EP0392972B1 - Coupling for an excavator bucket - Google Patents

Coupling for an excavator bucket Download PDF

Info

Publication number
EP0392972B1
EP0392972B1 EP90810171A EP90810171A EP0392972B1 EP 0392972 B1 EP0392972 B1 EP 0392972B1 EP 90810171 A EP90810171 A EP 90810171A EP 90810171 A EP90810171 A EP 90810171A EP 0392972 B1 EP0392972 B1 EP 0392972B1
Authority
EP
European Patent Office
Prior art keywords
coupling
threaded rod
coupling part
wedges
excavator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90810171A
Other languages
German (de)
French (fr)
Other versions
EP0392972A2 (en
EP0392972A3 (en
Inventor
Pietro Pallotta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT90810171T priority Critical patent/ATE94930T1/en
Publication of EP0392972A2 publication Critical patent/EP0392972A2/en
Publication of EP0392972A3 publication Critical patent/EP0392972A3/en
Application granted granted Critical
Publication of EP0392972B1 publication Critical patent/EP0392972B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3609Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat
    • E02F3/364Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat using wedges
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/3604Devices to connect tools to arms, booms or the like
    • E02F3/3609Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat
    • E02F3/3663Devices to connect tools to arms, booms or the like of the quick acting type, e.g. controlled from the operator seat hydraulically-operated

Definitions

  • the present invention relates to a coupling for excavator buckets, by means of which the boom of an excavator can be non-positively and releasably connected to an excavator bucket.
  • Various such couplings are already known. These consist essentially of two mating coupling parts, of which the lower one is fixed to the bucket and the upper one is fixed to the boom. The tight fit of these two coupling parts is intended to achieve a connection that is as torsion-free as possible in all directions with a low overall height of the coupling.
  • the overall height of the coupling which is understood to mean the distance between the boom and the excavator bucket when engaged, should therefore be small.
  • the couplings have elements in order to non-positively but releasably connect the two coupling parts to be coupled.
  • a bolt is used which penetrates the two coupling parts in the coupled state and which can be secured in this position.
  • the coupling and uncoupling then requires manual work.
  • the two coupling parts to be coupled are one inside the other at the lower coupling part about a pipe section which acts as a pivot axis swiveling.
  • the upper coupling part has a correspondingly shaped concave surface which forms the inner wall of a hollow half cylinder.
  • the upper coupling part lies inside the box-shaped, lower coupling part.
  • the elements for the non-positive connection of the two coupling parts are then given in that the upper, also box-shaped coupling part has openings in its wall which serve to receive lugs which are formed on the inner wall of the lower coupling part.
  • the undersides of the lugs facing the bottom surface of the lower coupling part are then at a slight angle to the underside of the upper coupling part.
  • Movable wedges are then arranged in this upper coupling part, which can be moved under the lugs by means of screw threads, with which they non-positively connect the two coupling parts.
  • Couplings are also known in which the non-positive connection of the coupling parts takes place by means of pivotable claws, which in turn are then either pivoted and secured by hand or by means of hydraulic or electrical means, similar to those already described above. It is clear that the ideas on which the conventional couplings are based can be combined and implemented in a variety of ways. Automatic coupling and uncoupling of the excavator bucket is generally very desirable. In practice, changing the excavator bucket takes a considerable amount of time, in which the excavator cannot work. For convenience, a non-optimal backhoe bucket is often used, so that the work is not carried out efficiently or the backhoe bucket is damaged due to its poor suitability for the job in question.
  • a nose is formed on each inside of the two mutually opposite side walls of the lower coupling part, and in that a single threaded rod with two opposing threads penetrates the two wedges in a non-positive manner, and that the threaded rod can be driven by means of a hydraulic drive arranged in the interior of the upper coupling part.
  • FIG. 1 shows the coupling 1 in the uncoupled state, attached to a boom 2 and bucket 3 of an excavator.
  • the clutch 1 consists of two clutch parts.
  • the lower coupling part 4 is firmly attached to the excavator bucket 3, while the upper coupling part 5 is firmly connected to the boom 2.
  • this connection is articulated in that the coupling part 5 has two side walls 6 on its upper side, which are provided with holes for receiving bolts. Are in the attached state these side walls 6 slipped over the end of the boom, which here consists of two boom arms 7, 8.
  • Both cantilever arms 7, 8 have a transverse hole 9 at their end. The distance between the two mouth planes of each transverse hole 9 corresponds to the distance between the two side walls 6.
  • the coupling part 5 is box-shaped on its undersides, the inside of the box formed in this way serving to receive the elements for non-positive coupling with the lower coupling part 4.
  • the side walls 10 of this box have openings 11.
  • the lower coupling part 4 is also box-shaped. This coupling part 4 can be firmly connected to the excavator bucket 3 in such a way that it is firmly welded to it.
  • lugs 13 are formed, which protrude at right angles from these inner sides.
  • These lugs 13 each have an underside 14, which against the side wall 12 on which the lug 13 in question is formed, and thus also runs slightly obliquely downwards against the bottom surface inside the coupling part 5.
