EP0307721B1 - Optical heterodyne receiver with a six-port fibre coupler - Google Patents

Optical heterodyne receiver with a six-port fibre coupler Download PDF

Info

Publication number
EP0307721B1
EP0307721B1 EP88114208A EP88114208A EP0307721B1 EP 0307721 B1 EP0307721 B1 EP 0307721B1 EP 88114208 A EP88114208 A EP 88114208A EP 88114208 A EP88114208 A EP 88114208A EP 0307721 B1 EP0307721 B1 EP 0307721B1
Authority
EP
European Patent Office
Prior art keywords
connection
transistor
photodiode
current reflector
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88114208A
Other languages
German (de)
French (fr)
Other versions
EP0307721A1 (en
Inventor
Joachim Dr.-Ing. Pietzsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT88114208T priority Critical patent/ATE81928T1/en
Publication of EP0307721A1 publication Critical patent/EP0307721A1/en
Application granted granted Critical
Publication of EP0307721B1 publication Critical patent/EP0307721B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/265Current mirrors using bipolar transistors only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/64Heterodyne, i.e. coherent receivers where, after the opto-electronic conversion, an electrical signal at an intermediate frequency [fIF] is obtained

Definitions

  • the invention relates to an optical superimposed receiver with inputs for a received signal and the signal of a local laser, with a triple-fiber coupler connected to the inputs as an optical 120 ° hybrid and with optically coupled to the outputs of the triple-fiber coupler, the output signals of which via a first to third photo current amplifier and a first to third signal demodulator are applied to three inputs of a summer and that the data signal can be taken from the signal output thereof.
  • an optical superimposed receiver can be constructed, in which an optical received signal is mixed with the signal from a local laser.
  • the mixing takes place in a photodiode as an optoelectric converter, the photodiodes thus emit an electrical signal directly at an intermediate frequency level.
  • the intermediate frequency is the difference frequency between the frequency of the received signal and the oscillation frequency of the local laser.
  • Three photodiodes are optically connected to the outputs of the triple fiber coupler, in each of which the mixture between components of the same polarization of the received light and the light of the local laser takes place.
  • an electrical component corresponding to the mixture product is generated by the photodiodes and output to downstream photocurrent amplifiers.
  • the photo currents generated are phase-shifted from one another by 120 ° and are converted into baseband signals in downstream demodulators for the modulation method selected in each case. These baseband signals are combined in a three-input summer, and the demodulated data signal is thus generated.
  • the object of the present invention is therefore to improve the signal-to-noise ratio in optical heterodyne receivers of the type mentioned in the introduction and to To generate amplifying photo current as DC-free as possible.
  • the object is achieved by an optical overlay receiver of the type mentioned at the outset, which is developed in accordance with the features contained in the characterizing part of patent claim 1.
  • Of particular advantage in the optical superposition receiver according to the invention is the suppression of the direct components in the photocurrent of the photodiodes together with the suppression of the laser amplitude noise, so that a significant improvement in sensitivity can be achieved without a significant increase in expenditure.
  • the first optical input connection of the triple fiber coupler K is connected to a source for a reception signal ES, to which the second input connection is the local laser oscillator LO is connected, the third input connection remains unconnected.
  • the three output connections of the triple fiber coupler are optically connected to three photodiodes PD1, PD2, PD3. These photodiodes are connected in push-pull with respect to the downstream photocurrent amplifiers V1, V2, V3, so that in each case a differential photocurrent flows into the input connections of the photocurrent amplifiers.
  • the anode connection of the first photodiode is connected to the cathode connection of the second photodiode and at the same time to the input connection of the first photocurrent amplifier V1.
  • the anode connection of the second photodiode PD2 is connected to the cathode connection of the third photodiode PD3 and to the input connection of the second photocurrent amplifier V2.
  • the anode connection of the third photodiode PD3 is connected in an analogous manner to the cathode connection of the first photodiode and to the input connection of the third photocurrent amplifier V3.
  • the difference I1-I2 flows into the input connection of the first photocurrent amplifier, the difference I2-I3 into the input connection of the second photocurrent amplifier V2 and in the input terminal of the third photocurrent amplifier V3 the difference I3-I1.
  • the photocurrent amplifiers in the form of transimpedance or high-impedance amplifiers are designed as current-voltage converters, so that voltages corresponding to the photocurrent differences arise at their outputs.
  • the photocurrent amplifiers V1, V2, V3 each have a first, second, third demodulator DM1, DM2, DM3 for the selected one Modulation process downstream.
  • differential pulse phase jump modulation DPSK
  • demodulators - the reception of PSK or ASK - modulated signals.
  • the photocurrent amplifier and demodulator each form a signal channel, with the phase of the currents flowing in the channels being shifted from one another by 120 °.
  • the shot noise power in channel n is: N n ⁇ 2nd 3rd e K n P O B, where B is the noise bandwidth.
  • the modulation takes place by keying the phase ⁇ o.
  • demodulation in the form of an envelope demodulation takes place separately in each channel before the summation of the three channels.
  • the maximum differential current is therefore of size I. n + 1 - I n
  • Max ⁇ 3rd ⁇ 2nd 3rd K ⁇ P s P O ⁇ .
  • the differential signal is free of direct current and free of any laser amplitude noise.
  • Pin diodes have been used as photodiodes in the exemplary embodiment.
  • the demodulators DM1 - DM3 are DPSK demodulators.
  • the totalizer is designed as an emitter follower with three inputs. Slight asymmetries of the fiber coupler can be corrected by different coupling to the photodiodes and / or by different adjustment of the internal amplification when using avalanche multiplication diodes and / or by correction elements when forming the differential photo currents.
  • FIG. 2 shows an input part of an optical heterodyne receiver based on the phase diversity principle with biased photodiodes.
  • the photodiodes PD1, PD2, PD3 each receive a bias voltage from a first or second current mirror SS1, SS2, which in turn are connected to a first or second voltage source U1, U2.
  • the distribution of the bias voltages among the diodes is effected by the definition of the direct voltage operating points or photocurrent amplifiers V1 and V2.
  • the overlay receiver according to FIG. 1 there are also the overlay receiver according to FIG.
  • the anode of the first photodiode PD1 and the cathode of the second photodiode PD2 and the input connection of the first photocurrent amplifier V1 are connected to one another, and the connection from the anode of the second photodiode PD2 to the cathode of the third photodiode PD3 and to the input connection of the second photocurrent amplifier V2 corresponds to FIG. 1.
  • two voltage sources U1, U2 are provided, which supply the bias voltage for the photodiodes.
  • the bias voltage is supplied via a first current mirror SS1, the first terminal 1, 1 of which is connected to the first operating voltage source U1 and the second terminal 1, 2 of which is connected to the cathode of the first photodiode PD1.
  • the second current mirror SS2 is connected to the second operating voltage source U2 via its first connection 2, 1.
  • the second terminal of this current mirror is connected to the anode of the third photodiode PD3, so that the current I3 flows through this second terminal 2.2.
  • an equal current I3 ' flows through the third terminal 2.3 of the second current mirror SS2, an equal current I3 ', so that at the junction of the third terminals of the first and second current mirror SS1, SS2, the differential current I1' -I3 'decreased and the input terminal of third photocurrent amplifier V3 can be supplied.
  • the construction of a current mirror from a transistor and a diode connected in parallel with its base-emitter path is known. This principle is used in FIG. 3a to implement the first current mirror SS1 by means of discrete components.
  • the first terminals of a first and a second resistor R1, R2 are connected to the terminal 1, 1.
  • the second connection of the first resistor is connected via a first diode D1 to the base connection of a first transistor T1 with pnp layer sequence, the second connection of the second resistor R2 is connected to the emitter connection of the first transistor T1 connected, the base connection of this transistor represents connection 1.2 and the collector connection represents connection 1.3 of the first current mirror SS1.
  • FIG. 3b A corresponding implementation of the second current mirror SS2 by means of discrete components is shown in FIG. 3b.
  • the first terminals of a third and a fourth resistor R3, R4 are connected to the terminal 2.1.
  • the second connection of the third resistor R3 is connected via a second diode D2 to the base connection of a second transistor T2 with npn layer sequence and also to the connection 2.2 of the second current mirror SS2.
  • the second connection of the fourth resistor R4 is connected to the emitter connection of the second transistor T2, the collector connection of this transistor represents the connection 2.3 of the second current mirror SS2.
  • FIG. 4 shows the implementation of the current mirror SS1 and SS2 in integrated technology.
  • the diode D1 in the arrangement according to FIG. 4a is replaced by a third transistor T3.
  • the emitter connection of this transistor represents the anode connection of the diode D1
  • the collector and the base connection of this transistor are connected to one another and to the base connection of a fourth transistor T1 of the pnp type and represent the connection 1.2 of the first current mirror SS1.
  • a fifth transistor T5 of the npn type is provided instead of the second diode D2 according to FIG. 3b.
  • the emitter connection of this transistor represents the cathode connection of the second diode D2, while the anode connection is formed by the interconnected collector and base connections of the fifth transistor T5 and thus the connection 2.2. represent the second current mirror SS2.
  • the connection 2, 3 is formed by the collector connection of a sixth transistor of the NPN type.

