EP0375710B1 - Adjusting system (control and/or regulating system) for vehicles - Google Patents

Adjusting system (control and/or regulating system) for vehicles Download PDF

Info

Publication number
EP0375710B1
EP0375710B1 EP19880907097 EP88907097A EP0375710B1 EP 0375710 B1 EP0375710 B1 EP 0375710B1 EP 19880907097 EP19880907097 EP 19880907097 EP 88907097 A EP88907097 A EP 88907097A EP 0375710 B1 EP0375710 B1 EP 0375710B1
Authority
EP
European Patent Office
Prior art keywords
sensor
adjusting
signal
air
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19880907097
Other languages
German (de)
French (fr)
Other versions
EP0375710A1 (en
Inventor
Günther PLAPP
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0375710A1 publication Critical patent/EP0375710A1/en
Application granted granted Critical
Publication of EP0375710B1 publication Critical patent/EP0375710B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors

Definitions

  • the invention relates to an adjustment system according to claim 1, part 1 (see DE-A-37 00 766).
  • the term "setting system” is used here as a collective term for "control system” (Open Loop Control) and for "control system” (Closed Loop Control).
  • the term “setting unit” is used as a collective term for "control unit” and “control unit” and the term “setting section” for "control section” and “controlled section”.
  • the term “unit” is basically to be understood in the sense of a functional unit. A control unit and a control unit therefore do not need to be separate assemblies, but, as is common today in motor vehicle technology, they can be implemented by functions of a microprocessor.
  • the invention relates in particular to the setting of the amount of fuel supplied to an internal combustion engine in such a way that a desired lambda value is achieved as precisely as possible.
  • FIG. 1 is an exemplary embodiment of a fuel quantity setting arrangement as is known from DE-C2-24 57 436.
  • the setting system consists of a single setting unit, which is designed as a combined control unit.
  • This control unit is supplied with signals from a sensor arrangement 11, specifically the signal from a speed sensor and the signal from a throttle valve sensor.
  • the air volume drawn in by the associated engine can be determined from these signals.
  • the control unit calculates an associated fuel quantity and determines the value of a manipulated variable that is fed to a fuel injection pump 12.
  • the manipulated variable is predetermined from a throttle valve / speed characteristic field and modified by a multiplicative factor, which depends on the difference between a lambda setpoint specified for the control unit and an actual lambda value as it is from a lambda probe 13 acting as an output sensor to the regulating one Adjustment unit 10 is delivered.
  • Air mass sensors in the form of hot wire air mass sensors or hot film air mass sensors are therefore also used in the prior art as sensor arrangements. These allow a very precise determination of the air mass.
  • JP-A-61 58 945 discloses a safety system in connection with the fuel metering in an internal combustion engine in such a way that the output signals of two sensors responsive to the air flow in the intake pipe are compared with one another and an error determination is possible according to the result.
  • the object of the invention is to provide a setting system that sets faster and more accurately than the above.
  • An adjustment system not only has a single adjustment unit, as is present in the prior art, but also two adjustment units.
  • the first setting unit sends the control signal to the setting section, while the second setting unit serves to calibrate the first setting unit.
  • the second setting unit is provided for interconnection with a second sensor arrangement, which measures more slowly but more precisely than a first sensor arrangement which is connected with the first setting unit.
  • the first setting unit can thus react very quickly to changes as reported by the first sensor arrangement.
  • the first manipulated variable quickly determined in this way is compared with a second manipulated variable, which is determined more slowly but more precisely by the second control unit. If a deviation is found, the first manipulated variable is changed so that the deviation moves towards zero.
  • the overall system can react quickly and precisely to changes in the input variables. If the first manipulated variable is also to be determined as a function of an output variable, one of the two setting units becomes the signal from an output sensor forwarded
  • the first setting unit is a control unit which receives signals from a speed sensor and a throttle valve sensor in order to determine an air volume therefrom, an air mass therefrom and in turn a first manipulated variable which determines the amount of fuel to be added to the air mass to get a desired lambda value.
  • the second setting unit is also a control unit, which, however, receives the signal from a hot film air mass sensor, which enables the air mass to be determined more precisely than is possible from the speed and throttle valve position.
  • the time behavior of this second sensor arrangement is slower than that of the first sensor arrangement, as described above.
  • the second control unit determines a second manipulated variable, which represents a measurement for the fuel quantity.
  • this manipulated variable is not fed to the fuel injection pump; rather, as described above for the general case, it is used to calibrate the first setting unit.
  • the calibration values can e.g. B. stored differently in a map for different operating points. In this way, deviations depending on the operating point are compensated for separately.
  • Each of the two control units according to the exemplary embodiment just described can be designed as a control unit to which the signal from a lambda sensor is fed. Which of the two control units is designed as a control / regulating unit largely depends on the timing of the associated control / regulating circuit in the respective case. The arrangement is such that the risk of control vibrations is as small as possible.
  • FIG. 1 shows a block diagram of a known setting arrangement for setting the amount of fuel supplied to a motor vehicle engine.
  • 2 shows a block diagram of an adjustment arrangement with an adjustment system according to the invention with two adjustment units.
  • Figures 3 and 4 each show a block diagram of setting arrangements with a setting system, each with a control unit and a control unit.
  • the setting system 14 is designed as a microprocessor system with the following functional units: a first setting unit, which is designed as a first control unit 10.1.1, a second setting unit, which is designed as a second control unit 10.2.1, and a calibration unit 15.
  • the first control unit 10.1.1 receives at least one command variable from the first sensor arrangement 11.1.
  • the first sensor arrangement 11.1 emits signals from a speed sensor and from a throttle valve sensor. From these signals, the first control unit 10.1.1 calculates the first manipulated variable, which in the embodiment mentioned is the signal that is delivered to a fuel injection pump as the adjustment section 12.1.
  • the first manipulated variable is calculated either via a speed sensor / throttle valve sensor / manipulated variable characteristic field or by using the signals from the speed sensor and from the throttle valve sensor an air volume, from it an air mass, from it a fuel quantity and from it the first manipulated variable is determined.
  • the second control unit 10.2.1 receives an input signal from the second sensor arrangement 11.2, which in the embodiment mentioned is designed as an air mass sensor.
  • This air mass sensor determines the air mass drawn in by an internal combustion engine much more precisely than it is possible to determine the air mass from the measurement of the rotational speed and throttle valve position with the aid of the first sensor arrangement 11.1.
  • the air mass sensor according to the second sensor arrangement 11.2 measures more slowly than the first sensor arrangement 11.1.
  • the second control unit 10.2.1 converts this exact sensor signal, which changes slowly to the new value when the air mass is drawn in, into a second manipulated variable that is identical to the first manipulated variable, a signal that is suitable for a fuel injection pump To be set so that it delivers exactly the amount of fuel that is to be added to the determined air mass in order to obtain a desired lambda value during combustion.
  • this second manipulated variable is not supplied to the setting section 12.1, which is designed as a fuel injection pump, but to the calibration unit 15. This (usually in terms of computers) implements the functions of a comparator, a signal converter and a sample / hold circuit.
  • the calibration unit 15 determines whether the first manipulated variable, which was determined on the basis of signals from the less precise first sensor arrangement, deviates from the more precise second manipulated variable.
  • the calibration unit 15 also determines whether the first manipulated variable remained within a predetermined range in a time period that corresponds to at least the settling time of the second sensor arrangement 11.2. If this is the case, it is certain that there was a quasi-steady state for the second sensor arrangement 11.2, within which the slow second sensor arrangement was able to settle to a precise display value after a sudden change in the amount of air sucked in.
  • the difference signal of the first manipulated variable and the second manipulated variable or a signal converted to the differential signal is output to the first control unit 10.1.1 via the sample / hold function. If the first manipulated variable then swings by more than the specified percentage within the specified time span, the sample / hold function holds the value that was last output when there were still quasi-steady states.
  • the value output by the calibration unit 15 influences the first control unit 10.1.1 in such a way that it changes the first manipulated variable in one direction such that the value of the first manipulated variable is adapted to the value of the second manipulated variable.
  • the first control unit 10.1.1 multiplies the previously given value of the first manipulated variable by the factor 1.02.
  • the first manipulated variable is determined almost throughout the entire operating time of the arrangement according to FIG. 2 with an accuracy that corresponds to the high measuring accuracy of the second sensor arrangement, but changes with changes in the input variables with the high subsequent speed, which changes the setting speed of the corresponds to the first sensor arrangement.
  • control / regulating units can also be used, for example a control / regulating unit 10.1.2 for emitting the first manipulated variable, as shown in the setting arrangement according to FIG. 3, or a control / regulating unit 10.2.2 for emitting the second manipulated variable. as shown in the arrangement of FIG. 4.
  • control units instead of control units has the advantage that it is monitored whether the output variable influenced by the manipulated variable actually took the desired setpoint or whether there are deviations which are to be corrected.
  • the arrangement according to FIG. 3 differs from that according to FIG. 2 in that an output sensor 13.1 is also present, which measures the output variable of the adjustment section 12.1 or a variable dependent thereon and outputs its output signal to the control unit 10.1.2 already mentioned , which replaces the control unit 10.1.1.
  • the control / regulating unit 10.1.2 carries out a regulation to a value dependent on the output signal of the first sensor arrangement 11.1. In this control, the output signal from the output sensor 13.1 is compared with a target value which is fed to the control unit 10.1.2.
  • the setting arrangement according to FIG. 4 with the embodiment of a setting system 14 just described has a configuration which corresponds to the configuration of the arrangement according to FIG. 2, it is advantageous to design the output sensor as a lambda probe. The entire arrangement then functions like the arrangement according to FIG. 2, but taking into account the control function described above.
  • the output sensor 13.1 described on the basis of the arrangement according to FIG. 3 outputs its output signal to the control unit 10.2.2 already mentioned above, which, based on the embodiment according to FIG. 2, replaces the second control unit 10.2.1. At the same time, a setpoint is fed to the second control unit 10.2.2.
  • This arrangement means that the control unit 10.1.1 no longer receives a controlled calibration value for outputting the first manipulated variable, but rather a regulated one.
  • the first manipulated variable also has a control character, although it is only controlled by the control unit 10.1.1 as a function of values as measured by the first sensor arrangement 11.1.
  • the question of when it is more advantageous to regulate the first setting unit and when it is more advantageous to regulate the second setting unit largely depends on the time behavior of the sensors used in the overall arrangement.
  • the control is selected in the branch that is less prone to control vibrations due to its time behavior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

