EP0384888B1 - Drilling device - Google Patents

Drilling device Download PDF

Info

Publication number
EP0384888B1
EP0384888B1 EP19900810078 EP90810078A EP0384888B1 EP 0384888 B1 EP0384888 B1 EP 0384888B1 EP 19900810078 EP19900810078 EP 19900810078 EP 90810078 A EP90810078 A EP 90810078A EP 0384888 B1 EP0384888 B1 EP 0384888B1
Authority
EP
European Patent Office
Prior art keywords
feed
valve
piston
percussion
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19900810078
Other languages
German (de)
French (fr)
Other versions
EP0384888A1 (en
Inventor
Günter Straub
Pascher Arno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schweizerische Industrie Gesellschaft
Original Assignee
Schweizerische Industrie Gesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schweizerische Industrie Gesellschaft filed Critical Schweizerische Industrie Gesellschaft
Publication of EP0384888A1 publication Critical patent/EP0384888A1/en
Application granted granted Critical
Publication of EP0384888B1 publication Critical patent/EP0384888B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • E21B44/02Automatic control of the tool feed
    • E21B44/06Automatic control of the tool feed in response to the flow or pressure of the motive fluid of the drive
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B6/00Drives for drilling with combined rotary and percussive action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/20Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors controlling several interacting or sequentially-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/41Flow control characterised by the positions of the valve element
    • F15B2211/413Flow control characterised by the positions of the valve element the positions being continuously variable, e.g. as realised by proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41572Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41581Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/428Flow control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members
    • F15B2211/782Concurrent control, e.g. synchronisation of two or more actuators