Abstract

In a conventional optical heterodyne receiver with a standard six- port fibre coupler, a loss of sensitivity occurs compared with an optical heterodyne receiver with a 90 DEG hybrid and, furthermore, laser amplitude noise is inadequately suppressed. Therefore, according to the invention, the receiver with a six-port fibre coupler (K) is designed as a pair of balanced receivers, so that the photocurrent amplifiers connected behind the photodiodes (PD1, PD2, PD3), through suppression of the DC components in the photocurrent, receive only the differences in current between the photocurrents of in each case two photodiodes. <IMAGE>

Description

Die Erfindung betrifft einen optischen Überlagerungsempfänger mit Eingängen für ein Empfangssignal und das Signal eines lokalen Lasers, mit einem, mit den Eingängen verbundenen Dreifach-Faserkoppler als optischem 120° Hybrid und mit an die Ausgänge des Dreifach-Faserkopplers optisch angekoppelten Fotodioden, deren Ausgangssignale über einen ersten bis dritten Fotostromverstärker und einen ersten bis dritten Signaldemodulator an drei Eingänge eines Summierers angelegt werden und daß an dessen Signalausgang das Datensignal entnehmbar ist.The invention relates to an optical superimposed receiver with inputs for a received signal and the signal of a local laser, with a triple-fiber coupler connected to the inputs as an optical 120 ° hybrid and with optically coupled to the outputs of the triple-fiber coupler, the output signals of which via a first to third photo current amplifier and a first to third signal demodulator are applied to three inputs of a summer and that the data signal can be taken from the signal output thereof.