An adjusting system (14) for adjusting the quantity of fuel delivered to an internal combustion engine has a first adjusting unit (10.1.1) and a second control unit (10.2.1). The first control unit gives a first adjusting value to the fuel injection pump (12.1) on the basis of signals fed to it from a first sensor arrangement (11.1). The second adjusting unit determines a second adjusting value on the basis of signals from a second sensor arrangement (11.2), which would also be directly suitable for controlling the fuel injection pump but which is used to calibrate the first adjusting unit. The adjusting system of this design is then applied when the second sensor arrangement used measures more slowly but more accurately than the first sensor arrangement. In this case, the second adjusting value is better suited to achieving a value required for the desired lambda value than the first adjusting value. The first adjusting value reacts more quickly to changes in the quantity of air fed to the internal combustion engine. In order to calibrate the first control unit using the second adjusting value, the first adjusting value is controlled more accurately than was previously possible but still as rapidly.

Description

Die Erfindung betrifft ein Einstellsystem gemäß Anspruch 1, 1. Teil (vergleiche DE-A-37 00 766). Der Begriff "Einstellsystem" wird hierbei als Sammelbegriff für "Steuerungssystem" (Open Loop Control) und für "Regelungssystem" (Closed Loop Control) verwendet. Entsprechend wird der Begriff "Einstelleinheit" als Sammelbegriff für "Steuereinheit" und "Regeleinheit" und der Begriff "Einstellstrecke" für "Steuerstrecke" und "Regelstrecke" verwendet. Der Begriff "Einheit" ist grundsätzlich im Sinne einer Funktionseinheit zu verstehen. Eine Steuereinheit und eine Regeleinheit brauchen also keine gesonderten Baugruppen zu sein, sondern sie können, wie heute in der Kraftfahrzeugtechnik allgemein üblich, durch Funktionen eines Mikroprozessors realisiert sein.The invention relates to an adjustment system according to claim 1, part 1 (see DE-A-37 00 766). The term "setting system" is used here as a collective term for "control system" (Open Loop Control) and for "control system" (Closed Loop Control). Accordingly, the term "setting unit" is used as a collective term for "control unit" and "control unit" and the term "setting section" for "control section" and "controlled section". The term "unit" is basically to be understood in the sense of a functional unit. A control unit and a control unit therefore do not need to be separate assemblies, but, as is common today in motor vehicle technology, they can be implemented by functions of a microprocessor.