Definitions

  • the present invention relates to a rock drilling device for mining and tunnel construction in relatively soft rock, where rotary impact boring mills are advantageous and zones of different hardness have to be traversed.
  • Such devices have a rotating mechanism for rotating the boring bar, an impact mechanism for hitting the boring bar and a feed drive.
  • the speed of the rotating mechanism, the frequency and impact performance of the impact mechanism and the feed can usually be set. The setting depends on the type of rock to be drilled and is based on experience. However, it often happens that different types of rock are drilled during the advance. The set works are then selected for the hardest rock and are not optimal for softer layers, which leads to low propulsive power and increased tool wear.
  • a drilling device is known from CH-A 657 664.
  • This document describes a hammer drilling device with a rotating mechanism, a hammer mechanism and a feed drive.
  • the control pressure on a control valve is taken from the feed line of the feed drive.
  • a certain adaptation of the stroke frequency to the feed performance is indeed possible.
  • an optimal adaptation of the speed and impact frequency to different rock hardness cannot be achieved.
  • US-A-4 246 973 and US-A-4 356 871 describe further drilling devices in which the pressure to the striking mechanism, the pressure to the rotating mechanism and the pressure to the feed drive depend on one another.
  • the stroke frequency is made dependent either on the torque of the slewing gear or the feed force.
  • the present invention has for its object to provide a drilling device of the type mentioned in such a way that optimal drilling performance in different rocks species can be achieved. This object is achieved by the characterizing features of claim 1.
  • the working parts of the drilling device are only indicated schematically in FIG. 1. They consist of a rotating mechanism 1 for rotating a boring bar 2, a striking mechanism 3 for hitting the boring bar 2 and a feed drive 4 for advancing the drilling device 1, 2, 3.
  • the device also has a first control device 5 for adjusting the speed of the rotating mechanism 1 and the impact frequency and impact power of the impact mechanism 3, and a second control device 6 for adjusting the feed force and speed.
  • the slewing gear 1 consists of a hydraulic motor 10 with an output shaft 11 which is non-rotatably connected to the boring bar 2.
  • the striking mechanism 3 consists of a striking cylinder 12 in which a striking piston 13 is driven back and forth.
  • the Percussion piston 13 strikes against the rear end face of boring bar 2, preferably via an anvil, not shown.
  • Rotary mechanism 1 and percussion mechanism 3 are arranged in a common housing, not shown, which additionally contains a rotary slide valve 14 for controlling the percussion mechanism 3.
  • the rotary valve 14 is driven by the shaft 11 via a gear 15.
  • the impact frequency is exactly proportional to the speed of the slewing gear 1. This has proven to be extremely favorable for the optimal adaptation of the speed and impact frequency to different rock hardness.
  • the boring bar 2 makes a predetermined angle of rotation between two successive strokes, which is independent of the speed.
  • 14 pressure accumulators 18 are arranged in these lines adjacent to the rotary valve.
  • a four / three-way switching valve 23 is connected between the hydraulic motor 10 and the feed line 21 and the return line 22, so that the motor 10 can be operated clockwise or counterclockwise.
  • a parallel connection of an adjustable throttle 26 and a check valve 27 is arranged in each of the lines 24, 25 between the valve 23 and the motor 10.
  • the throttles 26 act as flow regulators and are used to adjust the basic speed of the motor 10 for RIGHT or left rotation.
  • motor 10 turns left with line 24 is connected to the feed line 21.
  • a proportional control valve 28 is connected in this line 24 in parallel to the valve 23 and the throttle 26. The valve 28 opens against the force of a spring 29 proportional to the pressure in its control line 30 and therefore acts on the motor 10 via the bypass line 31 with additional hydraulic oil, so that it rotates faster in proportion to the pressure in the line 30.
  • the feed drive 4 comprises a hydraulic cylinder 35 with a piston 36 and a piston rod 37 which is connected to the housing of the rotating and striking mechanism 1, 3 (not shown).
  • the two chambers 38, 39 of the cylinder 35 are connected via a further four / three-way valve 40 to a further feed line 41 and return line 42.
  • a double pilot-controlled pressure control valve 44 preloaded with an adjustable spring force, is connected in line 43 between valve 40 and feed chamber 39.
  • the two pilot pressures to the valve 44 are connected to the two chambers 38, 39. Through the valve 44, the pressure of the boring bar 2 can thus be limited to an adjustable value independently of the pressure in the chamber 38 during the advance.
  • the line 45 to the chamber 38 is connected to the valve 40 via a three / two-way valve 46 in its first switching position via an adjustable quantity regulator 47.
  • the quantity controller 47 limits the feed rate.
  • the line 45 is connected to a variable throttle 56 via a connecting line 55.
  • the drain 57 leads to the tank 58 via an adjustable pressure control valve 54.
  • This control valve 54 maintains the response pressure of the proportional control valve 28 even when the flow through the throttle 56 is low.
  • the control line 30 is connected to the line 55.
  • the throttle 56 is shown in section in FIG. 2.
  • a plunger 63 is slidably mounted in a cylindrical bore 61 of a housing 62.
  • the piston 63 penetrates a sharp-edged diaphragm 64 with sliding play.
  • the orifice 64 separates an input chamber 65 connected to the line 55 from an output chamber 66 connected to the line 57 in the housing 62.
  • a spring 67 presses against the end face of the piston 63.
  • the piston 63 bears against a cover 69 at the rear.
  • the piston 63 has centrally symmetrically arranged, increasingly deepening to the rear, axial grooves 70 on its circumferential surface.
  • the cross section of the grooves 70 increases with the axial distance from the spring-side end of the piston 63.
  • the throttle cross section thus increases steadily with the stroke of the piston 63, which in turn is proportional to the difference in pressure in the chambers 65, 66.
  • the increase in cross section of the grooves 70 with the stroke of the piston 63 is expediently designed such that the dynamic pressure which forms in the line 55 is proportional to the flow rate through the throttle 56. If the valve 28 opens linearly, then the speed increase of the hydraulic motor 10 is proportional to the feed rate.
  • a borehole is started with the valve 46 in the neutral position shown.
  • the pressure control valve 44 is used to set the optimum pressure for the hardest rock layer of the borehole to be expected.
  • the setting of the throttle 26 also depends on the hardest rock layer to be expected.
  • the quantity regulator 47 which is only decisive for the drilling, is set to the optimum feed rate for the rock to be drilled through first. As soon as the borehole has been drilled, the valve 46 is switched over. If the drill bit encounters softer rock during drilling, the feed rate increases due to the constant pressure.
  • the start of the connection of the bypass 31 can be set by the screw 68. If an adjustment of the speed dependence is desired, the spring constant of the spring 67 'can be made variable, as shown in Fig. 3.
  • the spring 67 ' is designed here as a spiral spring. With a shoe 73, the free length of the spring 67 'and thus the spring constant can be set here.
  • the shoe 73 is displaceable by an adjusting screw 74.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Earth Drilling (AREA)

Description

Die vorliegende Erfindung betrifft eine Gesteinsbohrvorrichtung für den Berg- und Tunnelbau in relativ weichem Gestein, wo Drehschlagbohrwerke vorteilhaft sind und Zonen unterschiedlicher Härte zu durchfahren sind. Solche Vorrichtungen haben ein Drehwerk zum Drehen der Bohrstange, ein Schlagwerk zum Schlagen der Bohrstange und einen Vorschubantrieb. Üblicherweise können bei bekannten Bohrvorrichtungen dieser Art die Drehzahl des Drehwerks, die Frequenz und Schlagleistung des Schlagwerks und der Vorschub eingestellt werden. Die Einstellung richtet sich nach der zu durchbohrenden Gesteinsart und gründet auf Erfahrenswerten. Häufig kommt es aber vor, daß während des Vortriebs unterschiedliche Gesteinsarten durchbohrt werden. Die eingestellten Werke werden dann für das härteste Gestein gewählt und sind für weichere Schichten nicht optimal, was zu geringen Vortriebsleistungen und erhöhtem Werkzeugverschleiß führt.The present invention relates to a rock drilling device for mining and tunnel construction in relatively soft rock, where rotary impact boring mills are advantageous and zones of different hardness have to be traversed. Such devices have a rotating mechanism for rotating the boring bar, an impact mechanism for hitting the boring bar and a feed drive. In known drilling devices of this type, the speed of the rotating mechanism, the frequency and impact performance of the impact mechanism and the feed can usually be set. The setting depends on the type of rock to be drilled and is based on experience. However, it often happens that different types of rock are drilled during the advance. The set works are then selected for the hardest rock and are not optimal for softer layers, which leads to low propulsive power and increased tool wear.

