EP0360126B2 - Operation method for an optical smoke detector and smoke detector for carrying out the method - Google Patents

Operation method for an optical smoke detector and smoke detector for carrying out the method Download PDF

Info

Publication number
EP0360126B2
EP0360126B2 EP89116813A EP89116813A EP0360126B2 EP 0360126 B2 EP0360126 B2 EP 0360126B2 EP 89116813 A EP89116813 A EP 89116813A EP 89116813 A EP89116813 A EP 89116813A EP 0360126 B2 EP0360126 B2 EP 0360126B2
Authority
EP
European Patent Office
Prior art keywords
light
sensitive receiver
measuring chamber
optical
smoke detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89116813A
Other languages
German (de)
French (fr)
Other versions
EP0360126B1 (en
EP0360126A2 (en
EP0360126A3 (en
Inventor
Hartwig Dipl.-Ing. Beyersdorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6363155&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0360126(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to AT89116813T priority Critical patent/ATE101739T1/en
Publication of EP0360126A2 publication Critical patent/EP0360126A2/en
Publication of EP0360126A3 publication Critical patent/EP0360126A3/en
Publication of EP0360126B1 publication Critical patent/EP0360126B1/en
Application granted granted Critical
Publication of EP0360126B2 publication Critical patent/EP0360126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the invention relates to a method for the operation of an optical smoke detector the preamble of claim 1.
  • Optical smoke detectors contain at least a light source, for example in the form of a light emitting Diode (LED), mostly in the infrared range is operated, as well as a light-sensitive Receiver, for example a photo element.
  • a light source for example in the form of a light emitting Diode (LED), mostly in the infrared range is operated, as well as a light-sensitive Receiver, for example a photo element.
  • the radiation from the light source and the visual field of the photosensitive receiver are common directed; the elements are beyond that arranged so that the photosensitive receiver not directly the radiation of the light source is exposed.
  • Such smoke detectors turn on take advantage of the fact that penetrated into the measuring chamber Aerosols the light radiation more or reflect less strongly. The caused by it Scattered radiation also strikes the light-sensitive one Receiver. This responds and gives an alarm signal if the stray radiation hits a has predetermined intensity.
  • the measuring chamber naturally requires at least an opening through which the smoke enters the Measuring chamber can enter.
  • An opening in the Measuring chamber also allows the entry of Light.
  • Light entering the measuring chamber from the outside leads to scattering due to multiple reflections on the walls of the measuring chamber.
  • the Light source in the measuring chamber causes one Scattered radiation. Coming from the components of outside light and composing light from the light source Scattered radiation changes with increasing Contamination of the measuring chamber walls. Because of the necessary entry opening for smoke this pollution cannot be avoided at all.
  • Increasing pollution leads to increase the amount of scattered radiation.
  • the scattered radiation can assume values that the Response value of the light-sensitive receiver exceed. Then there is a false alarm, which is known to be special in fire alarm systems is felt uncomfortable.
  • the amount of scattered light from the light source, the smoke in the measuring chamber on the photosensitive receiver falls is at most 1%. This shows how serious it is the interference radiation increased by pollution can impact.
  • a smoke alarm has become known has two light-sensitive receivers. That directed Field of vision of the first recipient crosses the radiation beam of the light source approximately perpendicular.
  • the directional field of vision of the second photosensitive receiver extends approximately parallel to that of the first photosensitive Receiver on the light beam of the light source past, with both receivers a surface element look at the wall of the measuring chamber, which in the special case can be the same.
  • the surface element is radiation-absorbing.
  • the volume that the Ingress of smoke which generates stray radiation has a much larger diameter than that Beams of radiation from the light source. Therefore, the Stray radiation also on the second photosensitive Receiver. A compensation of the Scattered radiation even when smoke enters not possible.
  • the main disadvantage, however, is that that of the second photosensitive Receiver considered wall area of the measuring chamber is in the dark, so their reflection only extremely low values achieved, the metrological can hardly be processed. It is therefore hardly or only with a very high metrological Effort possible due to pollution of the Measuring chamber to detect scattered radiation.
  • DE-PS 27 54 139 In another embodiment of the DE-PS 27 54 139 has also become known, one to provide photosensitive receiver which with the help of an appropriate actuator is pivoted to selectively the directed Field of view the light beam of the light source to be crossed or past the bundle of lights " see ".
  • the light source is suggested trained swivel.
  • the pivoting optics or a light source with the help a suitable mechanism, for example one electromagnetic actuation, is for optiscne Smoke detectors are extremely complex. About that furthermore, these embodiments do not lead to better consideration of pollution caused scattered radiation.
  • EP-0 079 010 is a smoke detector become known in which a second photosensitive Element immediately with the light of the Light source is applied. With the help of the second photosensitive element, the intensity of the Light of the light source is measured and can be used for regulation used to smoke sensitivity to maintain despite the light source being contaminated.
  • An optical smoke detector has become known from DE-A-42 42 673, at least for the detection of smoke a light-sensitive receiver the useful scatter radiation measures that starts from a spatial element that is in the intersection area the directional field of view of the photosensitive Receiver and the directed beam of a light source lies.
  • a second photosensitive receiver the radiation that starts from the measuring chamber wall, the reflection radiation of an illuminated surface element is measured.
  • the Field of view of the second light-sensitive receiver however also other areas of the measuring chamber wall.
  • the circuit of the well-known smoke detector is designed that the measured by the further photosensitive element Reflection radiation that from the first photosensitive Element measured stray light compensates for the influence the contamination of the measuring chamber wall on the smoke measurement to meet.
  • EP-A-0 076 338 discloses several To operate light sources sequentially for measurement purposes. This is the case, for example, with an arrangement such that those in the directional field of view of a second photosensitive Surface of the measuring chamber lying on the receiver Light source is irradiated.
  • the invention is based on the object Method for operating an optical smoke detector specify that with very little effort certainly prevents that from pollution scattered radiation into one caused by the measuring chamber False alarm.
  • Signal level is a measure of the associated Increase in interference radiation. Reached this level a predetermined value, a Maintenance signal are given, for example The reason is to dismantle the smoke detector and clean.
  • the maintenance signal can also used to adjust the sensitivity of the the light-sensitive receiving the stray radiation To change the recipient accordingly.
  • This can according to an embodiment of the invention happen that the useful scattered radiation receiving photosensitive receiver threshold level changeable in the threshold value is connected downstream.
  • the control signal is on the Control input of the threshold value given and increases the threshold when the output signal of the light-sensitive receiving the interference scatter radiation A given recipient Value reached.
  • the response threshold for the submission an alarm signal is therefore increased when a certain degree of contamination in the measuring chamber is detected.
  • a particular advantage of the invention also lies in that consideration or compensation interference radiation can also occur if there is smoke in the measuring chamber. Located smoke in the measuring chamber below the Alarm threshold, it causes that in the test phase less reflection radiation from the irradiated Wall surface on the one receiving the scattered radiation Recipient falls. However, this becomes approximate replaced by the reflection on smoke particles in the Radiation beam. Therefore stay at a constant Degree of pollution the intensity of the on the optical receiver stray interference radiation approximately with a relatively small amount of smoke equal.
  • both are separate Light source as well as a separate photosensitive Receiver can be provided to the reflection of a surface area of the measuring chamber wall to eat.
  • the effort for this is natural larger than when using only one additional Light source or only one additional photosensitive receiver alone.
  • the latter requirement is not so essential because by appropriate pulse-like control the two optical measuring sections are only optional be switched to the operating state can.
  • the optical arrangement of the smoke detector shown has an optical transmitter 10, one first optical receiver 11 and one second optical receiver 12.
  • the optical Transmitter 10 has a light-emitting diode 13 (LED) on, which upstream of a converging lens 14 is.
  • the optical receiver 11 has a photo element 15, which is preceded by a converging lens 16 is.
  • the second optical receiver 12 has one Photo element 17, which is preceded by a converging lens 18 is.
  • Optical transmitter 10 and optical receiver 11, 12 are sunk in channels or bores arranged as for the transmitter 10 or the receiver 11 at 19 and 20 respectively.
  • the optical transmitter 10 has due to the lens 14 a directed radiation, designated by 21 is. Due to the lens 16, the photo element 15 a directed field of view, which with 22 is designated.
  • the optical receiver 12 has also a directional field of vision, which at 23 is designated.
  • the optical arrangement described is located within a cylindrical housing 30, the upper end of which is omitted in FIG. 2.
  • An electrical circuit arrangement belongs to it and a fastening device for attachment of the smoke detector, for example on the Ceiling of a building room.
  • Near the bottom End wall of the housing 30 are circumferential spaced slots 31 formed, of which inward angled sections 32, 33 extend.
  • the angled sections 32, 33 are said to prevent too much outside light from entering the Housing 30 formed measuring chamber 35 occurs. All parts in the measuring chamber, in particular their walls are black to a maximum To ensure absorption.
  • the radiation 21 of the optical transmitter 10 meets the sloping inward section 32 of the housing wall, approximately at a right angle.
  • the irradiated area is with 36 designated.
  • the visual field 22 of the optical Receiver 12 is now aligned so that it the area irradiated by the optical transmitter 10 36 detected, and also approximately perpendicular to section 32. On the optical receiver 12 therefore falls part of that of the irradiated Area of reflected light. Since, as mentioned, the Measuring chamber 35 of black boundary surfaces is formed in the new state of the Smoke detector has a reflection of almost zero. However, this changes when there are dust particles settle inside the measuring chamber 35. The more Dust is in area 36, all the more so there is a reflection of the coming from the transmitter 10 Light.
  • the optical receiver 12 measures the Intensity of reflected radiation and inputs corresponding output signal. It is therefore representative of the degree of pollution of the Measuring chamber through penetrating dust and thus also for the scattered radiation in the measuring chamber 35 general. It cannot be avoided that Outside light through the slits into the measuring chamber 35 penetrates.
  • the radiation 21 generates optical transmitter 10 in the chamber 35 a Scattered radiation. Both stray radiation components can assume a height that the optical receiver 11 responds, although useful scattered radiation due to the occurrence of smoke. Even if the interference radiation is such If the value has not yet been reached, it leads to a unwanted falsification of the radiation from the use induced measurement results.
  • the optical arrangement according to FIGS. 3 and 4 has two optical transmitters 51, 52 and an optical receiver 50.
  • the optical transmitters have a light-emitting diode 65 and 66 on which a converging lens 67, 68 is connected upstream is.
  • the optical receiver 50 has a photo element 70, which is preceded by a converging lens 71 is.
  • the optical transmitter 51, 52 and the optical Receivers 50 are in channels or holes in Housing 30 sunk, as for transmitters 51 and receiver 50 at 72 and 73 respectively.
  • the optical transmitter 51 faces due to the lens 67 a directed radiation, designated by 76 is. Because of the lens 71, the photo element 70 a directed field of view that is designated 77.
  • the transmitter 52 has a directed beam, which with 78 is designated.
  • the axes of the optical transmitter 51 and the optical receiver 50 arranged so that the radiation 76 the field of view 77 of the optical receiver 11 crosses, therefore not on the lens 71 falls.
  • the optical receiver 50 ideally, therefore, only the scattered radiation falls by penetrating into the measuring chamber 35 Smoke is caused in the volume inside which the radiation 76 and the visual field 77 cross.
  • smoke measurement is known.
  • the radiation from the optical transmitter 52 hits on the obliquely inward section 32 the housing wall, approximately in the right Angle.
  • the irradiated area is labeled 80.
  • the field of view of the receiver 50 is also aligned so that it from the optical Transmitter 52 detects irradiated area 80, namely also approximately perpendicular to section 32.
  • the optical receiver 50 is therefore incident Part of the reflected from the irradiated area Light. Since, as mentioned, the measuring chamber 35 of black boundary surfaces is formed a reflection when the smoke detector is new of almost zero. However, this changes if there are dust particles inside the measuring chamber 35 discontinue. The more dust there is in the area 36 is located, the more there is a reflection of the light coming from the transmitter 52.
  • the optical one Receiver 50 measures the intensity of the reflected Radiation and gives a corresponding output signal from. It is therefore representative of the degree of pollution the measuring chamber by penetrating Dust and therefore also for scattered radiation in the measuring chamber 35 in general. However, it is to mention, and this is illustrated by other figures explained further below that the light transmitter 51, 52 are operated alternately, the Interference radiation caused by pollution of the Measurement chamber is caused only in the operation of the Light source 52 is measured.
  • FIG. 5 is a circuit arrangement for Operation of the optical arrangement of the smoke detector shown in Figures 1 and 2.
  • the optical receivers 11 and 12 are over a electronic switch 40 with an amplifier and control circuit 41 connected.
  • the circuit 41 is via an AND gate 42 with a maintenance detection 43 connected. It is also with the optical transmitter 10 connected, for example works in the infrared range.
  • the circuit 41 is finally also with a decadal counter 44 connected, which in turn is connected to the exit of the Amplifier and control circuit 41 is connected.
  • the output of counter 44 is at the input an AND gate 45, whose further input with is connected to the output of the circuit 41. Of the Output of the AND gate 45 is with the electronic Switch 40 connected.
  • the output of the Counter 44 is connected to the input of a NAND gate 46 connected, the output of which Input of a further AND gate 47 connected is.
  • the further input of the AND gate 47 is with an output of the amplifier and control circuit 41 connected.
  • the exit of the AND gate 47 goes to an alarm circuit 48 Circuit works as follows.
  • Controlled by the amplifier and control circuit 41 generates the optical transmitter 10 Pulse light. Simultaneously with the triggering of the Light transmission pulse becomes the optical receiver 11 activated, i.e. switched ready to receive. Occurs in Normal state of the optical detector, no useful stray light in the beam path 21 of the optical transmitter 10 on, after the transmission pulse the optical receiver 11 is deactivated. Generated the optical receiver during a Light transmission pulse a significant output signal, generates the amplifier and control circuit 41 a corresponding impulse that spontaneously the decadic counter 44 stops. Continuing transmission pulses from the amplifier and control circuit 41 can no longer change the counter reading.
  • the counter 44 After a predetermined number of, for example m transmit pulses counted by the counter 44 the counter 44 generates an output signal, that via the AND gate 45 on the electronic Switch 40 is given if the further AND condition, that a send clock was generated.
  • the electronic switch 40 now switches the second optical receiver 12 with the Amplifier and transmit circuit 41 together to initiate a test phase.
  • Transmit pulses from the amplifier and Control circuit can not count change more. Meets during the next n Transmit pulses also without interruption the optical receiver during the light transmission pulse a correspondingly large amount of stray light becomes a second output on the amplifier and Control circuit 41 activates and thus delivers the necessary AND condition to the AND gate 42.
  • the output of the AND gate 42 controls the maintenance circuit 43 on. For example, you can Viewers show what degree of pollution has reached the chamber wall.
  • a corresponding Display in the connected monitoring center can be done optically and / or acoustically.
  • a corresponding output signal of the Maintenance circuit 43 on the amplifier and transmitter circuit 41 is given, for example, the Responsiveness when smoke occurs to reduce according to pollution the degree of pollution a perfect Allows smoke detection, the one shown works Circuit continues in the usual cycle. Reached however, the degree of pollution is critical Size so as to avoid a false alarm also suppresses another smoke measurement will. It is understood that through a appropriate design of the maintenance circuit 43 also different degrees of pollution can be recognized and displayed.
  • optical receiver 50 is only one only optical receiver 50 is provided. Him are assigned an optical transmitter 51 for the Smoke detection and an optical transmitter 52 for Determination of pollution. Optical receiver 50 and optical transmitter 51 work in the the same way together as the corresponding one optical arrangement according to Fig. 5.
  • the directed Radiation from transmitter 52 is on an area of the Measuring chamber wall directed in the visual field of the optical receiver 50.
  • the optical Transmitters 51, 52 receive their clock pulses from the Amplifier and control circuit 53, these via an AND gate 54 at the input of the optical Sender 52 lies. Between the circuit 53 and the optical transmitter 51 is an AND gate 55 arranged. The clock pulses also arrive a decadal counter 56, the output of which forms the second input of the AND gate 54.
  • a NAND gate 57 switched, its output with the second input of the AND gate 55 and an input of the AND gate 58 is connected.
  • An exit from Amplifier and control circuit 53 is with one AND gate 59 connected, the second input is connected to the output of counter 56.
  • a maintenance circuit 60 connected.
  • an alarm circuit 51 is connected.
  • the optical transmitter 51 driven in pulses, wherein the output of the NAND gate 57 is the second AND condition generated in the AND gate 55.
  • the smoke detection phase is the transmitter 52 disabled since counter 56 does not have a corresponding one Output signal generated.
  • the counter 56 spontaneously from the amplifier and control circuit stopped to the necessary bring about electronic interlocks and only after a predetermined number of Measuring pulses, the alarm circuit 61 on the AND gate 58 triggered by it from the amplifier and control circuit 53 is driven.
  • the second AND condition is over the output of the NAND gate 57 is generated.
  • counter 56 If the number of When transmission pulses are reached, counter 56 generates an predetermined output signal, which means that NAND gate 57 and AND gates 55 and 58 blocked will. Now the optical transmitter 52 a light pulse is emitted during the optical receiver 50 is activated synchronously. Exceeds the output signal of the optical receiver 50 a predetermined level, will first brought about an electronic lock to after further pending a predetermined level during a number of n measuring pulses the maintenance circuit 60 via the AND gate 59 controlled. The second condition of the AND gate 59 is by the output signal of the counter 56 met.
  • the processing of the in the maintenance circuit 60 input signal can be in the way they occur in connection with Fig. 5 has been described. The last one described The test phase also only takes a predefined one Number of transmission pulses after which the counter 56 is put back again. Smoke detection phase and test phase are then alternately in started in the manner described above.
  • FIG. 7 shows a first time axis 100, which analog variables for the state of the measuring chamber, for example after the measuring chamber 35 Figures 1 and 2 reproduces, namely for the Rauch 101, plotted with increasing tendency is for the scattered radiation due to Pollution, which is indicated with 104 as well for which the increase in scattered radiation 104 ' and the tracking threshold 102 '.
  • On the light axis 106 is shown on the time axis 105, which, for example, from the optical transmitter 10 Fig. 5 are delivered.
  • test light pulses 107 which are slightly wider than that Light pulses 106 for smoke measurement. you will be likewise from the optical transmitter 10 according to FIG. 5 delivered, according to the record in Fig. 7 after every four pulses 106.