Die Erfindung betrifft insbesondere das Einstellen der einem Verbrennungsmotor zugeführten Kraftstoffmenge in solcher Weise, daß ein gewünschter Lambda-Wert möglichst genau erreicht wird.The invention relates in particular to the setting of the amount of fuel supplied to an internal combustion engine in such a way that a desired lambda value is achieved as precisely as possible.

Der Stand der Technik wird nun ausgehend von Fig. 1 dargestellt, die ein Ausführungsbeispiel für eine Kraftstoffmengen-Einstellanordnung ist, wie sie aus der DE-C2-24 57 436 bekannt ist.The prior art will now be illustrated on the basis of FIG. 1, which is an exemplary embodiment of a fuel quantity setting arrangement as is known from DE-C2-24 57 436.

Bei der bekannten Anordnung besteht das Einstellsystem aus einer einzigen Einstelleinheit, die als kombinierte Steuer/ Regel-Einheit ausgebildet ist. Dieser Steuer/Regel-Einheit werden von einer Sensoranordnung 11 Signale zugeleitet, und zwar das Signal eines Drehzahlsensors und das Signal eines Drosselklappensensors. Aus diesen Signalen läßt sich das vom zugehörigen Motor angesaugte Luftvolumen bestimmen. Aus diesem Luftvolumen berechnet die Steuer/Regel-Einheit eine zugehörige Kraftstoffmenge und bestimmt den Wert einer Stellgröße, die einer Kraftstoff-Einspritzpumpe 12 zugeleitet wird. Die Stellgröße wird aus einem Drosselklappen/Drehzahlkennlinienfeld vorbestimmt und durch einen multiplikativen Faktor modifiziert, der von der Differenz zwischen einem für die Regeleinheit festgelegten Lambda-Sollwert und einem Lambda-Istwert abhängt, wie er von einer als Ausgangssensor wirkenden Lambda-Sonde 13 an die regelnde Einstelleinheit 10 abgegeben wird.In the known arrangement, the setting system consists of a single setting unit, which is designed as a combined control unit. This control unit is supplied with signals from a sensor arrangement 11, specifically the signal from a speed sensor and the signal from a throttle valve sensor. The air volume drawn in by the associated engine can be determined from these signals. From this air volume, the control unit calculates an associated fuel quantity and determines the value of a manipulated variable that is fed to a fuel injection pump 12. The manipulated variable is predetermined from a throttle valve / speed characteristic field and modified by a multiplicative factor, which depends on the difference between a lambda setpoint specified for the control unit and an actual lambda value as it is from a lambda probe 13 acting as an output sensor to the regulating one Adjustment unit 10 is delivered.

Es liegt somit eine Steuerung mit anschließender Regelung vor, durch die der Wert der Stellgröße dem Wert der vom Drehzahlsensor und vom Drosselklappensensor abgegebenen Signale folgt. Die Steuerung hat ein sehr schnelles Ansprechverhalten, da eine Änderung der Signale vom Drehzahlsensor und/oder Drosselklappensensor direkt in eine geänderte Stellgrösse umgesetzt wird. Ob diese schnelle Umsetzung richtig war, zeigt sich jedoch erst dann, wenn die Lambda-Sonde 13 den neuen Lambda-Istwert rückmeldet. Dies geschieht mit einer Einschwingdauer von etwa einer halben Sekunde bis zu einigen Sekunden. Wird aufgrund der Messung der Lambda-Sonden-Anordnung eine Abweichung zwischn Lambda-Sollwert und Lambda-Istwert festgestellt, wird der multiplikative Faktor zum Berechnen der Stellgröße vom regelnden Teil der Einstelleinheit 10 neu bestimmt.There is thus a control with subsequent regulation, by means of which the value of the manipulated variable follows the value of the signals emitted by the speed sensor and by the throttle valve sensor. The control has a very quick response, since a change in the signals from the speed sensor and / or throttle valve sensor is converted directly into a changed manipulated variable. However, whether this rapid implementation was correct can only be seen when the lambda probe 13 reports the new actual lambda value. This takes a settling time of around half a second to a few seconds. If a deviation between the desired lambda value and the actual lambda value is determined on the basis of the measurement of the lambda probe arrangement, the multiplying factor for calculating the manipulated variable is redetermined by the regulating part of the setting unit 10.

Bei der bekannten Anordnung besteht z. B. das Problem, daß mit Hilfe des Drehzahlsensors und des Drosselklappensensors das Luftvolumen, jedoch nicht die Luftmasse bestimmt wird, auf die es eigentlich für das Zumessen der Kraftstoffmenge ankommt. Als Sensoranordnungen werden im Stand der Technik daher auch Luftmassensensoren in Form von Hitzdrahtluftmassensensoren oder Heißfilmluftmassensensoren verwendet. Diese erlauben ein recht genaues Bestimmen der Luftmasse.In the known arrangement, for. B. the problem that with the help of the speed sensor and the throttle sensor, the air volume, but not the air mass is determined to which it is actually for metering the amount of fuel arrives. Air mass sensors in the form of hot wire air mass sensors or hot film air mass sensors are therefore also used in the prior art as sensor arrangements. These allow a very precise determination of the air mass.

Dem Vorteil von Luftmassensensoren in bezug auf die Meßgenauigkeit der eigentlich zu überwachenden Größe, stehen jedoch auch Nachteile gegenüber. Heißfilmluftmassensensoren können zwar billig und robust hergestellt werden, jedoch arbeiten sie dann verhältnismäßig langsam. Als weiterer Stand der Technik sei die DE-A-37 00 766 genannt. Sie betrifft eine "Luft/Kraftstoff-Verhältnis-Steuerungsvorrichtung für Übergangszustände beim Betrieb einer Brennkraftmachine". Dabei wird die zugemessene Kraftstoffmenge abhängig vom Luftdurchsatz im Ansaugrohr bestimmt. Weil jedoch Luftmassenmeßeinrichtungen eine physikalisch bedingte Trägheit aufweisen, werden Maßnahmen für die Bereitstellung einer möglichst schnell wirkenden Beschleunigungsanreicherung getroffen. Dazu dient insbesondere das Ausgangssignal eines Drosselklappenstellungssensors, das korrigierend auf das vom Luftdurchsatz abhängende Grund-Kraftstoffzumeßsignal wirkt. Bei diesem Stand der Technik wird somit bei der Bildung des Kraftstoffzumeßsignals vom Luftmassendurchsatzsignal ausgegangen und korrigierend greift ein Signal vom Drosselklappenstellungssensor ein.However, there are also disadvantages to the advantage of air mass sensors with regard to the measuring accuracy of the size actually to be monitored. Hot film air mass sensors can be manufactured cheaply and robustly, but they then work relatively slowly. Another prior art is DE-A-37 00 766. It relates to an "air-fuel ratio control device for transient conditions when operating an internal combustion engine". The metered amount of fuel is determined depending on the air flow in the intake pipe. However, because air mass measuring devices have a physically induced inertia, measures are taken to provide acceleration enrichment that acts as quickly as possible. The output signal of a throttle valve position sensor, which acts in a corrective manner on the basic fuel metering signal dependent on the air flow rate, serves in particular for this purpose. In this prior art, the air mass flow rate signal is used as the basis for the formation of the fuel metering signal and a signal from the throttle valve position sensor intervenes in a corrective manner.