Analog einem elektrischen Überlagerungsempfänger ist ein optischer Überlagerungsempfänger aufbaubar, bei dem ein optisches Empfangssignal mit dem Signal eines lokalen Lasers gemischt wird. Die Mischung geschieht dabei in einer Fotodiode als optoelektrischem Wandler, die Fotodioden geben damit unmittelbar ein elektrisches Signal in einer Zwischenfrequenzebene ab. Die Zwischenfrequenz ist dabei die Differenzfrequenz zwischen der Frequenz des Empfangssignals und der Schwingfrequenz des lokalen Lasers. Um die heute üblichen Datenraten von 565 Mbit/s oder gar die zukünftige Datenrate von 2,5 Gbit/s übertragen zu können, ist man gezwungen, eine sehr hohe Zwischenfrequenz zu wählen, die meist im Gigahertzbereich liegt. Damit ergibt sich aber die Notwendigkeit, in der Zwischenfrequenzebene hochempfindliche Verstärker mit sehr hoher Bandbreite und Grenzfrequenz einsetzen zu müssen. Entsprechend Electronics Letters vom 12.09.85, VOL 21, No. 19, Seiten 867 und 868 besteht bei Mehrtorempfang die Möglichkeit, optische Überlagerungsempfänger mit sehr niedrigen Zwischenfrequenzen einsetzen zu können, so daß Zwischenfrequenzverstärker mit einer Bandbreite einsetzbar sind, die etwa der Basisbandbreite bei Homodyn- oder Direktempfang entspricht.Analogous to an electrical superimposed receiver, an optical superimposed receiver can be constructed, in which an optical received signal is mixed with the signal from a local laser. The mixing takes place in a photodiode as an optoelectric converter, the photodiodes thus emit an electrical signal directly at an intermediate frequency level. The intermediate frequency is the difference frequency between the frequency of the received signal and the oscillation frequency of the local laser. In order to be able to transmit the current data rates of 565 Mbit / s or even the future data rate of 2.5 Gbit / s, you have to choose a very high intermediate frequency, which is usually in the gigahertz range. However, this results in the need to use highly sensitive amplifiers with a very high bandwidth and cutoff frequency in the intermediate frequency level. According to Electronics Letters from 09/12/85, VOL 21, No. 19, pages 867 and 868, with multi-port reception, there is the possibility of using optical superimposed receivers with very low intermediate frequencies, so that intermediate frequency amplifiers can be used with a bandwidth which corresponds approximately to the base bandwidth for homodyne or direct reception.

Im Digest No 1985/30 zum IEE Colloquium on Advances in Coherent optical Devices and Techniques, London 1985, Seiten 11/1 bis 11/5 ist ein phasenunempfindlicher optischer Homodyempfänger mit einem Dreitorempfangsteil unter Verwendung eines 3x3 Faserkopplers als 120° Hybrid beschrieben, wegen der nichtidealen Phasencharakteristik dieses Kopplers ergibt sich ein Empfindlichkeitsverlust von 1,8 dB gegenüber dem optischen Überlagerungsempfänger mit einem Zweitor-Empfangsteil nach Electronics Letters, bei dem ein vergleichsweise sehr präziser 90° Hybrid benötigt wird. Auch in SPIE VOL 630 Fibre Optics (Sira) 1986, S. 28 - 32 wird ein breitbandiger optischer Phasen-Diversitäts-Homodynempfänger unter Verwendung eines Dreifach-Faserkopplers beschrieben. Mit den Ausgängen des Dreifach-Faserkopplers sind dabei optisch drei Fotodioden verbunden, in denen jeweils die Mischung zwischen gleich polarisierten Komponenten des Empfangslichts und des Lichts des lokalen Lasers erfolgt. Außerdem wird von den Fotodioden eine dem Mischungsprodukt entsprechende elektrische Komponente erzeugt und an nachgeschaltete Fotostromverstärker abgegeben. Die erzeugten Fotoströme sind dabei um 120° zueinander phasenverschoben und werden in nachgeschalteten Demodulatoren für das jeweils gewählte Modulationsverfahren in Basisbandsignale umgeformt. Diese Basisbandsignale werden in einem Summierer mit drei Eingängen zusammengefaßt, und es wird damit das demodulierte Datensignal erzeugt.Digest No 1985/30 of the IEE Colloquium on Advances in Coherent optical Devices and Techniques, London 1985, pages 11/1 to 11/5 describes a phase-insensitive optical homodyne receiver with a three-port receiver using a 3x3 fiber coupler as a 120 ° hybrid because of the In non-ideal phase characteristics of this coupler, there is a loss of sensitivity of 1.8 dB compared to the optical heterodyne receiver with a two-port receiver according to Electronics Letters, which requires a comparatively very precise 90 ° hybrid. A broadband optical phase diversity homodyne receiver using a triple fiber coupler is also described in SPIE VOL 630 Fiber Optics (Sira) 1986, pp. 28-32. Three photodiodes are optically connected to the outputs of the triple fiber coupler, in each of which the mixture between components of the same polarization of the received light and the light of the local laser takes place. In addition, an electrical component corresponding to the mixture product is generated by the photodiodes and output to downstream photocurrent amplifiers. The photo currents generated are phase-shifted from one another by 120 ° and are converted into baseband signals in downstream demodulators for the modulation method selected in each case. These baseband signals are combined in a three-input summer, and the demodulated data signal is thus generated.

Nachteilig bei den geschilderten bekannten optischen Überlagerungsempfängern ist neben einem Empfindlichkeitsverlust bei Verwendung bekannter Dreifachkoppler das Auftreten des Laseramplitudenrauschens im Basisbandsignal und die Gleichstromkomponente im Fotostrom; sie verhindert oder erschwert wesentlich den Einsatz z. B. eines Hochimpedanzfotostromverstärkers.In addition to a loss of sensitivity when known triple couplers are used, the occurrence of laser amplitude noise in the baseband signal and the direct current component in the photocurrent are disadvantageous in the known optical superposition receivers described. it prevents or significantly complicates the use z. B. a high impedance photocurrent amplifier.

Die Aufgabe bei der vorliegenden Erfindung besteht also darin, das Signal-Geräuschverhältnis bei optischen Überlagerungsempfängern der eingangs erwähnten Art zu verbessern und den zu verstärkenden Fotostrom möglichst gleichstromfrei zu erzeugen.The object of the present invention is therefore to improve the signal-to-noise ratio in optical heterodyne receivers of the type mentioned in the introduction and to To generate amplifying photo current as DC-free as possible.

