EP0319753B1 - Exciting or feeding system for a parabolic antenna - Google Patents

Exciting or feeding system for a parabolic antenna Download PDF

Info

Publication number
EP0319753B1
EP0319753B1 EP88119185A EP88119185A EP0319753B1 EP 0319753 B1 EP0319753 B1 EP 0319753B1 EP 88119185 A EP88119185 A EP 88119185A EP 88119185 A EP88119185 A EP 88119185A EP 0319753 B1 EP0319753 B1 EP 0319753B1
Authority
EP
European Patent Office
Prior art keywords
phase shifter
component
exciting
feed system
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88119185A
Other languages
German (de)
French (fr)
Other versions
EP0319753A1 (en
Inventor
Anton Dipl.-Ing. Ilsanker
Norbert Dr. Dipl.-Ing. Ephan
Hartmut Dipl.-Ing. Wittmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Priority to AT88119185T priority Critical patent/ATE93657T1/en
Publication of EP0319753A1 publication Critical patent/EP0319753A1/en
Application granted granted Critical
Publication of EP0319753B1 publication Critical patent/EP0319753B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • H01P1/172Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a dielectric element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0241Waveguide horns radiating a circularly polarised wave

Definitions

  • the invention relates to an excitation or feed system, in particular for a parabolic antenna for receiving or transmitting linear and / or circularly polarized electromagnetic waves according to the preamble of claim 1.
  • the installation of such receiving antennas also requires exact alignment of the antenna in terms of its polarization to ensure the separation between the different channels. Since the television broadcasting satellites are adjusted geostationarily in space, the orientation with regard to the linear polarization can be preselected once, which doesn't change then. If the antenna is to be swiveled to another satellite, this can be done with a so-called polar mount. It is an antenna structure in which the polar circle is traversed when the antenna is adjusted and aligned with another geostationary satellite, so that the orthogonal polarizations are automatically maintained.
  • the current generation of broadcasting satellites also send and receive circular polarizations. Double frequency utilization is also possible here, since opposite circular polarizations are possible.
  • Antennas for double polarization operation would, however, have to have a particularly good polarization separation so that a sufficient decoupling between the channels of the same frequency is possible.
  • two excitation or supply systems with four adjoining converters must therefore be provided.
  • the two linearly polarized and the oppositely circularly polarized electromagnetic waves are received via a respective feed system, and the one converter mentioned is required for each polarization.
  • both 90 ° polarizations must be freely adjustable.
  • both polarizers are each seated on an adjusting axis which is concentric to one another and which can accordingly be actuated, as a rule by means of an electric motor, and brought into a desired angular position with respect to the vertical or horizontal or with respect to one another.
  • the object of the present invention is, based on the last-described prior art, an exciter or.
  • To create a feed system for receiving differently polarized electromagnetic waves which is designed much simpler and much easier to adjust so that the differently polarized waves can be fed or excited.
  • an excitation or feed system is created in a simple manner, in which two linear, mutually perpendicular, as well as two oppositely circular polarizations can be received, using only a microwave converter.
  • a single lamina must now be oriented differently in its setting position with respect to the vertical or horizontal in order to be able to feed in or transmit the different polarizations.
  • this is achieved by using a subordinate 180 ° phase shift plate lying in the receiving direction.
  • the first 90 ° phase plate is firmly and rigidly installed and aligned.
  • the 90 ° plate does not cause a spatial rotation, but only a phase shift of the linearly polarized wave.
  • a circularly polarized wave hitting the 90 ° plate is converted into a linearly polarized wave, the vector of which, depending on the direction of rotation of the circularly polarized wave, is rotated by ⁇ 45 ° against the orientation of the plate.
  • the following 180 ° plate now serves to spatially rotate the e-vector appearing at the output of the 90 ° plate, depending on the orientation (0 °, 90 °, + 45 °, -45 °), so that the Vector always has a constant direction, to which the converter coupling is then set.
  • phase-shifting dielectric plates instead of the phase-shifting dielectric plates mentioned, other construction measures, for example in the manner of a waveguide constriction, can of course also be used to carry out the desired phase shift.
  • Horn 1 is shown in the schematic longitudinal cross section, as it is generally used in cooperation with a parabolic antenna for transmitting or for receiving electromagnetic waves.
  • the horn 1 is constructed in the manner of a waveguide radiator.
  • a waveguide 5 connects to the front, for example, funnel-shaped extension 3, which is terminated at the rear with a short circuit 7.
  • a waveguide section 9 is shown in the exemplary embodiment shown, which leads, for example, to a converter (not shown).
  • polarizer 15 In the excitation or feed system, a so-called polarizer 15 is first rigidly installed in the receiving direction adjacent to the funnel-shaped extension 3, which must be aligned perpendicularly or parallel to the E-vector.
  • the polarizer consists, for example, of a dielectric Platelet which causes an at least approximately 90 ° phase shift for the E-vector in the frequency range, for example 11.7 to 12.5 GHz.
  • This polarizer 15 is followed by a so-called polarization converter 17 in the direction of reception of the electromagnetic waves, which, for example, causes a 180 ° phase shift for the E-vector for the frequency range from 10.95 to 12.75 GHz in accordance with the following explanations.
  • This polarization converter 17 can be pivoted about its longitudinal axis 19 at least in a partial angular range.
  • the longitudinal axis can protrude through the rear short circuit 7, where a motor drive (not shown in more detail), as a rule electromotive, is located, for which the polarization converter 17 can be pivoted into predetermined angular positions.
  • FIG. 2a A vertical linear polarization is illustrated in FIG. 2a by a vertically oriented e-vector 21.
  • the e-vector 21 Since the e-vector 21 is oriented transversely to the polarizer 15, this has no influence on the spatial orientation of the e-vector.
  • the downstream polarization converter 17 is aligned parallel to the E vector. In addition to a certain, slight, negligible attenuation, the polarization converter 17 does not cause any changes, so that the vertical position of the e-vector 21 ′′ also after the polarization converter 17 parallel to the position of the e-vector 21 ′ after or the e-vector 21 the polarizer 15 remains unchanged.
  • FIG. 2b a linear polarization orthogonal to FIG. 2a with an E vector 21 lying horizontally is explained.
  • the polarizer 15 lying parallel to this likewise only leads to a negligible attenuation without the E-vector 21 being changed in its spatial position.
  • the downstream polarization converter 17 causes the horizontal E vector 21 'to be reflected in the vertical position, so that this polarization 17 also has the same position at the output as in FIG. 2a.
  • the polarization converter 17 is pivoted at a 45 ° angle to the vertical in the case of a horizontal e-vector 21 '.
  • the vector decomposition perpendicularly and in the plane of the polarization converter 17 results in the vectors shown in dashed lines in FIG. 4a.
  • the component of the decomposed E-vector 21 lying perpendicular to the plane of the polarization converter 17 is now opposite the component perpendicular thereto is 180 ° out of phase, so that this component now assumes the position shown in FIG. 4b.
  • the component lying parallel to the plane of the polarization converter 17 remains unchanged, so that the sum of the two components now results in the e-vector 21 ′′ rotated by 90 °.
  • FIG. 2c shows the case when a circularly polarized wave is received. Since the circularly polarized wave is caused by the fact that the E-vector is phase-shifted by 90 ° with respect to two mutually perpendicular axes, a 90-degree phase shifter in the manner of the polarizer 15 is always a phase shift of the E-vector component in the plane of this plate 90 ° so that the two orthogonal components of the e-vector after the polarizer 15 are in the same phase with each other and thus a linear e-vector 21 'rotated by 45 ° to the plane of the polarizer is generated.
  • the downstream polarization converter 17 is pivoted in the opposite direction by 22.5 ° to the vertical, as is shown enlarged on the basis of FIG.
  • the linear e-vector 21 ' which is oriented at 45 ° to the vertical, gives a component decomposition as shown in broken lines in FIG. 5a. Since again only the smaller component of the e-vector 21 'is phase-shifted by 180 ° in the plane of the polarization converter 17, the phase shift of this component leads to an e-vector 21''which now assumes an exactly vertical position.
  • the linear E vectors In general, in a polarization converter with a 180 ° phase shift - as can also be seen in principle from FIGS. 4 and 5 - the linear E vectors always mirrored around the plane of the polarization converter, whereby the orthogonality of two vertical incoming E-vectors in relation to the outgoing E-vectors is maintained.
  • FIG. 2d relates to the case opposite to FIG. 2c in the case of an opposite circular polarization, which is first of all via the polarizer 15 in a linearly polarized E-vector 21 ′ oriented at ⁇ 45 ° to the vertical and then via the correspondingly opposite to FIG. 5a 22.5 ° adjusted plane of the polarization converter 17 also leads to a vertically aligned E-vector 21 ''.
  • a horizontal output vector can also be achieved for all four input polarizations, as can be seen from FIGS. 3a to 3d.
  • the front polarizer 15 can also be brought into a stationary vertical position instead of the horizontal position. This has no fundamental influence and leads to the same results.
  • the maximum pivoting angle range for the plane of the polarization converter 17 only has to range from + 45 ° to -22.5 ° or from -45 ° to + 22.5 °, ie 67 Does not exceed 5 °.
  • Corresponding exact retrieval of one of the explained angle settings can be reproduced via operation of the motor drive via certain presettable locking points.
  • the dielectric platelet for the polarization converter 17 can, for example, be approximately twice as long as the polarizer 15 with the same thickness.
  • both components 15 and 17 could also have approximately the same length and size, in which case then As a rule, the thickness of the polarization converter 17 is approximately twice as large as the thickness of the polarizer 15, in order thereby to bring about a phase shift which is twice as great, namely by 180 ° compared to 90 ° for the polarizer 15.
  • phase shifter component can also be used as the polarizer 15, which produces a phase shift that is 180 ° larger, for example 270 °. All other phase shifts that are larger by 180 ° ultimately only result in a basic phase shift of 90 °. In addition, larger phase shifts do not make sense, since these also only result in a 90 ° phase shift in terms of their end effect with only greater damping.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