Abstract

Operation method for an optical smoke detector, in which in order to detect smoke at least one light- sensitive receiver measures the useful scattered radiation which proceeds from an element in space, which is situated in the region of intersection of the directed field of view of the light-sensitive receiver and the directed beam of a light source, in order to detect the extraneous scattered radiation generated by contamination of the measurement chamber the light- sensitive receiver or a second light-sensitive receiver detecting the radiation which proceeds from a surface element of the measurement chamber, characterised in that the reflection radiation of an illuminated surface element is measured. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Verfahren zum Betrieb eines optischen Rauchmelders nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for the operation of an optical smoke detector the preamble of claim 1.

Optische Rauchmelder enthalten mindestens eine Lichtquelle, zum Beispiel in Form einer lichtemittierenden Diode (LED), die zumeist im Infrarotbereich betrieben wird, sowie einen lichtempfindlichen Empfänger, zum Beispiel ein Fotoelement. Die Strahlung der Lichtquelle und das Gesichtsfeld des lichtempfindlichen Empfängers sind üblicherweise gerichtet; die Elemente sind darüber hinaus so angeordnet, daß der lichtempfindliche Empfänger nicht unmittelbar der Strahlung der Lichtquelle ausgesetzt ist. Derartige Rauchmelder machen sich den Umstand zunutze, daß in die Meßkammer eingedrungene Aerosole die Lichtstrahlung mehr oder weniger stark reflektieren. Die dadurch verursachte Streustrahlung trifft auch auf den lichtempfindlichen Empfänger. Dieser spricht an und gibt ein Alarmsignal ab, wenn die auftreffende Streustrahlung eine vorgegebene Intensität hat.Optical smoke detectors contain at least a light source, for example in the form of a light emitting Diode (LED), mostly in the infrared range is operated, as well as a light-sensitive Receiver, for example a photo element. The radiation from the light source and the visual field of the photosensitive receiver are common directed; the elements are beyond that arranged so that the photosensitive receiver not directly the radiation of the light source is exposed. Such smoke detectors turn on take advantage of the fact that penetrated into the measuring chamber Aerosols the light radiation more or reflect less strongly. The caused by it Scattered radiation also strikes the light-sensitive one Receiver. This responds and gives an alarm signal if the stray radiation hits a has predetermined intensity.

Die Meßkammer benötigt naturgemäß mindestens eine Öffnung, über die der Rauch in die Meßkammer eintreten kann. Eine Öffnung in der Meßkammer ermöglicht zugleich den Eintritt von Licht. Man ist bestrebt, die optische Anordnung in der Meßkammer so zu wählen, daß sie weitgehend gegenüber dem eintretenden Licht abgeschirmt ist. Von außen in die Meßkammer gelangendes Licht führt jedoch zu einer Streuung durch vielfache Reflexion an den Wänden der Meßkammer. Auch die Lichtquelle in der Meßkammer verursacht eine Streustrahlung. Die sich aus den Komponenten Außenlicht und Licht der Lichtquelle zusammensetzende Streustrahlung verändert sich mit zunehmender Verschmutzung der Meßkammerwände. Wegen der notwendigen Eintrittsöffnung für Rauch läßt sich diese Verschmutzung überhaupt nicht vermeiden. Eine zunehmende Verschmutzung führt zur Erhöhung des Streustrahlungsanteils. Dabei kann die Streustrahlung Werte annehmen, die den Ansprechwert des lichtempfindlichen Empfängers überschreiten. Es kommt dann zu einem Fehlalarm, der bekanntlich in Brandmeldesystemen als besonders unangenehm empfunden wird.The measuring chamber naturally requires at least an opening through which the smoke enters the Measuring chamber can enter. An opening in the Measuring chamber also allows the entry of Light. One tries to change the optical arrangement in choose the measuring chamber so that it largely is shielded from the incoming light. Light entering the measuring chamber from the outside however, leads to scattering due to multiple reflections on the walls of the measuring chamber. Also the Light source in the measuring chamber causes one Scattered radiation. Coming from the components of outside light and composing light from the light source Scattered radiation changes with increasing Contamination of the measuring chamber walls. Because of the necessary entry opening for smoke this pollution cannot be avoided at all. Increasing pollution leads to increase the amount of scattered radiation. Here the scattered radiation can assume values that the Response value of the light-sensitive receiver exceed. Then there is a false alarm, which is known to be special in fire alarm systems is felt uncomfortable.

Der Anteil des gestreuten Lichts der Lichtquelle, der bei Rauch in der Meßkammer auf den lichtempfindlichen Empfänger fällt, beträgt höchstens 1%. Daran wird deutlich, wie gravierend sich die durch Verschmutzung verstärkte Störstreustrahlung auswirken kann. Eine Erhöhung des Störstreustrahlungsanteils führt zu einer Erhöhung der Empfindlichkeit des Rauchmelders. Es genügen daher nur geringe Rauchmengen, die unter Umständen noch keine Gefahr bedeuten, um eine Auslösung zu bewirken. Es kann daher zu Fehlalarmen schon zu einem Zeitpunkt kommen, in dem der Störstreustrahlungsanteil noch nicht ausreicht, den erforderlichen Ansprechwert des lichtempfindlichen Empfängers zu erreichen.The amount of scattered light from the light source, the smoke in the measuring chamber on the photosensitive receiver falls is at most 1%. This shows how serious it is the interference radiation increased by pollution can impact. An increase in the amount of interference radiation leads to an increase in Smoke detector sensitivity. It is enough therefore only small amounts of smoke, which under certain circumstances still don't pose a risk of triggering to effect. False alarms can therefore occur come at a time when the Interference stray radiation component is not yet sufficient required response value of the photosensitive To reach the recipient.