Erfindungsgemäß wird die Aufgabe durch einen optischen Überlagerungsempfänger der eingangs erwähnten Art gelöst, der entsprechend den im Kennzeichen des Patentanspruchs 1 enthaltenen Merkmale weitergebildet ist. Es entfällt dabei der Empfindlichkeitsverlust von 1,8 dB, wie er beim herkömmlichen Phasen-Diversitätsempfänger mit optischem 3 x 3-Koppler gegenüber dem Phasen-Diversitätsempfänger mit Zweitor auftritt. Von besonderem Vorteil beim erfindungsgemäßen optischen Überlagerungsempfänger ist die Unterdrückung der Gleichanteile im Fotostrom der Fotodioden zusammen mit der Unterdrückung des Laseramplitudenrauschens, so daß sich eine wesentliche Empfindlichkeitsverbesserung ohne wesentliche Aufwandserhöhung erreichen läßt.According to the invention, the object is achieved by an optical overlay receiver of the type mentioned at the outset, which is developed in accordance with the features contained in the characterizing part of patent claim 1. There is no loss of sensitivity of 1.8 dB, as occurs in the conventional phase diversity receiver with an optical 3 x 3 coupler compared to the phase diversity receiver with two ports. Of particular advantage in the optical superposition receiver according to the invention is the suppression of the direct components in the photocurrent of the photodiodes together with the suppression of the laser amplitude noise, so that a significant improvement in sensitivity can be achieved without a significant increase in expenditure.

Eine Ausführungsform mit besonders geringem Aufwand ist in Patantanspruch 2 beschrieben.An embodiment with particularly little effort is described in claim 2.

Eine bevorzugte Ausführungsform des erfindungsgemäßen optischen Überlagerungsempfängers ist im Patentanspruch 3 näher erläutert, zweckmäßige Ausbildungen der bei diesem optischen Überlagerungsempfänger verwendeten Stromspiegel sind für diskreten Aufbau in den Patentansprüchen 4 und 5 und für integrierten Aufbau in den Patentansprüchen 6 und 7 angegeben.A preferred embodiment of the optical superimposition receiver according to the invention is explained in more detail in patent claim 3, expedient designs of the current mirrors used in this optical superimposition receiver are specified for claims of discrete construction in claims 4 and 5 and for integrated construction in claims 6 and 7.

Die Erfindung soll im vorliegenden anhand in der Zeichnung dargestellter Ausführungsbeispiele näher erläutert werden.The invention will be explained in more detail in the present case with reference to exemplary embodiments shown in the drawing.

Dabei zeigt

Fig. 1
den prinzipiellen Aufbau eines erfindungsgemäßen optischen Überlagerungsempfängers,
Fig. 2
einen erfindungsgemäßen optischen Überlagerungsempfänger mit einem, vorgespannte Fotodioden enthaltenden Eingangsteil,
Fig. 3
im Eingangsteil der Fig. 2 verwendbare Stromspiegel mit diskreten Elementen und
Fig. 4
im Eingangsteil der Fig. 2 verwendbare Stromspiegel in integrierter Technik.
It shows
Fig. 1
the basic structure of an optical superimposition receiver according to the invention,
Fig. 2
an optical superimposition receiver according to the invention with an input part containing biased photodiodes,
Fig. 3
Current mirrors with discrete elements and which can be used in the input part of FIG
Fig. 4
Current mirrors that can be used in the input part of FIG. 2 in integrated technology.

Der in der Fig. 1 dargestellte optische Überlagerungsempfänger ist als Gegentakt-Phasendiversitätsempfänger aufgebaut und enthält im optischen Eingangsteil einen Dreifach-Faserkoppler K. Der erste optische Eingangsanschluß des Dreifach-Faserkopplers K ist mit einer Quelle für ein Empfangssignal ES verbunden, an den zweiten Eingangsanschluß ist der lokale Laseroszillator LO angeschlossen, der dritte Eingangsanschluß bleibt unbeschaltet. Die drei Ausgangsanschlüsse des Dreifach-Faserkopplers sind optisch mit drei Fotodioden PD1, PD2, PD3 verbunden. Diese Fotodioden sind im Hinblick auf die nachgeschalteten Fotostromverstärker V1, V2, V3 jeweils im Gegentakt geschaltet, so daß in die Eingangsanschlüsse der Fotostromverstärker jeweils ein Differenz-Fotostrom fließt. Dazu ist der Anodenanschluß der ersten Fotodiode mit dem Katodenanschluß der zweiten Fotodiode und gleichzeitig mit dem Eingangsanschluß des ersten Fotostromverstärkers V1 verbunden. Entsprechend ist der Anodenanschluß der zweiten Fotodiode PD2, mit dem Katodenanschluß der dritten Fotodiode PD3, und mit dem Eingangsanschluß des zweiten Fotostromverstärkers V2 verbunden. In analoger Weise ist der Anodenanschluß der dritten Fotodiode PD3 mit dem Katodenanschluß der ersten Fotodiode und mit Eingangsanschluß des dritten Fotostromverstärkers V3 verbunden. Bezeichnet man die durch die erste, zweite und dritte Fotodiode PD1, PD2, PD3 fließenden Ströme mit I₁, I₂, I₃ dann fließt in den Eingangsanschluß des ersten Fotostromverstärkers die Differenz I₁-I₂, in den Eingangsanschluß des zweiten Fotostromverstärkers V2 die Differenz I₂-I₃ und in den Eingangsanschluß des dritten Fotostromverstärkers V3 die Differenz I₃-I₁. Die Fotostromverstärker in Form von Transimpedanz- oder Hochimpedanzverstärkern sind als Stromspannungswandler ausgelegt, so daß an deren Ausgängen den Fotostromdifferenzen entsprechende Spannungen entstehen. Den Fotostromverstärkern V1, V2, V3 ist jeweils ein erster, zweiter, dritte Demodulator DM1, DM2, DM3 für das jeweils gewählte Modulationsverfahren nachgeschaltet. Beim Ausführungsbeispiel wird Differenz-Pulsphasensprungmodulation (DPSK) verwendet, es ist auch bei entsprechend geänderten Demodulatoren -der Empfang von PSK- oder ASK - modulierten Signalen möglich. Fotostromverstärker und Demodulator bilden jeweils einen Signalkanal, wobei die Phase der in den Kanälen fließenden Ströme zueinander um jeweils 120° verschoben ist.1 is constructed as a push-pull phase diversity receiver and contains a triple fiber coupler K in the optical input part. The first optical input connection of the triple fiber coupler K is connected to a source for a reception signal ES, to which the second input connection is the local laser oscillator LO is connected, the third input connection remains unconnected. The three output connections of the triple fiber coupler are optically connected to three photodiodes PD1, PD2, PD3. These photodiodes are connected in push-pull with respect to the downstream photocurrent amplifiers V1, V2, V3, so that in each case a differential photocurrent flows into the input connections of the photocurrent amplifiers. For this purpose, the anode connection of the first photodiode is connected to the cathode connection of the second photodiode and at the same time to the input connection of the first photocurrent amplifier V1. Accordingly, the anode connection of the second photodiode PD2 is connected to the cathode connection of the third photodiode PD3 and to the input connection of the second photocurrent amplifier V2. The anode connection of the third photodiode PD3 is connected in an analogous manner to the cathode connection of the first photodiode and to the input connection of the third photocurrent amplifier V3. If one designates the currents flowing through the first, second and third photodiodes PD1, PD2, PD3 with I₁, I₂, I₃ then the difference I₁-I₂ flows into the input connection of the first photocurrent amplifier, the difference I₂-I₃ into the input connection of the second photocurrent amplifier V2 and in the input terminal of the third photocurrent amplifier V3 the difference I₃-I₁. The photocurrent amplifiers in the form of transimpedance or high-impedance amplifiers are designed as current-voltage converters, so that voltages corresponding to the photocurrent differences arise at their outputs. The photocurrent amplifiers V1, V2, V3 each have a first, second, third demodulator DM1, DM2, DM3 for the selected one Modulation process downstream. In the exemplary embodiment, differential pulse phase jump modulation (DPSK) is used; it is also possible with appropriately modified demodulators - the reception of PSK or ASK - modulated signals. The photocurrent amplifier and demodulator each form a signal channel, with the phase of the currents flowing in the channels being shifted from one another by 120 °.