Ferner ist aus der US-A-4 594 987 ein Kraftstoffzumeßsystem bekannt, bei dem entsprechend Figur 9 ebenfalls das Drosselklappenstellungssignal zur Bildung einer Korrekturgröße herangezogen wird.Furthermore, a fuel metering system is known from US-A-4,594,987, in which, according to FIG. 9, the throttle valve position signal is also used to form a correction variable.

Schließlich offenbart die JP-A-61 58 945 ein Sicherheitssystem in Verbindung mit der Kraftstoffzumessung bei einer Brennkraftmaschine derart, daß die Ausgangssignale zweier auf den Luftdurchsatz im Ansaugrohr ansprechender Sensoren miteinander verglichen werden und entsprechend dem Ergebnis eine Fehlerbestimmung möglich wird.Finally, JP-A-61 58 945 discloses a safety system in connection with the fuel metering in an internal combustion engine in such a way that the output signals of two sensors responsive to the air flow in the intake pipe are compared with one another and an error determination is possible according to the result.

Aufgabe der Erfindung ist es, ein Einstellsystem anzugeben, das schneller und genauer einstellt als die obengenannten.The object of the invention is to provide a setting system that sets faster and more accurately than the above.

Vorteile der ErfindungAdvantages of the invention

Ein erfindungsgemäße Einstellsystem gemäß Anspruch 1 verfügt nicht nur über eine einzige Einstelleinheit, wie beim Stand der Technik vorhanden, sondern über zwei Einstelleinheiten. Dabei gibt die erste Einstelleinheit das Stellsignal an die Einstellstrecke ab, während die zweite Einstelleinheit dazu dient, die erste Einstelleinheit zu kalibrieren. Die zweite Einstelleinheit ist zum Zusammenschalten mit einer zweiten Sensoranordnung vorgesehen, die zwar langsamer, aber genauer mißt als eine erste Sensoranordnung, die mit der ersten Einstelleinheit zusammengeschaltet ist. Die erste Einstelleinheit kann dadurch auf Änderungen, wie sie von der ersten Sensoranordnung gemeldet werden, sehr schnell reagieren. Die auf diese Weise schnell ermittelte erste Stellgröße wird mit einer von der zweiten Steuereinheit langsamer, jedoch genauer ermittelten zweiten Stellgröße verglichen. Wird eine Abweichung festgestellt, wird die erste Stellgröße so verändert, daß sich die Abweichung in Richtung Null bewegt. Dadurch kann das Gesamtsystem schnell und dennoch genau auf Änderungen in den Eingangsgrößen reagieren. Soll die erste Stellgröße auch noch in Abhängigkeit einer Ausgangsgröße festgelegt werden, wird einer der beiden Einstelleinheiten das Signal von einem Ausgangssensor zugeleitetAn adjustment system according to the invention not only has a single adjustment unit, as is present in the prior art, but also two adjustment units. The first setting unit sends the control signal to the setting section, while the second setting unit serves to calibrate the first setting unit. The second setting unit is provided for interconnection with a second sensor arrangement, which measures more slowly but more precisely than a first sensor arrangement which is connected with the first setting unit. The first setting unit can thus react very quickly to changes as reported by the first sensor arrangement. The first manipulated variable quickly determined in this way is compared with a second manipulated variable, which is determined more slowly but more precisely by the second control unit. If a deviation is found, the first manipulated variable is changed so that the deviation moves towards zero. As a result, the overall system can react quickly and precisely to changes in the input variables. If the first manipulated variable is also to be determined as a function of an output variable, one of the two setting units becomes the signal from an output sensor forwarded

Gemäß einem bevorzugten Ausführungsbeispiel ist die erste Einstelleinheit eine Steuereinheit, die Signale von einem Drehzahlsensor und einem Drosselklappensensor erhält, um daraus ein Luftvolumen, daraus eine Luftmasse und daraus wiederum eine erst Stellgröße zu bestimmen, die die Menge an Kraftstoff festlegt, die der Luftmasse zuzusetzen ist, um einen gewünschten Lambda-Wert zu erhalten. Die zweite Einstelleinheit ist ebenfalls eine Steuereinheit, der jedoch das Signal von einem Heißfilmluftmassensensor zugeführt wird, der ein genaueres Bestimmen der Luftmasse ermöglicht, als es aus Drehzahl und Drosselklappenstellung möglich ist. Das Zeitverhalten dieser zweiten Sensoranordnung ist jedoch langsamer als das der ersten Sensoranordnung, wie oben beschrieben. Aus dem Signal vom Heißfilmluftmassensensor bestimmt die zweite Steuereinheit eine zweite Stellgröße, die eine Bemessung für die Kraftstoffmenge darstellt. Diese Stellgröße wird jedoch der Kraftstoff-Einspritzpumpe nicht zugeführt, sondern sie wird, wie oben für den allgemeinen Fall beschrieben, zum Kalibrieren der ersten Einstelleinheit verwendet.According to a preferred exemplary embodiment, the first setting unit is a control unit which receives signals from a speed sensor and a throttle valve sensor in order to determine an air volume therefrom, an air mass therefrom and in turn a first manipulated variable which determines the amount of fuel to be added to the air mass to get a desired lambda value. The second setting unit is also a control unit, which, however, receives the signal from a hot film air mass sensor, which enables the air mass to be determined more precisely than is possible from the speed and throttle valve position. However, the time behavior of this second sensor arrangement is slower than that of the first sensor arrangement, as described above. From the signal from the hot film air mass sensor, the second control unit determines a second manipulated variable, which represents a measurement for the fuel quantity. However, this manipulated variable is not fed to the fuel injection pump; rather, as described above for the general case, it is used to calibrate the first setting unit.