  • the two coupling parts 4 and 5 are pivoted together for engaging or coupling the excavator bucket 3.
  • the lower coupling part 4 has a pipe section 15 connecting it between its side walls 12.
  • the rear of the coupling part 5 on the other hand, has a concave surface 16 which represents the inner surface of a hollow cylinder and whose radius corresponds to the outer radius of the pipe section 15.
  • the excavator operator brings the upper coupling part 5 to lie on the boom with this concave surface 16 on the pipe section 15. For this maneuver, he can largely see both the surface 16 and the pipe section from the driver's cab. As soon as it has reached this position, it pivots the upper coupling part 5 into the lower coupling part 4. This is done by advancing the cantilever arm 8 relative to the cantilever arm 7. As soon as the upper coupling part 5 lies well inside the lower 4, the coupling is locked, for which purpose the means inside the upper coupling part 5 are used, which cannot be seen in this figure.
  • This locking mechanism is shown in FIG. 2, in that the clutch is shown in a section from the front in the swiveled-in state of the two clutch parts 4 and 5. In the situation shown here has not yet been locked.
  • Inside the coupling part 5 two wedges 17 are now arranged, each made of a steel square partially wedge-shaped cross section.
  • the wedge surfaces 18 have the same slope as the undersides 14 of the lugs 13, that is to say run parallel to those. Both wedges 17 are traversed by a common threaded rod 19.
  • This threaded rod 19 is rotatably mounted in the side surfaces 10 of the upper coupling part 5.
  • ball bearings 21 can be provided.
  • the threads 22 and 23, which the threaded rod 19 has, are directed in opposite directions to one another. That means that a thread 22 is a right-hand thread and the thread 23 is a left-hand thread or vice versa.
  • the threaded rod 19 carries a ring gear 20, which serves to drive the threaded rod 19, so that it can be rotated as desired.
  • By turning the threaded rod 19 namely the wedges 17 move exactly opposite. On the one hand, they can be pushed under the lugs 13 in this way, with which they press the upper coupling part 5 firmly against the lower 4.
  • the threaded rod 19 is driven via the toothed ring 20, which in turn is driven by a roller chain 24, as can be seen from FIG. 3, which shows the mechanism in a top view.
  • FIG. 3 shows the mechanism in a top view.
  • the pipe section 15 on the lower coupling part 4, against which the upper coupling part 5 with its concave surface 16 lies, is recognizable.
  • the lugs 13 formed on the inside of the side surfaces 12 protrude through the openings 11 in the side walls 10 into the interior of the upper coupling part 5.
  • the threaded rod 19 with the two opposing threads 22, 23 is mounted in the side walls 10 of the upper coupling part 5.
  • Figure 4 shows the same as Figure 3, but seen in a section from the side.
  • the upper 5 and the lower coupling part 4, as well as the lugs 13 on the lower and the openings 11 on the upper coupling part 5, as well as the wedges 17 and their drive means, namely the threaded rod 19, the roller chain 24 and the hydraulic drive 25 can also be seen the stop bar 26 along which the wedges 17 are guided is visible.
  • the pipe section 15 on the lower coupling part 4 and the concave surface 16 on the upper coupling part 5, which bears against the pipe section 15, can be seen in this figure.
  • the pivoting of the upper coupling part 5 relative to the lower 4 therefore takes place about the axis of the pipe section 15.
  • both the side surfaces 12 of the lower coupling part 4 and the side surfaces 10 of the upper coupling part 5 can be slightly conical to one another. If the upper coupling part 5 is then inserted or pivoted into the lower coupling part, it is additionally clamped laterally in the lower coupling part 4.
  • the end wall (27, 28) opposite the pipe section 15 or the conical surface 16 of both the lower 4 and the upper coupling part 5 can also run slightly upwards with increasing radius towards the inside. This also causes jamming in the direction perpendicular to the pipe section 15 when the upper coupling part 5 is pivoted into the lower 4.
  • the drive mechanism according to the invention brings significant advantages over the conventional ones.
  • the advantages of a hydraulic drive were combined with those of a mechanical one.
  • the known hydraulic locking mechanisms lacked effective self-locking. If the hydraulic cylinder-piston unit leaks, the lock can loosen and, in the worst case, the excavator can lose its bucket.
  • the hydraulic drive 25 no longer needs to be subjected to hydraulic pressure.
  • a hydraulic drive In contrast to a cylinder-piston unit, it is not constantly under pressure, but only when the locking mechanism is actually actuated.
  • a hydraulic drive can also be built very robustly, so that it is many times more reliable and durable compared to the alternative of an electric motor.
  • the clutch 1 according to the invention can therefore be actuated in the simplest manner by the excavator operator from his cabin.
  • Their simple design which allows the two coupling parts 4, 5 to pivot into one another, enables excavator buckets to be coupled and uncoupled without manual manipulations on the coupling itself, so that it is no longer necessary for the excavator operator to get out of the vehicle or to call in auxiliary personnel. But this can be valuable Save machine hours and also create an incentive to work increasingly with the optimal excavator bucket.
  • the coupling also works for other tools instead of excavator buckets, for example for demolition hammers and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Earth Drilling (AREA)
  • Shovels (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Clamps And Clips (AREA)