Es ist bekannt, die Lichtquelle impulsweise zu betreiben und den Empfänger nur während der Sendeimpulse zu aktivieren. Dadurch läßt sich eine Reihe von Fremdlichteinflüssen unterdrücken. Den oben erläuterten störenden Erscheinungen der Streustrahlung kann damit nicht begegnet werden. Im Stand der Technik sind viele weitere Versuche unternommen worden, den schädlichen Einfluß der Störstreustrahlung auszuschalten.It is known to pulsate the light source operate and the receiver only during the To activate transmission pulses. This allows one Suppress a number of extraneous light influences. The disruptive phenomena of the Scattered radiation cannot be countered with this. Many other attempts are in the prior art has been undertaken the harmful influence of Switch off interference radiation.

Bei einer Ausführungsform in der DE-OS 27 54 139 ist ein Rauchmelder bekanntgeworden, der zwei lichtempfindliche Empfänger aufweist. Das gerichtete Gesichtsfeld des ersten Empfängers kreuzt das Strahlungsbündel der Lichtquelle annähernd senkrecht. Das gerichtete Gesichtsfeld des zweiten lichtempfindlichen Empfängers erstreckt sich annähernd parallel zu dem des ersten lichtempfindlichen Empfängers an dem Lichtbündel der Lichtquelle vorbei, wobei beide Empfänger ein Flächenelement an der Wand der Meßkammer betrachten, das im besonderen Fall dasselbe sein kann. Das Flächenelement ist dabei strahlenabsorbierend ausgebildet. Durch Differenzbildung der Ausgangssignale der lichtempfindlichen Empfänger soll der Störstrahlungsanteil kompensiert werden. Bei dem kannten Rauchmelder wird indessen außer acht gelassen, daß die störende Streustrahlung aus dem gesamten Raum der Meßkammer auf die lichtempfindlichen Empfänger trifft. Das Volumen, das beim Eintritt von Rauch die Nutzstreustrahlung erzeugt, hat einen deutlich größeren Durchmesser als das Strahlungsbündel der Lichtquelle. Daher trifft die Nutzstreustrahlung auch auf den zweiten lichtempfindlichen Empfänger. Eine Kompensation der Streustrahlung auch bei Eintritt von Rauch ist daher nicht möglich. Nachteilig ist vor allen Dingen jedoch, daß der vom zweiten lichtempfindlichen Empfänger betrachtete Wandbereich der Meßkammer im Dunkeln liegt, somit deren Reflexion nur äußerst geringe Werte erreicht, die meßtechnisch kaum verarbeitet werden können. Es ist daher kaum oder nur mit einem sehr hohen meßtechnischen Aufwand möglich, durch Verschmutzung der Meßkammer verursachte Streustrahlung zu erfassen.In one embodiment in DE-OS 27 54 139, a smoke alarm has become known has two light-sensitive receivers. That directed Field of vision of the first recipient crosses the radiation beam of the light source approximately perpendicular. The directional field of vision of the second photosensitive receiver extends approximately parallel to that of the first photosensitive Receiver on the light beam of the light source past, with both receivers a surface element look at the wall of the measuring chamber, which in the special case can be the same. The The surface element is radiation-absorbing. By forming the difference between the output signals the photosensitive receiver should Interference radiation component can be compensated. In which known smoke detectors will be disregarded let that the disturbing stray radiation from the entire space of the measuring chamber to the photosensitive Recipient hits. The volume that the Ingress of smoke which generates stray radiation, has a much larger diameter than that Beams of radiation from the light source. Therefore, the Stray radiation also on the second photosensitive Receiver. A compensation of the Scattered radiation even when smoke enters not possible. The main disadvantage, however, is that that of the second photosensitive Receiver considered wall area of the measuring chamber is in the dark, so their reflection only extremely low values achieved, the metrological can hardly be processed. It is therefore hardly or only with a very high metrological Effort possible due to pollution of the Measuring chamber to detect scattered radiation.

Bei einer anderen Ausführungsform der DE-PS 27 54 139 ist auch bekanntgeworden, einen einzigen lichtempfindlichen Empfänger vorzusehen, der mit Hilfe einer entsprechenden Betätigungsvorrichtung verschwenkt wird, um wahlweise das gerichtete Gesichtsfeld das Lichtbündel der Lichtquelle kreuzen zu lassen oder am Lichbündel vorbei "zu sehen". Wahlweise wird vorgeschlagen, die Lichtquelle schwenkbar auszubilden. Die Verschwenkung einer Optik oder einer Lichtquelle mit Hilfe einer geeigneten Mechanik, beispielsweise einer elektromagnetischen Beetätigung, ist für optiscne Rauchmelder außerordentlich aufwendig. Darüber hinaus führen diese Ausführungsformen nicht zu einer besseren Berücksichtigung der durch Verschmutzung verursachten Streustrahlung.In another embodiment of the DE-PS 27 54 139 has also become known, one to provide photosensitive receiver which with the help of an appropriate actuator is pivoted to selectively the directed Field of view the light beam of the light source to be crossed or past the bundle of lights " see ". Optionally, the light source is suggested trained swivel. The pivoting optics or a light source with the help a suitable mechanism, for example one electromagnetic actuation, is for optiscne Smoke detectors are extremely complex. About that furthermore, these embodiments do not lead to better consideration of pollution caused scattered radiation.

Aus der EP-0 079 010 ist ein Rauchmelder bekanntgeworden, bei dem ein zweites lichtempfindliches Element unmittelbar mit dem Licht der Lichtquelle beaufschlagt wird. Mit Hilfe des zweiten lichtempfindlichen Elements wird die Intensität des Lichts der Lichtquelle gemessen und kann zur Regelung verwendet werden, um die Rauchempfindlichkeit trotz Verschmutzung der Lichtquelle aufrechtzuerhalten.EP-0 079 010 is a smoke detector become known in which a second photosensitive Element immediately with the light of the Light source is applied. With the help of the second photosensitive element, the intensity of the Light of the light source is measured and can be used for regulation used to smoke sensitivity to maintain despite the light source being contaminated.

Mit Hilfe der bekannten Vorrichtung kann jedoch eine Kompensation der Hintergrundstrahlung (durch Verschmutzung verursachte Störstreustrahlung) nicht vorgenommen werden.However, with the help of the known device compensation of the background radiation (interference radiation caused by pollution) not be made.

Aus der DE-OS 33 34 545 ist ein optischer Rauchmelder bekanntgeworden, bei dem ein lichtempfindlicher Empfänger von zwei oder mehr Lichtquellen umgeben ist, deren Lichtbündel das gerichteete Gesichtsfeld des Empfängers schräg kreuzen. Die Lichtbündel treten über Öffnungen im Gehäuse des Rauchmelders aus. Mit diesem Rauchmelder soll der Nachteil eines komplizierten und großen Labyrinths herkömmlicher Rauchmelder vermieden werden, wobei das Streulicht der Rückwärtsstrahlung optimal ausgenutzt werden soll. Eine Berücksichtigung einer durch Verschmutzung verursachten Störstreustrahlung findet beim bekannten Rauchmelder nicht statt.From DE-OS 33 34 545 is an optical Smoke detector has become known in which a photosensitive Recipients of two or more Light sources are surrounded, the light bundle of which directional field of view of the receiver obliquely cross. The light beams pass through openings in the Housing of the smoke detector. With this Smoke detectors are said to be the disadvantage of a complicated and large labyrinths of conventional smoke detectors be avoided, the scattered light of the Reverse radiation can be optimally used should. A consideration of pollution interference radiation is caused by the known smoke detectors do not take place.

Aus DE-A-42 42 673 ist ein optischer Rauchmelder bekanntgeworden, bei dem zur Detektierung von Rauch mindestens ein lichtempfindlicher Empfänger die Nutzstreustrahlung mißt, die von einem Raumelement ausgeht, das im Kreuzungsbereich des gerichteten Gesichtsfelds des lichtempfindlichen Empfängers und des gerichteten Strahls einer Lichtquelle liegt. Zur Detektierung der durch Verschmutzung der Meßkammer hervorgerufenen Störstreustrahlung erfaßt ein zweiter lichtempfindlicher Empfänger die Strahlung, die von der Meßkammerwand ausgeht, wobei die Reflexionsstrahlung eines beleuchteten Flächenelements gemessen wird. Das Gesichtsfeld des zweiten lichtempfindlichen Empfängers umfaßt jedoch auch andere Bereiche der Meßkammerwand.An optical smoke detector has become known from DE-A-42 42 673, at least for the detection of smoke a light-sensitive receiver the useful scatter radiation measures that starts from a spatial element that is in the intersection area the directional field of view of the photosensitive Receiver and the directed beam of a light source lies. To detect the pollution of the Interference-stray radiation caused by the measuring chamber detects a second photosensitive receiver the radiation that starts from the measuring chamber wall, the reflection radiation of an illuminated surface element is measured. The Field of view of the second light-sensitive receiver however also other areas of the measuring chamber wall.

Die Schaltung des bekannten Rauchmelders ist so ausgelegt, daß die von dem weiteren lichtempfindlichen Element gemessene Reflexionsstrahlung das vom ersten lichtempfindlichen Element gemessene Streulicht kompensiert, um dem Einfluß der Verschmutzung der Meßkammerwandung auf die Rauchmessung zu begegnen.The circuit of the well-known smoke detector is designed that the measured by the further photosensitive element Reflection radiation that from the first photosensitive Element measured stray light compensates for the influence the contamination of the measuring chamber wall on the smoke measurement to meet.

Aus US-A-4 180 742 ist bei einem Rauchmelder bekannt, eine Kompensations-Fotozelle vorzusehen, die über eine Lichtfalle und einen Lichtleiter von der Lichtquelle bestrahlt wird. Eine Auswerteschaltung gibt ein Steuersignal ab, wenn aufgrund einer Verschmutzung der Meßkammer das Ausgangssignal des zweiten lichtempfindlichen Empfängers einen vorgegebenen Wert erreicht.From US-A-4 180 742 a smoke detector is known, one Compensation photocell provided over a light trap and irradiated an optical fiber from the light source becomes. An evaluation circuit emits a control signal if the output signal due to contamination of the measuring chamber of the second photosensitive receiver reached a predetermined value.

Aus der EP-A-0 076 338 ist schließlich bekannt, bei mehreren Lichtquellen zu Meßzwecken diese sequentiell zu betreiben. Dies zum Beispiel bei einer Anordnung derart, daß die im gerichteten Gesichtsfeld eines zweiten lichtempfindlichen Empfängers liegende Fläche der Meßkammer von einer Lichtquelle bestrahlt wird.Finally, EP-A-0 076 338 discloses several To operate light sources sequentially for measurement purposes. This is the case, for example, with an arrangement such that those in the directional field of view of a second photosensitive Surface of the measuring chamber lying on the receiver Light source is irradiated.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betrieb eines optischen Rauchmelders anzugeben, das mit sehr geringem Aufwand sicher verhindert, daß die durch Verschmutzung der Meßkammer verursachte Streustrahlung zu einem Fehlalarm führt.The invention is based on the object Method for operating an optical smoke detector specify that with very little effort certainly prevents that from pollution scattered radiation into one caused by the measuring chamber False alarm.

Bei einem Rauchmelder der eingangs genannten Art wird diese Aufgabe erfindungsgemäß durch die Merkmale der Patentansprüche 1 und 2 gelöst.With a smoke detector of the type mentioned This type is achieved according to the invention the features of claims 1 and 2 solved.