Eine Bohrvorrichtung gemäß Oberbegriff des Anspruchs 1 ist aus der CH-A 657 664 bekannt. Diese Schrift beschreibt eine Schlag-Bohrvorrichtung mit einem Drehwerk, einem Schlagwerk und einem Vorschubantrieb. Um die Bohrleistung zu verbessern, wird der Steuerdruck auf ein Steuerventil von der Vorlaufleitung des Vorschubantriebs entnommen. Damit gelingt zwar eine gewisse Anpassung der Schlagfrequenz an die Vorschubleistung. Eine optimale Anpassung der Drehzahl und Schlagfrequenz an unterschiedliche Gesteinshärten ist damit allerdings nicht erreichbar.A drilling device according to the preamble of claim 1 is known from CH-A 657 664. This document describes a hammer drilling device with a rotating mechanism, a hammer mechanism and a feed drive. In order to improve the drilling performance, the control pressure on a control valve is taken from the feed line of the feed drive. A certain adaptation of the stroke frequency to the feed performance is indeed possible. However, an optimal adaptation of the speed and impact frequency to different rock hardness cannot be achieved.

Aus der US-A-4 064 950 ist es an sich bekannt, daß es günstig ist, die Schlagfrequenz an die Drehzahl des Drehwerks anzupassen. Dazu schlägt diese Schrift vor, Schlagwerk und Drehwerk in Serie zu schalten. Diese Lösung hat sich allerdings nicht als günstig erwiesen, weil damit die Schlagleistung invers von der Leistung des Drehwerks abhängt.From US-A-4 064 950 it is known per se that it is favorable to adapt the stroke frequency to the speed of the slewing gear. For this purpose, this document suggests switching the striking mechanism and slewing gear in series. However, this solution has not proven to be cheap because the impact performance is inversely dependent on the performance of the slewing gear.

In der US-A-4 246 973 und der US-A-4 356 871 sind weitere Bohrvorrichtungen beschrieben, in welchen der Druck zum Schlagwerk, der Druck zum Drehwerk und der Druck zum Vorschubantrieb voneinander abhängen.US-A-4 246 973 and US-A-4 356 871 describe further drilling devices in which the pressure to the striking mechanism, the pressure to the rotating mechanism and the pressure to the feed drive depend on one another.

Beim Vorschlag gemäss EP-A-203 282 wird die Schlagfrequenz entweder von dem Drehmoment des Drehwerks oder der Vorschubkraft abhängig gemacht.In the proposal according to EP-A-203 282, the stroke frequency is made dependent either on the torque of the slewing gear or the feed force.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Bohrvorrichtung der eingangs genannten Art derart auszubilden, daß eine optimale Bohrleistung in unterschiedlichen Gesteins arten erreicht werden kann. Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.The present invention has for its object to provide a drilling device of the type mentioned in such a way that optimal drilling performance in different rocks species can be achieved. This object is achieved by the characterizing features of claim 1.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung erläutert. Darin zeigt:

  • Fig. 1 ein Schema einer erfindungsgemäßen Bohrvorrichtung,
  • Fig. 2 einen Schnitt durch eine variable Drossel, und
  • Fig. 3 einen Schnitt durch eine Variante der Drossel nach Fig. 2.
An exemplary embodiment of the invention is explained below with reference to the drawing. It shows:
  • 1 is a diagram of a drilling device according to the invention,
  • Fig. 2 shows a section through a variable throttle, and
  • 3 shows a section through a variant of the throttle according to FIG. 2.