In order to be able to receive and transmit differently polarised electromagnetic waves with only one supply system, two polarisers are arranged in a waveguide emitter, both of which must be capable of being brought into any required angular positions with respect to one another. This demands high structural complexity and relatively extensive adjusting measures. In order to produce an excitation and supply system which is of much simpler construction and which can be adjusted very much more easily, a 90 DEG phase-shifting component (15) is arranged in a waveguide (5) in the receive direction and a 180 DEG phase-shifting component (17) is arranged downstream from it. The 90 DEG phase-shifting component (15) is installed in a fixed manner such that it cannot rotate vertically or horizontally. Only the 180 DEG phase-shifting component (17) has to be rotated into a specific angular position to receive one of the four differently polarised waves. The excitation and supply system is primarily suitable for the reception of television broadcasting satellites. <IMAGE>

Description

Die Erfindung betrifft ein Erreger- bzw. Speisesystem, insbesondere für eine Parabolantenne zum Empfang bzw. zum Senden von linearen und/oder zirkularpolarisierten elektromagnetischen Wellen nach dem Oberbegriff des Anspruches 1.The invention relates to an excitation or feed system, in particular for a parabolic antenna for receiving or transmitting linear and / or circularly polarized electromagnetic waves according to the preamble of claim 1.

Seit Jahren ist die Verwendung von orthogonal polarisierten elektromagnetischen Wellen bekannt, wodurch die Möglichkeit einer Frequenzdoppelausnutzung besteht.The use of orthogonally polarized electromagnetic waves has been known for years, which makes it possible to use double frequencies.

Die Installation derartiger Empfangsantennen erfordert zur Sicherheit der Trennung zwischen den verschiedenen Kanälen auch die exakte Ausrichtung der Antenne in ihrer Polarisation. Da die Fernseh-Rundfunk-Satelliten geostationär im Weltraum justiert werden, kann also die Ausrichtung im Hinblick auf die lineare Polarisation einmal vorgewählt werden, die sich dann nicht verändert. Soll die Antenne auf einen anderen Satelliten geschwenkt werden, so kann dies mit einem sog. Polarmount erfolgen. Es handelt sich hierbei um einen Antennenaufbau, bei dem beim Verstellen der Antenne und beim Ausrichten auf einen anderen geostationären Satelliten der Polarkreis abgefahren wird, so daß automatisch die orthogonalen Polarisationen beibehalten werden.The installation of such receiving antennas also requires exact alignment of the antenna in terms of its polarization to ensure the separation between the different channels. Since the television broadcasting satellites are adjusted geostationarily in space, the orientation with regard to the linear polarization can be preselected once, which doesn't change then. If the antenna is to be swiveled to another satellite, this can be done with a so-called polar mount. It is an antenna structure in which the polar circle is traversed when the antenna is adjusted and aligned with another geostationary satellite, so that the orthogonal polarizations are automatically maintained.

Die heutige Generation der Rundfunksatelliten senden und empfangen aber auch zirkulare Polarisationen. Auch hier ist eine doppelte Frequenzausnutzung möglich, da entgegengesetzt zirkulare Polarisationen möglich sind.The current generation of broadcasting satellites also send and receive circular polarizations. Double frequency utilization is also possible here, since opposite circular polarizations are possible.

Antennen für Doppelpolarisationsbetrieb müßten allerdings eine besonders gute Polarisationstrennung aufweisen, damit eine genügende Entkoppelung zwischen den Kanälen gleicher Frequenz möglich ist.Antennas for double polarization operation would, however, have to have a particularly good polarization separation so that a sufficient decoupling between the channels of the same frequency is possible.

