Trimble Navigation Limited Code-space optical electronic distance meter
US6614395B2 (en) * 1998-07-24 2003-09-02 Trimble Navigation Limited Self-calibrating electronic distance measurement instrument
US7904187B2 (en) 1999-02-01 2011-03-08 Hoffberg Steven M Internet appliance system and method
DK1028325T3 (en) * 1999-02-12 2010-01-04 Plasser Bahnbaumasch Franz Procedure for measuring a track
US6425186B1 (en) 1999-03-12 2002-07-30 Michael L. Oliver Apparatus and method of surveying
US6677938B1 (en) 1999-08-04 2004-01-13 Trimble Navigation, Ltd. Generating positional reality using RTK integrated with scanning lasers
US6236938B1 (en) * 1999-08-05 2001-05-22 Amadeus Consulting Group, Inc. Systems and methods for creating maps using GPS systems
US6381006B1 (en) * 2000-07-12 2002-04-30 Spectra Precision Ab Spatial positioning
WO2004015374A1 (en) * 2002-08-09 2004-02-19 Surveylab Group Limited Mobile instrument, viewing device, and methods of processing and storing information
US7002551B2 (en) 2002-09-25 2006-02-21 Hrl Laboratories, Llc Optical see-through augmented reality modified-scale display
US9818136B1 (en) 2003-02-05 2017-11-14 Steven M. Hoffberg System and method for determining contingent relevance
US20050057745A1 (en) * 2003-09-17 2005-03-17 Bontje Douglas A. Measurement methods and apparatus
EP1517116A1 (en) * 2003-09-22 2005-03-23 Leica Geosystems AG Method and device for the determination of the actual position of a geodesic instrument
US8705022B2 (en) * 2004-07-13 2014-04-22 Trimble Navigation Limited Navigation system using both GPS and laser reference
WO2007000067A1 (en) * 2005-06-27 2007-01-04 Eidgenössische Technische Hochschule Zürich Method and system for acquiring azimuth information using signals provided by satellites
US7634380B2 (en) * 2006-06-13 2009-12-15 Trimble Navigation Limited Geo-referenced object identification method, system, and apparatus
EP2126606B1 (en) * 2007-02-21 2010-07-14 Smiths Heimann GmbH Apparatus for depicting test objects using electromagnetic waves, particularly for checking people for suspicious articles
US20090189805A1 (en) * 2008-01-25 2009-07-30 Bruno Sauriol Low Cost Instant RTK Positioning System and Method
US8421673B2 (en) * 2008-05-15 2013-04-16 The United States Of America As Represented By The Secretary Of The Navy Method and software for spatial pattern analysis
US8077098B2 (en) * 2008-05-15 2011-12-13 The United States Of America As Represented By The Secretary Of The Navy Antenna test system
US8411285B2 (en) 2010-11-22 2013-04-02 Trimble Navigation Limited Stationing an unleveled optical total station
US9182229B2 (en) * 2010-12-23 2015-11-10 Trimble Navigation Limited Enhanced position measurement systems and methods
US10168153B2 (en) 2010-12-23 2019-01-01 Trimble Inc. Enhanced position measurement systems and methods
US9879993B2 (en) 2010-12-23 2018-01-30 Trimble Inc. Enhanced bundle adjustment techniques
DE102011116303B3 (en) 2011-10-18 2012-12-13 Trimble Jena Gmbh Geodetic measurement system, has satellite-geodetic system provided with antenna, where system determines relative orientation angle between inclinometers relative to perpendicular orientation of system depending on inclination data
WO2014036774A1 (en) * 2012-09-06 2014-03-13 付建国 Interconnecting-type multifunctional positioning measuring instrument
CN102830413A (en) * 2012-09-06 2012-12-19 刘雁春 Combined type satellite positioning measurer
US9235763B2 (en) 2012-11-26 2016-01-12 Trimble Navigation Limited Integrated aerial photogrammetry surveys
US9247239B2 (en) 2013-06-20 2016-01-26 Trimble Navigation Limited Use of overlap areas to optimize bundle adjustment
JP6204246B2 (en) * 2014-03-28 2017-09-27 ヤンマー株式会社 Portable positioning device
JP6812066B2 (en) * 2016-08-03 2021-01-13 株式会社トプコン Position / orientation measuring device and surveying device
WO2018109440A1 (en) * 2016-12-13 2018-06-21 Bae Systems Plc Antenna arrangement
US10586349B2 (en) 2017-08-24 2020-03-10 Trimble Inc. Excavator bucket positioning via mobile device
US10943360B1 (en) 2019-10-24 2021-03-09 Trimble Inc. Photogrammetric machine measure up