Die Kalibrierungswerte können z. B. in einem Kennfeld für unterschiedliche Betriebspunkte unterschiedlich abgespeichert werden. Auf diese Weise werden dann betriebspunktabhängige Abweichungen separat kompensiert.The calibration values can e.g. B. stored differently in a map for different operating points. In this way, deviations depending on the operating point are compensated for separately.

Jede der beiden Steuereinheiten gemäß dem soeben beschriebenen Ausführungsbeispiel kann als Steuer/Regeleinheit ausgebildet sein, der das Signal von einem Lambda-Sensor zugeführt wird. Welche der beiden Steuereinheiten als Steuer/Regeleinheit ausgebildet wird, hängt maßgeblich vom Zeitverhalten des zugehörigen Steuer/Regelkreises im jeweiligen Fall ab. Die Anordnung wird so getroffen, daß die Gefahr von Regelschwingungen möglichst klein ist.Each of the two control units according to the exemplary embodiment just described can be designed as a control unit to which the signal from a lambda sensor is fed. Which of the two control units is designed as a control / regulating unit largely depends on the timing of the associated control / regulating circuit in the respective case. The arrangement is such that the risk of control vibrations is as small as possible.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Fig. 1 zeigt ein Blockschaltbild einer bekannten Einstellanordnung zum Einstellen der einem Kraftfahrzeugmotor zugeführten Kraftstoffmenge. Fig. 2 zeigt ein Blockschaltbild einer Einstellanordnung mit einem erfindungsgemäßen Einstellsystem mit zwei Einstelleinheiten. Figuren 3 und 4 zeigen jeweils ein Blockschaltbild von Einstellanordnungen mit einem Einstellsystem mit jeweils einer Regeleinheit und einer Steuereinheit.Embodiments of the invention are shown in the drawing and explained in more detail in the following description. 1 shows a block diagram of a known setting arrangement for setting the amount of fuel supplied to a motor vehicle engine. 2 shows a block diagram of an adjustment arrangement with an adjustment system according to the invention with two adjustment units. Figures 3 and 4 each show a block diagram of setting arrangements with a setting system, each with a control unit and a control unit.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Die Einstellanordnung gemäß Fig. 2 verfügt über ein Einstellsystem 14, dem von einer ersten Sensoranordnung 11.1 und einer zweiten Sensoranordnung 11.2 Signale zugeführt werden, und das eine erste Stellgröße an eine Einstellstrecke 12.1 abgibt. Das Einstellsystem 14 ist als Mikroprozessorensystem ausgeführt, mit folgenden Funktionseinheiten: einer ersten Einstelleinheit, die als erste Steuereinheit 10.1.1 ausgebildet ist, einer zweiten Einstelleinheit, die als zweite Steuereinheit 10.2.1 ausgebildet ist, und einer Kalibriereinheit 15.2 has an adjustment system 14, to which signals are fed from a first sensor arrangement 11.1 and a second sensor arrangement 11.2, and which outputs a first manipulated variable to an adjustment path 12.1. The setting system 14 is designed as a microprocessor system with the following functional units: a first setting unit, which is designed as a first control unit 10.1.1, a second setting unit, which is designed as a second control unit 10.2.1, and a calibration unit 15.

Die erste Steuereinheit 10.1.1 erhält von der ersten Sensoranordnung 11.1 mindestens eine Führungsgröße. Gemäß einer bevorzugten Ausgestaltung des ersten Ausführungsbeispieles gemäß Fig. 2 gibt die erste Sensoranordnung 11.1 Signale von einem Drehzahlsensor und von einem Drosselklappensensor ab. Aus diesen Signalen berechnet die erste Steuereinheit 10.1.1 die erste Stellgröße, die bei der angesprochenen Ausgestaltung das Signal ist, das an eine Kraftstoffeinspritzpumpe als Einstellstrecke 12.1 geliefert wird. Das Berechnen der ersten Stellgröße erfolgt entweder über ein Drehzahlsensor/Drosselklappensensor/Stellgrößen-Kennlinienfeld oder dadurch, daß aus den Signalen vom Drehzahlsensor und vom Drosselklappensensor ein Luftvolumen, daraus eine Luftmasse, daraus eine Kraftstoffmenge und daraus die erste Stellgröße bestimmt wird.The first control unit 10.1.1 receives at least one command variable from the first sensor arrangement 11.1. According to a preferred embodiment of the first exemplary embodiment according to FIG. 2, the first sensor arrangement 11.1 emits signals from a speed sensor and from a throttle valve sensor. From these signals, the first control unit 10.1.1 calculates the first manipulated variable, which in the embodiment mentioned is the signal that is delivered to a fuel injection pump as the adjustment section 12.1. The first manipulated variable is calculated either via a speed sensor / throttle valve sensor / manipulated variable characteristic field or by using the signals from the speed sensor and from the throttle valve sensor an air volume, from it an air mass, from it a fuel quantity and from it the first manipulated variable is determined.