Abstract

The coupling (1) consists of two coupling parts (4, 5) which can be pivoted one inside the other for coupling. They can be locked and clamped in this position by means of two wedges which are arranged so as to be laterally displaceable in the top coupling part (5). For this purpose, the wedges are pushed in a diametrically opposed manner under the projections (13) by being moved by a common threaded rod having two opposed threads, which threaded rod passes through the wedges. The threaded rod is driven via a roller chain by a hydrostatic drive arranged in the top coupling part (5). <IMAGE>

Description

Die vorliegende Erfindung betrifft eine Kupplung für Baggerlöffel, mittels welcher der Ausleger eines Baggers kraftschlüssig und lösbar mit einem Baggerlöffel verbindbar ist.
Es sind schon verschiedene solche Kupplungen bekannt. Diese bestehen im wesentlichen aus zwei ineinanderpassenden Kupplungsteilen, von denen das untere fest am Baggerlöffel und das obere fest am Ausleger befestigt ist. Durch das satte Ineinanderpassen dieser beiden Kupplungsteile soll eine in allen Richtungen möglichst verwindungsfreie Verbindung bei gleichzeitig geringer Bauhöhe der Kupplung erreicht werden. Die Bauhöhe der Kupplung, worunter die Distanz zwischen dem Ausleger und dem Baggerlöffel im eingekuppelten Zustand verstanden wird, soll also klein sein. Je grösser sie nämlich ausfällt, umso mehr wird die Kraft des Baggers infolge der Verlängerung des wirksamen Lastarmes reduziert. Zum andern weisen die Kupplungen Elemente auf, um die beiden zu kuppelnden Kupplungsteile kraftschlüssig, jedoch lösbar miteinander zu verbinden. Im einfachsten Fall verwendet man einen Bolzen, welcher die beiden Kupplungsteile im zusammengekuppelten Zustand durchdringt und der in dieser Lage sicherbar ist. Das Kuppeln und Entkuppeln bedarf dann jedoch manueller Arbeit. Oft sind die beiden zu kuppelnden Kupplungsteile um einen als Schwenkachse wirkenden Rohrabschnitt am unteren Kupplungsteil ineinander schwenkbar. Das obere Kupplungsteil weist hierzu eine entsprechend geformte konkave Fläche auf, welche die Innenwand eines hohlen Halbzylinders bildet. Sind die Kupplungsteile um die Achse des Rohrabschnittes ineinandergeschwenkt, so liegt das obere Kupplungsteil im Innern des kastenförmigen, unteren Kupplungsteils. Die Elemente zum kraftschlüssigen Verbinden der beiden Kupplungsteile sind dann dadurch gegeben, dass das obere, ebenfalls kastenförmig ausgebildete Kupplungsteil in seiner Wandung Oeffnungen aufweist, die zur Aufnahme von Nasen dienen, welche an der Innenwand des unteren Kupplungsteils angeformt sind. Die zur Bodenfläche des unteren Kupplungsteils gewandten Unterseiten der Nasen stehen dann leicht schräg zur Unterseite des obere Kupplungsteils. In diesem oberen Kupplungsteil sind dann bewegliche Keile angeordnet, die mittels Schraubgewinden unter die Nasen verschoben werden können, womit sie die beiden Kupplungsteile kraftschlüssig miteinander verbinden. Eine ähnliche Kupplungsvorrichtung ist in EP-A-0143074, welche dem Oberbegriff des Anspruchs 1 entspricht, beschrieben. Es sind bereits Kupplungen vorgeschlagen worden, bei denen diese Keile automatisch betätigt werden können, zum Beispiel, indem ein Elektromotor die entsprechenden Gewindestangen dreht oder indem eine hydraulische Zylinder-Kolben-Einheit die Keile direkt betätigt. Keines dieser Systeme hat sich jedoch überzeugend bewährt. Die Elektromotoren ertragen die starken Schläge beim Baggerbetrieb auf die Dauer nicht. Das gleiche gilt auch für eine hydraulische Zylinder-Kolben-Einheit, welche unter den fortwährend auf sie einwirkenden Schlägen früher oder später undicht wird. Damit aber droht der Anpressdruck der Keile unter die Nasen abzusinken und der Bagger könnte gar seinen Löffel verlieren, was ein unakzeptables Gefahrenmoment darstellt.
Es sind auch Kupplungen bekannt, bei denen die kraftschlüssige Verbindung der Kupplungsteile mittels schwenkbaren Klauen erfolgt, die dann wiederum entweder von Hand geschwenkt und gesichert werden oder mittels hydraulischen oder elektrischen Mitteln, ähnlich den weiter oben bereits beschriebenen.
Es ist klar, dass die Ideen, welche den herkömmlichen Kupplungen zugrundeliegen, auf verschiedenste Weisen kombiniert und realisiert werden können.
Ein automatisches Kuppeln und Entkuppeln des Baggerlöffels ist grundsätzlich sehr erwünscht. In der Praxis erfordert das Wechseln des Baggerlöffels erheblich Zeit, in welcher der Bagger ja nicht arbeiten kann. Aus Bequemlichkeit wird oft mit einem nicht optimalen Baggerlöffel gearbeitet, sodass die Arbeit nicht effizient vonstatten geht oder der Baggerlöffel infolge seiner schlechten Eignung für die betreffende Arbeit Schaden nimmt. Gerade wenn die Witterungsbedingungen schlecht sind, wenn es also kalt und nass ist, oder zum Beispiel der Arbeitsplatz des Baggers morastig ist, steigt der Baggerführer nur ungern aus seiner Führer-Kabine und auch das Hilfspersonal reisst sich nicht um die mühsame Arbeit des Löffelwechselns. Eine Kupplung, die automatisch von der Baggerkabine aus betätigbar wäre und zudem absolut zuverlässig, bedienerfreundlich und schnell zu betätigen wäre, würde grosse Vorteile bringen. Die Löffel würden öfter gewechselt und besser den vorzunehmenden Arbeiten angepasst. Damit würde die Baggerarbeit effizienter erfolgen. Weil das Wechseln des Baggerlöffels zudem bedeutend schneller erfolgen könnte, wären die Bagger auch zeitlich besser ausgelastet.
The present invention relates to a coupling for excavator buckets, by means of which the boom of an excavator can be non-positively and releasably connected to an excavator bucket.
Various such couplings are already known. These consist essentially of two mating coupling parts, of which the lower one is fixed to the bucket and the upper one is fixed to the boom. The tight fit of these two coupling parts is intended to achieve a connection that is as torsion-free as possible in all directions with a low overall height of the coupling. The overall height of the coupling, which is understood to mean the distance between the boom and the excavator bucket when engaged, should therefore be small. The bigger it turns out, the more the power of the excavator is reduced due to the extension of the effective load arm. On the other hand, the couplings have elements in order to non-positively but releasably connect the two coupling parts to be coupled. In the simplest case, a bolt is used which penetrates the two coupling parts in the coupled state and which can be secured in this position. The coupling and uncoupling then requires manual work. Often, the two coupling parts to be coupled are one inside the other at the lower coupling part about a pipe section which acts as a pivot axis swiveling. For this purpose, the upper coupling part has a correspondingly shaped concave surface which forms the inner wall of a hollow half cylinder. If the coupling parts are pivoted into one another about the axis of the pipe section, the upper coupling part lies inside the box-shaped, lower coupling part. The elements for the non-positive connection of the two coupling parts are then given in that the upper, also box-shaped coupling part has openings in its wall which serve to receive lugs which are formed on the inner wall of the lower coupling part. The undersides of the lugs facing the bottom surface of the lower coupling part are then at a slight angle to the underside of the upper coupling part. Movable wedges are then arranged in this upper coupling part, which can be moved under the lugs by means of screw threads, with which they non-positively connect the two coupling parts. A similar coupling device is described in EP-A-0143074, which corresponds to the preamble of claim 1. Couplings have already been proposed in which these wedges can be actuated automatically, for example by an electric motor rotating the corresponding threaded rods or by a hydraulic cylinder-piston unit actuating the wedges directly. However, none of these systems has proven convincingly. In the long run, the electric motors cannot withstand the strong blows from excavators. The same also applies to a hydraulic cylinder-piston unit, which sooner or later leaks under the blows which continuously act on it. In order to but the pressure of the wedges under the nose threatens to drop and the excavator could even lose its bucket, which is an unacceptable moment of danger.
Couplings are also known in which the non-positive connection of the coupling parts takes place by means of pivotable claws, which in turn are then either pivoted and secured by hand or by means of hydraulic or electrical means, similar to those already described above.
It is clear that the ideas on which the conventional couplings are based can be combined and implemented in a variety of ways.
Automatic coupling and uncoupling of the excavator bucket is generally very desirable. In practice, changing the excavator bucket takes a considerable amount of time, in which the excavator cannot work. For convenience, a non-optimal backhoe bucket is often used, so that the work is not carried out efficiently or the backhoe bucket is damaged due to its poor suitability for the job in question. Especially when the weather conditions are bad, i.e. when it is cold and wet, or, for example, the excavator's work place is muddy, the excavator operator is reluctant to climb out of his driver's cab and the auxiliary staff is also happy about the tedious work of changing the bucket. A clutch that could be operated automatically from the excavator cab and that would also be absolutely reliable, user-friendly and quick to operate, would bring great benefits. The spoons would be changed more often and better adapted to the work to be done. This would make the dredging work more efficient. Because changing the bucket could also be done much faster, the excavators would also be better occupied in terms of time.