Zum Empfang zweier orthogonal zueinander ausgerichteter linearer Polarisationen sowie zwei gegensinnig drehender zirkularer Polarisationen müssen demgemäß also zwei Erreger-oder Speisesysteme mit vier sich anschließenden Konvertern vorgesehen werden. Über jeweils ein Speisesystem werden die beiden linear polarisierten und über das zweite Speisesystem die gegensinnig zirkular polarisierten elektromagnetischen Wellen empfangen, wobei für jede Polarisation jeweils der eine erwähnte Konverter benötigt wird.To receive two linear polarizations aligned orthogonally to one another and two circular polarizations rotating in opposite directions, two excitation or supply systems with four adjoining converters must therefore be provided. The two linearly polarized and the oppositely circularly polarized electromagnetic waves are received via a respective feed system, and the one converter mentioned is required for each polarization.

Um den technischen Bauaufwand hierfür zu verringern, ist bereits ein Erreger- bzw. Speisesystem bekannt geworden, in dem zwei sogenannte Polarisatoren in Axialrichtung in einem Hohlleiter hintereinander angeordnet worden sind, wobei jeder Polarisator für den betreffenden Frequenzbereich als sog. 90°-Phasenverschieber für den E-Vektor der elektromagnetischen Welle wirksam ist.In order to reduce the technical construction costs for this, an excitation or feed system has already become known in which two so-called polarizers have been arranged one behind the other in the axial direction in a waveguide, with each polarizer for the relevant frequency range as a so-called 90 ° phase shifter for the E-vector of the electromagnetic wave is effective.

Um nun mit einem derartigen Erreger- bzw. Speisesystem unterschiedlich polarisierte elektromagnetische Wellen zu senden bzw. zu empfangen, müssen beide 90°-Polarisationen beliebig verstellbar sein. Dazu sitzen beide Polarisatoren auf je einer konzentrisch zueinander liegenden Verstellachse, die entsprechend, in der Regel auf elektromotorischem Wege, betätigbar und in eine gewünschte Winkellage zur Vertikalen bzw. Horizontalen bzw. zueinander bringbar sind.In order to transmit or receive differently polarized electromagnetic waves with such an excitation or feed system, both 90 ° polarizations must be freely adjustable. For this purpose, both polarizers are each seated on an adjusting axis which is concentric to one another and which can accordingly be actuated, as a rule by means of an electric motor, and brought into a desired angular position with respect to the vertical or horizontal or with respect to one another.

Der Vorteil, nur ein einziges Erreger- oder Speisesystem für den Empfang orthogonal linearer und gegensinnig zirkularer Wellen zu benötigen, wird aber mit dem Nachteil erkauft, daß beide 90°-Phasenverschiebungs-Plättchen in jedem beliebigen Winkel zueinander einstellbar sein müssen, was zwei durchgängige getrennt ansteuerbare Achsen mit einer Hohlachse und zwei getrennt ansteuerbarer Elektromotoren zum Verstellen der Plättchen erfordert.The advantage of only needing a single excitation or feed system for the reception of orthogonally linear and oppositely circular waves is, however, bought with the disadvantage that both 90 ° phase shift plates have to be adjustable at any angle to one another, which separates two continuous ones Controllable axes with a hollow axis and two separately controllable electric motors for adjusting the plates required.

Der Bau- und Kostenaufwand für ein derartiges Erreger- bzw. Speisesystem ist von daher nicht unbeachtlich.The construction and cost of such an excitation or feed system is therefore not negligible.

Aufgabe der vorliegenden Erfindung ist es, ausgehend von dem zuletzt geschilderten Stand der Technik, ein Erreger-bzw. Speisesystem zum Empfang unterschiedlich polarisierter elektromagnetischer Wellen zu schaffen, das erheblich einfacher ausgebildet und sehr viel leichter so einstellbar ist, daß die unterschiedlich polarisierten Wellen eingespeist bzw. erregt werden können.The object of the present invention is, based on the last-described prior art, an exciter or. To create a feed system for receiving differently polarized electromagnetic waves, which is designed much simpler and much easier to adjust so that the differently polarized waves can be fed or excited.

Ein Erregersystem gemäß dem obergriff des Anspruchs 1 ist aus der Patentschrift US-A-4 264 908 bekannt.An excitation system according to the preamble of claim 1 is known from US-A-4,264,908.

Die Aufgabe wird erfindungsgemäß entsprechend den im kennzeichnenden Teil des Anspruches 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.The object is achieved according to the features specified in the characterizing part of claim 1. Advantageous embodiments of the invention are specified in the subclaims.

Durch die vorliegende Erfindung wird auf einfache Art und Weise ein Erreger- bzw. Speisesystem geschaffen, bei dem zwei lineare, senkrecht zueinander stehende, wie auch zwei gegensinnig zirkulare Polarisationen empfangen werden können, und zwar unter Verwendung lediglich eines Mikrowellenkonverters. Dabei muß erfindungsgemäß nunmehr ein einziges Plättchen in seiner Einstellungslage zur Vertikalen bzw. Horizontalen unterschiedlich ausgerichtet werden, um die unterschiedlichen Polarisationen einspeisen bzw. senden zu können. Erfindungsgemäß wird dies durch Verwendung eines in Empfangsrichtung liegenden nachgeordneten 180°-Phasenverschiebungs-Plättchens erzielt. Das erste 90°-Phasenplättchen wird fest und starr eingebaut und ausgerichtet. Dabei kann eine Ausrichtung in Vertikal- aber auch in Horizontalrichtung der linear polarisierten Welle gewählt werden. In beiden Grundausrichtungen ist der Betrieb des erfindungsgemäßen Erreger- bzw. Speisesystems möglich.By means of the present invention, an excitation or feed system is created in a simple manner, in which two linear, mutually perpendicular, as well as two oppositely circular polarizations can be received, using only a microwave converter. According to the invention, a single lamina must now be oriented differently in its setting position with respect to the vertical or horizontal in order to be able to feed in or transmit the different polarizations. According to the invention, this is achieved by using a subordinate 180 ° phase shift plate lying in the receiving direction. The first 90 ° phase plate is firmly and rigidly installed and aligned. An orientation in the vertical but also in the horizontal direction of the linearly polarized wave can be selected. Operation of the excitation or feed system according to the invention is possible in both basic orientations.