Für den Strom In im Kanal n gilt näherungsweise:

Figure imgb0001
The following applies approximately for the current I n in channel n:
Figure imgb0001

Die Schrotrauschleistung im Kanal n lautet:

N n 2 3 e K n P o B,

Figure imgb0002


wobei B die Rauschbandbreite ist.The shot noise power in channel n is:

N n 2nd 3rd e K n P O B,
Figure imgb0002


where B is the noise bandwidth.

Die Modulation erfolgt bei DPSK durch Tastung der Phase Φo. Die Demodulation in Form einer Hüllkurvendemodulation erfolgt wie bisher getrennt in jedem Kanal vor der Summation der drei Kanäle.With DPSK, the modulation takes place by keying the phase Φo. As before, demodulation in the form of an envelope demodulation takes place separately in each channel before the summation of the three channels.

Das maximale Signal-Geräuschverhältnis in einem Kanal beträgt mit dem bisherigen Verfahren

Figure imgb0003
With the previous method, the maximum signal-to-noise ratio in a channel is
Figure imgb0003

Dies ist um den Faktor 3 oder 4,8 dB schlechter als der ideale Homodynempfang. Der Dreifachkoppler ist symmetrisch, d.h. φ n = n · 120° und Kn = K. Der maximale Differenzstrom hat damit die Größe

I n+1 - I n | max = √ 3 ¯ 2 3 K √ P s P o ¯ .

Figure imgb0004

This is a factor of 3 or 4.8 dB worse than ideal homodyne reception. The triple coupler is symmetrical, ie φ n = n · 120 ° and K n = K. The maximum differential current is therefore of size

I. n + 1 - I n | Max = √ 3rd ¯ 2nd 3rd K √ P s P O ¯ .
Figure imgb0004

Das Signal-Geräuschverhältnis erreicht nun (Nneu = 2Nn)

Figure imgb0005

d. h. es ist nur 3 dB schlechter als der ideale Homodynempfang. Zudem ist das Differenzsignal gleichstromfrei und frei von eventuellem Laseramplitudenrauschen.The signal-to-noise ratio now reaches (N new = 2N n )
Figure imgb0005

ie it is only 3 dB worse than the ideal homodyne reception. In addition, the differential signal is free of direct current and free of any laser amplitude noise.

Als Fotodioden sind beim Ausführungsbeispiel pin-Dioden verwendet worden. Die Demodulatoren DM1 - DM3 sind DPSK-Demodulatoren. Der Summierer ist als Emitterfolger mit drei Eingängen ausgeführt. Geringe Unsymmetrien des Faserkopplers können durch unterschiedliche Ankopplung an die Fotodioden und/oder durch unterschiedliche Einstellung der internen Verstärkung bei Einsatz von Lawinenmultiplikationsdioden und/oder durch Korrekturglieder bei der Bildung der Differenzfotoströme korrigiert werden.Pin diodes have been used as photodiodes in the exemplary embodiment. The demodulators DM1 - DM3 are DPSK demodulators. The totalizer is designed as an emitter follower with three inputs. Slight asymmetries of the fiber coupler can be corrected by different coupling to the photodiodes and / or by different adjustment of the internal amplification when using avalanche multiplication diodes and / or by correction elements when forming the differential photo currents.