Es ist deshalb die Aufgabe der vorliegenden Erfindung, eine Kupplung für einen Baggerlöffel zu schaffen, welche die eingangs erwähnten Nachteile überwindet, insbesondere rasch automatisch von der Baggerkabine aus kuppelbar ist und trotzdem dauerhaft arbeitet und die erforderliche Stabilität bei geringer Baugrösse erreicht.It is therefore the object of the present invention to provide a clutch for an excavator bucket which overcomes the disadvantages mentioned at the outset, in particular can be quickly and automatically coupled from the excavator cab and nevertheless works permanently and achieves the required stability with a small size.

Diese Aufgabe wird erfindungsgemäß dadurch dass eine Nase an jeder Innenseite der zwei einander gegenüberstehenden Seitenwände des unteren Kupplungsteils angeformt ist, und dass eine einzige Gewindestange mit zwei gegenläufigen Gewinden die beiden Keile gewindekraftschlüssig durchsetzt, und dass die Gewindestange mittels eines im Innern des oberen Kupplungsteiles angeordneten hydraulischen Antriebes antreibbar ist.This object is achieved according to the invention in that a nose is formed on each inside of the two mutually opposite side walls of the lower coupling part, and in that a single threaded rod with two opposing threads penetrates the two wedges in a non-positive manner, and that the threaded rod can be driven by means of a hydraulic drive arranged in the interior of the upper coupling part.

Eine bespielsweise Ausführung der Erfindung ist in den Figuren in verschiedenen Ansichten gezeigt und anhand dieser Figuren wird die Erfindung nachfolgend beschrieben und deren Funktion erklärt und erläutert.An example of an embodiment of the invention is shown in the figures in various views, and the invention is described below with reference to these figures, and its function is explained and explained.

Es zeigt

Figur 1
Die Kupplung im entkuppelten Zustand in einer perspektivischen Ansicht;
Figur 2
Die Kupplung im gekuppelten Zustand in einem Schnitt von vorne;
Figur 3
Die Kupplung im gekuppelten Zustand in einer Draufsicht;
Figur 4
Die Kupplung im gekuppelten Zustand von der Seite in einem Schnitt.
It shows
Figure 1
The coupling in the uncoupled state in a perspective view;
Figure 2
The coupling in the coupled state in a cut from the front;
Figure 3
The coupling in the coupled state in a plan view;
Figure 4
The coupling in the coupled state from the side in one cut.

Die Figur 1 zeigt die Kupplung 1 im entkuppelten Zustand, angebaut an einen Ausleger 2 und Baggerlöffel 3 eines Baggers. Die Kupplung 1 besteht aus zwei Kupplungsteilen. Das untere Kupplungsteil 4 ist fest am Baggerlöffel 3 angebaut, während das obere Kupplungsteil 5 fest mit dem Ausleger 2 verbunden ist. Diese Verbindung ist jedoch gelenkig, indem das Kupplungsteil 5 auf seiner Oberseite zwei Seitenwände 6 aufweist, die mit Löchern zur Aufnahme von Bolzen versehen sind. Im angebauten Zustand sind diese Seitenwände 6 über das Ende des Auslegers gestülpt, welcher hier aus zwei Auslegerarmen 7,8 besteht. Beide Auslegerarme 7,8 weisen an ihrem Ende ein Querloch 9 auf. Die Distanz der beiden Mündungsebenen jedes Querlochs 9 entspricht dem Abstand zwischen den beiden Seitenwänden 6. Zur Befestigung des Kupplungsteils 5 am Ausleger 2 werden Bolzen durch die Löcher in den Seitenwänden 6 und die Querlöcher 9 geschoben und in der eingeschobenen Lage gegen herausfallen gesichert. Werden die Auslegerarme 7 und 8 relativ zueinander verschoben, so wird das Kupplungsteil 5 entsprechend um die Bolzenachsen geschwenkt. Diese Schwenkbewegung bewirkt die Grab- und Ausleerbewegung des angekuppelten Baggerlöffels. Das Kupplungsteil 5 ist auf seiner Unterseiten kastenförmig ausgebildet, wobei das Innere des so gebildeten Kastens zur Aufnahme der Elemente zum kraftschlüssigen Kuppeln mit dem unteren Kupplungsteil 4 dient. Die Seitenwände 10 dieses Kastens weisen Oeffnungen 11 auf.
Das untere Kupplungsteil 4 ist ebenfalls kastenförmig ausgebildet. Dieses Kupplungsteil 4 kann in der Weise fest mit dem Baggerlöffel 3 verbunden sein, dass es mit jenem fest verschweisst ist. An den Innenseiten dieser beiden Seitenwände 12, die gleichzeitig die Seitenwände des durch dieses Kupplungsteil 4 gebildeten Kastens sind, sind Nasen 13 angeformt, welche im rechten Winkel von diesen Innenseiten abstehen. Diese Nasen 13 weisen je eine Unterseite 14 auf, die gegen die Seitenwand 12, an welcher die betreffende Nase 13 angeformt ist, sowie damit auch gegen die Bodenfläche im Inneren des Kupplungsteils 5 leicht schräg nach abwärts verläuft. Die beiden Kupplungsteile 4 und 5 werden zum Einkuppeln beziehungsweise zum Ankuppeln des Baggerlöffels 3 eineinandergeschwenkt. Hierzu weist das untere Kupplungsteil 4 hinten zwischen seinen Seitenwänden 12 einen diese verbindenen Rohrabschnitt 15 auf. Die Rückseite des Kupplungsteils 5 andererseits weist eine konkave Fläche 16 auf, welche die Innenfläche eines Hohlzylinders darstellt und deren Radius dem Aussenradius des Rohrabschnittes 15 entspricht. Zum Einkuppeln bringt der Baggerführer das obere Kupplungsteil 5 am Ausleger mit dieser konkaven Fläche 16 auf den Rohrabschnitt 15 zu liegen. Für dieses Manöver kann er sowohl die Fläche 16 wie auch den Rohrabschnitt von der Führer-Kabine aus weitgehendst einsehen. Sobald er diese Stellung erreicht hat, schwenkt er das obere Kupplungsteil 5 in das untere Kupplungsteil 4 hinein. Dieses geschieht, indem der Auslegerarm 8 relativ zum Auslegerarm 7 vorgeschoben wird. Sobald das obere Kupplungsteil 5 satt im Innern des unteren 4 liegt, wird die Kupplung verriegelt, wozu die Mittel im Innern des oberen Kupplungsteils 5 dienen, welche in dieser Figur nicht einsehbar sind.
Figure 1 shows the coupling 1 in the uncoupled state, attached to a boom 2 and bucket 3 of an excavator. The clutch 1 consists of two clutch parts. The lower coupling part 4 is firmly attached to the excavator bucket 3, while the upper coupling part 5 is firmly connected to the boom 2. However, this connection is articulated in that the coupling part 5 has two side walls 6 on its upper side, which are provided with holes for receiving bolts. Are in the attached state these side walls 6 slipped over the end of the boom, which here consists of two boom arms 7, 8. Both cantilever arms 7, 8 have a transverse hole 9 at their end. The distance between the two mouth planes of each transverse hole 9 corresponds to the distance between the two side walls 6. For fastening the coupling part 5 to the bracket 2, bolts are pushed through the holes in the side walls 6 and the transverse holes 9 and secured against falling out in the inserted position. If the cantilever arms 7 and 8 are displaced relative to one another, the coupling part 5 is pivoted accordingly about the pin axes. This pivoting movement causes the digging and emptying movement of the coupled bucket. The coupling part 5 is box-shaped on its undersides, the inside of the box formed in this way serving to receive the elements for non-positive coupling with the lower coupling part 4. The side walls 10 of this box have openings 11.
The lower coupling part 4 is also box-shaped. This coupling part 4 can be firmly connected to the excavator bucket 3 in such a way that it is firmly welded to it. On the inner sides of these two side walls 12, which are also the side walls of the box formed by this coupling part 4, lugs 13 are formed, which protrude at right angles from these inner sides. These lugs 13 each have an underside 14, which against the side wall 12 on which the lug 13 in question is formed, and thus also runs slightly obliquely downwards against the bottom surface inside the coupling part 5. The two coupling parts 4 and 5 are pivoted together for engaging or coupling the excavator bucket 3. For this purpose, the lower coupling part 4 has a pipe section 15 connecting it between its side walls 12. The rear of the coupling part 5, on the other hand, has a concave surface 16 which represents the inner surface of a hollow cylinder and whose radius corresponds to the outer radius of the pipe section 15. To engage, the excavator operator brings the upper coupling part 5 to lie on the boom with this concave surface 16 on the pipe section 15. For this maneuver, he can largely see both the surface 16 and the pipe section from the driver's cab. As soon as it has reached this position, it pivots the upper coupling part 5 into the lower coupling part 4. This is done by advancing the cantilever arm 8 relative to the cantilever arm 7. As soon as the upper coupling part 5 lies well inside the lower 4, the coupling is locked, for which purpose the means inside the upper coupling part 5 are used, which cannot be seen in this figure.