Bei der Erfindung wurde erkannt, daß es weitaus wirksamer ist, die Verschmutzung der Kammer, die sich in Form von Staubablagerungen bemerkbar macht, unmittelbar zu messen. Dies geschieht in der Weise, daß in der Meßkammer entweder ein zweiter lichtempfindlicher Empfänger vorgesehen wird, dessen gerichtetes Gesichtsfeld auf eine Fläche der Meßkammer gerichtet ist, die von der Lichtquelle bestrahlt wird oder zwei Lichtquellen vorgesehen sind, von denen eine eine Fläche der Meßkammer bestrahlt, die im Gesichtsfeld des einen lichtempfindlichen Empfängers liegt. Auf diese Weise wird die Streuung des Lichtes an einem Flächenelement der Meßkammerwand unmittelbar gemessen, wobei unterstellt werden kann, daß die Intensität dieses Streulichts zu Beginn bei schwarzer Kammerwand sehr gering und mit zunehmender Staubablagerung größer wird.Die erfindungsgemäße Meßmethode führt daher zu einem relativ hohen für die Verschmutzung repräsentativen Signalpegel, der schaltungstechnisch mit einfachen Bauteilen verarbeitet werden kann. Die Zunahme des durch wachsende Staubablagerung sich einstellenden Signalpegels ist ein Maß für die damit einhergehende Zunahme der Störstreustrahlung. Erreicht dieser Pegel einen vorgegebenen Wert, kann ein Wartungssignal abgegeben werden, das zum Beispiel Veranlassung ist, den Rauchmelder abzubauen und zu reinigen. Das Wartungssignal kann auch dazu verwendet werden, die Empfindlichkeit des die Nutzstreustrahlung empfangenden lichtempfindlichen Empfängers entsprechend zu ändern. Dies kann nach einer Ausgestaltung der Erfindung dadurch geschehen, daß dem die Nutzstreustrahlung empfangenden lichtempfindlichen Empfänger eine im Schwellwert veränderbare Schwellwertstufe nachgeschaltet ist. Das Steuersignal wird auf den Steuereingang der Schwellwertstufe gegeben und erhöht den Schwellwert, wenn das Ausgangssignal des die Störstreustrahlung empfangenden lichtempfindlichen Empfängers einen vorgegebenen Wert erreicht. Die Ansprechschwelle für die Abgabe eines Alarmsignals wird daher erhöht, wenn ein gewisser Verschmutzungsgrad in der Meßkammer festgestellt wird. Dadurch kann die Ansprechempfindlichkeit beim Auftreten von Rauch annähernd gleich gehalten werden. Sie würde sonst mit zunehmender Verschmutzung ansteigen, so daß zunehmend weniger Rauch erforderlich ist, um ein Alarmsignal zu erzeugen. Es versteht sich, daß eine Anpassung der Ansprechempfindlichkeit für die Raucherkennung auch in mehreren Stufen vorgenommen werden kann. Ferner ist es ohne weiteres möglich, unterschiedlich starke Verschmutzungsgrade zu erkennen und an eine entsprechende Empfangseinrichtung zu signalisieren. Schließlich kann das Wartungssignal dazu verwendet werden, die Alarmschaltung zu blockieren, um die Gefahr eines Fehlalarms aufgrund zu großer Störstreustrahlung zu vermeiden.In the invention, it was recognized that it was far more effective is the pollution of the chamber, which is noticeable in the form of dust deposits makes to measure immediately. this happens in such a way that either a second light-sensitive receiver provided whose directional field of vision is on a surface the measuring chamber is directed by the Light source is irradiated or two light sources are provided, one of which is a surface of the Irradiated measuring chamber in the field of view of one photosensitive receiver. To this The scattering of light on one becomes Area element of the measuring chamber wall immediately measured, it can be assumed that the Intensity of this scattered light at the beginning with black ones Chamber wall very small and with increasing Dust deposition becomes larger Measurement method therefore leads to a relatively high one signal level representative of pollution, the circuitry with simple components can be processed. The increase in due to growing dust deposits Signal level is a measure of the associated Increase in interference radiation. Reached this level a predetermined value, a Maintenance signal are given, for example The reason is to dismantle the smoke detector and clean. The maintenance signal can also used to adjust the sensitivity of the the light-sensitive receiving the stray radiation To change the recipient accordingly. This can according to an embodiment of the invention happen that the useful scattered radiation receiving photosensitive receiver threshold level changeable in the threshold value is connected downstream. The control signal is on the Control input of the threshold value given and increases the threshold when the output signal of the light-sensitive receiving the interference scatter radiation A given recipient Value reached. The response threshold for the submission an alarm signal is therefore increased when a certain degree of contamination in the measuring chamber is detected. This can increase the responsiveness approximately when smoke occurs be kept the same. Otherwise, it would increase Pollution increase so that increasing less smoke is required to get one Generate alarm signal. It is understood that an adjustment of the responsiveness for smoke detection is also carried out in several stages can be. Furthermore, it is straightforward possible, different degrees of pollution to recognize and to a corresponding To signal the receiving device. Finally the maintenance signal can be used to block the alarm circuit to the danger a false alarm due to excessive interference radiation to avoid.

Ein besonderer Vorteil der Erfindung liegt auch darin, daß die Berücksichtigung oder Kompensation der Störstreustrahlung auch dann erfolgen kann, wenn sich Rauch in der Meßkammer befindet. Befindet sich in der Meßkammer Rauch unterhalb der Alarmschwelle, bewirkt er, daß in der Prüfphase weniger Reflexionsstrahlung von der bestrahlten Wandfläche auf den die Streustrahlung empfangenden Empfänger fällt. Diese wird jedoch annähernd ersetzt durch die Reflexion an Rauchpartikeln im Strahlungsbündel. Daher bleibt bei einem konstanten Verschmutzungsgrad die Intensität der auf den optischen Empfänger auftreffenden Störstreustrahlung bei relativ geringer Rauchmenge annähernd gleich.A particular advantage of the invention also lies in that consideration or compensation interference radiation can also occur if there is smoke in the measuring chamber. Located smoke in the measuring chamber below the Alarm threshold, it causes that in the test phase less reflection radiation from the irradiated Wall surface on the one receiving the scattered radiation Recipient falls. However, this becomes approximate replaced by the reflection on smoke particles in the Radiation beam. Therefore stay at a constant Degree of pollution the intensity of the on the optical receiver stray interference radiation approximately with a relatively small amount of smoke equal.

Es versteht sich, daß sowohl eine getrennte Lichtquelle als auch ein getrennter lichtempfindlicher Empfänger vorgesehen werden können, um die Reflexion eines Flächenbereichs der Meßkammerwand zu messen. Der Aufwand hierfür ist naturgemäß größer als bei Verwendung nur einer zusätzlichen Lichtquelle bzw. nur eines zusätzlichen lichtempfindlichen Empfängers allein. Außerdem ist dafür zu sorgen, daß die Strahlung für den zusätzlichen lichtempfindlichen Empfänger nicht auf den eigentlichen Nutzempfänger trifft und der Nutzempfänger seinerseits auch keine Streustrahlung von der zusätzlich beleuchteten Kammerwand erhält. Die letztgenannte Forderung ist nicht so wesentlich, weil durch entsprechende impulsartige Ansteuerung die beiden optischen Meßstrecken nur wahlweise in den Betriebszustand geschaltet werden können.It is understood that both are separate Light source as well as a separate photosensitive Receiver can be provided to the reflection of a surface area of the measuring chamber wall to eat. The effort for this is natural larger than when using only one additional Light source or only one additional photosensitive receiver alone. Besides, is to ensure that the radiation for the additional photosensitive receiver not on the the actual beneficiary meets and the beneficiary in turn also no scatter radiation from the additionally illuminated chamber wall. The latter requirement is not so essential because by appropriate pulse-like control the two optical measuring sections are only optional be switched to the operating state can.

Vorteilhafte Ausgestaltungen der Erfindung sind in Unteransprüchen angegeben.Advantageous embodiments of the invention are specified in subclaims.

Die Erfindung wird nachfolgend anhand von Zeichnungen näher beschrieben.

Fig. 1
zeigt eine Draufsicht auf die optische Anordnung eines Rauchmelders nach der Erfindung.
Fig. 2
zeigt einen Schnitt durch den schematisch dargestellten Rauchmelder nach Fig. 1 entlang der Linie 2-2.
Fig. 3
zeigt eine Draufsicht auf die optische Anordnung einer anderen Ausführungsform eines Rauchmelders nach der Erfindung.
Fig. 4
zeigt einen Schnitt durch den schematisch dargestellten Rauchmelder nach Fig. 3 entlang der Linie 4-4.
Fig. 5
zeigt ein Blockschaltbild einer Schaltungsanordnung zum Betrieb des Rauchmelders nach den Figuren 1 und 2.
Fig. 6
zeigt ein Blockschaltbild einer alternativen Ausführung eines Rauchmelders nach der Erfindung.
Fig. 7
zeigt Kurven und Impulsdiagramme zum Betrieb des optischen Rauchmelders nach den Figuren 1 und 2.
The invention is described below with reference to drawings.
Fig. 1
shows a plan view of the optical arrangement of a smoke detector according to the invention.
Fig. 2
shows a section through the schematically illustrated smoke detector of FIG. 1 along the line 2-2.
Fig. 3
shows a plan view of the optical arrangement of another embodiment of a smoke detector according to the invention.
Fig. 4
shows a section through the schematically illustrated smoke detector of FIG. 3 along the line 4-4.
Fig. 5
shows a block diagram of a circuit arrangement for operating the smoke detector according to Figures 1 and 2.
Fig. 6
shows a block diagram of an alternative embodiment of a smoke detector according to the invention.
Fig. 7
shows curves and pulse diagrams for the operation of the optical smoke detector according to Figures 1 and 2.

Die optische Anordnung des gezeigten Rauchmelders weist einen optischen Sender 10 auf, einen ersten optischen Empfänger 11 und einen zweiten optischen Empfänger 12. Der optische Sender 10 weist eine lichtemittierende Diode 13 (LED) auf, der eine Sammellinse 14 vorgeschaltet ist. Der optische Empfänger 11 besitzt ein Fotoelement 15, dem eine Sammellinse 16 vorgeordnet ist. Der zweite optische Empfänger 12 besitzt ein Fotoelement 17, dem eine Sammellinse 18 vorgeordnet ist. Optischer Sender 10 und optische Empfänger 11, 12 sind versenkt in Kanälen oder Bohrungen angeordnet, wie für den Sender 10 bzw. den Empfänger 11 bei 19 bzw. 20 dargestellt. Der optische Sender 10 weist aufgrund der Linse 14 eine gerichtete Strahlung auf, die mit 21 bezeichnet ist. Aufgrund der Linse 16 weist das Fotoelement 15 ein gerichtetes Gesichtsfeld auf, das mit 22 bezeichnet ist. Der optische Empfänger 12 besitzt ebenfalls ein gerichtetes Gesichtsfeld, das mit 23 bezeichnet ist.The optical arrangement of the smoke detector shown has an optical transmitter 10, one first optical receiver 11 and one second optical receiver 12. The optical Transmitter 10 has a light-emitting diode 13 (LED) on, which upstream of a converging lens 14 is. The optical receiver 11 has a photo element 15, which is preceded by a converging lens 16 is. The second optical receiver 12 has one Photo element 17, which is preceded by a converging lens 18 is. Optical transmitter 10 and optical receiver 11, 12 are sunk in channels or bores arranged as for the transmitter 10 or the receiver 11 at 19 and 20 respectively. Of the optical transmitter 10 has due to the lens 14 a directed radiation, designated by 21 is. Due to the lens 16, the photo element 15 a directed field of view, which with 22 is designated. The optical receiver 12 has also a directional field of vision, which at 23 is designated.