Durch die Ausrichtung senkrecht oder parallel zum einfallenden E-Vektor bewirkt das 90°-Plättchen keine räumliche Drehung, sondern nur eine Phasenverschiebung der linear polarisierten Welle. Eine auf das 90°-Plättchen treffende zirkular polarisierte Welle wird in eine linear polarisierte Welle umgewandelt, deren Vektor je nach Drehsinn der zirkular polarisierten Welle um ± 45° gegen die Orientierung des Plättchens gedreht ist. Das folgende 180°-Plättchen dient nun dazu, den am Ausgang des 90°-Plättchens erscheinenden E-Vektor je nach Orientierung (0°, 90°, + 45°, -45°) räumlich so zu drehen, daß an seinem Ausgang der Vektor immer eine konstante Richtung besitzt, auf die dann die Konverterankopplung eingestellt wird.Due to the alignment perpendicular or parallel to the incident e-vector, the 90 ° plate does not cause a spatial rotation, but only a phase shift of the linearly polarized wave. A circularly polarized wave hitting the 90 ° plate is converted into a linearly polarized wave, the vector of which, depending on the direction of rotation of the circularly polarized wave, is rotated by ± 45 ° against the orientation of the plate. The following 180 ° plate now serves to spatially rotate the e-vector appearing at the output of the 90 ° plate, depending on the orientation (0 °, 90 °, + 45 °, -45 °), so that the Vector always has a constant direction, to which the converter coupling is then set.

Erfindungsgemäß muß also nur ein 180°-Phasenverschiebungs-Plättchen oder -baustein verstellt werden, weshalb nur ein einziger Elektroantrieb hierfür benötigt wird. Zudem ist der gesamte Verstellbereich auf 67,5° begrenzbar, da weitere Verstellverschwenkbewegungen nicht vorgenommen werden müssen.According to the invention, therefore, only a 180 ° phase shift plate or block has to be adjusted, which is why only one only electric drive is needed for this. In addition, the entire adjustment range can be limited to 67.5 °, since no further adjustment swiveling movements are necessary.

Natürlich sind 180°-Phasenverschieber vom Grundsatz her nach dem Stand der Technik bekannt. Die Verwendung zweier eine unterschiedliche Phasenverschiebung hervorrufender Bauteile zur Erzielung eines derart einfach und kostengünstig aufgebauten Erreger- bzw. Speisesystems ist aber bisher nicht bekannt geworden und lag auch nicht nahe.Of course, 180 ° phase shifters are known in principle from the prior art. However, the use of two components which cause a different phase shift to achieve such a simple and inexpensive excitation or feed system has so far not become known and was also not obvious.

Anstelle der erwähnten phasenverschiebenden dielektrischen Plättchen können natürlich auch andere Baumaßnahmen, beispielsweise nach Art einer Hohlleiter-Verengung zur Durchführung der gewünschten Phasenverschiebung zum Einsatz gelangen.Instead of the phase-shifting dielectric plates mentioned, other construction measures, for example in the manner of a waveguide constriction, can of course also be used to carry out the desired phase shift.

Weitere Vorteile, Einzelheiten und Merkmale der Erfindung ergeben sich nachfolgend aus den anhand von Zeichnungen dargestellten Ausführungsbeispielen. Dabei zeigen im einzelnen:

Fig. 1 :
eine schematische Längsschnittdarstellung durch ein erfindungsgemäßes Erreger- bzw. Speisesystem;
Fig. 2a bis 2d:
unterschiedliche Beispiele für linear- und zirkularpolarisierte Wellen, die bei entsprechender Ausrichtung des 180°-Plättchens zu dem 90°-Plättchen jeweils einen gleichgerichteten E-Vektor erzeugen;
Fig. 3a bis 3d :
unterschiedliche Beispiele für linear- und polarisierte Wellen, die bei entsprechender Ausrichtung des 180°-Plättchens zu dem 90°-Plättchen jeweils einen gleichgerichteten E-Vektor erzeugen, der senkrecht zu dem in Fig. 2a bis 2d erzeugten E-Vektor liegt;
Fig. 4a bis 5d :
unterschiedliche Darstellungen zur Erläuterung der Funktionsweise eines 180°-Plättchens bei linear bzw. zirkular polarisierten Wellen.
Further advantages, details and features of the invention result below from the exemplary embodiments illustrated with reference to drawings. The following show in detail:
Fig. 1:
a schematic longitudinal sectional view through an excitation or feed system according to the invention;
2a to 2d:
different examples of linearly and circularly polarized waves which each generate a rectified E-vector when the 180 ° plate is aligned with the 90 ° plate;
3a to 3d:
different examples of linear and polarized waves, which with appropriate orientation of the 180 ° plate generate a rectified E-vector for the 90 ° plate, which is perpendicular to the E-vector generated in FIGS. 2a to 2d;
4a to 5d:
different representations to explain the mode of operation of a 180 ° plate for linearly or circularly polarized waves.

In Fig. 1 ist im schematischen Längsquerschnitt ein sog. Horn 1 gezeigt, wie es in der Regel im Zusammenwirken mit einer Parabolantenne zum Senden bzw. zum Empfang von elektromagnetischen Wellen verwandt wird. Das Horn 1 ist nach Art eines Hohlleiterstrahlers aufgebaut. An die vordere zum Beispiel trichterförmige Erweiterung 3 schließt sich ein Hohlleiter 5 an, der hinten mit einem Kurzschluß 7 abgeschlossen ist. Quer dazu ist im gezeigten Ausführungsbeispiel ein Hohlleiterabschnitt 9 gezeigt, der beispielsweise zu einem nicht näher dargestellten Konverter führt.In Fig. 1 a so-called. Horn 1 is shown in the schematic longitudinal cross section, as it is generally used in cooperation with a parabolic antenna for transmitting or for receiving electromagnetic waves. The horn 1 is constructed in the manner of a waveguide radiator. A waveguide 5 connects to the front, for example, funnel-shaped extension 3, which is terminated at the rear with a short circuit 7. At right angles to this, a waveguide section 9 is shown in the exemplary embodiment shown, which leads, for example, to a converter (not shown).

Damit die unterschiedlich polarisierten elektromagnetischen Wellen mit einem Erreger- und Speisesystem gemäß Fig. 1 und einem nachgeordneten Konverter empfangen bzw. entsprechende Polarisationen gesendet werden können, ist es erforderlich, daß der E-Vektor in dem Hohlleiterabschnitt 9 senkrecht zur Zeichnungsebene bzw. senkrecht zur Hohlleiterschmalseite ausgerichtet ist.So that the differently polarized electromagnetic waves can be received with an excitation and feed system according to FIG. 1 and a downstream converter or corresponding polarizations can be sent, it is necessary that the E-vector in the waveguide section 9 perpendicular to the plane of the drawing or perpendicular to the narrow waveguide side is aligned.

Bei dem Erreger- bzw. Speisesystem ist in Empfangsrichtung benachbart zur trichterförmigen Erweiterung 3 zunächst ein sogenannter Polarisator 15 starr eingebaut, der senkrecht bzw. parallel zum E-Vektor ausgerichtet sein muß. Der Polarisator besteht beispielsweise aus einem dielektrischen Plättchen, welches im Frequenzbereich, beispielsweise 11 ,7 bis 12,5 GHz,eine zumindest annähernde 90°-Phasenverschiebung für den E-Vektor bewirkt.In the excitation or feed system, a so-called polarizer 15 is first rigidly installed in the receiving direction adjacent to the funnel-shaped extension 3, which must be aligned perpendicularly or parallel to the E-vector. The polarizer consists, for example, of a dielectric Platelet which causes an at least approximately 90 ° phase shift for the E-vector in the frequency range, for example 11.7 to 12.5 GHz.