In der Figur 2 ist ein Eingangsteil eines optischen Überlagerungsempfängers nach dem Phasendiversitätsprinzip mit vorgespannten Fotodioden dargestellt. Die Fotodioden PD1, PD2, PD3 erhalten jeweils eine Vorspannung durch einen ersten bzw. zweiten Stromspiegel SS1, SS2, die ihrerseits an eine erste bzw. zweite Spannungsquelle U1, U2 angeschlossen sind. Die Aufteilung der Vorspannungen auf die Dioden wird durch die Festlegung der Gleichspannungsarbeitspunkte oder Fotostromverstärker V1 und V2 bewirkt. Wie beim Überlagerungsempfänger nach der Figur 1 sind auch beim Überlagerungsempfänger nach der Figur 2 die Anode der ersten Fotodiode PD1 und die Katode der zweiten Fotodiode PD2 sowie der Eingangsanschluß des ersten Fotostromverstärkers V1 miteinander verbunden, auch die Verbindung von der Anode der zweiten Fotodiode PD2 zur Katode der dritten Fotodiode PD3 und zum Eingangsanschluß des zweiten Fotostromverstärkers V2 entspricht Figur 1. Zusätzlich sind zwei Spannungsquellen U1, U2 vorgesehen, die die Vorspannung für die Fotodioden liefern. Die Zuführung der Vorspannung erfolgt dabei über einen ersten Stromspiegel SS1, dessen erster Anschluß 1,1 mit der ersten Betriebsspannungsquelle U1 und dessen zweiter Anschluß 1,2 mit der Katode der ersten Fotodiode PD1 verbunden ist. Damit fließt über den zweiten Anschluß 1,2 der Strom I₁, der wegen der Stromspiegelung auch aus dem dritten Anschluß 1,3 des ersten Stromspiegels SS1 in Form des Stroms I₁′ fließt. Mit der zweiten Betriebsspannungsquelle U2 ist der zweite Stromspiegel SS2 über dessen ersten Anschluß 2,1 verbunden. Der zweite Anschluß dieses Stromspiegels ist an die Anode der dritten Fotodiode PD3 angeschlossen, so daß über diesen zweiten Anschluß 2,2 der Strom I₃ fließt. Entsprechend der Stromspiegelwirkung fließt über den dritten Anschluß 2,3 des zweiten Stromspiegels SS2 ein gleich großer Strom I₃′, so daß am Verbindungspunkt der dritten Anschlüsse des ersten und des zweiten Stromspiegels SS1, SS2 der Differenzstrom I₁′ -I₃′ abgenommen und dem Eingangsanschluß des dritten Fotostromverstärkers V3 zugeführt werden kann.FIG. 2 shows an input part of an optical heterodyne receiver based on the phase diversity principle with biased photodiodes. The photodiodes PD1, PD2, PD3 each receive a bias voltage from a first or second current mirror SS1, SS2, which in turn are connected to a first or second voltage source U1, U2. The distribution of the bias voltages among the diodes is effected by the definition of the direct voltage operating points or photocurrent amplifiers V1 and V2. As with the overlay receiver according to FIG. 1, there are also the overlay receiver according to FIG. 2 the anode of the first photodiode PD1 and the cathode of the second photodiode PD2 and the input connection of the first photocurrent amplifier V1 are connected to one another, and the connection from the anode of the second photodiode PD2 to the cathode of the third photodiode PD3 and to the input connection of the second photocurrent amplifier V2 corresponds to FIG. 1. In addition, two voltage sources U1, U2 are provided, which supply the bias voltage for the photodiodes. The bias voltage is supplied via a first current mirror SS1, the first terminal 1, 1 of which is connected to the first operating voltage source U1 and the second terminal 1, 2 of which is connected to the cathode of the first photodiode PD1. This flows through the second terminal 1.2 of the current I₁, which also flows from the third terminal 1.3 of the first current mirror SS1 in the form of the current I₁ 'because of the current mirroring. The second current mirror SS2 is connected to the second operating voltage source U2 via its first connection 2, 1. The second terminal of this current mirror is connected to the anode of the third photodiode PD3, so that the current I₃ flows through this second terminal 2.2. According to the current mirror effect flows through the third terminal 2.3 of the second current mirror SS2, an equal current I₃ ', so that at the junction of the third terminals of the first and second current mirror SS1, SS2, the differential current I₁' -I₃ 'decreased and the input terminal of third photocurrent amplifier V3 can be supplied.

Der Aufbau eines Stromspiegels aus einem Transistor und einer zu dessen Basis-Emitterstrecke parallelgeschalteten Diode ist bekannt. In der Figur 3a ist dieses Prinzip zur Realisierung des ersten Stromspiegels SS1 mittels diskreter Bauelemente angewendet. Mit dem Anschluß 1,1 sind die ersten Anschlüsse eines ersten und eines zweiten Widerstandes R1, R2 verbunden. Der zweite Anschluß des ersten Widerstands ist über eine erste Diode D1 mit dem Basisanschluß eines ersten Transistors T1 mit pnp-Schichtenfolge verbunden, der zweite Anschluß des zweiten Widerstandes R2 ist mit dem Emitteranschluß des ersten Transistors T1 verbunden, der Basisanschluß dieses Transistors stellt den Anschluß 1,2 und der Kollektoranschluß stellt den Anschluß 1,3 des ersten Stromspiegels SS1 dar.The construction of a current mirror from a transistor and a diode connected in parallel with its base-emitter path is known. This principle is used in FIG. 3a to implement the first current mirror SS1 by means of discrete components. The first terminals of a first and a second resistor R1, R2 are connected to the terminal 1, 1. The second connection of the first resistor is connected via a first diode D1 to the base connection of a first transistor T1 with pnp layer sequence, the second connection of the second resistor R2 is connected to the emitter connection of the first transistor T1 connected, the base connection of this transistor represents connection 1.2 and the collector connection represents connection 1.3 of the first current mirror SS1.