Die Arbeitsteile der Bohrvorrichtung sind in Fig. 1 nur schematisch angedeutet. Sie bestehen aus einem Drehwerk 1 zum Drehen einer Bohrstange 2, einem Schlagwerk 3 zum Schlagen der Bohrstange 2 sowie einem Vorschubantrieb 4 zum Vorschub der Bohreinrichtung 1, 2, 3. Die Vorrichtung hat zudem eine erste Steuereinrichtung 5 zum Einstellen der Drehzahl des Drehwerks 1 und der Schlagfrequenz und Schlagleistung des Schlagwerks 3, sowie eine zweite Steuereinrichtung 6 zum Einstellen der Vorschubkraft und -geschwindigkeit.The working parts of the drilling device are only indicated schematically in FIG. 1. They consist of a rotating mechanism 1 for rotating a boring bar 2, a striking mechanism 3 for hitting the boring bar 2 and a feed drive 4 for advancing the drilling device 1, 2, 3. The device also has a first control device 5 for adjusting the speed of the rotating mechanism 1 and the impact frequency and impact power of the impact mechanism 3, and a second control device 6 for adjusting the feed force and speed.

Das Drehwerk 1 besteht aus einem Hydromotor 10 mit einer Abtriebswelle 11, die drehfest mit der Bohrstange 2 verbunden ist. Das Schlagwerk 3 besteht aus einem Schlagzylinder 12, in dem ein Schlagkolben 13 hin und hergetrieben wird. Der Schlagkolben 13 schlägt dabei gegen die hintere Stirnseite der Bohrstange 2, vorzugsweise über einen nicht dargestellten Amboß. Drehwerk 1 und Schlagwerk 3 sind in einem gemeinsamen, nicht dargestellten Gehäuse angeordnet, das zusätzlich einen Drehschieber 14 für die Steuerung des Schlagwerks 3 enthält. Der Drehschieber 14 wird über ein Getriebe 15 von der Welle 11 angetrieben. Durch diese Ausbildung ist die Schlagfrequenz exakt proportional zur Drehzahl des Drehwerkes 1. Dies hat sich für die optimale Anpassung von Drehzahl und Schlagfrequenz an unterschiedliche Gesteinshärten als außerordentlich günstig erwiesen. Die Bohrstange 2 macht zwischen zwei aufeinanderfolgenden Schlägen einen vorbestimmten Drehwinkel, der unabhängig ist von der Drehzahl. Um die Schlagleistung zu steigern und die Druckpulsationen in der Druckzufuhrleitung 16 und der Rücklaufleitung 17 zum Drehschieber 14 gering zu halten, sind in diesen Leitungen benachbart dem Drehschieber 14 Druckspeicher 18 angeordnet.The slewing gear 1 consists of a hydraulic motor 10 with an output shaft 11 which is non-rotatably connected to the boring bar 2. The striking mechanism 3 consists of a striking cylinder 12 in which a striking piston 13 is driven back and forth. The Percussion piston 13 strikes against the rear end face of boring bar 2, preferably via an anvil, not shown. Rotary mechanism 1 and percussion mechanism 3 are arranged in a common housing, not shown, which additionally contains a rotary slide valve 14 for controlling the percussion mechanism 3. The rotary valve 14 is driven by the shaft 11 via a gear 15. With this design, the impact frequency is exactly proportional to the speed of the slewing gear 1. This has proven to be extremely favorable for the optimal adaptation of the speed and impact frequency to different rock hardness. The boring bar 2 makes a predetermined angle of rotation between two successive strokes, which is independent of the speed. In order to increase the impact performance and to keep the pressure pulsations in the pressure supply line 16 and the return line 17 to the rotary valve 14 low, 14 pressure accumulators 18 are arranged in these lines adjacent to the rotary valve.

Zwischen Hydromotor 10 und Speiseleitung 21 sowie Rücklaufleitung 22 ist ein vier/drei-Wege-Schaltventil 23 eingeschaltet, damit der Motor 10 rechts- oder linksläufig betrieben werden kann. In den Leitungen 24, 25 zwischen Ventil 23 und Motor 10 ist je eine Parallelschaltung einer einstellbaren Drossel 26 und eines Rückschlagventils 27 angeordnet. Die Drosseln 26 wirken als Mengenregler und dienen zur Einstellung der Grunddrehzahl des Motors 10 für RECHTS- bzw. Linklauf. Normalerweise dreht der Motor 10 links, wobei die Leitung 24 auf die Speiseleitung 21 geschaltet ist. In dieser Leitung 24 ist parallel zum Ventil 23 und der Drossel 26 ein Proportional-Regelventil 28 geschaltet. Das Ventil 28 öffnet entgegen der Kraft einer Feder 29 proportional zum Druck in seiner Steuerleitung 30 und beaufschlagt daher den Motor 10 über die Bypassleitung 31 mit zusätzlichem Hydrauliköl, so daß er proportional zum Druck in der Leitung 30 rascher dreht.A four / three-way switching valve 23 is connected between the hydraulic motor 10 and the feed line 21 and the return line 22, so that the motor 10 can be operated clockwise or counterclockwise. A parallel connection of an adjustable throttle 26 and a check valve 27 is arranged in each of the lines 24, 25 between the valve 23 and the motor 10. The throttles 26 act as flow regulators and are used to adjust the basic speed of the motor 10 for RIGHT or left rotation. Typically, motor 10 turns left with line 24 is connected to the feed line 21. A proportional control valve 28 is connected in this line 24 in parallel to the valve 23 and the throttle 26. The valve 28 opens against the force of a spring 29 proportional to the pressure in its control line 30 and therefore acts on the motor 10 via the bypass line 31 with additional hydraulic oil, so that it rotates faster in proportion to the pressure in the line 30.