Dieser Verriegelungsmechanismus ist in Figur 2 gezeigt, indem hier die Kupplung im ineinandergeschwenkten Zustand der beiden Kupplungsteile 4 und 5 von vorne in einem Schnitt dargestellt ist. In der hier gezeigten Situation ist die Verriegelung noch nicht erfolgt. Man erkennt die Nasen 13 an den Seitenwänden 12 sowie ihre zur Unterseite, also zum Boden des durch das obere Kupplungsteil 5 gebildeten Kastens schräg verlaufende Unterseite 14. Im Inneren des Kupplungsteils 5 sind nun zwei Keile 17 angeordnet, die aus je einem Stahl-Vierkant mit teilweise keilförmigem Querschnitt bestehen. Die Keilflächen 18 weisen dieselbe Schräge auf wie die Unterseiten 14 der Nasen 13, verlaufen also parallel zu jenen. Beide Keile 17 werden gewindekraftschlüssig durchsetzt von einer gemeinsamen Gewindestange 19. Diese Gewindestange 19 ist in den Seitenflächen 10 des oberen Kupplungsteils 5 drehbar gelagert. Hierzu können Kugellager 21 vorgesehen sein. Die Gewinde 22 und 23, welche die Gewindestange 19 aufweist, sind zueinander gegenläufig gerichtet. Das heisst, das eine Gewinde 22 ist ein rechtsgerichtetes Gewinde und das Gewinde 23 ist ein linksgerichtetes Gewinde oder umgekehrt. In der Mitte trägt die Gewindestange 19 einen Zahnkranz 20, der zum Antreiben der Gewindestange 19 dient, um sie also beliebig in Drehung zu versetzen. Mittels Drehung der Gewindestange 19 nämlich verschieben sich die Keile 17 genau gegengleich. Einerseits können sie derart unter die Nasen 13 geschoben werden, womit sie das obere Kupplungsteil 5 satt an das untere 4 pressen. Selbst wenn die Verklemmung auf den beiden Seiten nicht genau simultan geschieht, so wird dieses sofort ausgeglichen, indem die ganze Gewindestange 19 in ihren beiden Lagern 21 leicht hin und her verschiebbar ist. Damit er folgt jedesmal beim Verklemmen eine automatische Selbstzentrierung, wodurch gewährleistet ist, dass die Klemmkraft auf beiden Seiten immer gleich gross ist. Natürlich hat dieses eine leichte Verschiebung des Zahnkranzes 20 aus der Mitte zur Folge, was aber die Funktion des Verklemm-Mechanismus in keiner Weise beeinträchtigt, wie das gleich eingesehen werden kann.This locking mechanism is shown in FIG. 2, in that the clutch is shown in a section from the front in the swiveled-in state of the two clutch parts 4 and 5. In the situation shown here has not yet been locked. One recognizes the lugs 13 on the side walls 12 as well as their underside which runs obliquely to the underside, that is to the bottom of the box formed by the upper coupling part 5. Inside the coupling part 5 two wedges 17 are now arranged, each made of a steel square partially wedge-shaped cross section. The wedge surfaces 18 have the same slope as the undersides 14 of the lugs 13, that is to say run parallel to those. Both wedges 17 are traversed by a common threaded rod 19. This threaded rod 19 is rotatably mounted in the side surfaces 10 of the upper coupling part 5. For this purpose, ball bearings 21 can be provided. The threads 22 and 23, which the threaded rod 19 has, are directed in opposite directions to one another. That means that a thread 22 is a right-hand thread and the thread 23 is a left-hand thread or vice versa. In the middle, the threaded rod 19 carries a ring gear 20, which serves to drive the threaded rod 19, so that it can be rotated as desired. By turning the threaded rod 19 namely the wedges 17 move exactly opposite. On the one hand, they can be pushed under the lugs 13 in this way, with which they press the upper coupling part 5 firmly against the lower 4. Even if the jamming on the two sides does not occur exactly simultaneously, this is compensated for immediately by the entire threaded rod 19 being easily movable back and forth in its two bearings 21. So that he automatic self-centering follows each time it is clamped, which ensures that the clamping force is always the same on both sides. Of course, this results in a slight displacement of the ring gear 20 from the center, but this does not impair the function of the clamping mechanism in any way, as can be seen immediately.

Der Antrieb der Gewindestange 19 erfolgt ja über den Zahnkranz 20, welcher seinerseits von einer Rollenkette 24 angetrieben ist, wie dies aus Figur 3 hervorgeht, welche den Mechanismus in einer Draufsicht zeigt. Erkennbar sind einmal die beiden Kupplungsteile 4,5, nämlich das untere, hier äussere 4 und das obere, hier innere 5. Ebenfalls erkennbar ist der Rohrabschnitt 15 am unteren Kupplungsteil 4, an dem das obere Kupplungsteil 5 mit seiner konkaven Fläche 16 anliegt. Die auf der Innenseite der Seitenflächen 12 angeformten Nasen 13 ragen durch die Oeffnungen 11 in den Seitenwänden 10 in das Innere des oberen Kupplungsteils 5 hinein. Die Gewindestange 19 mit den beiden gegenläufigen Gewinden 22,23 ist in den Seitenwänden 10 des oberen Kupplungsteils 5 gelagert. Ihre Drehung bewirkt die entsprechende Verschiebung der beiden Keile 17, entweder auseinander, wobei sie dann mit ihren abgeschrägten Keilflächen 18 unter den Nasen 13 verklemmt werden, oder gegeneinander, wodurch die Verklemmung gelöst wird und sich schliesslich die in der Figur 3 gezeigte Situation einstellt, in welcher das obere Kupplungsteil 5 wiederum aus dem unteren 4 herausgeschwenkt werden kann. Damit sich die Keile 17 während ihrer Verschiebung nicht seitlich verkanten können, sind sie wenigstens auf ihrer einen Seite von einer Anschlagleiste 26 geführt, die durch ein einfaches Doppelwinkel-Profil gebildet ist, das im Innern des oberen Kupplungsteils 5 an dessen Bodenfläche angeschweisst ist. Der Antrieb der Gewindestange 19 erfolgt über den Zahnkranz 20, um den eine Rollenkette 24 gelegt ist, die ihrerseits von der Abtriebsachse eines hydraulischen Antriebs 25 angetrieben wird.The threaded rod 19 is driven via the toothed ring 20, which in turn is driven by a roller chain 24, as can be seen from FIG. 3, which shows the mechanism in a top view. One can see the two coupling parts 4, 5, namely the lower, here outer 4 and the upper, here inner 5. Also the pipe section 15 on the lower coupling part 4, against which the upper coupling part 5 with its concave surface 16 lies, is recognizable. The lugs 13 formed on the inside of the side surfaces 12 protrude through the openings 11 in the side walls 10 into the interior of the upper coupling part 5. The threaded rod 19 with the two opposing threads 22, 23 is mounted in the side walls 10 of the upper coupling part 5. Their rotation causes the corresponding displacement of the two wedges 17, either apart, whereby they are then jammed with their beveled wedge surfaces 18 under the lugs 13, or against each other, whereby the jamming is released and finally the situation shown in FIG. 3 is established in which is the upper coupling part 5 can in turn be pivoted out of the lower 4. So that the wedges 17 cannot tilt laterally during their displacement, they are guided at least on one side by a stop bar 26 which is formed by a simple double-angle profile which is welded to the bottom surface of the upper coupling part 5 inside. The threaded rod 19 is driven via the ring gear 20, around which a roller chain 24 is placed, which in turn is driven by the output shaft of a hydraulic drive 25.

Figur 4 zeigt das gleiche wie Figur 3, jedoch in einem Schnitt von der Seite her gesehen. Erkennbar sind wiederum das obere 5 und das untere Kupplungsteil 4, sowie die Nasen 13 am unteren und die Oeffnungen 11 am oberen Kupplungsteil 5, sowie die Keile 17 nebst deren Antriebsmittel, nämlich der Gewindestange 19, der Rollenkette 24 und des hydraulischen Antriebs 25. Auch die Anschlagleiste 26, entlang welcher die Keile 17 geführt sind, ist sichtbar. Ausserdem ist in dieser Figur der Rohrabschnitt 15 am unteren Kupplungsteil 4 ersichtlich, sowie die konkave Fläche 16 am oberen Kupplungsteil 5, die am Rohrabschnitt 15 anliegt. Die Schwenkung des oberen Kupplungsteiles 5 gegenüber dem unteren 4 erfolgt daher um die Achse des Rohrabschnittes 15.Figure 4 shows the same as Figure 3, but seen in a section from the side. The upper 5 and the lower coupling part 4, as well as the lugs 13 on the lower and the openings 11 on the upper coupling part 5, as well as the wedges 17 and their drive means, namely the threaded rod 19, the roller chain 24 and the hydraulic drive 25 can also be seen the stop bar 26 along which the wedges 17 are guided is visible. In addition, the pipe section 15 on the lower coupling part 4 and the concave surface 16 on the upper coupling part 5, which bears against the pipe section 15, can be seen in this figure. The pivoting of the upper coupling part 5 relative to the lower 4 therefore takes place about the axis of the pipe section 15.

Anstelle eines Antriebes mit einer Rollenkette kann dieser auch über einen Zahnriemen erfolgen, wofür dann die Gewindestange entsprechend mit einem Zahnriemenrad ausgerüstet ist.Instead of a drive with a roller chain, this can also be done via a toothed belt, for which the Threaded rod is equipped accordingly with a toothed belt wheel.