An diesen Polarisator 15 schließt sich in Empfangsrichtung der elektromagnetischen Wellen ein sogenannter Polarisationswandler 17 an, der beispielsweise für den in Frage kommenden Frequenzbereich von 10,95 bis 12,75 GHz eine 180°-Phasenverschiebung für den E-Vektor entsprechend der nachfolgenden Erläuterungen bewirkt. Dieser Polarisationswandler 17 ist zumindest in einem Teilwinkelbereich um seine Längsachse 19 verschwenkbar. Die Längsachse kann dazu durch den hinteren Kurzschluß 7 hindurchragen, wo ein nicht näher gezeigter motorischer, in der Regel elektromotorischer, Antrieb sitzt, für den der Polarisationswandler 17 in vorbestimmte Winkellagen verschwenkbar ist.This polarizer 15 is followed by a so-called polarization converter 17 in the direction of reception of the electromagnetic waves, which, for example, causes a 180 ° phase shift for the E-vector for the frequency range from 10.95 to 12.75 GHz in accordance with the following explanations. This polarization converter 17 can be pivoted about its longitudinal axis 19 at least in a partial angular range. For this purpose, the longitudinal axis can protrude through the rear short circuit 7, where a motor drive (not shown in more detail), as a rule electromotive, is located, for which the polarization converter 17 can be pivoted into predetermined angular positions.

Nachfolgend wird der Empfang der unterschiedlichen elektromagnetischen Polarisationen näher erläutert. Dabei ist in den Fig. 2a bis 3d jener Fall zunächst dargestellt, bei dem der vordere Polarisator 15 abweichend von der Darstellung gemäß Fig. 1 nicht in Vertikalausrichtung, sondern in horizontaler Lage fest justiert und eingebaut ist. Demgegenüber wird der Polarisationswandler 17 in die unterschiedlichen, in den Fig. 2a bis 3d gezeigten Darstellungen gedreht. Dabei wird unter der Darstellung gemäß Fig. 1 jeweils links beispielhaft die empfangene Polarisation anhand des E-Vektors 21 verdeutlicht. Die Lage des vorderen Polarisators 15 und des nachgeordneten Polarisationswandlers 17 sind in Axialansicht in deren jeweiliger Lage dargestellt, wobei die mittlere E-Vektor-Darstellung sowie die E-Vektor-Darstellung hinter dem Polarisationswandler 17 vor dem Hohlleiterabschnitt dargestellt sind.The reception of the different electromagnetic polarizations is explained in more detail below. 2a to 3d, the case is initially shown in which the front polarizer 15, in contrast to the illustration according to FIG. 1, is not fixed and installed in a vertical orientation but in a horizontal position. In contrast, the polarization converter 17 is rotated into the different representations shown in FIGS. 2a to 3d. 1, the received polarization is exemplified on the left using the E-vector 21. The position of the front polarizer 15 and the downstream polarization converter 17 are shown in an axial view in their respective position, the middle E-vector representation and the E-vector representation behind the polarization converter 17 in front of the waveguide section.

In Fig. 2a ist eine vertikale lineare Polarisation durch einen vertikal ausgerichteten E-Vektor 21 verdeutlicht.A vertical linear polarization is illustrated in FIG. 2a by a vertically oriented e-vector 21.

Da der E-Vektor 21 quer zum Polarisator 15 ausgerichtet ist, hat dieser keinen Einfluß auf die räumliche Orientierung des E-Vektors. Der nachgeordnete Polarisationswandler 17 ist parallel zum E-Vektor ausgerichtet. Neben einer gewissen, geringen zu vernachlässigenden Dämpfung bewirkt der Polarisationswandler 17 keine Veränderungen, so daß die Vertikallage des E-Vektors 21'' auch nach dem Polarisationswandler 17 parallel zu der Lage des E-Vektors 21' nach bzw. dem E-Vektor 21 vor dem Polarisator 15 unverändert ausgerichtet bleibt.Since the e-vector 21 is oriented transversely to the polarizer 15, this has no influence on the spatial orientation of the e-vector. The downstream polarization converter 17 is aligned parallel to the E vector. In addition to a certain, slight, negligible attenuation, the polarization converter 17 does not cause any changes, so that the vertical position of the e-vector 21 ″ also after the polarization converter 17 parallel to the position of the e-vector 21 ′ after or the e-vector 21 the polarizer 15 remains unchanged.

Bei dem Ausführungsbeispiel nach Fig. 2b wird eine zu Fig. 2a orthogonale lineare Polarisation mit horizontal liegendem E-Vektor 21 erläutert. Der parallel hierzu liegende Polarisator 15 führt ebenfalls nur zu einer zu vernachlässigenden Dämpfung, ohne daß der E-Vektor 21 in seiner räumlichen Lage verändert wird. Der nachgeordnete Polarisationswandler 17 bewirkt bei entsprechender Ausrichtung von 45° eine Spiegelung des horizontalen E-Vektors 21' in die vertikale Lage, so daß auch diese Polarisation 17 am Ausgang die gleiche Lage wie in Fig. 2a besitzt.In the exemplary embodiment according to FIG. 2b, a linear polarization orthogonal to FIG. 2a with an E vector 21 lying horizontally is explained. The polarizer 15 lying parallel to this likewise only leads to a negligible attenuation without the E-vector 21 being changed in its spatial position. With a corresponding orientation of 45 °, the downstream polarization converter 17 causes the horizontal E vector 21 'to be reflected in the vertical position, so that this polarization 17 also has the same position at the output as in FIG. 2a.

Dies ergibt sich in einer detaillierteren Darstellung auch aus den Fig. 4a und 4b, auf die nachfolgend Bezug genommen wird.This also results in a more detailed representation from FIGS. 4a and 4b, to which reference is made below.

In der Fig. 4a ist bei horizontalem E-Vektor 21' der Polarisationswandler 17 in einem 45°-Winkel zur Vertikalen verschwenkt. Die Vektorzerlegung senkrecht und in der Ebene des Polarisationswandlers 17 ergibt die in Fig. 4a strichliert gezeigten Vektoren.4a, the polarization converter 17 is pivoted at a 45 ° angle to the vertical in the case of a horizontal e-vector 21 '. The vector decomposition perpendicularly and in the plane of the polarization converter 17 results in the vectors shown in dashed lines in FIG. 4a.