Der Vorschubantrieb 4 umfaßt einen Hydraulikzylinder 35 mit einem Kolben 36 und einer Kolbenstange 37, die mit dem Gehäuse des Dreh- und Schlagwerks 1, 3 verbunden ist (nicht dargestellt). Die beiden Kammern 38, 39 des Zylinders 35 sind über ein weiteres Vier/Drei-Wege-Ventil 40 mit einer weiteren Speiseleitung 41 und Rücklaufleitung 42 verbunden. In die Leitung 43 zwischen Ventil 40 und Vorschubkammer 39 ist ein doppelt pilotgesteuertes, mit einer einstellbaren Federkraft vorbelastetes Druckregelventil 44 geschaltet. Die beiden Pilotdrücke zum Ventil 44 sind mit den beiden Kammern 38, 39 verbunden. Durch das Ventil 44 kann damit beim Vorschub der Andruck der Bohrstange 2 auf einen einstellbaren Wert unabhängig vom Druck in der Kammer 38 begrenzt werden. Die Leitung 45 zur Kammer 38 ist über ein Drei/Zwei-Wegeventil 46 in dessen erster Schaltstellung über einen einstellbaren Mengenregler 47 mit dem Ventil 40 verbunden. Der Mengenregler 47 begrenzt die Vorschubgeschwindigkeit. Beim Rücklauf des Kolbens 36 fließt das Öl über einen Bypass 48, der zugleich über eine Pilotkammer 49 das Ventil 46 in die erste Stellung zurückschaltet.The feed drive 4 comprises a hydraulic cylinder 35 with a piston 36 and a piston rod 37 which is connected to the housing of the rotating and striking mechanism 1, 3 (not shown). The two chambers 38, 39 of the cylinder 35 are connected via a further four / three-way valve 40 to a further feed line 41 and return line 42. In line 43 between valve 40 and feed chamber 39, a double pilot-controlled pressure control valve 44, preloaded with an adjustable spring force, is connected. The two pilot pressures to the valve 44 are connected to the two chambers 38, 39. Through the valve 44, the pressure of the boring bar 2 can thus be limited to an adjustable value independently of the pressure in the chamber 38 during the advance. The line 45 to the chamber 38 is connected to the valve 40 via a three / two-way valve 46 in its first switching position via an adjustable quantity regulator 47. The quantity controller 47 limits the feed rate. When the piston 36 returns, the oil flows through a bypass 48, which at the same time switches the valve 46 back into the first position via a pilot chamber 49.

In der zweiten Stellung des Ventils 46 ist die Leitung 45 über eine Verbindungsleitung 55 mit einer variablen Drossel 56 verbunden. Deren Abfluß 57 führt über ein einstellbares Druckregelventil 54 zum Tank 58. Dieses Regelventil 54 hält auch bei geringem Durchfluß durch die Drossel 56 den Ansprechdruck des Proportionalregelventils 28 aufrecht. Die Steuerleitung 30 ist an die Leitung 55 angeschlossen. Die Drossel 56 ist in Fig. 2 im Schnitt dargestellt. In einer zylindrischen Bohrung 61 eines Gehäuses 62 ist ein Plungerkolben 63 verschiebbar gelagert. Der Kolben 63 durchdringt eine scharfkantige Blende 64 mit Gleitspiel. Die Blende 64 trennt im Gehäuse 62 eine mit der Leitung 55 verbundene Eingangskammer 65 von einer mit der Leitung 57 verbundenen Ausgangskammer 66. In der Kammer 66 drückt eine Feder 67 gegen die Stirnseite des Kolbens 63. Die Federvorspannung kann durch eine Schraube 68 eingestellt werden. In der Ruhestellung liegt der Kolben 63 hinten an einem Deckel 69 an. Der Kolben 63 hat zentralsymetrisch angeordnete, sich nach hinten zunehmend vertiefende, axiale Nuten 70 an seiner Umfangsfläche. Der Querschnitt der Nuten 70 nimmt mit dem axialen Abstand vom federseitigen Ende des Kolbens 63 zu. Damit nimmt der Drosselquerschnitt stetig zu mit dem Hub des Kolbens 63, der seinerseits proportional zur Differenz des Drucks in den Kammern 65, 66 ist. Die Querschnittszunahme der Nuten 70 mit dem Hub des Kolbens 63 ist zweckmäßig so ausgelegt, daß der sich in der Leitung 55 ausbildende Staudruck proportional zur Durchflußmenge durch die Drossel 56 ist. Wenn auch das Ventil 28 linear öffnet, dann ist die Drehzahlzunahme des Hydromotors 10 proportional zur Vorschubgeschwindigkeit.In the second position of the valve 46, the line 45 is connected to a variable throttle 56 via a connecting line 55. The drain 57 leads to the tank 58 via an adjustable pressure control valve 54. This control valve 54 maintains the response pressure of the proportional control valve 28 even when the flow through the throttle 56 is low. The control line 30 is connected to the line 55. The throttle 56 is shown in section in FIG. 2. A plunger 63 is slidably mounted in a cylindrical bore 61 of a housing 62. The piston 63 penetrates a sharp-edged diaphragm 64 with sliding play. The orifice 64 separates an input chamber 65 connected to the line 55 from an output chamber 66 connected to the line 57 in the housing 62. In the chamber 66, a spring 67 presses against the end face of the piston 63. In the rest position, the piston 63 bears against a cover 69 at the rear. The piston 63 has centrally symmetrically arranged, increasingly deepening to the rear, axial grooves 70 on its circumferential surface. The cross section of the grooves 70 increases with the axial distance from the spring-side end of the piston 63. The throttle cross section thus increases steadily with the stroke of the piston 63, which in turn is proportional to the difference in pressure in the chambers 65, 66. The increase in cross section of the grooves 70 with the stroke of the piston 63 is expediently designed such that the dynamic pressure which forms in the line 55 is proportional to the flow rate through the throttle 56. If the valve 28 opens linearly, then the speed increase of the hydraulic motor 10 is proportional to the feed rate.