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH644243B (en) * 1982-05-06 Wild Heerbrugg Ag DEVICE FOR MEASURING THE RUN TIME OF ELECTRIC PULSE SIGNALS.
CH641308B (en) * 1982-07-13 Wild Heerbrugg Ag DEVICE FOR MEASURING THE RUN TIME OF PULSE SIGNALS.
US4743913A (en) * 1986-02-19 1988-05-10 Nissan Motor Company, Limited Hybrid navigation system for determining a relative position and direction of a vehicle and method therefor
US4741245A (en) * 1986-10-03 1988-05-03 Dkm Enterprises Method and apparatus for aiming artillery with GPS NAVSTAR
JPH07122665B2 (en) * 1986-10-08 1995-12-25 古野電気株式会社 Underwater object position display device
US4949089A (en) * 1989-08-24 1990-08-14 General Dynamics Corporation Portable target locator system

Also Published As

Publication number Publication date
WO1990000718A1 (en) 1990-01-25
US5077557A (en) 1991-12-31
JPH03500334A (en) 1991-01-24
CH674898A5 (en) 1990-07-31
JP2874776B2 (en) 1999-03-24
EP0403585A1 (en) 1990-12-27

Similar Documents

Publication Publication Date Title
EP0403585B1 (en) Surveying instrument with receiver for a satellite position measurement system and process for operating it
DE112005001760T5 (en) Position tracking and control system with a combination laser detector and global navigation satellite receiver system
EP1549909B1 (en) Electronic display and control device for a measuring device
DE19922341C2 (en) Method and arrangement for determining the spatial coordinates of at least one object point
DE112007002393B4 (en) Navigation system with GPS and laser reference
DE19528465C2 (en) Method and device for quickly detecting the position of a target
DE102011116303B3 (en) Geodetic measurement system, has satellite-geodetic system provided with antenna, where system determines relative orientation angle between inclinometers relative to perpendicular orientation of system depending on inclination data
DE4007245C2 (en) Device for centering a geodetic instrument over a defined point on the ground
EP1475607B1 (en) Method for determining the spatial orientation and position of a reflector rod relative to a measuring point
DE102012011518B3 (en) Geodetic objective for position determination system to determine position of e.g. landmarks, has interface formed to output signals for determination of spatial orientation of reflector relative to target point in marking direction
DE102010004517B4 (en) Optical instrument with angle display and method of operating the same
DE69934940T2 (en) Surveying instrument with lot
CH654918A5 (en) METHOD AND ARRANGEMENT FOR SELF-ALIGNING AN ANGLE MEASURING DEVICE.
WO2006040315A1 (en) Geodesic position determining system
DE19750207C2 (en) Measurement system with an inertial-based measuring device
EP2578993B1 (en) Goniometer with graphical information reproduction means for producing information
DE4129631A1 (en) HEIGHT ANGLE MEASURING DEVICE
DE19548752C1 (en) Airborne target tracking and measuring device
DE19530809A1 (en) Arrangement for retroreflection of radiation with triple prisms
EP0652448A2 (en) Method for image enhanced position detection and cartography of subterranean objects
EP0378751B1 (en) Laser altimeter
EP0250608B1 (en) Method and device for azimuth determination using a strap-down gyro
EP1206680B1 (en) Optical device
DE102016007219B9 (en) Method and measuring device for determining an angle
DD159363A1 (en) DEVICE FOR DETERMINING DISTANCES AND FOR DETERMINING COORDINATES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEICA HEERBRUGG AG

17Q First examination report despatched

Effective date: 19910807

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 85703

Country of ref document: AT

Date of ref document: 19930215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58903540

Country of ref document: DE

Date of ref document: 19930325

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930226

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89907139.3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: LEICA HEERBRUGG AG TRANSFER- LEICA GEOSYSTEMS AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000523

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000524

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020101

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080613

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080620

Year of fee payment: 20

Ref country code: SE

Payment date: 20080612

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080613

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080620

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20090619

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090619