Es wird nun die senkrecht zur Ebene des Polarisationswandlers 17 liegende Komponente des zerlegten E-Vektors 21 gegenüber der dazu senkrechten Komponente um 180° phasenverschoben, so daß diese Komponente nunmehr die in Fig. 4b gezeichnete Lage einnimmt. Die parallel zur Ebene des Polarisationswandlers 17 liegende Komponente bleibt unverändert, so daß nunmehr durch die Summe der beiden Komponenten sich der um 90° verdrehte E-Vektor 21'' ergibt.The component of the decomposed E-vector 21 lying perpendicular to the plane of the polarization converter 17 is now opposite the component perpendicular thereto is 180 ° out of phase, so that this component now assumes the position shown in FIG. 4b. The component lying parallel to the plane of the polarization converter 17 remains unchanged, so that the sum of the two components now results in the e-vector 21 ″ rotated by 90 °.

Nachfolgend werden die beiden Fälle beim Empfang der unterschiedlich zirkular polarisierten Wellen erörtert.The two cases in which the differently circularly polarized waves are received are discussed below.

Fig. 2c zeigt den Fall bei einem Empfang einer zirkular polarisierten Welle. Da die zirkularpolarisierte Welle dadurch zustandekommt, daß der E-Vektor bezüglich zweier senkrecht zueinander stehender Achsen um 90° phasenverschoben ist, wird ein 90°-Phasenverschieber nach Art des Polarisators 15 immer eine Phasenverschiebung der E-Vektor-Komponente in der Ebene dieses Plättchens um 90° bewirken, so daß die beiden orthogonal zueinander stehenden Komponenten des E-Vektors nach dem Polarisator 15 in gleicher Phase zueinander stehen und damit ein um 45° zur Ebene des Polarisators gedrehter linearer E-Vektor 21' erzeugt wird.2c shows the case when a circularly polarized wave is received. Since the circularly polarized wave is caused by the fact that the E-vector is phase-shifted by 90 ° with respect to two mutually perpendicular axes, a 90-degree phase shifter in the manner of the polarizer 15 is always a phase shift of the E-vector component in the plane of this plate 90 ° so that the two orthogonal components of the e-vector after the polarizer 15 are in the same phase with each other and thus a linear e-vector 21 'rotated by 45 ° to the plane of the polarizer is generated.

Der nachgeordnete Polarisationswandler 17 ist demgegenüber um 22,5° zur Vertikalen entgegengesetzt verschwenkt ausgerichtet, wie dies anhand von Fig. 5a vergrößert dargestellt ist. Der lineare E-Vektor 21', der um 45° zur Vertikalen ausgerichtet ist, gibt eine Komponentenzerlegung, wie sie in Fig. 5a strichliert dargestellt ist. Da auch hier wieder nur die kleinere Komponente des E-Vektors 21' in der Ebene des Polarisationswandlers 17 um 180° phasenverschoben wird, führt die Phasenverschiebung dieser Komponente zu einem E-Vektor 21'', der nunmehr exakt eine Vertikallage einnimmt. Ganz allgemein werden bei einem Polarisationswandler mit einer 180°-Phasenverschiebung - wie sich dies auch aus den Fig. 4 und 5 grundsätzlich ergibt - die linearen E-Vektoren immer um die Ebene des Polarisationswandlers gespiegelt, wobei die Orthogonalität zweier senkrecht stehender einlaufender E-Vektoren im Verhältnis zu den auslaufenden E-Vektoren erhalten bleibt.The downstream polarization converter 17, on the other hand, is pivoted in the opposite direction by 22.5 ° to the vertical, as is shown enlarged on the basis of FIG. The linear e-vector 21 ', which is oriented at 45 ° to the vertical, gives a component decomposition as shown in broken lines in FIG. 5a. Since again only the smaller component of the e-vector 21 'is phase-shifted by 180 ° in the plane of the polarization converter 17, the phase shift of this component leads to an e-vector 21''which now assumes an exactly vertical position. In general, in a polarization converter with a 180 ° phase shift - as can also be seen in principle from FIGS. 4 and 5 - the linear E vectors always mirrored around the plane of the polarization converter, whereby the orthogonality of two vertical incoming E-vectors in relation to the outgoing E-vectors is maintained.

Fig. 2d betrifft den zu Fig. 2c umgekehrten Fall bei einer entgegengesetzt zirkularen Polarisation, die über den Polarisator 15 zunächst in einem um -45° zur Vertikalen ausgerichteten linear polarisierten E-Vektor 21' und dann über die entsprechend entgegengesetzt zu Fig. 5a um 22,5° verstellte Ebene des Polarisationswandlers 17 auch zu einem vertikal ausgerichteten E-Vektor 21'' führt.FIG. 2d relates to the case opposite to FIG. 2c in the case of an opposite circular polarization, which is first of all via the polarizer 15 in a linearly polarized E-vector 21 ′ oriented at −45 ° to the vertical and then via the correspondingly opposite to FIG. 5a 22.5 ° adjusted plane of the polarization converter 17 also leads to a vertically aligned E-vector 21 ''.

Aus der Systemanalyse gemäß den Fig. 2a bis 2d ergibt sich, daß zum Empfang einer linearen vertikalen Polarisation gemäß Fig. 2a der l80°-Polarisationswandler 17 vertikal, zum Empfang einer horizontalen Polarisation gemäß Fig. 2b die Ebene des Polarisationswandlers 17 um 45° zur Vertikalen, und zum Empfang einer positiv wie negativ zirkular polarisierten Welle die Ebene des Polarisationswandlers 17 um + oder -22,5° zur Vertikalen entsprechend dem Ausführungsbeispiel nach Fig. 2c bzw. 2d verschwenkt werden muß. In den vier genannten Fällen wird bei den unterschiedlichen vier Eingangs-Polarisationen immer am Ausgang ein vertikal liegender E-Vektor erreicht, der nunmehr in einen quer von dem Empfängersystem abzweigenden Hohlleiter eingespeist werden kann.From the system analysis according to FIGS. 2a to 2d it follows that for receiving a linear vertical polarization according to FIG. 2a the 180 ° polarization converter 17 vertically, for receiving a horizontal polarization according to FIG. 2b the plane of the polarization converter 17 by 45 ° Vertical, and in order to receive a positive and negative circularly polarized wave, the plane of the polarization converter 17 must be pivoted by + or -22.5 ° to the vertical in accordance with the exemplary embodiment according to FIGS. 2c and 2d. In the four cases mentioned, with the four different input polarizations, a vertically lying E-vector is always reached at the output, which can now be fed into a waveguide branching off from the receiver system.

Gleichermaßen kann auch für alle vier Eingangspolarisationen ein horizontaler Ausgangsvektor erzielt werden, wie aus den Fig. 3a bis 3d ersichtlich ist.Similarly, a horizontal output vector can also be achieved for all four input polarizations, as can be seen from FIGS. 3a to 3d.