Versuche haben ergeben, daß bei nahezu linearer Abhängigkeit sowohl der Drehzahl des Drehwerks 1 als auch der Frequenz des Schlagwerks 3 von der Geschwindigkeit des Vorschubantriebs 4 eine über einen weiten Bereich der Gesteinshärte optimale Vorschubleistung erzielt werden kann. Dies ist analog zu der bereits früher festgestellten günstigen linearen Kopplung zwischen Drehzahl des Drehwerks und Schlagzahl des Schlagwerks. Dieselbe günstige Relation ist mit der vorliegenden Erfindung mit der dritten Variablen verknüpft.Experiments have shown that with an almost linear dependency both the speed of the rotating mechanism 1 and the frequency of the striking mechanism 3 on the speed of the feed drive 4, an optimum feed performance can be achieved over a wide range of rock hardness. This is analogous to the favorable linear coupling between the speed of the slewing gear and the number of blows of the striking mechanism which has already been established earlier. The same favorable relation is linked with the present invention with the third variable.

Im Betrieb startet man ein Bohrloch auf der dargestellten Neutralstellung des Ventils 46. Am Druckregelventil 44 wird der für die härteste zu erwartende Gesteinsschicht des Bohrlochs optimale Andruck eingestellt. Auch die Einstellung der Drossel 26 richtet sich nach der härtesten zu erwartenden Gesteinsschicht. Hingegen ist der nur für das Anbohren maßgebende Mengenregler 47 auf die optimale Vorschubgeschwindigkeit für das zuerst zu durchbohrende Gestein eingestellt. Sobald das Bohrloch angebohrt ist, wird das Ventil 46 umgeschaltet. Wenn nun während des Bohrens die Bohrkrone auf weicheres Gestein stößt, erhöht sich wegen des konstanten Andrucks die Vorschubgeschwindigkeit. Damit steigt der Staudruck vor der variablen Drossel 56 und damit der Pilotdruck auf das Regelventil 28. Ueber die Bypassleitung 31 wird nun dem Motor 10 zusätzlich Oel zugeführt, so daß er rascher dreht und damit wegen des Getriebes 15 auch die Schlagfrequenz steigt. Drehzahl und Schlagfrequenz passen sich damit automatisch optimal an die Vorschubgeschwindigkeit an. Damit kann gleichzeitig auch der Werkzeugverschleiß minimiert werden. Mit zunehmender Schlagfrequenz sinkt auch die Energie des Einzelschlages, was beim Bohren in weichem Gestein erwünscht ist.In operation, a borehole is started with the valve 46 in the neutral position shown. The pressure control valve 44 is used to set the optimum pressure for the hardest rock layer of the borehole to be expected. The setting of the throttle 26 also depends on the hardest rock layer to be expected. On the other hand, the quantity regulator 47, which is only decisive for the drilling, is set to the optimum feed rate for the rock to be drilled through first. As soon as the borehole has been drilled, the valve 46 is switched over. If the drill bit encounters softer rock during drilling, the feed rate increases due to the constant pressure. This increases the dynamic pressure upstream of the variable throttle 56 and thus the pilot pressure on the control valve 28 via the bypass line 31 is now supplied to the engine 10 with additional oil, so that it rotates faster and therefore the stroke frequency increases because of the gear 15. The speed and impact frequency automatically adapt optimally to the feed rate. This also minimizes tool wear. The energy of the single impact decreases with increasing impact frequency, which is desirable when drilling in soft rock.