Die zweite Steuereinheit 10.2.1 erhält ein Eingangssignal von der zweiten Sensoranordnung 11.2, die bei der angesprochenen Ausgestaltung als Luftmassensensor ausgebildet ist. Dieser Luftmassensensor bestimmt wesentlich genauer die von einem Verbrennungsmotor angesaugte Luftmasse, als ein Bestimmen der Luftmasse aus der Messung von Drehzahl und Drosselklappenstellung mit Hilfe der ersten Sensoranordnung 11.1 möglich ist. Jedoch mißt der Luftmassensensor gemäß der zweiten Sensoranordnung 11.2 langsamer als die erste Sensoranordnung 11.1. Dieses genaue, jedoch bei einer Änderung der angesaugten Luftmasse nur langsam auf den neuen Wert einschwingende Sensorsignal wird von der zweiten Steuereinheit 10.2.1 in eine zweite Stellgröße umgerechnet, die identisch wie die erste Stellgröße ein Signal ist, das geeignet ist, eine Kraftstoff-Einspritzpumpe so einzustellen, daß diese genau die Kraftstoffmenge abgibt, die der ermittelten Luftmasse zuzusetzen ist, um bei der Verbrennung einen gewünschten Lambda-Wert zu erhalten. Diese zweite Stellgröße wird jedoch nicht an die als Kraftstoff-Einspritzpumpe ausgeführte Einstellstrecke 12.1 geliefert, sondern an die Kalibriereinheit 15. Diese realisiert (in der Regel rechnermäßig) die inunktionen eines Vergleichers, eines Signalwandlers und einer Sample/Hold-Schaltung. Die Kalibriereinheit 15 stellt nämlich fest, ob die erste Stellgröße, die aufgrund von Signalen von der ungenaueren ersten Sensoranordnung ermittelt wurde, von der genaueren zweiten Stellgröße abweicht. Die Kalibriereinheit 15 ermittelt außerdem, ob die erste Stellgröße in einem Zeitraum, der mindestens der Einschwingdauer der zweiten Sensoranordnung 11.2 entspricht, innerhalb einer vorgegebenen Spanne blieb. Ist dies der Fall, steht fest, daß ein für die zweite Sensoranordnung 11.2 quasi stationärer Zustand bestand, innerhalb dem die langsame zweite Sensoranordnung nach einer sprunghaften Änderung der angesaugten Luftmenge auf einen genauen Anzeigewert einschwingen konnte.The second control unit 10.2.1 receives an input signal from the second sensor arrangement 11.2, which in the embodiment mentioned is designed as an air mass sensor. This air mass sensor determines the air mass drawn in by an internal combustion engine much more precisely than it is possible to determine the air mass from the measurement of the rotational speed and throttle valve position with the aid of the first sensor arrangement 11.1. However, the air mass sensor according to the second sensor arrangement 11.2 measures more slowly than the first sensor arrangement 11.1. The second control unit 10.2.1 converts this exact sensor signal, which changes slowly to the new value when the air mass is drawn in, into a second manipulated variable that is identical to the first manipulated variable, a signal that is suitable for a fuel injection pump To be set so that it delivers exactly the amount of fuel that is to be added to the determined air mass in order to obtain a desired lambda value during combustion. However, this second manipulated variable is not supplied to the setting section 12.1, which is designed as a fuel injection pump, but to the calibration unit 15. This (usually in terms of computers) implements the functions of a comparator, a signal converter and a sample / hold circuit. This is because the calibration unit 15 determines whether the first manipulated variable, which was determined on the basis of signals from the less precise first sensor arrangement, deviates from the more precise second manipulated variable. The calibration unit 15 also determines whether the first manipulated variable remained within a predetermined range in a time period that corresponds to at least the settling time of the second sensor arrangement 11.2. If this is the case, it is certain that there was a quasi-steady state for the second sensor arrangement 11.2, within which the slow second sensor arrangement was able to settle to a precise display value after a sudden change in the amount of air sucked in.

Liegt ein solcher quasi stationärer Zustand vor, wird das Differenzsignal von erster Stellgröße und zweiter Stellgröße oder ein dem Differenzsignal gewandeltes Signal über die Sample/Hold-Funktion an die erste Steuereinheit 10.1.1 abgegeben. Schwingt danach die erste Stellgröße innerhalb der vorgegebenen Zeitspanne um mehr als es dem vorgegebenen prozentualen Rahmen entspricht, hält die Sample/Hold-Funktion denjenigen Wert, der zuletzt ausgegeben wurde, als noch quasi stationäre Zustände herrschten.If such a quasi-steady state exists, the difference signal of the first manipulated variable and the second manipulated variable or a signal converted to the differential signal is output to the first control unit 10.1.1 via the sample / hold function. If the first manipulated variable then swings by more than the specified percentage within the specified time span, the sample / hold function holds the value that was last output when there were still quasi-steady states.

Der von der Kalibriereinheit 15 ausgegebene Wert beeinflußt die erste Steuereinheit 10.1.1 so, daß diese die erste Stellgröße in einer Richtung verändert, daß der Wert der ersten Stellgröße an den Wert der zweiten Stellgröße angepaßt wird. Wird z.B. von der Kalibriereinheit 15 eine Abweichung des Wertes der ersten Stellgröße vom Wert der zweiten Stellgröße um zwei Prozent festgestellt, multipliziert die erste Steuereinheit 10.1.1 den zuvor abgegebenen Wert der ersten Stellgröße mit dem Faktor 1,02.The value output by the calibration unit 15 influences the first control unit 10.1.1 in such a way that it changes the first manipulated variable in one direction such that the value of the first manipulated variable is adapted to the value of the second manipulated variable. E.g. If the calibration unit 15 detects a deviation of the value of the first manipulated variable from the value of the second manipulated variable by two percent, the first control unit 10.1.1 multiplies the previously given value of the first manipulated variable by the factor 1.02.

Durch das derartig funktionierende Einstellsystem 14 wird die erste Stellgröße fast in der gesamten Betriebszeit der Anordnung gemäß Fig. 2 mit einer Genauigkeit festgelegt, die der hohen Meßgenauigkeit der zweiten Sensoranordnung entspricht, jedoch bei Veränderungen der Eingangsgrößen mit der hohen Folgegeschwindigkeit verändert, die der Einstellgeschwindigkeit der ersten Sensoranordnung entspricht.Through such a functioning setting system 14, the first manipulated variable is determined almost throughout the entire operating time of the arrangement according to FIG. 2 with an accuracy that corresponds to the high measuring accuracy of the second sensor arrangement, but changes with changes in the input variables with the high subsequent speed, which changes the setting speed of the corresponds to the first sensor arrangement.

Bei den bisher beschriebenen Ausführungsformen und Ausgestaltungen derselben verfügte das Einstellsystem über eine erste Steuereinheit 10.1.1 und eine zweite Steuereinheit 10.2.1. Statt bloßen Steuereinheiten können jedoch auch Steuer/Regeleinheiten verwendet werden, z.B. eine Steuer/Regeleinheit 10.1.2 zum Abgeben der ersten Stellgröße, wie in der Einstellanordnung gemäß Fig. 3 dargestellt, oder eine Steuer/Regeleinheit 10.2.2 zum Abgeben der zweiten Stellgröße, wie in der Anordnung gemäß Fig. 4 dargestellt. Das Verwenden von Steuer/Regeleinheiten statt Steuereinheiten hat den Vorteil, daß überwacht wird, ob die durch die Stellgröße beeinflußte Ausgangsgröße tatsächlich den gewünschten Sollwert einnahm, oder ob Abweichungen bestehen, die ausgeregelt werden sollen.In the embodiments and configurations of the same described so far, the setting system had a first control unit 10.1.1 and a second control unit 10.2.1. Instead of mere control units, however, control / regulating units can also be used, for example a control / regulating unit 10.1.2 for emitting the first manipulated variable, as shown in the setting arrangement according to FIG. 3, or a control / regulating unit 10.2.2 for emitting the second manipulated variable. as shown in the arrangement of FIG. 4. The use of control units instead of control units has the advantage that it is monitored whether the output variable influenced by the manipulated variable actually took the desired setpoint or whether there are deviations which are to be corrected.