Um die Stabilität der Kupplung in bezug auf seitliche Verschiebungen zu steigern, können sowohl die Seitenflächen 12 des unteren Kupplungsteils 4 wie auch die Seitenflächen 10 des oberen Kupplungsteils 5 zueinander leicht konisch verlaufen. Wird dann das obere Kupplungsteil 5 in das untere hineingesteckt oder hineingeschwenkt, so wird es im unteren Kupplungsteil 4 zusätzlich seitlich verklemmt. Die Abschlusswand (27,28) gegenüber dem Rohrabschnitt 15 beziehungsweise der konischen Fläche 16 sowohl des unteren 4 wie auch oberen Kupplungsteils 5 kann ausserdem nach oben hin leicht mit wachsendem Radius gegen innen geschwungen verlaufen. Damit wird zusätzlich auch in Richtung senkrecht zum Rohrabschnitt 15 eine Verklemmung bewirkt, wenn das obere Kupplungsteil 5 in das untere 4 geschwenkt wird.In order to increase the stability of the coupling with respect to lateral displacements, both the side surfaces 12 of the lower coupling part 4 and the side surfaces 10 of the upper coupling part 5 can be slightly conical to one another. If the upper coupling part 5 is then inserted or pivoted into the lower coupling part, it is additionally clamped laterally in the lower coupling part 4. The end wall (27, 28) opposite the pipe section 15 or the conical surface 16 of both the lower 4 and the upper coupling part 5 can also run slightly upwards with increasing radius towards the inside. This also causes jamming in the direction perpendicular to the pipe section 15 when the upper coupling part 5 is pivoted into the lower 4.

Der erfindungsgemässe Antriebsmechanismus bringt bedeutende Vorteile gegenüber den herkömmlichen. Die Vorteile eines hydraulischen Antriebs wurden hier mit denen eines mechanischen gekoppelt. Bei den bekannten hydraulischen Verriegelungsmechanismen fehlte nämlich eine wirksame Selbsthemmung. Wird die hydraulische Zylinder-Kolben-Einheit leck, so kann sich die Verriegelung lockern und der Bagger kann schlimmstensfalls seinen Löffel verlieren. Dem ist hier dadurch Abhilfe geschafft worden, dass für den Antrieb ein hydraulischer Antrieb 25 eingesetzt wird, der seinerseits eine Gewindestange 19 antreibt, welche eine natürliche Selbsthemmung aufweist, sodass sich auch bei stärkster Beanspruchung des Baggerlöffels und entsprechenden Vibrationen und Schlägen auf die Kupplung 1 diese nicht zu lösen vermag. Der hydraulische Antrieb 25 braucht, sobald die Verriegelung vorgenommen wurde und die Keile 17 verklemmt sind, nicht mehr mit Hydrodruck beaufschlagt zu werden. Im Gegensatz also zu einer Zylinder-Kolben-Einheit steht er nicht ständig unter Druck, sondern nur dann, wenn der Verriegelungsmechanismus tatsächlich betätigt wird. Ein hydraulischer Antrieb kann ausserdem sehr robust gebaut werden, sodass er gegenüber der Alternative eines Elektromotors im Betrieb um eine Vielfaches zuverlässiger und dauerhafter ist. Zudem wiesen viele Bagger zusätzliche Hydraulikanschlüsse bereits auf, von welchen aus die Versorgung des hydraulischer Antriebs 25 mit Hydrodruck-Flüssigkeit sichergestellt werden kann, ohne dass grosse bauliche Veränderungen am Bagger selbst vorzunehmen wären.The drive mechanism according to the invention brings significant advantages over the conventional ones. The advantages of a hydraulic drive were combined with those of a mechanical one. The known hydraulic locking mechanisms lacked effective self-locking. If the hydraulic cylinder-piston unit leaks, the lock can loosen and, in the worst case, the excavator can lose its bucket. This has been remedied by the fact that for the drive is a hydraulic drive 25 is used, which in turn drives a threaded rod 19, which has a natural self-locking, so that even with the heaviest stress on the excavator bucket and corresponding vibrations and impacts on the clutch 1, this can not solve. As soon as the locking has been carried out and the wedges 17 are jammed, the hydraulic drive 25 no longer needs to be subjected to hydraulic pressure. In contrast to a cylinder-piston unit, it is not constantly under pressure, but only when the locking mechanism is actually actuated. A hydraulic drive can also be built very robustly, so that it is many times more reliable and durable compared to the alternative of an electric motor. In addition, many excavators already had additional hydraulic connections, from which the supply of the hydraulic drive 25 with hydraulic pressure fluid can be ensured without having to make major structural changes to the excavator itself.

Die erfindungsgemässe Kupplung 1 kann deshalb in einfachster Weise vom Baggerführer aus seiner Kabine heraus betätigt werden. Ihr einfacher Aufbau, welcher das Ineinanderschwenken der beiden Kupplungsteile 4,5 erlaubt, ermöglicht das An- und Abkuppeln von Baggerlöffeln ohne manuelle Handgriffe an der Kupplung selbst, sodass ein Aussteigen des Baggerführers oder der Zuzug von Hilfskräften nicht mehr erforderlich ist. Damit aber lassen sich wertvolle Maschinenstunden einsparen und zudem wird ein Anreiz geschaffen, vermehrt mit dem jeweils optimalen Baggerlöffel zu arbeiten. Natürlich funktioniert die Kupplung auch für weitere Werkzeuge anstelle von Baggerlöffeln, so zum Beispiel für Abbruchhämmer und dergleichen.The clutch 1 according to the invention can therefore be actuated in the simplest manner by the excavator operator from his cabin. Their simple design, which allows the two coupling parts 4, 5 to pivot into one another, enables excavator buckets to be coupled and uncoupled without manual manipulations on the coupling itself, so that it is no longer necessary for the excavator operator to get out of the vehicle or to call in auxiliary personnel. But this can be valuable Save machine hours and also create an incentive to work increasingly with the optimal excavator bucket. Of course, the coupling also works for other tools instead of excavator buckets, for example for demolition hammers and the like.