Durch die Schraube 68 kann der Beginn der Zuschaltung des Bypasses 31 eingestellt werden. Wenn auch eine Einstellung der Drehzahlabhängigkeit erwünscht ist, kann die Federkonstante der Feder 67′ variabel gestaltet werden, wie dies in Fig. 3 gezeigt ist. Die Feder 67′ ist hier als Biegefeder ausgebildet. Mit einem Schuh 73 kann hier die freie Länge der Feder 67′ und damit deren Federkonstante eingestellt werden. Der Schuh 73 ist durch eine Einstellschraube 74 verschiebbar.The start of the connection of the bypass 31 can be set by the screw 68. If an adjustment of the speed dependence is desired, the spring constant of the spring 67 'can be made variable, as shown in Fig. 3. The spring 67 'is designed here as a spiral spring. With a shoe 73, the free length of the spring 67 'and thus the spring constant can be set here. The shoe 73 is displaceable by an adjusting screw 74.

Claims (9)

1. A drilling device comprising a rotary mechanism (1) for rotating a drill rod (2), a percussion mechanism (3) for driving the drill rod (2), a feed drive (4) for feeding the rotary mechanism (1), percussion mechanism (3) and drill rod (2), a first control device (5) for adjusting the rotational speed of the rotary mechanism (1) and the percussion frequency of the percussion mechanism (3), and a second control device (6) for adjusting the feed, characterised in that the second control device (6) comprises a measuring element (56) for measuring the feed velocity, and the measuring element (56) is connected with the first control device (5) in such a manner that the rotational speed of the rotary mechanism (1) and the percussion frequency of the percussion mechanism (3) increase as the drive velocity increases.
2. A drilling device according to claim 1, characterised in that the percussion mechanism (3) comprises a cylinder (12) with a percussion piston (13) controlled by a slide valve (14) and the rotary mechanism (1) comprises a fluid motor (10), whose output shaft (11) is coupled with the slide valve (14) via gearing means (15).
3. A device according to claim 2, characterised in that the feed drive (4) comprises a double-action hydraulic cylinder unit (35, 36), and the measuring element is a flow measuring element (56) in the return of the first cylinder chamber (38) of the hydraulic cylinder unit (35, 36) switched to return during the feed.
4. A device according to claim 3, characterised in that an adjustable pressure control valve (44) remote-controlled by the pressure difference between the first and second cylinder chambers (38, 39) for adjusting a feed power independent of the feed velocity is arranged in the line (43) to the second cylinder chamber (39) opposite the first cylinder chamber (38).
5. A device according to claim 3 or 4, characterised in that the flow measuring element is designed as a variable throttle (56), which generates a pressure head which is always dependent upon the rate of flow, and the pressure head is connected as a control value to a control valve (28) of the first control device (5), the control valve (28) opening as the pressure head increases.
6. A device according to claim 5, characterised in that a switching valve (23) and an adjustable throttle (26) are arranged in the supply line (21, 24), of the fluid motor (10) and the control valve (28) is arranged in a bypass (31) bypassing the switching valve (23) and the adjustable throttle (26).
7. A device according to claim 5 or 6, characterised in that the second control device (6) comprises a further switching valve (46), which selectively directs the return (45) from the first cylinder chamber (38) via a further adjustable throttle (47) or via the variable throttle (56).
8. A device according to one of claims 5 to 7, characterised in that the variable throttle (56) comprises a spring-loaded plunger piston (63), which is acted upon by the pressure difference between the inlet and outlet (65, 66) of the variable throttle (56) and penetrates a diaphragm (64), and at least one groove (70) widening in the axial direction of the piston (63) is formed in the surface of the piston (63).
9. A device according to claim 8, characterised in that the pretension and/or the spring constant of the spring (67) loading the piston (63) is adjustable.
EP19900810078 1989-02-23 1990-02-05 Drilling device Expired - Lifetime EP0384888B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH66089 1989-02-23
CH660/89 1989-02-23

Publications (2)

Publication Number Publication Date
EP0384888A1 EP0384888A1 (en) 1990-08-29
EP0384888B1 true EP0384888B1 (en) 1992-06-10

Family

ID=4192175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900810078 Expired - Lifetime EP0384888B1 (en) 1989-02-23 1990-02-05 Drilling device

Country Status (4)