In der Figur 3b ist eine entsprechende Realisierung des zweiten Stromspiegels SS2 mittels diskreter Bauelemente dargestellt. Mit dem Anschluß 2.1 sind die ersten Anschlüsse eines dritten und eines vierten Widerstandes R3, R4 verbunden. Der zweite Anschluß des dritten Widerstandes R3 ist über eine zweite Diode D2 mit dem Basisanschluß eines zweiten Transistors T2 mit npn-Schichtenfolge und außerdem mit dem Anschluß 2.2 des zweiten Stromspiegels SS2 verbunden. Der zweite Anschluß des vierten Widerstandes R4 ist an den Emitteranschluß des zweiten transistors T2 angeschlossen, der Kollektoranschluß dieses Transistors stellt den Anschluß 2.3 des zweiten Stromspiegels SS2 dar.A corresponding implementation of the second current mirror SS2 by means of discrete components is shown in FIG. 3b. The first terminals of a third and a fourth resistor R3, R4 are connected to the terminal 2.1. The second connection of the third resistor R3 is connected via a second diode D2 to the base connection of a second transistor T2 with npn layer sequence and also to the connection 2.2 of the second current mirror SS2. The second connection of the fourth resistor R4 is connected to the emitter connection of the second transistor T2, the collector connection of this transistor represents the connection 2.3 of the second current mirror SS2.

In der Fig. 4 ist die Realisierung der Stromspiegel SS1 und SS2 in integrierter Technik dargestellt. Gegenüber der Anordnung nach Fig. 3a ist bei der Anordnung nach Figur 4a die Diode D1 durch einen dritten Transistor T3 ersetzt. Der Emitteranschluß dieses Transistors stellt dabei den Anodenanschluß der Diode D1 dar, der Kollektor- und der Basisanschluß dieses Transistors sind miteinander und mit dem Basisanschluß eines vierten Transistors T1 vom pnp-Typ verbunden und stellen den Anschluß 1.2 des ersten Stromspiegels SS1 dar.4 shows the implementation of the current mirror SS1 and SS2 in integrated technology. Compared to the arrangement according to FIG. 3a, the diode D1 in the arrangement according to FIG. 4a is replaced by a third transistor T3. The emitter connection of this transistor represents the anode connection of the diode D1, the collector and the base connection of this transistor are connected to one another and to the base connection of a fourth transistor T1 of the pnp type and represent the connection 1.2 of the first current mirror SS1.

In der Fig. 4b ist anstelle der zweiten Diode D2 nach Fig. 3b ein fünfter Transistor T5 vom npn-Typ vorgesehen. Dabei stellt der Emitteranschluß dieses Transistors den Katodenanschluß der zweiten Diode D2 dar, während der Anodenanschluß durch die miteinander verbundenen Kollektor- und Basisanschlüsse des fünften Transistors T5 gebildet werden und damit den Anschluß 2.2. des zweiten Stromspiegels SS2 darstellen. Der Anschluß 2,3 wird durch den Kollektoranschluß eines sechsten Transistors vom npn-Typ gebildet.4b, a fifth transistor T5 of the npn type is provided instead of the second diode D2 according to FIG. 3b. The emitter connection of this transistor represents the cathode connection of the second diode D2, while the anode connection is formed by the interconnected collector and base connections of the fifth transistor T5 and thus the connection 2.2. represent the second current mirror SS2. The connection 2, 3 is formed by the collector connection of a sixth transistor of the NPN type.

Bei der Ausführung in integrierter Technik weisen benachbarte Transistorelemente sehr gleichmäßige Eigenschaften auf, so daß in diesem Falle die Emitterwiderstände R1... R4 entfallen können.When implemented in integrated technology, adjacent transistor elements have very uniform properties, so that in this case the emitter resistors R1 ... R4 can be omitted.

Claims (7)

  1. Optical heterodyne receiver having inputs for a reception signal and the signal of a local laser, having an at least approximately symmetric six-port fibre coupler (K), connected to the inputs, as an optical 120° hybrid and having photodiodes (PD1, PD2, PD3) optically coupled to the outputs of the six-port fibre coupler, the output signals of which photodiodes are applied via a first to third photocurrent amplifier (V1, V2, V3) and a first to third signal demodulator (DM1, DM2, DM3) to three inputs of a summator (SUM), and in that the data signal (DA) can be derived from the signal output thereof, characterised in that the photodiodes (PD1, PD2, PD3) are connected in each instance in push-pull with respect to the downstream photocurrent amplifiers (V1, V2, V3), so that in each instance the difference of the photocurrents of two photodiodes is present at the inputs of the photocurrent amplifiers (V1, V2, V3).
  2. Optical heterodyne receiver according to Claim 1, characterised in that the anode connection of the first photodiode (PD1) is connected to the cathode connection of the second photodiode (PD2) and to the input connection of the first photocurrent amplifier (V1), in that the anode connection of the second photodiode (PD2) is connected to the cathode connection of the third photodiode (PD3) and to the input connection of the second photocurrent amplifier (V2), and in that the anode connection of the third photodiode (PD3) is connected to the cathode connection of the first photodiode (PD1) and to the input connection of the third photocurrent amplifier (V3).
  3. Optical heterodyne receiver according to Claims 1 or 2, characterised in that to a first operating voltage connection (U1) there is connected the first connection (1, 1) of a first current reflector (SS1), in that the second connection (1, 2) thereof is connected to the cathode connection of the first photodiode (PD1), in that the anode connection of the first photodiode (PD1) is connected to the cathode connection of the second photodiode (PD2) and to the input connection of the first photocurrent amplifier (V1), in that the anode connection of the second photodiode (PD2) is connected to the cathode connection of the third photodiode (PD3) and to the input connection of the second photocurrent amplifier (V2), in that a second current reflector circuit (SS2) is provided, the first connection (2, 1) of which is connected to a second operating voltage source (U2),
    in that the second connection (2, 2) of the second current reflector circuit (SS2) is connected to the anode of the third photodiode (PD3), and in that the third connections (1, 3; 2, 3) of the first and of the second current reflector (SS1, SS2) are connected to one another and to the input of the third photocurrent amplifier (V3).
  4. Optical heterodyne receiver according to Claim 3, characterised in that the first current reflector (SS1) includes a first and a second resistor (R1, R2), the first connections of which are connected to one another and to the first connection (1, 1) of the first current reflector (SS1),
    in that the second connection of the first resistor (R1) is connected via a first diode (D1) to the base connection of a first transistor (T1) of the pnp type and to the second connection (1, 2) of the first current reflector (SS1),
    in that the second connection of the second resistor (R2) is connected to the emitter connection of the first transistor (T1), and in that the collector connection of the first transistor (T1) is connected to the third connection (1, 3) of the first current reflector circuit (SS1).
  5. Optical heterodyne receiver according to Claim 3, characterised in that the second current reflector (SS2) includes a third and a fourth resistor (R3, R4), the first connections of which are connected to one another and to the first connection (2, 1) of the second current reflector (SS2),
    in that the second connection of the third resistor (R3) is connected via a second diode (D2) to the base connection of a second transistor (T2) of the npn type and to the second connection (2, 2) of the second current reflector circuit (SS2), in that the second connection of the fourth resistor (R4) is connected to the emitter connection of the second transistor (T2), and in that the collector connection of this transistor (T2) is connected to the third connection (2, 3) of the second current reflector circuit (SS2).
  6. Optical heterodyne receiver according to Claim 4, characterised in that as diode there is provided a third transistor (T3), the emitter connection of which is connected to the second connection of the first resistor (R1) and the collector and base connections of which are connected to one another, to the base connection of a fourth transistor (T4) and to the second connection (1, 2) of the first current reflector (SS1), and in that the third and the fourth transistor (T3, T4) are pnp transistors.
  7. Optical heterodyne receiver according to claim 5, characterised in that as diode (D2) there is provided a fifth transistor (T5), the emitter connection of which is connected to the second connection of the third resistor (R3), and the base and collector connections of which are connected to one another, to the base connection of a sixth transistor (T6) and to the second connection (2, 2) of the second current reflector (SS2), and in that the fifth and the sixth transistor (T5, T6) are npn transistors.
EP88114208A 1987-09-11 1988-08-31 Optical heterodyne receiver with a six-port fibre coupler Expired - Lifetime EP0307721B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88114208T ATE81928T1 (en) 1987-09-11 1988-08-31 OPTICAL HEATING RECEIVER WITH TRIPLE FIBER COUPLER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3730650 1987-09-11
DE3730650 1987-09-11