Claims (7)

  1. A coupling (1) for coupling an excavator shovel bucket (3) to the boom (2) of an excavator, consisting of a lower, box-shaped coupling element (4) which is rigidly mounted on the excavator shovel bucket (3), and an upper box-shaped coupling element (5) which can be pushed or pivoted snugly into the lower element, projections (13) being incorporated on the inner walls of the lower coupling element (4) which, when the two coupling elements (4,5) are in the coupled state, project through openings (11) in the sidewalls (10) of the upper coupling element (5) into the interior thereof and under each of which a wedge (17) can be pushed, characterized in that a projection (13) is incorporated on the inside of each of the two mutually opposite sidewalls of the lower coupling element (4), and in that a single threaded rod (19) with two oppositely running threads (22,23) traverses the two wedges (17) to form a threaded friction-type locking, and in that the threaded rod (19) can be driven by means of a hydraulic drive (25) disposed within the upper coupling element (5).
  2. A coupling according to claim 1, characterized in that the threaded rod (19) bears a toothed ring (20) which is connected with the drive axle of the hydraulic drive (25) via a roller chain (24).
  3. A coupling according to one of the preceding claims, characterized in that the wedges (17) can be moved to and fro in a lateral direction towards the sidewalls (10,12) of the coupling elements (4,5).
  4. A coupling according to one of the preceding claims, characterized in that the wedges (17) are guided along their direction of movement on at least one side by means of a stopper rail (26).
  5. A coupling according to one of claims 1, 3 or 4, characterized in that the threaded rod (19) bears a toothed belt gear which is connected with the drive axle of the hydraulic drive (25) via a toothed belt.
  6. A coupling according to one of the preceding claims, characterized in that the sidewalls (10,12) of the two coupling elements (5,4) are each slightly tapered with respect to one another.
  7. A coupling according to one of the preceding claims, characterized in that, with respect to the tubular section (15), the closing wall (27) on the lower coupling element (4) runs upwards with an increasing radius slightly tilted towards the inside, as does the wall (28) on the upper element (5) with respect to the conical surface (16).
EP90810171A 1989-04-12 1990-03-06 Coupling for an excavator bucket Expired - Lifetime EP0392972B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90810171T ATE94930T1 (en) 1989-04-12 1990-03-06 COUPLING FOR EXCAVATOR BUCKET.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1376/89 1989-04-12
CH1376/89A CH680007A5 (en) 1989-04-12 1989-04-12

Publications (3)

Publication Number Publication Date
EP0392972A2 EP0392972A2 (en) 1990-10-17
EP0392972A3 EP0392972A3 (en) 1991-07-03
EP0392972B1 true EP0392972B1 (en) 1993-09-22

Family

ID=4208979

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90810171A Expired - Lifetime EP0392972B1 (en) 1989-04-12 1990-03-06 Coupling for an excavator bucket

Country Status (4)

Country Link
EP (1) EP0392972B1 (en)
AT (1) ATE94930T1 (en)
CH (1) CH680007A5 (en)
DE (1) DE59002794D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9315868U1 (en) * 1993-10-18 1995-02-16 Liebherr Hydraulikbagger clutch
DE29601727U1 (en) * 1996-02-02 1996-08-01 Nagler Juergen Tool changing device for hydraulic excavators
EP1353011A1 (en) * 2002-03-27 2003-10-15 Rädlinger Maschinen- und Anlagenbau GmbH Device for coupling a working implement to a construction machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB928103A (en) * 1961-04-18 1963-06-06 Priestman Brothers Improvements relating to trench excavators
CH661305A5 (en) * 1983-09-15 1987-07-15 Stury Fredi Ag EXCAVATOR WITH AN OPTIONAL FIXING OF THE EXCAVATOR SPOON ON THE EXCAVATOR BOOM.
SE458534B (en) * 1987-07-20 1989-04-10 Lidkoeping Svets & Maskinprod DEVICE FOR A QUICK CONNECTION FOR UNLOCKABLE COUPLING OF A WORKING TOOL AND AN EXCAVATOR MANUAL ARM

Also Published As

Publication number Publication date
CH680007A5 (en) 1992-05-29
EP0392972A2 (en) 1990-10-17
DE59002794D1 (en) 1993-10-28
EP0392972A3 (en) 1991-07-03
ATE94930T1 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
DE102005037105C5 (en) Adapter for a working device as part of a quick-change device and quick-change device
EP0143074B1 (en) Excavator
WO2007131800A1 (en) Quick-change device
EP0122547A1 (en) Quick-change device
DE3102250A1 (en) DEVICE FOR AUTOMATICALLY RECEIVING TOOLS, ESPECIALLY FOR EXCAVATORS, LOADING VEHICLES AND OTHER EARTHMOVING MACHINES
EP2083123B1 (en) Mounted compressor
EP0182091A1 (en) Power lift for a hoisting device
DE10159417C2 (en) quick coupling
AT410333B (en) ARRANGEMENT FOR DETACHABLE FASTENING OF AN ATTACHMENT, e.g. AN EXCAVATOR BUCKET, ON AN EXCAVATOR OR ON A VEHICLE
DE19901001C2 (en) Earth drilling rig with link changer
DE202021101016U1 (en) Quick coupler for construction machinery tools
EP3719210B1 (en) Quick change pivot motor combination
EP0392972B1 (en) Coupling for an excavator bucket
EP0506604A1 (en) Quick-acting coupling for temporarily connecting implements to an excavator boom
CH637338A5 (en) LENGTH CARRIER OF A RAILWAY CAR.
DE102006049059A1 (en) Working device e.g. backhoe, connecting device, for use in construction or mining industry, has quick-changer provided with coupling plate with opening, and pin moving between rear side of coupling and locking plates
DE2841190A1 (en) SHIELD EXTENSION RACK FOR USE IN UNDERGROUND PIT OPERATION, WITH LEMNIS CATHEME HANDLEBAR
DE8534520U1 (en) Locking device for folding side parts of harvesting attachments
CH687775A5 (en) Quick-change system for Loeffelbagger.
WO1995031611A1 (en) Quick change attachment
DE10100449B4 (en) Quick coupler for orange peel grab
EP0665334A2 (en) Milling machine and articulation
DE4026210A1 (en) Attachment of excavator bucket to arm - involves hooks locked by spring-loaded pawl
EP3770330B1 (en) Quick changer
EP0555566B1 (en) Hydraulic coupling device to connect and disconnect the implement to an excavator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920312

17Q First examination report despatched

Effective date: 19921113

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930922

Ref country code: GB

Effective date: 19930922

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930922

Ref country code: FR

Effective date: 19930922

Ref country code: SE

Effective date: 19930922

Ref country code: DK

Effective date: 19930922

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930922

Ref country code: BE

Effective date: 19930922

REF Corresponds to:

Ref document number: 94930

Country of ref document: AT

Date of ref document: 19931015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59002794

Country of ref document: DE

Date of ref document: 19931028

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19930922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940331

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950327

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950920

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951004

Year of fee payment: 6

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19960331

Ref country code: LI

Effective date: 19960331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961203