Bei Verwendung als Erregersystem gelten die erläuterten Verhältnisse analog, wobei die elektromagnetische Welle über den Hohlleiterabschnitt 9 in das Horn 1 eingespeist wird. Bei entsprechenden Stellungen des Polarisationswandlers 17 kann aus einem horizontal ausgerichteten E-Vektor je nach Lage des Polarisationswandlers 17 eine lineare Vertikale oder Horizontale oder aber auch eine rechts wie links zirkulare Polarisation erzeugt werden.When used as an excitation system, the conditions explained apply analogously, with the electromagnetic wave above the waveguide section 9 is fed into the horn 1. With corresponding positions of the polarization converter 17, depending on the position of the polarization converter 17, a linear vertical or horizontal or alternatively a right and left circular polarization can be generated from a horizontally oriented e-vector.

Abweichend vom gezeigten Ausführungsbeispiel kann aber der vordere Polarisator 15 ebenso anstelle der Horizontallage in eine stationäre Vertikallage gebracht werden. Dies hat keinen grundsätzlichen Einfluß und führt zu den gleichen Ergebnissen.In a departure from the exemplary embodiment shown, the front polarizer 15 can also be brought into a stationary vertical position instead of the horizontal position. This has no fundamental influence and leads to the same results.

Aus dem geschilderten Ausführungsbeispiel wird auch deutlich, daß der maximale Verschwenk-Winkelbereich für die Ebene des Polarisationswandlers 17 beispielsweise nur von +45° bis -22,5° bzw. von -45° bis +22,5° reichen muß, also 67,5° nicht übersteigt. Über bestimmte voreinstellbare Raststellen kann ein entsprechendes exaktes Wiederauffinden einer der erläuterten Winkeleinstellungen durch Betrieb des motorischen Antriebes reproduziert werden.It is also clear from the exemplary embodiment described that the maximum pivoting angle range for the plane of the polarization converter 17 only has to range from + 45 ° to -22.5 ° or from -45 ° to + 22.5 °, ie 67 Does not exceed 5 °. Corresponding exact retrieval of one of the explained angle settings can be reproduced via operation of the motor drive via certain presettable locking points.

Anstelle des erläuterten plättchenförmigen dielektrischen Polarisators 15 und Polarisationswandlers 17 können auch andere eine 90° bzw. 180°-Phasenverschiebung erzeugende Bauteile verwandt werden. In Frage kommen hierzu beispielsweise querschnittsverringernde Hohlleitereinengungen, die die gewünschte Phasenverschiebung bewirken.Instead of the plate-shaped dielectric polarizer 15 and polarization converter 17 explained, other components which produce a 90 ° or 180 ° phase shift can also be used. For example, cross-section-reducing waveguide constrictions that bring about the desired phase shift come into question.

Bei Verwendung von dielektrischen Plättchen als Phasenschieber kann bei gleicher Dicke das dielektrische Plättchen für den Polarisationswandler 17 beispielsweise ungefähr doppelt so lang ausgebildet sein als der Polarisator 15. Natürlich könnten aber auch beide Bauteile 15 und 17 etwa gleiche Länge und Größe aufweisen, wobei dann in der Regel die Dicke des Polarisationswandlers 17 etwa doppelt so groß ist wie die Dicke des Polarisators 15, um dadurch eine doppelt so große Phasenverschiebung, nämlich um 180° gegenüber 90° beim Polarisator 15 zu bewerkstelligen.When using dielectric platelets as phase shifters, the dielectric platelet for the polarization converter 17 can, for example, be approximately twice as long as the polarizer 15 with the same thickness. Of course, however, both components 15 and 17 could also have approximately the same length and size, in which case then As a rule, the thickness of the polarization converter 17 is approximately twice as large as the thickness of the polarizer 15, in order thereby to bring about a phase shift which is twice as great, namely by 180 ° compared to 90 ° for the polarizer 15.

Nur der Vollständigkeit halber sei angemerkt, daß natürlich als Polarisator 15 auch ein Phasenverschieber-Bauteil verwendet werden kann, das eine um 180° größere Phasenverschiebung, um beispielsweise 270°, erzeugt. Alle weiteren, um 180° größeren Phasenverschiebungen ergeben letztlich nur wieder eine Grundphasenverschiebung von 90°. Zudem sind größere Phasenverschiebungen nicht sinnvoll, da diese ebenso wieder nur von ihrer Endwirkung her eine 90°-Phasenverschiebung bei lediglich größerer Dämpfung bewirken.For the sake of completeness, it should be noted that, of course, a phase shifter component can also be used as the polarizer 15, which produces a phase shift that is 180 ° larger, for example 270 °. All other phase shifts that are larger by 180 ° ultimately only result in a basic phase shift of 90 °. In addition, larger phase shifts do not make sense, since these also only result in a 90 ° phase shift in terms of their end effect with only greater damping.

Die Verwendung einer Polarisationsweiche ermöglicht den gleichzeitigen Empfang beider orthogonaler Polarisationen nach dem 180°-Plättchen.The use of a polarization switch enables the simultaneous reception of both orthogonal polarizations after the 180 ° plate.

Claims (9)

  1. An exciting or feed system, more particularly for a parabolic antenna for transmitting and receiving of either orthogonally linearly polarized or orthogonally circularly polarized electromagnetic waves, comprising two phase shifting components arranged in a wave guide section (15) which in the direction of propagation of the electromagnetic wave are arranged one behind the other, characterized in that the component which is the first in the receiving direction and is the second in the direction of transmission is in the form of a 90° or, respectively, 90°·(2m - 1) phase shifter (15) (m = 1, 2,...) and the second component following the same in the receiving direction which is the first component in the transmission direction is in the form of a 180° or, respectively, 180°·(2m - 1) phase shifter (17) and in that the 90° phase shifter component (15) has a parallel or perpendicular alignment in relation to a linear polarization and in that the 180° phase shifter component (17) is able to be rotated in an angular range of 67.5° around the direction of propagation of the electromagnetic wave.
  2. The exciting or feed system as claimed in claim 1, characterized in that the 90° phase shifter component (15) and/or the 180° phase shifter component (17) is or are designed in the form of dielectric plates.
  3. The exciting or feed system as claimed in claim 1, characterized in that the 90° phase shifter component (15) and/or the 180° phase shifter component (17) is or are designed in the form of cross section constricting wave guide constrictions.
  4. The exciting or feed system as claimed in any one of the claims 1 through 3, characterized in that a polarization switch is arranged following the 180° phase shifter component (17) in the receiving direction.
  5. The exciting or feed system as claimed in any one of the claims 1 through 4, characterized in that the 180° phase shifter component (17) is able to be rocked out of a position, which is parallel or perpendicular to the E vector (21, 21' and 21'') of a linear polarization at least through + or - 45° in order to be able to receive both orthogonal linear polarizations adjustably.
  6. The exciting or feed system as claimed in any one of the claims 1 through 5, characterized in that for receiving both oppositely polaraized circular polarizations the 180° phase shifter component (17) is able to be rotated at least between + or - 22.5° in relation to the position of the 90° phase shifter component (15) or the plane which is perpendicular thereto.
  7. The exciting or feed system as claimed in claim 5 or in claim 6, characterized in that the range of angular rotation of the 180° phase shifter component (17) amounts top 67.5°.
  8. The exciting or feed system as claimed in any one of the claims 1 through 7, characterized in that the 90° phase shifter component (17) is designed for a frequency range of 11.7 to 12.5 GHz.
  9. The exciting or feed system as claimed in any one of the claims 1 through 8, characterized in that the 180° phase shifter component (17) is designed for a frequency range of 10.95 to 12.75 GHz.
EP88119185A 1987-12-08 1988-11-18 Exciting or feeding system for a parabolic antenna Expired - Lifetime EP0319753B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88119185T ATE93657T1 (en) 1987-12-08 1988-11-18 PATHOGEN- OR. FEEDING SYSTEM FOR A PARABOLIC ANTENNA.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3741501A DE3741501C1 (en) 1987-12-08 1987-12-08 Excitation or feed system for a parabolic antenna
DE3741501 1987-12-08