Die Anordnung gemäß Fig. 3 unterscheidet sich von der gemäß Fig. 2 dadurch, daß zusätzlich ein Ausgangssensor 13.1 vorhanden ist, der die Ausgangsgröße der Einstellstrecke 12.1 oder eine davon abhängige Größe mißt und sein Ausgangssignal an die bereits erwähnte Steuer/Regeleinheit 10.1.2 abgibt, die die Steuereinheit 10.1.1 ersetzt. Die Steuer/Regeleinheit 10.1.2 führt eine Regelung an einen vom Ausgangssignal der ersten Sensoranordnung 11.1 abhängigen Wert durch. Bei dieser Regelung wird das Ausgangssignal vom Ausgangssensor 13.1 mit einem Sollwert verglichen, der der Steuer/Regeleinheit 10.1.2 zugeführt wird. Falls die Einstellanordnung gemäß Fig. 4 mit der eben beschriebenen Ausführungsform eines Einstellsystems 14 eine Ausgestaltung aufweist, die der Ausgestaltung der Anordnung gemäß Fig. 2 entspricht, ist es von Vorteil, den Ausgangssensor als Lambda-Sonde auszubilden. Die gesamte Anordnung funktioniert dann wie die Anordnung gemäß Fig. 2, jedoch unter Berücksichtigung der oben beschriebenen Regelfunktion.The arrangement according to FIG. 3 differs from that according to FIG. 2 in that an output sensor 13.1 is also present, which measures the output variable of the adjustment section 12.1 or a variable dependent thereon and outputs its output signal to the control unit 10.1.2 already mentioned , which replaces the control unit 10.1.1. The control / regulating unit 10.1.2 carries out a regulation to a value dependent on the output signal of the first sensor arrangement 11.1. In this control, the output signal from the output sensor 13.1 is compared with a target value which is fed to the control unit 10.1.2. If the setting arrangement according to FIG. 4 with the embodiment of a setting system 14 just described has a configuration which corresponds to the configuration of the arrangement according to FIG. 2, it is advantageous to design the output sensor as a lambda probe. The entire arrangement then functions like the arrangement according to FIG. 2, but taking into account the control function described above.

Bei der Einstellancrdnung gemäß Fig. 4 gibt der anhand der Anordnung gemäß Fig. 3 beschriebene Ausgangssensor 13.1 sein Ausgangssignal an die bereits oben erwähnte Steuer/Regeleinheit 10.2.2, die ausgehend von der Ausführungsform gemäß Fig. 2 die zweite Steuereinheit 10.2.1 ersetzt. Der zweiten Steuer/Regeleinheit 10.2.2 wird zugleich ein Sollwert zugeführt. Durch diese Anordnung erhält die Steuereinheit 10.1.1 zum Ausgeben der ersten Stellgröße keinen gesteuerten Kalibrierwert mehr, sondern einen geregelten. Dadurch hat auch die erste Stellgröße Regelungscharakter, obwohl sie durch die Steuereinheit 10.1.1 lediglich in Abhängigkeit von Werten, wie sie von der ersten Sensoranordnung 11.1 gemessen werden, gesteuert wird.4, the output sensor 13.1 described on the basis of the arrangement according to FIG. 3 outputs its output signal to the control unit 10.2.2 already mentioned above, which, based on the embodiment according to FIG. 2, replaces the second control unit 10.2.1. At the same time, a setpoint is fed to the second control unit 10.2.2. This arrangement means that the control unit 10.1.1 no longer receives a controlled calibration value for outputting the first manipulated variable, but rather a regulated one. As a result, the first manipulated variable also has a control character, although it is only controlled by the control unit 10.1.1 as a function of values as measured by the first sensor arrangement 11.1.

Die Frage, wann es vorteilhafter ist, die erste Einstelleinheit zu regeln, und wann es vorteilhafter ist, die zweite Einstelleinheit zu regeln, hängt maßgeblich vom Zeitverhalten der in der Gesamtanordnung verwendeten Sensoren ab. Man wählt die Regelung in demjenigen Zweig, der aufgrund seines Zeitverhaltens weniger zu Regelschwingungen neigt.The question of when it is more advantageous to regulate the first setting unit and when it is more advantageous to regulate the second setting unit largely depends on the time behavior of the sensors used in the overall arrangement. The control is selected in the branch that is less prone to control vibrations due to its time behavior.

Claims (4)

1. Adjusting system in the case of an internal-combustion engine of a motor vehicle for a control variable, in particular with respect to the fuel metering, with sensors for operating characteristics such as engine speed and throttle valve position, having
- a first adjusting unit (10.1.1; 10.1.2) for providing a first signal dependent on a first group of sensors, a volume of air or air-mass value of the air taken in being determined from the sensor signals;
- a second adjusting unit (11.2.1; 11.2.2) for processing at least one signal of a further sensor and providing a second signal, the further sensor being an air-mass sensor in the intake pipe of the internal-combustion engine, which sensor operates more accurately but with a longer transient recovery time than the sensors of the first group, from which the volume of air or the air-mass value of the air taken in is determined;
- a calibration unit (15) for calibrating the control variable dependent on the first signal in certain operating states, in particular in the case of any small fluctuation range of the sensor output signals of the first group of sensors, influencing the first signal and dependent on the output signal of the further sensor,
characterised in that the calibration takes place in virtually steady states.
2. Adjusting system according to Claim 1, characterised in that a hot-film air-mass sensor is provided as the further sensor.
3. Adjusting system according to Claim 1 or 2, characterised in that the calibration is additionally influenced by the output signal of a fourth sensor (output sensor 13, 13.1).
4. Adjusting system according to Claim 3, characterised in that a lambda probe (13) is provided as the fourth sensor.
EP19880907097 1987-09-04 1988-08-05 Adjusting system (control and/or regulating system) for vehicles Expired - Lifetime EP0375710B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3729635 1987-09-04
DE19873729635 DE3729635A1 (en) 1987-09-04 1987-09-04 ADJUSTMENT SYSTEM (CONTROL AND / OR REGULATION SYSTEM) FOR MOTOR VEHICLES