Die beschriebene optische Anordnung befindet sich innerhalb eines zylindrischen Gehäuses 30, dessen oberer Abschluß in Fig. 2 fortgelassen ist. Zu ihm gehört eine elektrische Schaltungsanordnung sowie eine Befestigungsvorrichtung zur Anbringung des Rauchmelders zum Beispiel an der Decke eines Gebäuderaums. Nahe der unteren Endwand des Gehäuses 30 sind in Umfangsrichtung beabstandet Schlitze 31 geformt, von denen sich nach innen gerichtete winklige Abschnitte 32, 33 erstrecken. Die winkligen Abschnitte 32, 33 sollen verhindern, daß zu viel Außenlicht in die im Gehäuse 30 ausgebildete Meßkammer 35 eintritt. Sämtliche Teile in der Meßkammer, insbesondere ihre Wandung sind schwarz, um eine maximale Absorption zu gewährleisten.The optical arrangement described is located within a cylindrical housing 30, the upper end of which is omitted in FIG. 2. An electrical circuit arrangement belongs to it and a fastening device for attachment of the smoke detector, for example on the Ceiling of a building room. Near the bottom End wall of the housing 30 are circumferential spaced slots 31 formed, of which inward angled sections 32, 33 extend. The angled sections 32, 33 are said to prevent too much outside light from entering the Housing 30 formed measuring chamber 35 occurs. All parts in the measuring chamber, in particular their walls are black to a maximum To ensure absorption.

Wie aus der Darstellung nach Fig. 2 hervorgeht, sind die Achsen des optischen Senders 10 und des optischen Empfängers 11 so angeordnet, daß die Strahlung 21 des optischen Senders 10 das Gesichtsfeld 22 des optischen Empfängers 11 kreuzt, jedoch nicht direkt auf die Linse 16 fällt. Auf den optischen Empfänger 11 fällt daher im Idealfall nur die Streustrahlung, die durch in die Meßkammer 35 eingedrungenen Rauch verursacht wird in dem Volumen, innerhalb dem sich die Strahlung 21 und das Gesichtsfeld 22 kreuzen. Eine derartige optische Anordnung zur Rauchmessung ist indessen Stand der Technik.As can be seen from the illustration in FIG. 2, are the axes of the optical transmitter 10 and the optical receiver 11 arranged so that the radiation 21 of the optical transmitter 10th the field of view 22 of the optical receiver 11 crosses, but does not fall directly on the lens 16. On the optical receiver 11 therefore falls in the ideal case only the scattered radiation that enters the measuring chamber 35 intruded smoke is caused in the volume within which the radiation 21 and cross the field of view 22. Such optical arrangement for smoke measurement is however State of the art.

Die Strahlung 21 des optischen Senders 10 trifft auf den schräg nach innen weisenden Abschnitt 32 der Gehäusewand, und zwar annähernd im rechten Winkel. Der bestrahlte Bereich ist mit 36 bezeichnet. Das Gesichtsfeld 22 des optischen Empfängers 12 ist nun derart ausgerichtet, daß es den vom optischen Sender 10 bestrahlten Bereich 36 erfaßt, und zwar ebenfalls annähernd senkrecht zum Abschnitt 32. Auf den optischen Empfänger 12 fällt daher ein Teil des von der bestrahlten Fläche reflektierten Lichts. Da, wie erwähnt, die Meßkammer 35 von schwarzen Begrenzungsflächen gebildet ist, ergibt sich im Neuzustand des Rauchmelders eine Reflexion von nahezu Null. Dies ändert sich jedoch, wenn sich Staubpartikel im Inneren der Meßkammer 35 absetzen. Je mehr Staub sich im Bereich 36 befindet, um so mehr erfolgt eine Reflexion des vom Sender 10 kommenden Lichtes. Der optische Empfänger 12 mißt die Intensität der reflektierten Strahlung und gibt ein entsprechendes Ausgangssignal ab. Es ist mithin repräsentativ für den Verschmutzungsgrad der Meßkammer durch eindringenden Staub und damit auch für die Streustrahlung in der Meßkammer 35 allgemein. Es kann nicht vermieden werden, daß Außenlicht über die Schlitze in die Meßkammer 35 dringt. Außerdem erzeugt die Strahlung 21 des optischen Senders 10 in der Kammer 35 eine Streustrahlung. Beide Streustrahlungsanteile können eine Höhe annehmen, daß der optische Empfänger 11 anspricht, obwohl eine Nutzstreustrahlung aufgrund des Eintretens von Rauch nicht vorliegt. Selbst wenn die Störstreustrahlung einen derartigen Wert noch nicht erreicht, führt sie zu einer ungewünschten Verfälschung der durch die Nutzstreustrahlung herbeigeführten Meßergebnisse.The radiation 21 of the optical transmitter 10 meets the sloping inward section 32 of the housing wall, approximately at a right angle. The irradiated area is with 36 designated. The visual field 22 of the optical Receiver 12 is now aligned so that it the area irradiated by the optical transmitter 10 36 detected, and also approximately perpendicular to section 32. On the optical receiver 12 therefore falls part of that of the irradiated Area of reflected light. Since, as mentioned, the Measuring chamber 35 of black boundary surfaces is formed in the new state of the Smoke detector has a reflection of almost zero. However, this changes when there are dust particles settle inside the measuring chamber 35. The more Dust is in area 36, all the more so there is a reflection of the coming from the transmitter 10 Light. The optical receiver 12 measures the Intensity of reflected radiation and inputs corresponding output signal. It is therefore representative of the degree of pollution of the Measuring chamber through penetrating dust and thus also for the scattered radiation in the measuring chamber 35 general. It cannot be avoided that Outside light through the slits into the measuring chamber 35 penetrates. In addition, the radiation 21 generates optical transmitter 10 in the chamber 35 a Scattered radiation. Both stray radiation components can assume a height that the optical receiver 11 responds, although useful scattered radiation due to the occurrence of smoke. Even if the interference radiation is such If the value has not yet been reached, it leads to a unwanted falsification of the radiation from the use induced measurement results.

Die optische Anordnung nach den Figuren 3 und 4 weist zwei optische Sender 51, 52 auf sowie einen optischen Empfänger 50. Die optischen Sender weisen eine lichtemittierende Diode 65 bzw. 66 auf, denen eine Sammellinse 67, 68 vorgeschaltet ist. Der optische Empfänger 50 besitzt ein Fotoelement 70, dem eine Sammellinse 71 vorgeordnet ist. Die optischen Sender 51, 52 und der optische Empfänger 50 sind in Kanälen oder Bohrungen in Gehäuse 30 versenkt angeordnet, wie für Sender 51 und Empfänger 50 bei 72 bzw. 73 dargestellt. Der optische Sender 51 weist aufgrund der Linse 67 eine gerichtete Strahlung auf, die mit 76 bezeichnet ist. Aufgrund der Linse 71 weist das Fotoelement 70 ein gerichtetes Gesichtsfeld auf, das mit 77 bezeichnet ist. Aufgrund der Linse 68 weist der Sender 52 einen gerichteten Strahl auf, der mit 78 bezeichnet ist. Wie insbesondere aus Fig. 4 hervorgeht, sind die Achsen des optischen Senders 51 und des optischen Empfängers 50 so angeordnet, daß die Strahlung 76 das Gesichtsfeld 77 des optischen Empfängers 11 kreuzt, mithin nicht auf die Linse 71 fällt. Auf den optischen Empfänger 50 fällt daher im Idealfall nur die Streustrahlung, die durch in die Meßkammer 35 eingedrungenen Rauch verursacht wird in dem Volumen, innerhalb dem sich die Strahlung 76 und das Gesichtsfeld 77 kreuzen. Eine derartige optische Anordnung zur Rauchmessung ist, wie bereits erwähnt, bekannt.The optical arrangement according to FIGS. 3 and 4 has two optical transmitters 51, 52 and an optical receiver 50. The optical transmitters have a light-emitting diode 65 and 66 on which a converging lens 67, 68 is connected upstream is. The optical receiver 50 has a photo element 70, which is preceded by a converging lens 71 is. The optical transmitter 51, 52 and the optical Receivers 50 are in channels or holes in Housing 30 sunk, as for transmitters 51 and receiver 50 at 72 and 73 respectively. The optical transmitter 51 faces due to the lens 67 a directed radiation, designated by 76 is. Because of the lens 71, the photo element 70 a directed field of view that is designated 77. Because of the lens 68 points the transmitter 52 has a directed beam, which with 78 is designated. As in particular from FIG. 4 are the axes of the optical transmitter 51 and the optical receiver 50 arranged so that the radiation 76 the field of view 77 of the optical receiver 11 crosses, therefore not on the lens 71 falls. On the optical receiver 50 ideally, therefore, only the scattered radiation falls by penetrating into the measuring chamber 35 Smoke is caused in the volume inside which the radiation 76 and the visual field 77 cross. Such an optical arrangement for As already mentioned, smoke measurement is known.

Die Strahlung des optischen Senders 52 trifft auf den schräg nach innen weisenden Abschnitt 32 der Gehäusewand, und zwar annähernd im rechten Winkel. Der bestrahlte Bereich ist mit 80 bezeichnet. Das Gesichtsfeld des Empfängers 50 ist außerdem so ausgerichtet, daß es den vom optischen Sender 52 bestrahlten Bereich 80 erfaßt, und zwar ebenfalls annähernd senkrecht zum Abschnitt 32. Auf den optischen Empfänger 50 fällt daher ein Teil des von der bestrahlten Fläche reflektierten Lichts. Da, wie erwähnt, die Meßkammer 35 von schwarzen Begrenzungsflächen gebildet ist, ergibt sich im Neuzustand des Rauchmelders eine Reflexion von nahezu Null. Dies ändert sich jedoch, wenn sich Staubpartikel im Inneren der Meßkammer 35 absetzen. Je mehr Staub sich im Bereich 36 befindet, um so mehr erfolgt eine Reflexion des vom Sender 52 kommenden Lichts. Der optische Empfänger 50 mißt die Intensität der reflektierten Strahlung und gibt ein entsprechendes Ausgangssignal ab. Es ist mithin repräsentativ für den Verschmutzungsgrad der Meßkammer durch eindringenden Staub und damit auch für die Streustrahlung in der Meßkammer 35 allgemein. Es ist jedoch zu erwähnen, und dies wird anhand weiterer Figuren weiter unten noch erläutert, daß die Lichtsender 51, 52 abwechselnd betrieben werden, wobei die Störstreustrahlung, die durch Verschmutzung der Meßkammer hervorgerufen wird, nur im Betrieb der Lichtquelle 52 gemessen wird.The radiation from the optical transmitter 52 hits on the obliquely inward section 32 the housing wall, approximately in the right Angle. The irradiated area is labeled 80. The field of view of the receiver 50 is also aligned so that it from the optical Transmitter 52 detects irradiated area 80, namely also approximately perpendicular to section 32. The optical receiver 50 is therefore incident Part of the reflected from the irradiated area Light. Since, as mentioned, the measuring chamber 35 of black boundary surfaces is formed a reflection when the smoke detector is new of almost zero. However, this changes if there are dust particles inside the measuring chamber 35 discontinue. The more dust there is in the area 36 is located, the more there is a reflection of the light coming from the transmitter 52. The optical one Receiver 50 measures the intensity of the reflected Radiation and gives a corresponding output signal from. It is therefore representative of the degree of pollution the measuring chamber by penetrating Dust and therefore also for scattered radiation in the measuring chamber 35 in general. However, it is to mention, and this is illustrated by other figures explained further below that the light transmitter 51, 52 are operated alternately, the Interference radiation caused by pollution of the Measurement chamber is caused only in the operation of the Light source 52 is measured.