Publications (2)

Publication Number Publication Date
EP0319753A1 EP0319753A1 (en) 1989-06-14
EP0319753B1 true EP0319753B1 (en) 1993-08-25

Family

ID=6342089

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88119185A Expired - Lifetime EP0319753B1 (en) 1987-12-08 1988-11-18 Exciting or feeding system for a parabolic antenna

Country Status (3)

Country Link
EP (1) EP0319753B1 (en)
AT (1) ATE93657T1 (en)
DE (2) DE3741501C1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3920563A1 (en) * 1989-06-23 1991-01-10 Mueller Heinz Juergen Dipl Ing Energising and supply system for parabolic antenna - e.g. for satellite communications using polariser, polarisation switching device and converter for different, frequency ranges
JPH03185901A (en) * 1989-12-14 1991-08-13 Sharp Corp Polarized wave converter
DE4437595A1 (en) * 1994-10-20 1996-05-30 Pt Komtelindo Adipratama Waveguide septum phase shifter for polarised signals
DE19912262A1 (en) * 1999-03-18 2000-10-12 Kathrein Werke Kg Excitation or feed device, in particular for a satellite antenna
DE102016112583A1 (en) * 2016-07-08 2018-01-11 Lisa Dräxlmaier GmbH Controllable phase actuator for electromagnetic waves
DE102016112581A1 (en) * 2016-07-08 2018-01-11 Lisa Dräxlmaier GmbH Phased array antenna
RU2650719C1 (en) * 2017-04-03 2018-04-17 Федеральное государственное унитарное предприятие Ордена Трудового Красного Знамени научно-исследовательский институт радио Separator of orthogonal polarized waves

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945309B2 (en) * 1978-02-08 1984-11-05 ケイディディ株式会社 Crossed polarization compensation method
IT1160267B (en) * 1978-11-27 1987-03-11 Sits Soc It Telecom Siemens CIRCUIT PROVISION TO DETECT THE ANTENNA POINTING ERROR IN A TELECOMMUNICATIONS SYSTEM
US4264908A (en) * 1979-03-06 1981-04-28 Nasa Adaptive polarization separation
US4353041A (en) * 1979-12-05 1982-10-05 Ford Aerospace & Communications Corp. Selectable linear or circular polarization network
DE3177174D1 (en) * 1981-08-27 1990-05-31 Mitsubishi Electric Corp DEVICE FOR DETECTING AN ANGLE ERROR.
IT1181958B (en) * 1985-03-27 1987-09-30 Selenia Spazio Spa DEVICE FOR THE LOSS-FREE COMBINATION OF THE RF POWER OF TWO OR MORE MICROWAVE TRANSMITTERS WORKING IN PARALLEL AND WITH ANY POWER RATIO

Also Published As

Publication number Publication date
EP0319753A1 (en) 1989-06-14
DE3741501C1 (en) 1989-02-02
ATE93657T1 (en) 1993-09-15
DE3883498D1 (en) 1993-09-30

Similar Documents

Publication Publication Date Title
DE60131581T2 (en) Terminal with phased array antennas for equatorial satellite constellations
DE60310481T2 (en) Multiband horn
DE2727883A1 (en) MICROWAVE ANTENNA SYSTEM
WO2018007209A1 (en) Phase-controlled antenna element
DE3201454A1 (en) DEVICE FOR COUPLING LINEAR POLARIZED ELECTROMAGNETIC WAVES
DE102007050724A1 (en) Dual polarized multi-fiber antenna
DE2729651C2 (en) Antenna for a radio link leading through the ionosphere with a polarization rotator
DE102015108154B4 (en) Two-channel polarization correction
EP0319753B1 (en) Exciting or feeding system for a parabolic antenna
DE2800101A1 (en) SPOTLIGHT FOR AN ANTENNA, ETC. FOR SATELLITE SIGNALS
DE1093837B (en) Helical antenna with a linear central conductor
DE1942678A1 (en) Arrangement for signal feeding in a single pulse system working in several modes
DE10195823B3 (en) Antenna element, transceiver and method of operating a transceiver
DE2812575A1 (en) Phase controlled antenna array - uses transmitters, each with pilot control circuit with phase discriminator and adjustable phase shifter
DE1909205A1 (en) Cylindrical antenna system with electronic rotation of the radiation pattern
EP3482457B1 (en) Phase-controlled antenna array
DE3920563C2 (en)
DE2626926C2 (en) Waveguide primary radiator with rectangular cross-section for a reflector antenna with beam swivel
DE4124719C2 (en)
EP0200819A2 (en) Antenna array
DE102017128631B4 (en) DEVICE FOR RECEIVING LINEAR POLARIZED SATELLITE SIGNALS
DE2752680A1 (en) Directional aerial for very short waves - has main exciter producing main lobe, and secondary exciters producing secondary lobes compensating interferences
DE3902739C2 (en) Radar array antenna
DE3514880A1 (en) Antenna array
DE2366445C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19890705

17Q First examination report despatched

Effective date: 19920310

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19930825

Ref country code: SE

Effective date: 19930825

Ref country code: GB

Effective date: 19930825

Ref country code: BE

Effective date: 19930825

Ref country code: FR

Effective date: 19930825

Ref country code: NL

Effective date: 19930825

REF Corresponds to:

Ref document number: 93657

Country of ref document: AT

Date of ref document: 19930915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3883498

Country of ref document: DE

Date of ref document: 19930930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931130

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19930825

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19941122

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941219

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19951118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19951130

Ref country code: LI

Effective date: 19951130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071018

Year of fee payment: 20