Publications (2)

Publication Number Publication Date
EP0375710A1 EP0375710A1 (en) 1990-07-04
EP0375710B1 true EP0375710B1 (en) 1992-01-22

Family

ID=6335245

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880907097 Expired - Lifetime EP0375710B1 (en) 1987-09-04 1988-08-05 Adjusting system (control and/or regulating system) for vehicles

Country Status (6)

Country Link
US (1) US5050560A (en)
EP (1) EP0375710B1 (en)
JP (1) JP2735591B2 (en)
KR (1) KR0121326B1 (en)
DE (2) DE3729635A1 (en)
WO (1) WO1989002030A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2816758B2 (en) * 1990-09-07 1998-10-27 株式会社日立製作所 Apparatus and method for measuring flow rate using fuzzy inference
US5190020A (en) * 1991-06-26 1993-03-02 Cho Dong Il D Automatic control system for IC engine fuel injection
US5150692A (en) * 1991-12-16 1992-09-29 General Motors Corporation System for controlling air supply pressure in a pneumatic direct fuel injected internal combustion engine
US5537981A (en) * 1992-05-27 1996-07-23 Siemens Aktiengesellschaft Airflow error correction method and apparatus
JP3168355B2 (en) * 1992-08-17 2001-05-21 株式会社ユニシアジェックス Air-fuel ratio control device for internal combustion engine
US5492106A (en) * 1994-12-27 1996-02-20 Ford Motor Company Jump-hold fuel control system
EP1015747B1 (en) 1997-09-17 2001-10-24 Robert Bosch Gmbh Method and device for regulating a gas flow by means of a throttle valve in an internal combustion engine
US6370935B1 (en) 1998-10-16 2002-04-16 Cummins, Inc. On-line self-calibration of mass airflow sensors in reciprocating engines
DE10039785B4 (en) * 2000-08-16 2014-02-13 Robert Bosch Gmbh Method and device for operating an internal combustion engine
US6636796B2 (en) 2001-01-25 2003-10-21 Ford Global Technologies, Inc. Method and system for engine air-charge estimation
DE20102002U1 (en) * 2001-02-06 2001-04-26 Eberspaecher J Gmbh & Co Liquid dosing system
US20030105536A1 (en) * 2001-12-04 2003-06-05 Eastman Kodak Company Open and closed loop flow control system and method
FR2874054B1 (en) * 2004-08-04 2006-11-24 Peugeot Citroen Automobiles Sa METHOD AND SYSTEM FOR SUPERVISING THE CALIBRATION OF A PRESSURE ACQUISITION CHAIN IN A CYLINDER OF A DIESEL ENGINE
US8224519B2 (en) 2009-07-24 2012-07-17 Harley-Davidson Motor Company Group, LLC Vehicle calibration using data collected during normal operating conditions

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193760A (en) * 1981-05-22 1982-11-29 Hitachi Ltd Fuel controller
US4562814A (en) * 1983-02-04 1986-01-07 Nissan Motor Company, Limited System and method for controlling fuel supply to an internal combustion engine
JPS60178952A (en) * 1984-02-27 1985-09-12 Mitsubishi Electric Corp Fuel injection controller for internal-combustion engine
JPS6158945A (en) * 1984-08-29 1986-03-26 Nissan Motor Co Ltd Full injection control device for internal-combustion engine
US4644474A (en) * 1985-01-14 1987-02-17 Ford Motor Company Hybrid airflow measurement
JPS6278449A (en) * 1985-10-02 1987-04-10 Mitsubishi Electric Corp Fuel injection controller of internal combustion engine
JPH0827203B2 (en) * 1986-01-13 1996-03-21 日産自動車株式会社 Engine intake air amount detector
KR930000347B1 (en) * 1988-04-28 1993-01-16 가부시기가이샤 히다찌세이사꾸쇼 Internal combustion engine

Also Published As

Publication number Publication date
WO1989002030A1 (en) 1989-03-09
JP2735591B2 (en) 1998-04-02
DE3729635A1 (en) 1989-03-16
DE3868071D1 (en) 1992-03-05
KR890701883A (en) 1989-12-22
EP0375710A1 (en) 1990-07-04
JPH03500563A (en) 1991-02-07
KR0121326B1 (en) 1997-11-24
US5050560A (en) 1991-09-24

Similar Documents

Publication Publication Date Title
DE2333743C2 (en) Method and device for exhaust gas decontamination from internal combustion engines
DE2633617C2 (en) Method and device for determining setting variables in an internal combustion engine, in particular the duration of fuel injection pulses, the ignition angle, the exhaust gas recirculation rate
DE3020494C2 (en)
DE3020131C2 (en)
DE3812289C2 (en) Idle speed control device for an internal combustion engine
EP0375710B1 (en) Adjusting system (control and/or regulating system) for vehicles
DE3416369C2 (en) Vehicle speed control device
DE2949151C2 (en) Device for regulating the idling speed for an internal combustion engine as a function of the operating parameters
DE4015415B4 (en) Device for detecting a variable operating parameter
DE10024269A1 (en) Method and device for filtering a signal
DE4229774C2 (en) Device for controlling an internal combustion engine
DE2847794C2 (en) Fuel injection system for the internal combustion engine of a motor vehicle
DE3343481C2 (en)
DE3545808C2 (en)
DE4235880C2 (en) Method and device for detecting a variable size in vehicles
DE4029537A1 (en) METHOD AND DEVICE FOR CONTROLLING AND / OR REGULATING AN OPERATING SIZE OF AN INTERNAL COMBUSTION ENGINE
DE4315885C1 (en) Torque adjustment procedure
EP0347446B1 (en) Process and device for regulating the air feed in an internal combustion engine, in particular during idling and coasting
DE4333896B4 (en) Method and device for controlling an internal combustion engine
EP0271774B1 (en) System for detecting the mass flow rate of air admitted to the cylinders of an internal-combustion engine
DE19723639B4 (en) Automobilaktuatorschnittstelle
EP0976922B1 (en) Method for torque adjustment
DE3310577C2 (en)
EP0283562A2 (en) Idle speed control system for a combustion engine
DE3919108A1 (en) METHOD FOR CONTROLLING AN OPERATING PARAMETER OF A MOTOR VEHICLE IN DYNAMIC OPERATING CONDITIONS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19910131

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

REF Corresponds to:

Ref document number: 3868071

Country of ref document: DE

Date of ref document: 19920305

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040819

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041011

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050726

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060428

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060805