Publications (2)

Publication Number Publication Date
EP0307721A1 EP0307721A1 (en) 1989-03-22
EP0307721B1 true EP0307721B1 (en) 1992-10-28

Family

ID=6335855

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88114208A Expired - Lifetime EP0307721B1 (en) 1987-09-11 1988-08-31 Optical heterodyne receiver with a six-port fibre coupler

Country Status (3)

Country Link
EP (1) EP0307721B1 (en)
AT (1) ATE81928T1 (en)
DE (1) DE3875569D1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2130451A (en) * 1982-11-05 1984-05-31 Standard Telephones Cables Plc Current splitter
GB2172164B (en) * 1985-03-07 1989-02-22 Stc Plc Balanced coherent receiver

Also Published As

Publication number Publication date
DE3875569T (en) 1992-12-03
ATE81928T1 (en) 1992-11-15
DE3875569D1 (en) 1992-12-03
EP0307721A1 (en) 1989-03-22

Similar Documents

Publication Publication Date Title
EP0401771B1 (en) Circuit arrangement for frequency conversion
EP0254231B1 (en) Optical heterodyne receiver, especially for psk modulated light
DE3317894A1 (en) COARABLE OPTICAL RECEIVER
EP0246662B1 (en) Receiver for optical digital signals having various amplitudes
EP0073929A2 (en) Integrable signal processing semiconductor circuit
DE1217463B (en) Device for modulation
EP0307721B1 (en) Optical heterodyne receiver with a six-port fibre coupler
DE19950714A1 (en) Circuit arrangement for combining bias with signals, has variable selectable gain with gain factor between null and unity, that varies in proportion to differential input control voltage
EP0280075B1 (en) Optical receiver with polarisation diversity
DE1216160B (en) Arrangement for the low-distortion transmission of messages by means of laser beams
DE3204839C2 (en) Photodiode amplifier with a large dynamic range
EP0717514A2 (en) Optical transmission device for an optical telecommunication system in combination with a radio system
EP0298484B2 (en) Optical FSK homodyne receiver
DE3132972A1 (en) REGENERATOR FOR DIGITAL SIGNALS WITH QUANTIZED FEEDBACK
EP0887952B1 (en) Method and apparatus for the reception of a phase modulated optical signal and for the detection of misalignment errors
EP0319788B1 (en) Optical heterodyne receiver for digital signals
DE3722936A1 (en) Optical heterodyne receiver for, in particular, phase-shift-keyed light
DE3821438A1 (en) Polarisation diversity receiver
DE19545435A1 (en) Linearization circuit device
DE3218318A1 (en) ARRANGEMENT FOR GENERATING SQUARE SIGNALS
EP0474294B1 (en) Polarization-independent receiver
DE3741398C2 (en)
DE4007595A1 (en) Polarisation diversity receiver for DPSK photo-signals - has demodulators, each contg. ring mixer with inputs for signal to be modulated and carrier signal respectively
EP1077543A1 (en) Optical intersatellite communication system for transmitting a modulated laser beam
DE19524650A1 (en) Hybrid transmission system for radio and optical signals - has stationary radio station coupled to light conductor network with reception of light having two spectral components and transmission following conversion to electrical signal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT

17P Request for examination filed

Effective date: 19890830

17Q First examination report despatched

Effective date: 19920414

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT

REF Corresponds to:

Ref document number: 81928

Country of ref document: AT

Date of ref document: 19921115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3875569

Country of ref document: DE

Date of ref document: 19921203

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930714

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930716

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930818

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930819

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931020

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940831

Ref country code: BE

Effective date: 19940831

Ref country code: AT

Effective date: 19940831

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19940831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050831