In Fig. 5 ist eine Schaltungsanordnung zum Betrieb der optischen Anordnung des Rauchmelders nach den Figuren 1 und 2 dargestellt. Die optischen Empfänger 11 und 12 sind über einen elektronischen Umschalter 40 mit einer Verstärker- und Steuerschaltng 41 verbunden. Die Schaltung 41 ist über ein UND-Glied 42 mit einer Wartungserkennung 43 verbunden. Sie ist ferner mit dem optischen Sender 10 verbunden, der zum Beispiel im Infrarotbereich arbeitet. Die Schaltung 41 ist schließlich auch mit einem dekadischen Zähler 44 verbunden, der seinerseits mit dem Ausgang der Verstärker- und Steuerschaltung 41 verbunden ist. Der Ausgang des Zählers 44 liegt am Eingang eines UND-Glieds 45, dessen weiterer Eingang mit dem Ausgang der Schaltung 41 verbunden ist. Der Ausgang des UND-Glieds 45 ist mit dem elektronischen Umschalter 40 verbunden.Der Ausgang des Zählers 44 ist mit dem Eingang eines NAND-Glieds 46 verbunden, dessen Ausgang mit dem Eingang eines weiteren UND-Glieds 47 verbunden ist. Der weitere Eingang des UND-Glieds 47 ist mit einem Ausgang der Verstärker- und Steuerschaltung 41 verbunden. Der Ausgang des UND-Glieds 47 geht auf eine Alarmschaltung 48.Die gezeigte Schaltung arbeitet wie folgt.5 is a circuit arrangement for Operation of the optical arrangement of the smoke detector shown in Figures 1 and 2. The optical receivers 11 and 12 are over a electronic switch 40 with an amplifier and control circuit 41 connected. The circuit 41 is via an AND gate 42 with a maintenance detection 43 connected. It is also with the optical transmitter 10 connected, for example works in the infrared range. The circuit 41 is finally also with a decadal counter 44 connected, which in turn is connected to the exit of the Amplifier and control circuit 41 is connected. The output of counter 44 is at the input an AND gate 45, whose further input with is connected to the output of the circuit 41. Of the Output of the AND gate 45 is with the electronic Switch 40 connected. The output of the Counter 44 is connected to the input of a NAND gate 46 connected, the output of which Input of a further AND gate 47 connected is. The further input of the AND gate 47 is with an output of the amplifier and control circuit 41 connected. The exit of the AND gate 47 goes to an alarm circuit 48 Circuit works as follows.

Gesteuert durch die Verstärker- und Steuerschaltung 41 erzeugt der optische Sender 10 ein Impulslicht. Gleichzeitig mit der Auslösung des Licht-Sendeimpulses wird der optische Empfänger 11 aktiviert, d.h. empfangsbereit geschaltet. Tritt im Normalzustand des optischen Melders kein Nutzstreulicht im Strahlengang 21 des optischen Senders 10 auf, wird nach Beendigung des Sendeimpulses der optische Empfänger 11 inaktiviert. Erzeugt der optische Empfänger während eines Lichtsendeimpulses ein signifikantes Ausgangssignal, erzeugt die Verstärker- und Steuerschaltung 41 einen entsprechenden Impuls, der spontan den dekadischen Zähler 44 stoppt.Weiterlaufende Sendeimpulse von der Verstärker- und Steuerschaltung 41 können nun den Zählerstand nicht mehr verändern. Wird während der folgenden Sendeimpulse ebenfalls ein Rauchsignal erkannt, wird ein zweiter Aus-gang der Steuerschaltung 41 aktiv und erzeugt die UND-Bedingung für das UND-Glied 47. Die Alarmschaltung 48 wird daraufhin aktiviert. Die weitere UND-Bedingung für das UND-Glied 47 wird durch den Ausgang des NAND-Glieds 46 erzeugt, wenn vom Zähler 44 kein entsprechendes Ausgangssignal ausgegeben wird.Controlled by the amplifier and control circuit 41 generates the optical transmitter 10 Pulse light. Simultaneously with the triggering of the Light transmission pulse becomes the optical receiver 11 activated, i.e. switched ready to receive. Occurs in Normal state of the optical detector, no useful stray light in the beam path 21 of the optical transmitter 10 on, after the transmission pulse the optical receiver 11 is deactivated. Generated the optical receiver during a Light transmission pulse a significant output signal, generates the amplifier and control circuit 41 a corresponding impulse that spontaneously the decadic counter 44 stops. Continuing transmission pulses from the amplifier and control circuit 41 can no longer change the counter reading. Is used during the following transmission pulses If a smoke signal is also recognized, a second one is generated Output of the control circuit 41 active and generated the AND condition for the AND gate 47. The Alarm circuit 48 is then activated. The further one AND condition for the AND gate 47 becomes generated by the output of the NAND gate 46, if no corresponding output signal from counter 44 is issued.

Nach einer vorgegebenen Anzahl von zum Beispiel m Sendeimpulsen, die vom Zähler 44 gezählt wird, erzeugt der Zähler 44 ein Ausgangssignal, das über das UND-Glied 45 auf den elektronischen Schalter 40 gegeben wird, wenn die weiterer UND-Bedingung, daß ein Sendetakt erzeugt wurde, vorliegt. Der elektronische Schalter 40 schaltet nunmehr den zweiten optischen Empfänger 12 mit der Verstärker- und Sendeschaltung 41 zusammen, um eine Prüfphase einzuleiten.After a predetermined number of, for example m transmit pulses counted by the counter 44 the counter 44 generates an output signal, that via the AND gate 45 on the electronic Switch 40 is given if the further AND condition, that a send clock was generated. The electronic switch 40 now switches the second optical receiver 12 with the Amplifier and transmit circuit 41 together to initiate a test phase.

Wird von der Reflexion an der Kammerwand (siehe Figuren 1 und 2) ein vorgegebener Pegel nicht überschritten, schaltet der elektronische Schalter wieder in die ursprüngliche Stellung zurück in die Raucherkennungsphase. Es ist noch zu erwähnen, daß während der Prüfphase die Raucherkennung unterdrückt wird. Zu diesem Zweck dient das bereits erwähnte NAND-Glied 46, dessen Ausgangssignal umgeschaltet wird, wenn ein Zählerausgangssignal erzeugt wird. Dadurch kann kein Alarmsignal mehr über das UND-Glied 47 auf die Alarmschaltung 48 gegeben werden, auch wenn die Alarmbedingung vorliegt. Übersteigt indessen die von der Kammerwand reflektierte und auf den optischen Empfänger 12 auftretende Strahlung einen vorgegebenen Pegel, erzeugt der optische Empfänger 12 ein Ausgangssignal; daraufhin sendet die Verstärker- und Steuerschaltung 41 wiederum spontan ein Stoppsignal an den Zähler 44. Die Verriegelung für die Raucherkennung bleibt somit bestehen und die Verstärker- und Steuerschaltung ist weiter mit dem Empfänger 12 verbunden. Weiterlaufende Sendeimpulse von der Verstärker- und Steuerschaltung können den Zählerstand nicht mehr verändern. Trifft während der nächsten n Sendeimpulse ohne Unterbrechung ebenfalls auf den optischen Empfänger während des Lichtsendeimpulses ein entsprechend großes Streulicht auf, wird ein zweiter Ausgang an der Verstärker- und Steuerschaltung 41 aktiviert und liefert damit die notwendige UND-Bedingung an das UND-Glied 42. Der Ausgang des UND-Glieds 42 steuert die Wartungsschaltung 43 an. Sie kann beispielsweise dem Betrachter anzeigen, welchen Verschmutzungsgrad die Kammerwand erreicht hat. Eine entsprechende Anzeige in der angeschlossenen Überwachungszentrale kann optisch und/oder akustisch erfolgen. Außerdem ist denkbar (was jedoch nicht gezeigt ist), daß ein entsprechendes Ausgangssignal der Wartungsschaltung 43 auf die Verstärker- und Sendeschaltung 41 gegeben wird, um zum Beispiel die Ansprechempfindlichkeit beim Auftreten von Rauch nach Maßgabe der Verschmutzung zu verringern.Solange der Verschmutzungsgrad eine einwandfreie Raucherkennung zuläßt, arbeitet die gezeigte Schaltung im üblichen Zyklus weiter. Erreicht der Verschmutzungsgrad jedoch eine kritische Größe, so kann, um einen Fehlalarm zu vermeiden, auch eine weitere Rauchmessung unterdrückt werden. Es versteht sich, daß durch eine entsprechende Auslegung der Wartungsschaltung 43 auch verschieden starke Verschmutzungsgrade erkannt und angezeigt werden können.Is from the reflection on the chamber wall (see Figures 1 and 2) a predetermined level not exceeded, the electronic switches Switch back to the original position in the smoke detection phase. It is still closed mention that during the testing phase the smoke detection is suppressed. To this end serves the already mentioned NAND element 46, whose Output signal is switched when a counter output signal is produced. No one can Alarm signal more via the AND gate 47 to the Alarm circuit 48 can be given even if the alarm condition is present. Meanwhile exceeds the reflected from the chamber wall and on the optical receiver 12 radiation occurring predetermined level, the optical generates Receiver 12 an output signal; then sends the amplifier and control circuit 41 in turn spontaneously a stop signal to the counter 44. Die The lock for smoke detection remains exist and the amplifier and control circuit is further connected to the receiver 12. Continuing Transmit pulses from the amplifier and Control circuit can not count change more. Meets during the next n Transmit pulses also without interruption the optical receiver during the light transmission pulse a correspondingly large amount of stray light becomes a second output on the amplifier and Control circuit 41 activates and thus delivers the necessary AND condition to the AND gate 42. The output of the AND gate 42 controls the maintenance circuit 43 on. For example, you can Viewers show what degree of pollution has reached the chamber wall. A corresponding Display in the connected monitoring center can be done optically and / or acoustically. It is also conceivable (which, however, is not shown is) that a corresponding output signal of the Maintenance circuit 43 on the amplifier and transmitter circuit 41 is given, for example, the Responsiveness when smoke occurs to reduce according to pollution the degree of pollution a perfect Allows smoke detection, the one shown works Circuit continues in the usual cycle. Reached however, the degree of pollution is critical Size so as to avoid a false alarm also suppresses another smoke measurement will. It is understood that through a appropriate design of the maintenance circuit 43 also different degrees of pollution can be recognized and displayed.

Bei der Ausführungsform nach Fig. 6 ist nur ein einziger optischer Empfänger 50 vorgesehen. Ihm zugeordnet sind ein optischer Sender 51 für die Raucherkennung und ein optischer Sender 52 zur Bestimmung der Verschmutzung. Optischer Empfänger 50 und optischer Sender 51 arbeiten in der gleichen Weise zusammen wie die entsprechende optische Anordnung nach Fig. 5. Die gerichtete Strahlung des Senders 52 ist auf eine Fläche der Meßkammerwand gerichtet, die im Gesichtsfeld des optischen Empfängers 50 liegt. Die optischen Sender 51, 52 erhalten ihre Taktimpulse von der Verstärker- und Steuerschaltung 53, wobei diese über ein UND-Glied 54 am Eingang des optischen Senders 52 liegt. Zwischen der Schaltung 53 und dem optischen Sender 51 ist ein UND-Glied 55 angeordnet. Die Taktimpulse gelangen auch auf einen dekadischen Zähler 56, dessen Ausgang den zweiten Eingang des UND-Glieds 54 bildet. Am Ausgang des Zählers 56 ist ein NAND-Glied 57 geschaltet, dessen Ausgang mit dem zweiten Eingang des UND-Glieds 55 und einem Eingang des UND-Glieds 58 verbunden ist. Ein Ausgang der Verstärker- und Steuerschaltung 53 ist mit einem UND-Glied 59 verbunden, dessen zweiter Eingang mit dem Ausgang des Zählers 56 verbunden ist. Am Ausgang des UND-Glieds 59 ist eine Wartungsschaltung 60 angeschlossen. Am Ausgang des UND-Glieds 58 ist eine Alarmschaltung 51 angeschlossen.6 is only one only optical receiver 50 is provided. Him are assigned an optical transmitter 51 for the Smoke detection and an optical transmitter 52 for Determination of pollution. Optical receiver 50 and optical transmitter 51 work in the the same way together as the corresponding one optical arrangement according to Fig. 5. The directed Radiation from transmitter 52 is on an area of the Measuring chamber wall directed in the visual field of the optical receiver 50. The optical Transmitters 51, 52 receive their clock pulses from the Amplifier and control circuit 53, these via an AND gate 54 at the input of the optical Sender 52 lies. Between the circuit 53 and the optical transmitter 51 is an AND gate 55 arranged. The clock pulses also arrive a decadal counter 56, the output of which forms the second input of the AND gate 54. At the The output of counter 56 is a NAND gate 57 switched, its output with the second input of the AND gate 55 and an input of the AND gate 58 is connected. An exit from Amplifier and control circuit 53 is with one AND gate 59 connected, the second input is connected to the output of counter 56. At the output of the AND gate 59 is a maintenance circuit 60 connected. At the exit of the AND gate 58 is an alarm circuit 51 connected.

Während der Raucherkennungsphase wird der optische Sender 51 impulsweise angesteuert, wobei der Ausgang des NAND-Glieds 57 die zweite UND-Bedingung im UND-Glied 55 erzeugt. Während der Raucherkennungsphase ist der Sender 52 inaktiviert, da der Zähler 56 kein entsprechendes Ausgangssignal erzeugt. Übersteigt das Ausgangssignal des optischen Empfängers 50 einen vorgegebenen Wert, wird, wie bereits zu Fig. 5 beschrieben, der Zähler 56 spontan von der Verstärker- und Steuerschaltung gestoppt, um die notwendigen elektronischen Verriegelungen herbeizuführen und um erst nach einer vorbestimmten Anzahl von Meßimpulsen die Alarmschaltung 61 über das UND-Glied 58 ausgelöst, indem es von der Verstärker- und Steuerschaltung 53 angesteuert wird. Die zweite UND-Bedingung wird über den Ausgang des NAND-Glieds 57 erzeugt.During the smoke detection phase, the optical transmitter 51 driven in pulses, wherein the output of the NAND gate 57 is the second AND condition generated in the AND gate 55. While the smoke detection phase is the transmitter 52 disabled since counter 56 does not have a corresponding one Output signal generated. Exceeds the output signal of the optical receiver 50 a predetermined Value, as already described for FIG. 5, the counter 56 spontaneously from the amplifier and control circuit stopped to the necessary bring about electronic interlocks and only after a predetermined number of Measuring pulses, the alarm circuit 61 on the AND gate 58 triggered by it from the amplifier and control circuit 53 is driven. The second AND condition is over the output of the NAND gate 57 is generated.

Wird die im Zähler voreingestellte Anzahl von Sendeimpulsen erreicht, erzeugt der Zähler 56 ein vorgegebenes Ausgangssignal, wodurch über das NAND-Glied 57 die UND-Glieder 55 und 58 gesperrt werden. Nunmehr wird vom optischen Sender 52 ein Lichtimpuls ausgesandt,während der optische Empfänger 50 synchron aktiviert ist. Übersteigt das Ausgangssignal des optischen Empfängers 50 einen vorgegebenen Pegel, wird zunächst eine elektronische Verriegelung herbeigeführt, um nach weiterem Anstehen eines vorgegebenen Pegels während einer Anzahl von n Meßimpulsen über das UND-Glied 59 die Wartungsschaltung 60 angesteuert. Die zweite Bedingung des UND-Glieds 59 ist durch das Ausgangssignal des Zählers 56 erfüllt. Die Verarbeitung des in die Wartungsschaltung 60 eingegebenen Signals kann in der Weise erfolgen, wie sie in Verbindung mit Fig. 5 beschrieben wurde. Die zuletzt beschriebene Prüfphase dauert ebenfalls nur eine vorgegebene Anzahl von Sendeimpulsen, nach der der Zähler 56 wieder zurückgestellt wird. Raucherkennungsphase und Prüfphase werden dann erneut alternierend in der oben beschriebenen Weise in Gang gesetzt.If the number of When transmission pulses are reached, counter 56 generates an predetermined output signal, which means that NAND gate 57 and AND gates 55 and 58 blocked will. Now the optical transmitter 52 a light pulse is emitted during the optical receiver 50 is activated synchronously. Exceeds the output signal of the optical receiver 50 a predetermined level, will first brought about an electronic lock to after further pending a predetermined level during a number of n measuring pulses the maintenance circuit 60 via the AND gate 59 controlled. The second condition of the AND gate 59 is by the output signal of the counter 56 met. The processing of the in the maintenance circuit 60 input signal can be in the way they occur in connection with Fig. 5 has been described. The last one described The test phase also only takes a predefined one Number of transmission pulses after which the counter 56 is put back again. Smoke detection phase and test phase are then alternately in started in the manner described above.

In Fig. 7 ist eine erste Zeitachse 100 gezeigt, welche analoge Größen für den Zustand der Meßkammer, beispielsweise der Meßkammer 35 nach den Figuren 1 und 2 wiedergibt, und zwar für den Rauch 101, der mit zunehmender Tendenz eingezeichnet ist, für die Streustrahlung aufgrund von Verschmutzung, welche mit 104 angegeben ist sowie für das die Zunahme der Streustrahlung 104' und die nachgeführte Ansprechschwelle 102'. Auf der Zeitachse 105 sind Lichtimpulse 106 gezeigt, die zum Beispiel vom optischen Sender 10 nach Fig. 5 abgegeben werden. Ferner sind Prüflichtimpulse 107 gezeigt, die etwas breiter sind als die Lichtimpulse 106 zur Rauchmessung. Sie werden ebenfalls vom optischen Sender 10 nach Fig. 5 abgegeben, und zwar entsprechend der Aufzeichnung in Fig. 7 nach jeweils vier Impulsen 106. Auf der Zeitachse 110 sind Ausgangsimpulse 111 zum Beispiel des optischen Empfängers 11 gezeigt sowie Ausgangsimpulse 108 des optischen Empfängers 12. Sie sind die Reaktion auf die Lichtimpulse 106 bzw. 107. Man erkennt, daß bei noch unverschmutzter Meßkammer (Neuzustand) das Ausgangssignal des optischen Empfängers 12, das der Reflexion des Lichtimpulses an einer Fläche der Meßkammerwand entspricht, verhältnismäßig niedrig ist, jedoch bereits einen höheren Pegel hat als das Ausgangssignal des optischen Empfängers 11. Mit der Rauchzunahme in der Meßkammer werden auch die Ausgangsimpulse 111 des optischen Empfängers 11 größer. Ist die Ansprechschwelle 102 erreicht, sendet der optische Sender 10, gesteuert durch die Verstärker- und Steuerschaltung 41, eine Lichtimpulsfolge von höherer Frequenz ab. Dies ist bei 106a zu erkennen. Entsprechend wird eine Impulsfolge 111a am Ausgang des optischen Empfängers 11 erzeugt. Indem über eine gewisse Zeit eine schnellere Meßimpulsfolge erzeugt wird, soll verifiziert werden, ob tatsächlich Rauch in der Meßkammer ist.7 shows a first time axis 100, which analog variables for the state of the measuring chamber, for example after the measuring chamber 35 Figures 1 and 2 reproduces, namely for the Rauch 101, plotted with increasing tendency is for the scattered radiation due to Pollution, which is indicated with 104 as well for which the increase in scattered radiation 104 ' and the tracking threshold 102 '. On the light axis 106 is shown on the time axis 105, which, for example, from the optical transmitter 10 Fig. 5 are delivered. There are also test light pulses 107 which are slightly wider than that Light pulses 106 for smoke measurement. you will be likewise from the optical transmitter 10 according to FIG. 5 delivered, according to the record in Fig. 7 after every four pulses 106. Auf the time axis 110 are output pulses 111 for Example of the optical receiver 11 shown as well Output pulses 108 from the optical receiver 12. They are the reaction to the light impulses 106 and 107. It can be seen that with still unpolluted Measuring chamber (new condition) the output signal of the optical receiver 12, which the Reflection of the light pulse on a surface of the Corresponds to the measuring chamber wall, relatively low but is already at a higher level than the output signal of the optical receiver 11. With the increase in smoke in the measuring chamber also the output pulses 111 of the optical Receiver 11 larger. Is the response threshold 102 reached, the optical transmitter 10 transmits, controlled through the amplifier and control circuit 41, a light pulse sequence of higher frequency. This can be seen at 106a. Accordingly a pulse train 111a at the output of the optical Receiver 11 generated. By about a certain Time a faster measuring pulse sequence is generated, should be verified whether smoke is actually in the Measuring chamber is.

Mit zunehmender Verschmutzung (Kurve 104) werden sehr große Ausgangsimpulse am optischen Empfänger 12 erhalten, wie aus der Zeichnung ersichtlich ist. Übersteigt die Verschmutzung in der Meßkammer einen Schwellwert, wie in der analogen Darstellung bei 112 und bei der diskreten Darstellung der Ausgangsimpulse der optischen Empfänger bei 113 gezeigt ist, kann, wie schon erläutert,ein Wartungssignal von der Stufe 43 nach Fig. 5 erzeugt werden. Alternativ kann jedoch auch der Schwellwert 102 in der Verstärker- und Steuerschaltung nachgeführt werden. Dies ist in der strichpunktierten Kurve über der Zeitachse 100 in der Stufe 114 dargestellt. Es ist daher ein höheres Ausgangssignal für den optischen Empfänger 11 erforderlich, damit ein Alarmsignal über die Verstärker- und Steuerschaltung 41 erzeugt wird. Wie erwähnt, kann der Schwellwert in der Verstärker- und Steuerschaltung 41 eingestellt werden. Alternativ ist auch möglich, die Strahlungsintensität des optischen Senders 10 zu reduzieren. Hierdurch wird ebenfalls die Ansprechempfindlichkeit herabgesetzt. Es versteht sich, daß dadurch auch der Schwellwert für die Impulse 108, die den Verschmutzungsgrad repräsentieren, herabgesetzt werden muß, wie bei 113' gezeigt.With increasing pollution (curve 104) very large output pulses on the optical Receivers 12 received as from the drawing can be seen. If the pollution in the Measuring chamber a threshold value, as in the analog Representation at 112 and at the discrete Representation of the output pulses of the optical Receiver shown at 113 can, like already explains a maintenance signal from stage 43 after Fig. 5 are generated. Alternatively, however, can also the threshold 102 in the amplifier and control circuit be tracked. This is in the dash-dotted curve over the time axis 100 in level 114. It is therefore a higher one Output signal for the optical receiver 11 required for an alarm signal to be sent via the amplifier and control circuit 41 is generated. How mentioned, the threshold value in the amplifier and control circuit 41 can be set. Alternatively it is also possible to adjust the radiation intensity of the to reduce optical transmitter 10. Hereby response sensitivity is also reduced. It goes without saying that the Threshold value for the pulses 108, the degree of pollution represent, belittled must be as shown at 113 '.

Claims (8)

  1. An optical smoke detector with a preferably strongly light-absorbing measuring chamber (35) to which a light source (10) and two light-sensitive receivers (11, 12) are allocated such that the collimated field of vision (22) of the one light-sensitive receiver (11) crosses the collimated beam (21) of the light source and the field of vision (23) of the second light-sensitive receiver (12) is directed onto a surface (36) of the measuring chamber, with an alarm circuit (48) which emits an alarm signal when the output signal of the first light-sensitive receiver has reached a predetermined value, characterised in that an evaluation circuit (43) emits a control signal when on account of contamination of the measuring chamber the output signal of the second light-sensitive receiver has reached a predetermined value and that the surface of the measuring chamber, which lies in the collimated field of vision of the second light sensitive receiver is directly irradiated by a light source (10).
  2. An optical smoke detector with a preferably strongly light-absorbing measuring chamber (35) to which a light source (51) and at least one light-sensitive receiver (50) are allocated such that the collimated field of vision (77) of a first light-sensitive receiver crosses the collimated beam (76) of the light source, with an alarm circuit (48) which emits an alarm signal when the output signal of the light-sensitive receiver reaches a predetermined value and with a light-optical device which determines or processes a change in the output signal of the light sensitive receiver caused by contamination of the measuring chamber, characterised in that a second light source (52) irradiates a surface of the measuring chamber which lies in the field of vision of the first (50) or of a further light-sensitive receiver, wherein a control circuit (40) alternately activates one of the two light sources (51, 52) and that an evaluation circuit (41-48) is provided which emits a control signal when the output signal of the light-sensitive receiver (50) during the active phase of the second light source (52) has reached a predetermined value.
  3. An optical smoke detector according to claim 1, characterised in that first and second light-sensitive receivers (11, 12) are connected via a preferably electronic switch (40) to the evaluation and alarm circuit (43, 48).
  4. An optical smoke detector according to claim 1 to 4, characterised in that the control circuit blocks the alarm circuit when the second light-sensitive receiver (12) is connected via the switch (40) to the maintenance circuit (43, 60) or when the second light source (52) is activated.
  5. An optical smoke detector according to one of claims 1 to 4, characterised in that the control circuit (40, 53) contains a clock generator and there is provided an adjustable electronic counter (44, 56) connected to the clock generator, which activates the second light-sensitive receiver (12) or the second light-source (52) when a predetermined first counter count is reached and which activates the first light-sensitive receiver or the first light-source (51) when a second counter count is reached.
  6. An optical smoke detector according to claim 4 and 5, characterised in that the switch (40) is controlled by an output signal of the counter (44).
  7. An optical smoke detector according to one of the claims 1 to 6, characterised in that the maintenance signal is inputted to a threshold value stage whose output signal blocks the alarm circuit when the maintenance signal has reached a predetermined value.
  8. An optical smoke detector according to one of the claims 1 to 7, characterised in that the surface of the measuring chamber (35) irradiated by the first or second light-sensitive receiver is arranged approximately at an angle of 90° to the optical axis of the first or second light source.
EP89116813A 1988-09-17 1989-09-12 Operation method for an optical smoke detector and smoke detector for carrying out the method Expired - Lifetime EP0360126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89116813T ATE101739T1 (en) 1988-09-17 1989-09-12 PROCEDURE FOR OPERATING AN OPTICAL SMOKE DETECTOR AND SMOKE DETECTOR FOR IMPLEMENTING THE PROCEDURE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3831654A DE3831654A1 (en) 1988-09-17 1988-09-17 OPTICAL SMOKE DETECTOR
DE3831654 1988-09-17

Publications (4)

Publication Number Publication Date
EP0360126A2 EP0360126A2 (en) 1990-03-28
EP0360126A3 EP0360126A3 (en) 1991-02-06
EP0360126B1 EP0360126B1 (en) 1994-02-16
EP0360126B2 true EP0360126B2 (en) 1999-04-14

Family

ID=6363155

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89116813A Expired - Lifetime EP0360126B2 (en) 1988-09-17 1989-09-12 Operation method for an optical smoke detector and smoke detector for carrying out the method

Country Status (6)

Country Link
US (1) US5008559A (en)
EP (1) EP0360126B2 (en)
AT (1) ATE101739T1 (en)
CA (1) CA1331649C (en)
DE (2) DE3831654A1 (en)
ES (1) ES2049786T5 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105358962A (en) * 2013-05-31 2016-02-24 杜拉革有限公司 Device for measuring stray light from a measurement volume, with compensation of background signals

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH683464A5 (en) * 1991-09-06 1994-03-15 Cerberus Ag Optical smoke detector with active surveillance.
CH684556A5 (en) * 1992-09-14 1994-10-14 Cerberus Ag Optical Smoke Detector.
DE4333911C2 (en) * 1993-10-05 1998-10-22 Preussag Ag Minimax Optical smoke detector
DE4414166C1 (en) * 1994-04-22 1995-12-07 Lorenz Mesgeraetebau Method and device for measuring light scattering on particles
FR2723233B1 (en) * 1994-07-29 1996-10-04 Lewiner Jacques IMPROVEMENTS ON OPTICAL SMOKE DETECTORS
US5581241A (en) * 1994-08-12 1996-12-03 Voice Products Inc. Ultra-sensitive smoke detector
AUPN179995A0 (en) * 1995-03-17 1995-04-13 Vision Systems Limited Improvements relating to gas pollution detection equipment
DE69627922T2 (en) * 1995-03-24 2004-03-11 Nohmi Bosai Ltd. Sensor for the detection of fine particles such as smoke
JPH09270085A (en) * 1996-04-01 1997-10-14 Hamamatsu Photonics Kk Smoke production detector
US6271758B1 (en) * 1997-05-29 2001-08-07 Hochiki Corporation Light projection device for a photoelectric smoke sensor
DE10104861B4 (en) * 2001-02-03 2013-07-18 Robert Bosch Gmbh Procedure for fire detection
DE10118913B4 (en) * 2001-04-19 2006-01-12 Robert Bosch Gmbh Scattered light smoke
GB2397122B (en) * 2003-01-03 2006-02-08 David Appleby Fire detector with low false alarm rate
US7034702B2 (en) * 2003-12-23 2006-04-25 Robert Bosch Gmbh Optical smoke detector and method of cleaning
DE102004001699A1 (en) * 2004-01-13 2005-08-04 Robert Bosch Gmbh fire alarm
DE102004023524B3 (en) * 2004-05-13 2005-09-15 Job Lizenz Gmbh & Co. Kg Smoke and mist detection device for activation of fire alarm and sprinkler system in building has chamber with grilles at ends containing support for photosensor and indirect illumination LED
DE102005025183A1 (en) * 2005-06-01 2006-12-07 Sick Engineering Gmbh Particle concentration measuring device and adjustment method therefor
EP3885743A1 (en) * 2008-06-10 2021-09-29 Xtralis Technologies Ltd Particle detection
JP5833923B2 (en) 2008-09-05 2015-12-16 エックストラリス・テクノロジーズ・リミテッド Photodetection of particle characteristics
DE102009054141A1 (en) 2009-11-13 2011-05-19 Job Lizenz Gmbh & Co Kg Method for verifying proper function of smoke detector in inner room of building, involves comparing output signal with reference output signal, and outputting error signal, when output signal falls below reference output signal
DE102014110460B3 (en) * 2014-07-24 2015-05-13 Eq-3 Entwicklung Gmbh Optical smoke detector and method for optical smoke detection
RU2565492C1 (en) * 2014-11-28 2015-10-20 Санкт-Петербургский филиал ОАО "Воентелеком" Fire protection system of container basic bearing structure
EP3073458A1 (en) * 2015-03-23 2016-09-28 Siemens Schweiz AG Fire alarm with a light scattering assembly in the region of a smoke entry opening for contamination monitoring
KR101966492B1 (en) * 2016-03-25 2019-04-05 현대자동차주식회사 Dust sensor for vehicle
DE102017217280A1 (en) * 2017-09-28 2019-03-28 Robert Bosch Gmbh Measuring device for particle measurement
EP3791162A1 (en) * 2018-05-11 2021-03-17 Carrier Corporation Multi-point detection system
CN110148277B (en) * 2019-04-20 2021-04-20 北京升哲科技有限公司 MEMS smoke sensor based on dual-wavelength detection
CN110930630A (en) * 2019-11-26 2020-03-27 福建好神奇电子科技有限公司 Smoke alarm and method thereof
CN110930631A (en) * 2019-11-26 2020-03-27 福建好神奇电子科技有限公司 Photoelectric fire smoke alarm and smoke detection deviation compensation method thereof
DE102020206453A1 (en) * 2020-05-25 2021-11-25 Robert Bosch Gesellschaft mit beschränkter Haftung Method for contamination detection of a fire alarm, fire alarm, computer program and machine-readable storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US242673A (en) * 1881-06-07 John meissner
CH600456A5 (en) * 1976-12-23 1978-06-15 Cerberus Ag
US4242673A (en) * 1978-03-13 1980-12-30 American District Telegraph Company Optical particle detector
US4232307A (en) * 1978-12-18 1980-11-04 American District Telegraph Company Electrical test circuit for optical particle detector
CH655396B (en) * 1981-11-11 1986-04-15
JPS59187246A (en) * 1983-04-08 1984-10-24 Nohmi Bosai Kogyo Co Ltd Inspecting apparatus of function of photoelectric smoke sensor
DE3334545A1 (en) * 1983-09-23 1985-04-04 Siemens AG, 1000 Berlin und 8000 München OPTICAL SMOKE DETECTOR
US4857895A (en) * 1987-08-31 1989-08-15 Kaprelian Edward K Combined scatter and light obscuration smoke detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105358962A (en) * 2013-05-31 2016-02-24 杜拉革有限公司 Device for measuring stray light from a measurement volume, with compensation of background signals
CN105358962B (en) * 2013-05-31 2019-04-30 杜拉革有限公司 For in the case where compensating background signal measurement come measurement volume scattering light device

Also Published As

Publication number Publication date
EP0360126B1 (en) 1994-02-16
CA1331649C (en) 1994-08-23
ES2049786T3 (en) 1994-05-01
DE58906980D1 (en) 1994-03-24
DE3831654A1 (en) 1990-03-22
US5008559A (en) 1991-04-16
ATE101739T1 (en) 1994-03-15
EP0360126A2 (en) 1990-03-28
EP0360126A3 (en) 1991-02-06
DE3831654C2 (en) 1991-06-13
ES2049786T5 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
EP0360126B2 (en) Operation method for an optical smoke detector and smoke detector for carrying out the method
EP2541273B1 (en) Detection and measuring of distance between objects
DE19960653B4 (en) Method and device for the detection or orientation of edges
DE10118913B4 (en) Scattered light smoke
CH693549A5 (en) Opto-electronic sensor.
DE2749494A1 (en) OPTICAL SMOKE DETECTOR
CH683464A5 (en) Optical smoke detector with active surveillance.
DE4328671B4 (en) Scattered light smoke
DE4340756A1 (en) Laser range finder, e.g. for driverless transport system - measures distance using pulse travel time and light deflection angle to determine position of object in measuring region
DE3134815C2 (en) Area security
DE2754139A1 (en) SMOKE DETECTOR
EP0711442B1 (en) Active ir intrusion detector
EP1061489B1 (en) Intrusion detector with a device for monitoring against tampering
EP1798577B1 (en) Optoelectronic device and method for operating an optoelectronic device
EP2159603B1 (en) Method and sensor for identifying objects
EP0926646A1 (en) Optical smoke detector
EP0200186B1 (en) Light barrier
DE2911429C2 (en) Smoke detector
CH684656A5 (en) Method and apparatus for detecting and analyzing edges on objects.
DE19951403A1 (en) Device for detecting smoke
EP2093731A1 (en) Linear optical smoke alarm with multiple part-beams
DE602004008383T2 (en) Measuring device and method
DE19847548A1 (en) Arrangement for securing the rear or side region of a motor vehicle
EP1780559B1 (en) Optical sensor
EP1087352A1 (en) Optical smoke detector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19910129

17Q First examination report despatched

Effective date: 19930624

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 101739

Country of ref document: AT

Date of ref document: 19940315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58906980

Country of ref document: DE

Date of ref document: 19940324

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940330

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2049786

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: FRITZ FUSS GMBH & CO.

Effective date: 19941117

EAL Se: european patent in force in sweden

Ref document number: 89116813.0

NLR1 Nl: opposition has been filed with the epo

Opponent name: FRITZ FUSS GMBH & CO.

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

R26 Opposition filed (corrected)

Opponent name: FRITZ FUSS GMBH & CO.

Effective date: 19941117

NLR1 Nl: opposition has been filed with the epo

Opponent name: FRITZ FUSS GMBH & CO.

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19990414

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
NLR2 Nl: decision of opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DIPL.-ING. HARTWIG BEYERSDORF TRANSFER- JOB LIZENZ

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19990624

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050705

Year of fee payment: 17

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060627

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060711

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20060809

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060906

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060922

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20061002

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061110

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060907

Year of fee payment: 18

BERE Be: lapsed

Owner name: *JOB LIZENZ G.M.B.H. & CO. K.G.

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070913

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080531

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080917

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070912

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070912

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20090912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090912