Country Link
EP (1) EP0384888B1 (en)
AU (1) AU630914B2 (en)
DE (1) DE59000150D1 (en)
FI (1) FI90277C (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI115552B (en) 2002-11-05 2005-05-31 Sandvik Tamrock Oy Arrangement for controlling rock drilling
SE532483C2 (en) 2007-04-11 2010-02-02 Atlas Copco Rock Drills Ab Method, apparatus and rock drilling rig for controlling at least one drilling parameter
CN102536141B (en) * 2012-01-20 2013-11-06 中船重工中南装备有限责任公司 Automatic drill-rod-replacing control system for rock-drilling drill carriage
CN103758802B (en) * 2014-01-24 2016-01-13 长沙金阳机械设备科技开发有限公司 Automatic drill feed liquor pressure control system and operating vehicle
DE102015107194A1 (en) * 2015-05-08 2016-11-10 TERRA AG für Tiefbautechnik Drilling rig for generating or expanding a ground hole in the ground and method for controlling a feed drive of such a rig
CN106351900B (en) * 2016-09-27 2018-12-18 桂林航天工业学院 A kind of anti-deflection rock drilling control system
CN111101859A (en) * 2019-11-08 2020-05-05 四川诺克钻探机械有限公司 Drilling pressure adjusting method of coring drilling machine for railway engineering exploration

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064950A (en) * 1976-07-19 1977-12-27 Pekka Salmi Hydraulic drilling machine
US4271914A (en) * 1976-12-02 1981-06-09 The United States Of America As Represented By The Secretary Of The Interior Automatic feed and rotational speed control system of a hydraulic motor operated drill
US4246973A (en) * 1978-01-23 1981-01-27 Cooper Industries, Inc. Controls for hydraulic percussion drill
US4440236A (en) * 1979-09-20 1984-04-03 Toyo Kogyo Co. Ltd. Hydraulic control system for a rock drill
JPS5655684A (en) * 1979-10-06 1981-05-16 Toyo Kogyo Co Feed controller circuit for hydraulic rock driller
DE3115361A1 (en) * 1981-04-16 1982-10-28 Hydroc Gesteinsbohrtechnik GmbH, 5960 Olpe Hydraulic percussion device
FI67604C (en) * 1983-06-14 1985-04-10 Tampella Oy Ab ADJUSTMENT OF MEASURES
DE3518892C1 (en) * 1985-05-25 1987-02-26 Klemm Bohrtech Hydraulic hammer drill

Also Published As

Publication number Publication date
FI900834A0 (en) 1990-02-20
DE59000150D1 (en) 1992-07-16
EP0384888A1 (en) 1990-08-29
FI90277C (en) 1994-01-10
FI90277B (en) 1993-09-30
AU4917490A (en) 1990-08-30
AU630914B2 (en) 1992-11-12

Similar Documents

Publication Publication Date Title
DE3023600C2 (en) Hydraulic drilling device with a common actuating element for the impact and the turning circle of the drive
DE2635191C3 (en) Hydraulic rock hammer drill
DE2658455C3 (en) Pressure medium operated striking mechanism
CH597500A5 (en) Rotary percussive rock drill
DE2645213C3 (en) Impact tools, in particular for rock drilling machines
EP0863293B1 (en) Method and apparatus for controlling the push mechanism of an earth drilling rig
DE2443800A1 (en) HYDRAULICALLY OPERATED IMPACT DEVICE
DE2557147C3 (en) Hydraulic fluid driven rock drilling machine
DE4328278A1 (en) Drilling device for a rock drill
DE2511471B2 (en) HYDRAULIC DRILLING MACHINE, IN PARTICULAR ROCK DRILLING MACHINE
EP0203282B1 (en) Control of a hydraulic percussive drilling device
EP0384888B1 (en) Drilling device
DE3439268C2 (en)
DE2657711C2 (en) Hydraulic impact device, in particular for rock drill hammers
CH677813A5 (en)
DE2208660B1 (en) HYDRAULICALLY POWERED DRILLS
CH657664A5 (en) IMPACT DRILLING DEVICE.
EP0906811B1 (en) Drill hammer
EP0300080A1 (en) Device for drilling through cappings
EP2514911B1 (en) Drilling device
EP0145701B1 (en) Percussion drill controls
AT407280B (en) DEVICE FOR ADJUSTING THE STROKE OF FLUID CONTROLLED BEATERS
DE2738956B2 (en) Drill rod pretensioning device for rotary percussion drills
DE2631307C2 (en) Hydraulic drilling machine, in particular rock drilling machine
DE1433235A1 (en) Rotary percussion drill that can be moved hydraulically to and fro by pressurized fluid with an accumulator and a control device with a displaceable slide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19900917

17Q First examination report despatched

Effective date: 19910925

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 59000150

Country of ref document: DE

Date of ref document: 19920716

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90810078.7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030205

Year of fee payment: 14

Ref country code: GB

Payment date: 20030205

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030210

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030213

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030214

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040205

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST