EP0274329B1 - Process for decontaminating the surface of a metallic component contaminated by tritium, and device for using said process - Google Patents

Process for decontaminating the surface of a metallic component contaminated by tritium, and device for using said process Download PDF

Info

Publication number
EP0274329B1
EP0274329B1 EP87403007A EP87403007A EP0274329B1 EP 0274329 B1 EP0274329 B1 EP 0274329B1 EP 87403007 A EP87403007 A EP 87403007A EP 87403007 A EP87403007 A EP 87403007A EP 0274329 B1 EP0274329 B1 EP 0274329B1
Authority
EP
European Patent Office
Prior art keywords
decontaminated
electrolyte
solid electrolyte
tritium
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87403007A
Other languages
German (de)
French (fr)
Other versions
EP0274329A1 (en
Inventor
Gilbert Bellanger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0274329A1 publication Critical patent/EP0274329A1/en
Application granted granted Critical
Publication of EP0274329B1 publication Critical patent/EP0274329B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling

Definitions

  • the present invention relates to a process for decontaminating the surface of metal parts contaminated with tritium.
  • it relates to an electrolytic decontamination process, which makes it possible to remove the tritium present on the surface of a metal part without modifying the profile of the surface of this part, in order to be able to possibly reuse it.
  • This process applies in particular to small metal parts of complex geometry, to large-area parts but of simple geometry, as well as to parts having inaccessible areas such as parts having a tormented geometry.
  • electrolytic methods can be used such as those described in French patents FR-A-2 490 685 and FR-A-2 533 356, and in the U.S. Patent US-A-3,515,655.
  • low current densities are used which make it possible to carry out a cathodic loading of hydrogen on the surface of the part.
  • the hydrogen can be adsorbed on the surface of the part whereas, in the processes of the prior art such than that of patent US-A-3515655, where higher current densities are used, the release of hydrogen is very important and promotes the decohesion of the metal; this causes the growth of cavities and cracks to lead to the removal of surface particles and to demetallization of the treated part.
  • reaction mechanisms are governed by different parameters such as electrochemical parameters such as current density, cathodic overvoltage and the nature of the electrolyte, temperature and electrolysis time.
  • the cathode overvoltage when the cathode overvoltage is located at a correct value, the adsorption of hydrogen is favored, the energy difference between HM and TM causes the insertion of tritium in the room and a rejection of tritium in the water.
  • the mixture comprising water and an electrolyte consists of an aqueous solution of an electrolyte chosen in such a way that the aqueous solution can liberate hydrogen by electrolysis.
  • this electrolyte can be sulfuric acid or an alkali metal hydroxide such as sodium hydroxide.
  • sodium hydroxide is used because it delays the evolution of hydrogen.
  • sulfuric acid a metal attack is observed from 50 mA / cm2 and the attack speed, i.e. corrosion, increases from this value with the current density .
  • the electrolyte concentration of the solution is low to avoid corrosion of the part to be treated.
  • aqueous solutions containing 0.1 to 1 mol.l ⁇ 1 of sulfuric acid or alkali metal hydroxide such as NaOH.
  • the part to be decontaminated is immersed in water or in an aqueous solution, preferably consisting of a aqueous electrolyte solution such as those described above.
  • the anode can also be immersed in water or the aqueous solution.
  • the tank containing the water or the aqueous solution as an anode.
  • This tank can be made, for example, of graphite impregnated with polytetrafluoroethylene wax which is resistant to chemical attack and which is devoid of porosity compared to pure graphite; this has the consequence that the water or the aqueous solution cannot pass through the tank by capillarity.
  • electrolysis is carried out using the so-called "buffer" electrolysis method.
  • an assembly comprising the anode and a solid electrolyte is moved over the surface of the part and water is circulated between the anode, the solid electrolyte and the surface of the part to be decontaminated.
  • the solid electrolyte can consist of an ionic conductive polymer ionizable by water or by an aqueous solution.
  • This mode of implementation of the method is advantageous because it eliminates the use of chemical agents in solution which are responsible for corrosion as well as the problems of reprocessing of effluents. In addition, it makes it possible to decontaminate strongly tritiated zones compared to the others and reach areas that are difficult to access with another treatment. Finally, it is suitable for carrying out "in situ" decontamination and it provides little tritiated waste.
  • the anode can be produced as before by graphite impregnated or not with polytetrafluoroethylene wax.
  • an assembly which comprises both the anode and the solid electrolyte, and which is provided with means for circulating water or a aqueous solution between the anode, the solid electrolyte and the part to be decontaminated.
  • the invention also relates to a device for decontaminating the surface of a metal part contaminated with tritium, which comprises a hollow body of electrically conductive material connected to one of the poles of a generator. electric current, the hollow body being provided with at least one liquid outlet orifice to which is applied a porous and permeable element of electrically conductive material, a solid electrolyte applied to the external surface of the porous and permeable element , means for moving the hollow body on the surface of the part to be treated so that the solid electrolyte is in contact with the part, and means for introducing a liquid into the hollow body and circulating it through the orifice outlet between the porous and permeable element of electrically conductive material and the surface of the part to be treated.
  • the hollow body which in the process of the invention constitutes the anode of the device, can be made of graphite impregnated with polytetrafluoroethylene wax, and the porous and permeable element can be constituted by a graphite felt.
  • the solid electrolyte applied to the external surface of the porous element can be produced, as above, from an ionic conductive polymer, ionizable with water or an aqueous solution, for example in perfluorinated carboxylic sulphonic acid.
  • the solid anode-electrolyte assembly can be constituted by a graphite piece provided on one of its faces with a graphite felt coated externally with solid electrolyte, for example of solid ionic conductive polymer.
  • the device further comprises a cathode element in palladium black and / or nickel in which the hydrogen can diffuse, said element being applied to the solid electrolyte so that the hydrogen which has diffused in said element is either installed directly in the room to be decontaminated.
  • the cathode face of the solid electrolyte can be successively coated with palladium black by impregnation and with nickel over a thickness of 250 microns.
  • Palladium black can be deposited from palladium salts in aqueous solution, nickel can then be deposited by chemical metallization or by sputtering and then by electrolysis of a nickel salt.
  • the hydrogen diffuses into the nickel cathode.
  • the atomic hydrogen is recovered on the opposite side and is installed directly on the part to be decontaminated which is attached to this assembly.
  • anode-solid electrolyte-cathode "sandwich” in which the black of Pd and / or of Ni which constitute the cathodic adsorption element are nested in the underlying layers of the electrolyte. solid. This nesting has the advantage of increasing the adsorption surface of the cathodic hydrogen on the part to be decontaminated.
  • this structure "sandwich" by impregnating the conductive polymer with an ionic compound of Ni or palladium which is not an anionic complex, for example NiCl2 or Pd (NO3) 2, and then dipping the polymer in a solution of dimethyl aminoborane at 25 % and at 85 ° C. Under these conditions, this organic compound decomposes, giving rise to atomic hydrogen inside the polymer, and this hydrogen chemically reduces the Pd2+ or Ni2+ cations to the state of finely divided metal in the first layers under - adjacent to the polymer.
  • an ionic compound of Ni or palladium which is not an anionic complex
  • this organic compound decomposes, giving rise to atomic hydrogen inside the polymer, and this hydrogen chemically reduces the Pd2+ or Ni2+ cations to the state of finely divided metal in the first layers under - adjacent to the polymer.
  • the parts which can be decontaminated by the process of the invention can be made of different metals and alloys provided that the electrolyte and the electrolysis conditions are chosen so as to avoid corrosion of the material.
  • the method can be applied to the treatment of parts made of stainless steel or copper alloys, for example brass.
  • the process of the invention can be carried out at ambient temperature, but it can also operate at higher temperatures, since temperature plays an important role in the insertion of tritium into the deep layers of the part.
  • the amount of H or T adsorbed decreases with temperature during electrolysis.
  • the diffusion of Hou T in the cathode increases with temperature; a slight backscatter exists, but the majority of H or T remains blocked in the metal and this blocking becomes even more significant on returning to ambient temperature.
  • temperatures above ambient temperature are preferable to operate at temperatures above ambient temperature while avoiding the risks of corrosion, for example at temperatures of 25 to 100 ° C., in particular at 80 ° C.
  • the duration of electrolysis also constitutes an important parameter, since it acts on the quantity of tritium eliminated.
  • a balance is obtained after a certain time between the concentration of tritium in the water or the aqueous solution and the concentration of tritium in the part to be treated. Indeed, this corresponds to the following reaction: T + H2O ⁇ HTO + H
  • the surface decontamination of stainless steel parts is carried out using the first mode of implementation of the method, that is to say immersion of the parts in an aqueous solution containing 1 mol.l ⁇ 1 of NaOH, placed in a heated graphite tank impregnated with polytetrafluoroethylene wax which constitutes the anode of the device.
  • a current density applied to the surface of the parts 10 mA.cm ⁇ 2, at a temperature of 80 ° C, and electrolysis is carried out for a period of 2 hours.
  • the tritium decontamination rate (TD) is determined, which corresponds to the ratio of the surface activity of tritium in the part before treatment to the surface activity of the part after treatment.
  • the loss of thickness of the part is also determined.
  • brass parts are treated as in Example 1, but using an aqueous solution containing 1 mol.l ⁇ 1 of sulfuric acid instead of the aqueous NaOH solution.
  • the decontamination rate and the loss of thickness of the part are determined after a treatment cycle. The results obtained are also given in Table 1.
  • Electrolysis is carried out under the conditions of Example 1 on stainless steel parts, and the surface activity of the part is measured as a function of the duration of electrolysis always carried out in the same solution.
  • FIG. 1 represents the increase in the rate of surface decontamination (TD) as a function of the duration of electrolysis (in hours).
  • TD surface decontamination
  • FIG. 2 represents the evolution of the surface activity of the parts as a function of the number of treatment cycles.
  • Curves 1, 2, 3, 4 and 5 relate to parts respectively n o 1, 2, 3, 4 and 5.
  • the device shown diagrammatically in FIG. 3 which comprises an anode constituted by a hollow cylinder 1 made of graphite impregnated with polytetrafluoroethylene wax provided at its base with an outlet orifice 1a to which a porous element is applied and permeable 2 in graphite felt and a film 3 of solid ionic conductive polymer, consisting of perfluorosulfonic acid, the felt and the film 3 being fixed on the cylinder 1 by suitable means, not shown in the drawing.
  • anode constituted by a hollow cylinder 1 made of graphite impregnated with polytetrafluoroethylene wax provided at its base with an outlet orifice 1a to which a porous element is applied and permeable 2 in graphite felt and a film 3 of solid ionic conductive polymer, consisting of perfluorosulfonic acid, the felt and the film 3 being fixed on the cylinder 1 by suitable means, not shown in the drawing.
  • the hollow graphite cylinder 1 is also provided with another orifice 1b for introducing liquid through which water can be circulated in the anodic hollow cylinder, the water then flowing through the orifice 1a through the graphite felt 2 and the film 3 of ion-conducting polymer.
  • the hollow graphite cylinder can be connected to the positive pole of the electric current generator 5 and it can be moved in the three directions of space by any suitable means, for example by a laboratory automaton 7.
  • This device can be used to decontaminate the flat part 9 which is connected to the negative pole of the electric current generator 5. Under these conditions, the hollow graphite cylinder 1 is moved to bring it into contact with the part so as to circulate the water in the graphite cylinder 1 through the graphite felt 2 and the film of ionic conductive polymer 3 on the surface of the room. The speed and the mode of movement of the assembly are moved and adjusted on the part 9 so as to obtain satisfactory decontamination.
  • a device of this type was used to decontaminate a stainless steel plate using a current density on the plate from 10 mA.cm ⁇ 2 to 50 mA.cm ⁇ 2 and a speed of movement of the 40 cm.min ⁇ 1 hollow cylinder.
  • the total time to carry out the decontamination of a 10 cm2 plate having a length of 10 cm is obtained in one hour.
  • the temperature at which one operates is higher than room temperature due to the Joule effect obtained by electrolysis.
  • Example 5 This is a variant of Example 5, in which the diffusibility property of atomic hydrogen is used in a nickel cathode.
  • the device shown diagrammatically in FIG. 4 is used, which is identical to that of FIG. 3 but to which a cathode 4 in palladium black and nickel of 250 ⁇ m has been added, located between the film of ionic conductive polymer and the plate to decontaminate.
  • This device is provided with an orifice 1c for discharging the water contained in the hollow cylinder 1.
  • a device of this type was used to decontaminate a stainless steel plate using a current density on the plate of 20 mA.cm ⁇ 2, an electrolyte temperature between 60 and 80 ° C. and a displacement speed of the hollow cylinder from 40 to 200 cm.min ⁇ 1.
  • the total number of cycles to carry out the decontamination of a 10 cm2 plate, having a length of 10 cm is 700.
  • the rate of tritium decontamination of the surface of the part is determined in the same way. In this case, the latter does not undergo any loss of thickness, and materials degradable to cathodic polarization and to electrolytes can be used: aluminum and copper alloy.
  • the results obtained and the treatment conditions are given in Table 3 below.
  • the first embodiment of the method of the invention is used to treat a medium-sized piece of stainless steel having a tormented geometry constituted by a valve whose orifice is very contaminated with tritium.
  • the part is placed in a tank containing water and a solid anode-electrolyte assembly is introduced into the orifice to be decontaminated, consisting of a graphite pencil covered with a graphite felt and a solid ionic conductive polymer film.
  • Electrolysis is carried out with a current density of 10 mA.cm ⁇ 2, for two hours the temperature obtained by the Joule effect due to the electrolysis. At the end of the operation, the tritium decontamination rate of the surface of the part is determined and its loss of thickness in micrometers. The results obtained and the treatment conditions are given in Table 4.

Description

La présente invention a pour objet un procédé de décontamination de la surface de pièces métalliques contaminées par du tritium.The present invention relates to a process for decontaminating the surface of metal parts contaminated with tritium.

De façon plus précise, elle concerne un procédé électrolytique de décontamination, qui permet d'éliminer le tritium présent sur la surface d'une pièce métallique sans modifier le profil de la surface de cette pièce, afin de pouvoir éventuellement la réutiliser.More specifically, it relates to an electrolytic decontamination process, which makes it possible to remove the tritium present on the surface of a metal part without modifying the profile of the surface of this part, in order to be able to possibly reuse it.

Ce procédé s'applique en particulier aux petites pièces métalliques de géométrie complexe, aux pièces de grande surface mais de géométrie simple, ainsi qu'aux pièces ayant des zones peu accessibles comme des pièces ayant une géométrie tourmentée.This process applies in particular to small metal parts of complex geometry, to large-area parts but of simple geometry, as well as to parts having inaccessible areas such as parts having a tormented geometry.

Parmi les procédés connus actuellement pour assurer la décontamination de pièces contaminées par des matériaux radioactifs, on peut utiliser des procédés électrolytiques tels que ceux décrits dans les brevets français FR-A-2 490 685 et FR-A-2 533 356, et dans le brevet américain US-A-3 515 655.Among the methods currently known for ensuring the decontamination of parts contaminated with radioactive materials, electrolytic methods can be used such as those described in French patents FR-A-2 490 685 and FR-A-2 533 356, and in the U.S. Patent US-A-3,515,655.

Dans ces brevets qui utilisent des procédés électrolytiques pour décontaminer des pièces métalliques, on obtient une démétallisation de la surface des pièces, ce qui permet d'extraire les particules radioactives présentes sur cette surface. Ces traitements ont ainsi l'inconvénient d'être destructifs et de modifier le profil de surface des pièces, qui ne peuvent de ce fait être réutilisées directement après traitement. De plus, les procédés décrits dans ces brevets ne concernent pas la décontamination de pièces contaminées par du tritium.In these patents which use electrolytic processes to decontaminate metal parts, a demetallization of the surface of the parts is obtained, which makes it possible to extract the radioactive particles present on this surface. These treatments thus have the disadvantage of being destructive and of modifying the surface profile of the parts, which cannot therefore be reused directly after treatment. In addition, the methods described in these patents do not relate to the decontamination of parts contaminated with tritium.

La présente invention a précisément pour objet un procédé de décontamination de la surface de pièces métalliques contaminées par du tritium, qui permet d'éviter l'inconvénient des procédés décrits ci-dessus. Le procédé, selon l'invention, de décontamination de la surface d'une pièce métallique contaminée par du tritium comprend les étapes suivantes :

  • 1o relier la pièce à décontaminer au pôle négatif d'un générateur de courant continu,
  • 2o mettre en contact au moins une partie de la surface de la pièce à décontaminer avec un mélange comprenant de l'eau et un électrolyte capable de libérer de l'hydrogène par électrolyse, et
  • 3o faire passer un courant électrique entre la pièce à décontaminer et une anode reliée au pôle positif du générateur de courant électrique et en contact avec le mélange comprenant l'eau et l'électrolyte, en appliquant sur la pièce à décontaminer une densité de courant de 10 mA/cm² à 50 mA/cm², de préférence de 10 à 25 mA/cm², pour charger cathodiquement d'hydrogène la surface de la pièce à décontaminer et remplacer ainsi par de l'hydrogène le tritium adsorbé sur la surface de la pièce à décontaminer.
The present invention specifically relates to a method of decontaminating the surface of metal parts contaminated with tritium, which avoids the disadvantage of the methods described above. The method according to the invention for decontaminating the surface of a metal part contaminated with tritium comprises the following steps:
  • 1 o connect the part to be decontaminated to the negative pole of a direct current generator,
  • 2 o bringing at least part of the surface of the part to be decontaminated into contact with a mixture comprising water and an electrolyte capable of releasing hydrogen by electrolysis, and
  • 3 o passing an electric current between the part to be decontaminated and an anode connected to the positive pole of the electric current generator and in contact with the mixture comprising water and the electrolyte, by applying a current density to the part to be decontaminated from 10 mA / cm² to 50 mA / cm², preferably from 10 to 25 mA / cm², for cathodically charging with hydrogen the surface of the part to be decontaminated and thus replacing with hydrogen the tritium adsorbed on the surface of the room to decontaminate.

Dans le procédé de l'invention, on utilise des densités de courant faibles qui permettent d'effectuer un chargement cathodique en hydrogène sur la surface de la pièce. Ainsi grâce au choix de densités de courant de 10 à 50 mA/cm², de préférence de 10 à 25 mA/cm², l'hydrogène peut être adsorbé sur la surface de la pièce alors que, dans les procédés de l'art antérieur tel que celui du brevet US-A-3515655, où l'on utilise des densités de courant plus fortes, le dégagement d'hydrogène est très important et favorise la décohésion du métal ; ceci provoque la croissance des cavités et des fissures pour conduire à un arrachement des particules superficielles et à une démétallisation de la pièce traitée.In the process of the invention, low current densities are used which make it possible to carry out a cathodic loading of hydrogen on the surface of the part. Thus thanks to the choice of current densities from 10 to 50 mA / cm², preferably from 10 to 25 mA / cm², the hydrogen can be adsorbed on the surface of the part whereas, in the processes of the prior art such than that of patent US-A-3515655, where higher current densities are used, the release of hydrogen is very important and promotes the decohesion of the metal; this causes the growth of cavities and cracks to lead to the removal of surface particles and to demetallization of the treated part.

En effet, à des densités de courant de 10 à 25 mA/cm², l'hydrogène formé par électrolyse est pour une bonne part adsorbé sur la surface de la cathode ; à des densités de courant de 25 à 50 mA/cm²,on obtient simultanément une adsorption de l'hydrogène sur la cathode et un dégagement d'hydrogène gazeux alors qu'à des densités de courant supérieures à 50 mA/cm², on obtient uniquement un dégagement d'hydrogène gazeux.Indeed, at current densities of 10 to 25 mA / cm², the hydrogen formed by electrolysis is largely adsorbed on the surface of the cathode; at current densities of 25 to 50 mA / cm², adsorption of hydrogen is simultaneously obtained on the cathode and evolution of hydrogen gas while at current densities greater than 50 mA / cm², only a release of hydrogen gas is obtained.

Ainsi, dans le cas du procédé antérieur décrit dans US-A-3515655, il n'y a pas de chargement cathodique en hydrogène, mais uniquement un dégagement d'hydrogène gazeux qui provoque l'arrachement de particules de métal et des particules radioactives déposées sur la pièce à décontaminer. De plus, il ne s'agit pas de tritium et, avec des particules radioactives autres que le tritium, il n'y aurait aucune décontamination à des densités de courant inférieures à 50 mA/cm², mais uniquement un chargement en hydrogène de la pièce.Thus, in the case of the prior process described in US-A-3515655, there is no cathodic loading of hydrogen, but only a release of hydrogen gas which causes the removal of metal particles and the deposited radioactive particles. on the part to be decontaminated. In addition, it is not tritium and, with radioactive particles other than tritium, there would be no decontamination at current densities below 50 mA / cm², but only a hydrogen loading of the room .

Dans l'invention, l'hydrogène est libéré comme dans les procédés de l'art antérieur par la réaction suivante : 2H₂O + 2e → 2H + 20H⁻, mais la quantité d'hydrogène libérée est plus faible, et celui-ci réagit ensuite avec le tritium adsorbé sur la surface de la pièce selon deux mécanismes qui peuvent être schématisés par les réactions suivantes :

  • a) - adsorption de l'hydrogène et insertion du tritium dans les couches plus profondes de la pièce :



            H + MTads + M → MH ads + MTins



    dans laquelle M représente le ou les métaux constituant la pièce, "ads" signifie adsorbé et "ins" signifie inséré ; et
  • b) - rejet de tritium dans le mélange eau-électrolyte :



            H + MTads → MHads + T



    dans laquelle M et "ads" ont la signification donnée ci-dessus.
In the invention, the hydrogen is released as in the processes of the prior art by the following reaction: 2H₂O + 2e → 2H + 20H⁻, but the quantity of hydrogen released is lower, and the latter then reacts with the tritium adsorbed on the surface of the part according to two mechanisms which can be schematized by the following reactions:
  • a) - adsorption of hydrogen and insertion of tritium in the deeper layers of the part:



    H + MTads + M → MH ads + MTins



    in which M represents the metal or metals constituting the part, "ads" means adsorbed and "ins" means inserted; and
  • b) - rejection of tritium in the water-electrolyte mixture:



    H + MTads → MHads + T



    in which M and "ads" have the meaning given above.

Ces mécanismes réactionnels sont régis par différents paramètres tels que les paramètres électrochimiques comme la densité de courant, la surtension cathodique et la nature de l'électrolyte, la température et le temps d'électrolyse.These reaction mechanisms are governed by different parameters such as electrochemical parameters such as current density, cathodic overvoltage and the nature of the electrolyte, temperature and electrolysis time.

Ainsi, lorsque la surtension cathodique est située à une valeur correcte, on favorise l'adsorption de l'hydrogène, l'écart d'énergie entre H-M et T-M provoque l'insertion du tritium dans la pièce et un rejet de tritium dans l'eau.Thus, when the cathode overvoltage is located at a correct value, the adsorption of hydrogen is favored, the energy difference between HM and TM causes the insertion of tritium in the room and a rejection of tritium in the water.

En fin d'opération, on obtient une pièce dont la surface est chargée d'hydrogène, un mélange eau-électrolyte contenant une partie du tritium présent sur la surface de la pièce et du tritium inséré dans les couches plus profondes de la pièce.At the end of the operation, we obtain a part whose the surface is charged with hydrogen, a water-electrolyte mixture containing part of the tritium present on the surface of the part and tritium inserted in the deeper layers of the part.

Le remplacement du tritium adsorbé sur la surface de la pièce par de l'hydrogène permet de former une barrière d'hydrogène qui bloque la rétrodiffusion du tritium inséré dans la pièce. Ce procédé est ainsi très intéressant, car les couches superficielles de la pièce ne sont pas détériorées et la pièce peut être recyclée après traitement.The replacement of the tritium adsorbed on the surface of the part by hydrogen makes it possible to form a hydrogen barrier which blocks the backscattering of the tritium inserted in the part. This process is thus very interesting, because the surface layers of the part are not deteriorated and the part can be recycled after treatment.

Généralement, le mélange comprenant de l'eau et un électrolyte est constitué par une solution aqueuse d'un électrolyte choisi de façon telle que la solution aqueuse puisse libérer de l'hydrogène par électrolyse. A titre d'exemple, cet électrolyte peut être l'acide sulfurique ou un hydroxyde de métal alcalin comme la soude. De préférence, on utilise la soude car celle-ci retarde le dégagement d'hydrogène. Dans le cas de l'acide sulfurique, on observe une attaque de métal à partir de 50 mA/cm² et la vitesse d'attaque , c'est-à-dire la corrosion, augmente à partir de cette valeur avec la densité de courant.Generally, the mixture comprising water and an electrolyte consists of an aqueous solution of an electrolyte chosen in such a way that the aqueous solution can liberate hydrogen by electrolysis. By way of example, this electrolyte can be sulfuric acid or an alkali metal hydroxide such as sodium hydroxide. Preferably, sodium hydroxide is used because it delays the evolution of hydrogen. In the case of sulfuric acid, a metal attack is observed from 50 mA / cm² and the attack speed, i.e. corrosion, increases from this value with the current density .

De préférence, la concentration en électrolyte de la solution est faible pour éviter une corrosion de la pièce à traiter. Ainsi, on utilise généralement, des solutions aqueuses contenant de 0,1 à 1 mol.l⁻¹ d'acide sulfurique ou d'hydroxyde de métal alcalin tel que NaOH.Preferably, the electrolyte concentration of the solution is low to avoid corrosion of the part to be treated. Thus, generally used are aqueous solutions containing 0.1 to 1 mol.l⁻¹ of sulfuric acid or alkali metal hydroxide such as NaOH.

On peut, toutefois, utiliser des solutions plus concentrées, mais ceci ne présente pas réellement d'intérêt car les effluents obtenus sont, de plus, difficiles à traiter.One can, however, use more concentrated solutions, but this is not really of interest because the effluents obtained are, moreover, difficult to treat.

Selon un premier mode de mise en oeuvre du procédé de l'invention, qui est plus particulièrement adapté au traitement de pièces de faibles dimensions, on immerge la pièce à décontaminer dans de l'eau ou dans une solution aqueuse, constituée de préférence par une solution aqueuse d'électrolyte telle que celles décrites précédemment. Dans ce cas, l'anode peut être immergée également dans l'eau ou la solution aqueuse. Cependant, il est plus avantageux d'utiliser comme anode la cuve contenant l'eau ou la solution aqueuse. Cette cuve peut être réalisée, par exemple, en graphite imprégné de cire de polytétrafluoréthylène qui est résistant à l'attaque chimique et qui est dépourvu de porosité par rapport au graphite pur ; ceci a pour conséquence que l'eau ou la solution aqueuse ne peut traverser la cuve par capillarité.According to a first embodiment of the process of the invention, which is more particularly suitable for the treatment of small parts, the part to be decontaminated is immersed in water or in an aqueous solution, preferably consisting of a aqueous electrolyte solution such as those described above. In this case, the anode can also be immersed in water or the aqueous solution. However, it is more advantageous to use the tank containing the water or the aqueous solution as an anode. This tank can be made, for example, of graphite impregnated with polytetrafluoroethylene wax which is resistant to chemical attack and which is devoid of porosity compared to pure graphite; this has the consequence that the water or the aqueous solution cannot pass through the tank by capillarity.

Dans ce mode de mise en oeuvre du procédé, on peut traiter simultanément plusieurs pièces en les disposant dans un panier conducteur de l'électricité relié au pôle négatif d'un générateur de courant continu.In this embodiment of the method, several parts can be treated simultaneously by placing them in an electrically conductive basket connected to the negative pole of a direct current generator.

Selon un second mode de mise en oeuvre du procédé, plus spécialement adapté au traitement de pièces de grandes dimensions, on réalise l'électrolyse en utilisant la méthode d'électrolyse dite "au tampon".According to a second mode of implementation of the method, more particularly suited to the treatment of large parts, electrolysis is carried out using the so-called "buffer" electrolysis method.

Dans ce cas, on déplace sur la surface de la pièce un ensemble comprenant l'anode et un électrolyte solide et l'on fait circuler de l'eau entre l'anode, l'électrolyte solide et la surface de la pièce à décontaminer.In this case, an assembly comprising the anode and a solid electrolyte is moved over the surface of the part and water is circulated between the anode, the solid electrolyte and the surface of the part to be decontaminated.

L'électrolyte solide peut être constitué par un polymère conducteur ionique ionisable par l'eau ou par une solution aqueuse. On peut utiliser par exemple l'acide perfluorosulfonique de formule :

Figure imgb0001

dans laquelle R représente un radical organique et n est un nombre de polymérisation, qui est ionisable par de l'eau pure.The solid electrolyte can consist of an ionic conductive polymer ionizable by water or by an aqueous solution. Perfluorosulfonic acid of formula:
Figure imgb0001

in which R represents an organic radical and n is a polymerization number, which is ionizable with pure water.

Ce mode de mise en oeuvre du procédé est avantageux car il permet d'éliminer l'utilisation d'agents chimiques en solution qui sont responsables de la corrosion ainsi que les problèmes de retraitement d'effluents. Par ailleurs, il permet de décontaminer des zones fortement tritiées par rapport aux autres et d'atteindre des zones peu accessibles par un autre traitement. Enfin, il est adapté à la réalisation d'une décontamination "in situ" et il fournit peu de déchets tritiés.This mode of implementation of the method is advantageous because it eliminates the use of chemical agents in solution which are responsible for corrosion as well as the problems of reprocessing of effluents. In addition, it makes it possible to decontaminate strongly tritiated zones compared to the others and reach areas that are difficult to access with another treatment. Finally, it is suitable for carrying out "in situ" decontamination and it provides little tritiated waste.

Dans ce second mode de mise en oeuvre du procédé, l'anode peut être réalisée comme précédemment par du graphite imprégné ou non de cire de polytétrafluoréthylène.In this second embodiment of the process, the anode can be produced as before by graphite impregnated or not with polytetrafluoroethylene wax.

Généralement, pour réaliser la décontamination selon ce second mode de mise en oeuvre du procédé, on utilise un ensemble qui comporte à la fois l'anode et l'électrolyte solide, et qui est muni de moyens pour faire circuler de l'eau ou une solution aqueuse entre l'anode, l'électrolyte solide et la pièce à décontaminer.Generally, to carry out the decontamination according to this second embodiment of the method, an assembly is used which comprises both the anode and the solid electrolyte, and which is provided with means for circulating water or a aqueous solution between the anode, the solid electrolyte and the part to be decontaminated.

Aussi, l'invention a également pour objet un dispositif de décontamination de la surface d'une pièce métallique contaminée par du tritium, qui comprend un corps creux en matériau conducteur de l'électricité relié à l'un des pôles d'un générateur de courant électrique, le corps creux étant pourvu d'au moins un orifice de sortie de liquide sur lequel est appliqué un élément poreux et perméable en matériau conducteur de l'électricité, un électrolyte solide appliqué sur la surface externe de l'élément poreux et perméable, des moyens pour déplacer le corps creux sur la surface de la pièce à traiter de façon telle que l'électrolyte solide soit en contact avec la pièce, et des moyens pour introduire un liquide dans le corps creux et le faire circuler par l'orifice de sortie entre l'élément poreux et perméable en matériau conducteur de l'électricité et la surface de la pièce à traiter.Also, the invention also relates to a device for decontaminating the surface of a metal part contaminated with tritium, which comprises a hollow body of electrically conductive material connected to one of the poles of a generator. electric current, the hollow body being provided with at least one liquid outlet orifice to which is applied a porous and permeable element of electrically conductive material, a solid electrolyte applied to the external surface of the porous and permeable element , means for moving the hollow body on the surface of the part to be treated so that the solid electrolyte is in contact with the part, and means for introducing a liquid into the hollow body and circulating it through the orifice outlet between the porous and permeable element of electrically conductive material and the surface of the part to be treated.

Le corps creux, qui dans le procédé de l'invention constitue l'anode du dispositif, peut être réalisé en graphite imprégné de cire de polytétrafluoréthylène, et l'élément poreux et perméable peut être constitué par un feutre de graphite. L'électrolyte solide appliqué sur la surface externe de l'élément poreux peut être réalisé comme précédemment en polymère conducteur ionique, ionisable par l'eau ou une solution aqueuse, par exemple en acide sulfonique carboxylique perfluoré.The hollow body, which in the process of the invention constitutes the anode of the device, can be made of graphite impregnated with polytetrafluoroethylene wax, and the porous and permeable element can be constituted by a graphite felt. The solid electrolyte applied to the external surface of the porous element can be produced, as above, from an ionic conductive polymer, ionizable with water or an aqueous solution, for example in perfluorinated carboxylic sulphonic acid.

Selon une variante de ces modes de mise en oeuvre du procédé de l'invention, plus spécialement adapté au traitement de pièces de faibles dimensions ayant une géométrie tourmentée, on peut déplacer sur la surface des pièces à décontaminer qui sont immergées dans de l'eau, un ensemble comportant l'anode et l'électrolyte solide. Dans ce cas, l'ensemble anode-électrolyte solide peut être constitué par une pièce en graphite munie sur l'une de ses faces d'un feutre de graphite revêtu extérieurement d'électrolyte solide, par exemple de polymère solide conducteur ionique.According to a variant of these modes of implementation of the process of the invention, more particularly suitable for the treatment of small parts having a tormented geometry, it is possible to move over the surface of the parts to be decontaminated which are immersed in water, an assembly comprising the anode and the electrolyte solid. In this case, the solid anode-electrolyte assembly can be constituted by a graphite piece provided on one of its faces with a graphite felt coated externally with solid electrolyte, for example of solid ionic conductive polymer.

Selon une variante du second mode, on peut aussi utiliser un "sandwich" anode-électrolyte solide-cathode. Dans ce cas, le dispositif comprend en outre un élément cathodique en noir de palladium et/ou nickel dans lequel l'hydrogène peut diffuser, ledit élément étant appliqué sur l'électrolyte solide de façon que l'hydrogène ayant diffusé dans ledit élément, soit implanté directement dans la pièce à décontaminer. Dans cette variante, la face cathodique de l'électrolyte solide peut être revêtue successivement de noir de palladium par imprégnation et de nickel sur une épaisseur de 250 microns. Le noir de palladium peut être déposé à partir de sels de palladium en solution aqueuse, le nickel peut être déposé ensuite par métallisation par voie chimique ou par pulvérisation cathodique puis par électrolyse d'un sel de nickel.According to a variant of the second mode, it is also possible to use a "sandwich" anode-solid electrolyte-cathode. In this case, the device further comprises a cathode element in palladium black and / or nickel in which the hydrogen can diffuse, said element being applied to the solid electrolyte so that the hydrogen which has diffused in said element is either installed directly in the room to be decontaminated. In this variant, the cathode face of the solid electrolyte can be successively coated with palladium black by impregnation and with nickel over a thickness of 250 microns. Palladium black can be deposited from palladium salts in aqueous solution, nickel can then be deposited by chemical metallization or by sputtering and then by electrolysis of a nickel salt.

Dans cette variante, l'hydrogène diffuse dans la cathode en nickel. L'hydrogène atomique est récupéré sur la face opposée et est implanté directement sur la pièce à décontaminer qui se trouve accolée à ce montage.In this variant, the hydrogen diffuses into the nickel cathode. The atomic hydrogen is recovered on the opposite side and is installed directly on the part to be decontaminated which is attached to this assembly.

Dans cette variante, on peut aussi utiliser un "sandwich" anode-électrolyte solide- cathode dans lequel le noir de Pd et/ou de Ni qui constituent l'élément d'adsorption cathodique sont imbriqués dans les couches sous-jacentes de l'électrolyte solide. Cette imbrication a l'avantage d'augmenter la surface d'adsorption de l'hydrogène cathodique sur la pièce à décontaminer.In this variant, it is also possible to use an anode-solid electrolyte-cathode "sandwich" in which the black of Pd and / or of Ni which constitute the cathodic adsorption element are nested in the underlying layers of the electrolyte. solid. This nesting has the advantage of increasing the adsorption surface of the cathodic hydrogen on the part to be decontaminated.

A titre d'exemple, on peut obtenir cette structure "sandwich" en imprégnant le polymère conducteur d'un composé ionique de Ni ou de palladium qui ne soit pas un complexe anionique, par exemple NiCl₂ ou Pd(NO₃)₂, et en trempant ensuite le polymère dans une solution de diméthyl aminoborane à 25% et à 85°C. Dans ces conditions, ce composé organique se décompose en donnant naissance à de l'hydrogène atomique à l'intérieur du polymère, et cet hydrogène réduit chimiquement les cations Pd²⁺ ou Ni²⁺ à l'état de métal finement divisé dans les premières couches sous-jacentes du polymère.As an example, we can obtain this structure "sandwich" by impregnating the conductive polymer with an ionic compound of Ni or palladium which is not an anionic complex, for example NiCl₂ or Pd (NO₃) ₂, and then dipping the polymer in a solution of dimethyl aminoborane at 25 % and at 85 ° C. Under these conditions, this organic compound decomposes, giving rise to atomic hydrogen inside the polymer, and this hydrogen chemically reduces the Pd²⁺ or Ni²⁺ cations to the state of finely divided metal in the first layers under - adjacent to the polymer.

Les pièces qui peuvent être décontaminées par le procédé de l'invention peuvent être réalisées en différents métaux et alliages à condition de choisir l'électrolyte et les conditions d'électrolyse de façon à éviter une corrosion du matériau.The parts which can be decontaminated by the process of the invention can be made of different metals and alloys provided that the electrolyte and the electrolysis conditions are chosen so as to avoid corrosion of the material.

A titre d'exemple, le procédé peut s'appliquer au traitement de pièces en acier inoxydable ou en alliages de cuivre, par exemple en laiton.By way of example, the method can be applied to the treatment of parts made of stainless steel or copper alloys, for example brass.

Le procédé de l'invention peut être mis en oeuvre à la température ambiante, mais on peut aussi opérer à des températures supérieures, car la température joue un rôle important sur l'insertion du tritium dans les couches profondes de la pièce. En effet, la quantité de H ou T adsorbée diminue avec la température au cours de l'électrolyse. De même, la diffusion de Hou T dans la cathode augmente avec la température ; une légère rétrodiffusion existe, mais la majorité de H ou T reste bloqué dans la métal et ce blocage devient encore plus important au retour à la température ambiante.The process of the invention can be carried out at ambient temperature, but it can also operate at higher temperatures, since temperature plays an important role in the insertion of tritium into the deep layers of the part. The amount of H or T adsorbed decreases with temperature during electrolysis. Likewise, the diffusion of Hou T in the cathode increases with temperature; a slight backscatter exists, but the majority of H or T remains blocked in the metal and this blocking becomes even more significant on returning to ambient temperature.

Aussi, on opère de préférence,à des températures supérieures à la température ambiante tout en évitant les risques de corrosion, par exemple à des températures de 25 à 100°C, en particulier à 80°C.Also, it is preferable to operate at temperatures above ambient temperature while avoiding the risks of corrosion, for example at temperatures of 25 to 100 ° C., in particular at 80 ° C.

Dans le procédé de l'invention, la durée d'électrolyse constitue également un paramètre important, car elle agit sur la quantité de tritium éliminée. Toutefois, dans le premier mode de mise en oeuvre du procédé, où les pièces sont immergées dans de l'eau ou dans une solution aqueuse, on obtient au bout d'un certain temps un équilibre entre la concentration en tritium dans l'eau ou la solution aqueuse et la concentration en tritium dans la pièce à traiter. En effet, ceci correspond à la réaction suivante :



        T + H₂O ⇆ HTO + H


In the process of the invention, the duration of electrolysis also constitutes an important parameter, since it acts on the quantity of tritium eliminated. However, in the first embodiment of the method, where the parts are immersed in in water or in an aqueous solution, a balance is obtained after a certain time between the concentration of tritium in the water or the aqueous solution and the concentration of tritium in the part to be treated. Indeed, this corresponds to the following reaction:



T + H₂O ⇆ HTO + H


Aussi, si dans ce premier mode de mise en oeuvre du procédé, on veut obtenir un taux de décontamination plus important, il est nécessaire de réaliser successivement plusieurs cycles de décontamination sur la même pièce en utilisant pour chaque cycle une nouvelle solution aqueuse ou une nouvelle charge d'eau.Also, if in this first embodiment of the process, we want to obtain a higher decontamination rate, it is necessary to successively carry out several decontamination cycles on the same part using for each cycle a new aqueous solution or a new water charge.

D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit d'exemples de mise en oeuvre du procédé, en référence aux dessins annexés sur lesquels :

  • la figure 1 est une courbe représentant l'évolution du taux de décontamination en fonction de la durée du traitement,
  • la figure 2 est un diagramme représentant l'évolution de l'activité superficielle en tritium d'une pièce en fonction du nombre de cycles de décontamination,
  • la figure 3 représente de façon schématique un ensemble anode-électrolyte mobile, utilisable dans le second mode de mise en oeuvre du procédé de l'invention, et
  • la figure 4 représente également de façon schématique l'ensemble anode-polymère électrolyte solide-cathode en noir de palladium et nickel mobile, utilisable dans le cas d'implantation d'hydrogène atomique de diffusion.
Other characteristics and advantages of the invention will appear better on reading the following description of examples of implementation of the method, with reference to the appended drawings in which:
  • FIG. 1 is a curve representing the evolution of the decontamination rate as a function of the duration of the treatment,
  • FIG. 2 is a diagram representing the evolution of the surface tritium activity of a part as a function of the number of decontamination cycles,
  • FIG. 3 schematically represents a mobile anode-electrolyte assembly, usable in the second embodiment of the method of the invention, and
  • FIG. 4 also schematically represents the anode-solid electrolyte polymer-cathode assembly in black palladium and mobile nickel, usable in the case of implantation of atomic diffusion hydrogen.

Les exemples qui suivent se rapportent au traitement de décontamination de pièces en acier inoxydable ou en laiton contaminées par du tritium.The examples which follow relate to the decontamination treatment of stainless steel or brass parts contaminated with tritium.

EXEMPLE 1EXAMPLE 1

Dans cet exemple, on réalise la décontamination superficielle de pièces en acier inoxydable en utilisant le premier mode de mise en oeuvre du procédé, c'est-à-dire l'immersion des pièces dans une solution aqueuse contenant 1 mol.l⁻¹ de NaOH, placée dans une cuve chauffée en graphite imprégné de cire de polytétrafluoréthylène qui constitue l'anode du dispositif. On opère avec une densité de courant appliquée sur la surface des pièces de 10 mA.cm⁻², à une température de 80°C, et on réalise l'électrolyse pendant une durée de 2h.In this example, the surface decontamination of stainless steel parts is carried out using the first mode of implementation of the method, that is to say immersion of the parts in an aqueous solution containing 1 mol.l⁻¹ of NaOH, placed in a heated graphite tank impregnated with polytetrafluoroethylene wax which constitutes the anode of the device. We operate with a current density applied to the surface of the parts of 10 mA.cm⁻², at a temperature of 80 ° C, and electrolysis is carried out for a period of 2 hours.

A la suite de ce traitement, on détermine le taux de décontamination (TD) en tritium qui correspond au rapport de l'activité superficielle en tritium de la pièce avant traitement sur l'activité superficielle de la pièce après traitement. On détermine également la perte d'épaisseur de la pièce.Following this treatment, the tritium decontamination rate (TD) is determined, which corresponds to the ratio of the surface activity of tritium in the part before treatment to the surface activity of the part after treatment. The loss of thickness of the part is also determined.

On effectue ensuite 12 cycles identiques de traitement en utilisant pour chaque cycle une nouvelle solution aqueuse de NaOH, et on détermine le taux de décontamination (TD) en tritium après ces 12 cycles.12 identical cycles of treatment are then carried out using for each cycle a new aqueous solution of NaOH, and the decontamination rate (TD) of tritium is determined after these 12 cycles.

Les résultats obtenus sont donnés dans le tableau 1 qui suit où l'on a indiqué également les conditions du traitement électrolytique.The results obtained are given in Table 1 below, where the conditions of the electrolytic treatment have also been indicated.

EXEMPLE 2EXAMPLE 2

Dans cet exemple on traite des pièces en laiton comme dans l'exemple 1 mais en utilisant une solution aqueuse contenant 1 mol.l⁻¹ d'acide sulfurique au lieu de la solution aqueuse de NaOH. Comme précédemment, on détermine le taux de décontamination et la perte d'épaisseur de la pièce après un cycle de traitement. Les résultats obtenus sont également donnés dans le tableau 1.In this example, brass parts are treated as in Example 1, but using an aqueous solution containing 1 mol.l⁻¹ of sulfuric acid instead of the aqueous NaOH solution. As before, the decontamination rate and the loss of thickness of the part are determined after a treatment cycle. The results obtained are also given in Table 1.

EXEMPLE 3EXAMPLE 3

Dans cet exemple on étudie l'influence de la durée d'électrolyse sur le taux de décontamination obtenu. On réalise l'électrolyse dans les conditions de l'exemple 1 sur des pièces en acier inoxydable, et on mesure l'activité surfacique de la pièce en fonction de la durée d'électrolyse réalisée toujours dans la même solution.In this example, the influence of the duration of electrolysis on the rate of decontamination obtained is studied. Electrolysis is carried out under the conditions of Example 1 on stainless steel parts, and the surface activity of the part is measured as a function of the duration of electrolysis always carried out in the same solution.

Les résultats obtenus sont donnés sur la figure 1 qui représente l'augmentation du taux de décontamination superficielle (TD) en fonction de la durée d'électrolyse (en heures). Au vu de cette figure, on remarque que le taux de décontamination TD n'augmente pratiquement plus après deux heures, en raison de l'équilibre qui s'établit entre la concentration en tritium de la solution et la concentration en tritium de la pièce, comme on l'a vu précédemment.The results obtained are given in FIG. 1 which represents the increase in the rate of surface decontamination (TD) as a function of the duration of electrolysis (in hours). In view of this figure, it can be seen that the decontamination rate TD hardly increases after two hours, due to the balance which is established between the tritium concentration of the solution and the tritium concentration of the part, as we saw earlier.

EXEMPLE 4EXAMPLE 4

Dans cet exemple, on réalise la décontamination de différentes pièces en acier inoxydable en utilisant les conditions d'électrolyse de l'exemple 1, et des cycles de traitement d'une durée de deux heures.In this example, the decontamination of different stainless steel parts is carried out using the electrolysis conditions of Example 1, and treatment cycles lasting two hours.

On réalise successivement plusieurs cycles de traitement sur cinq pièces constituées par une bille (pièce no1), un flasque (pièce no2), une bride (pièce no3), une tige (pièce no4), et un autre flasque (pièce no5), et on détermine après chaque cycle l'activité superficielle en tritium des pièces (en microCi.cm⁻²).Are performed successively several treatment cycles five parts constituted by a ball (part No. 1), a flange (part No. 2), a flange (part No. 3), a rod (part No. 4), and a other flange (part No. 5), and is determined after each cycle the surface activity of the tritium rooms (microCi.cm⁻²).

Les résultats obtenus sont donnés sur la figure 2 qui représente l'évolution de l'activité superficielle des pièces en fonction du nombre de cycles de traitement.The results obtained are given in FIG. 2 which represents the evolution of the surface activity of the parts as a function of the number of treatment cycles.

Les courbes 1, 2, 3, 4 et 5 se rapportent respectivement aux pièces no 1, 2, 3, 4 et 5.Curves 1, 2, 3, 4 and 5 relate to parts respectively n o 1, 2, 3, 4 and 5.

On remarque que, dans tous les cas, l'activité surfacique de la pièce décroît avec le nombre de cycles de traitement.Note that, in all cases, the surface activity of the part decreases with the number of treatment cycles.

EXEMPLE 5EXAMPLE 5

Cet exemple illustre l'utilisation de la méthode dite "au tampon" pour réaliser la décontamination de pièces en acier inoxydable.This example illustrates the use of the so-called "pad" method for decontaminating stainless steel parts.

Dans cet exemple, on utilise le dispositif représenté schématiquement sur la figure 3 qui comprend une anode constituée par un cylindre creux 1 en graphite imprégné de cire de polytétrafluoréthylène pourvu à sa base d'un orifice de sortie 1a sur lequel est appliqué un élément poreux et perméable 2 en feutre de graphite et un film 3 de polymère conducteur ionique solide, constitué d'acide perfluorosulfonique, le feutre et le film 3 étant fixés sur le cylindre 1 par des moyens appropriés, non représentés sur le dessin.In this example, the device shown diagrammatically in FIG. 3 is used which comprises an anode constituted by a hollow cylinder 1 made of graphite impregnated with polytetrafluoroethylene wax provided at its base with an outlet orifice 1a to which a porous element is applied and permeable 2 in graphite felt and a film 3 of solid ionic conductive polymer, consisting of perfluorosulfonic acid, the felt and the film 3 being fixed on the cylinder 1 by suitable means, not shown in the drawing.

Le cylindre creux en graphite 1 est également muni d'un autre orifice 1b d'introduction de liquide par lequel on peut faire circuler de l'eau dans le cylindre creux anodique, l'eau s'écoulant ensuite par l'orifice 1a à travers le feutre de graphite 2 et le film 3 de polymère conducteur ionique. Le cylindre creux en graphite peut être relié au pôle positif du générateur de courant électrique 5 et il peut être déplacé dans les trois directions de l'espace par tout moyen approprié, par exemple par un automate de laboratoire 7.The hollow graphite cylinder 1 is also provided with another orifice 1b for introducing liquid through which water can be circulated in the anodic hollow cylinder, the water then flowing through the orifice 1a through the graphite felt 2 and the film 3 of ion-conducting polymer. The hollow graphite cylinder can be connected to the positive pole of the electric current generator 5 and it can be moved in the three directions of space by any suitable means, for example by a laboratory automaton 7.

Ce dispositif peut être utilisé pour décontaminer la pièce plane 9 qui est reliée au pôle négatif du générateur 5 de courant électrique. Dans ces conditions, on déplace le cylindre creux en graphite 1 pour l'amener au contact de la pièce de façon à faire circuler l'eau dans le cylindre en graphite 1 à travers le feutre de graphite 2 et le film de polymère conducteur ionique 3 sur la surface de la pièce. On déplace et on règle la vitesse et le mode de déplacement de l'ensemble sur la pièce 9 de façon à obtenir une décontamination satisfaisante.This device can be used to decontaminate the flat part 9 which is connected to the negative pole of the electric current generator 5. Under these conditions, the hollow graphite cylinder 1 is moved to bring it into contact with the part so as to circulate the water in the graphite cylinder 1 through the graphite felt 2 and the film of ionic conductive polymer 3 on the surface of the room. The speed and the mode of movement of the assembly are moved and adjusted on the part 9 so as to obtain satisfactory decontamination.

A titre d'exemple, on a utilisé un dispositif de ce type pour décontaminer une plaque en acier inoxydable en utilisant une densité de courant sur la plaque de 10 mA.cm⁻² à 50 mA.cm⁻² et une vitesse de déplacement du cylindre creux de 40 cm.min⁻¹.As an example, a device of this type was used to decontaminate a stainless steel plate using a current density on the plate from 10 mA.cm⁻² to 50 mA.cm⁻² and a speed of movement of the 40 cm.min⁻¹ hollow cylinder.

La durée totale pour réaliser la décontamination d'une plaque de 10 cm² ayant une longueur de 10 cm est obtenue en une heure.The total time to carry out the decontamination of a 10 cm² plate having a length of 10 cm is obtained in one hour.

On détermine alors le taux de décontamination en tritium de la surface de la pièce et sa perte d'épaisseur comme précédemment. Les résultats obtenus et les conditions de traitement sont donnés dans le tableau 2 qui suit.The rate of tritium decontamination of the surface of the part and its loss of thickness are then determined as above. The results obtained and the treatment conditions are given in Table 2 which follows.

On remarque ainsi que l'on peut obtenir un bon taux de décontamination avec une perte d'épaisseur négligeable.It is thus noted that one can obtain a good decontamination rate with a negligible loss of thickness.

Dans ce type de dispositif, la température à laquelle on opère est supérieure à la température ambiante en raison de l'effet Joule obtenu par électrolyse.In this type of device, the temperature at which one operates is higher than room temperature due to the Joule effect obtained by electrolysis.

EXEMPLE 6EXAMPLE 6

Il s'agit d'une variante de l'exemple 5, dans laquelle on utilise la propriété de diffusibilité de l'hydrogène atomique dans une cathode de nickel. On utilise le dispositif représenté schématiquement sur la figure 4, qui est identique à celui de la figure 3 mais sur lequel on a ajouté une cathode 4 en noir de palladium et nickel de 250 µm, se trouvant entre le film en polymère conducteur ionique et la plaque à décontaminer. Ce dispositif est muni d'un orifice 1c d'évacuation de l'eau contenue dans le cylindre creux 1.This is a variant of Example 5, in which the diffusibility property of atomic hydrogen is used in a nickel cathode. The device shown diagrammatically in FIG. 4 is used, which is identical to that of FIG. 3 but to which a cathode 4 in palladium black and nickel of 250 μm has been added, located between the film of ionic conductive polymer and the plate to decontaminate. This device is provided with an orifice 1c for discharging the water contained in the hollow cylinder 1.

A titre d'exemple, on a utilisé un dispositif de ce type pour décontaminer une plaque en acier inoxydable en utilisant une densité de courant sur la plaque de 20 mA.cm⁻², une température d'électrolyte comprise entre 60 et 80°C et une vitesse de déplacement du cylindre creux de 40 à 200 cm.min⁻¹. Le nombre total de cycles pour réaliser la décontamination d'une plaque de 10 cm², ayant une longueur de 10 cm est de 700.For example, a device of this type was used to decontaminate a stainless steel plate using a current density on the plate of 20 mA.cm⁻², an electrolyte temperature between 60 and 80 ° C. and a displacement speed of the hollow cylinder from 40 to 200 cm.min⁻¹. The total number of cycles to carry out the decontamination of a 10 cm² plate, having a length of 10 cm is 700.

On détermine de la même façon le taux de décontamination en tritium de la surface de la pièce. Dans ce cas, celle-ci ne subit pas de perte d'épaisseur, et des matériaux dégradables à la polarisation cathodique et aux électrolytes peuvent être utilisés : alliage d'aluminium et de cuivre. Les résultats obtenus et les conditions de traitement sont donnés dans le tableau 3 qui suit.The rate of tritium decontamination of the surface of the part is determined in the same way. In this case, the latter does not undergo any loss of thickness, and materials degradable to cathodic polarization and to electrolytes can be used: aluminum and copper alloy. The results obtained and the treatment conditions are given in Table 3 below.

EXEMPLE 7EXAMPLE 7

Dans cet exemple, on utilise le premier mode de mise en oeuvre du procédé de l'invention pour traiter une pièce de dimensions moyennes en acier inoxydable ayant une géométrie tourmentée constituée par une vanne dont l'orifice est très contaminé par du tritium. La pièce est disposée dans une cuve contenant de l'eau et l'on introduit dans l'orifice à décontaminer un ensemble anode-électrolyte solide constitué par un crayon de graphite recouvert d'un feutre de graphite et d'un film de polymère solide conducteur ionique.In this example, the first embodiment of the method of the invention is used to treat a medium-sized piece of stainless steel having a tormented geometry constituted by a valve whose orifice is very contaminated with tritium. The part is placed in a tank containing water and a solid anode-electrolyte assembly is introduced into the orifice to be decontaminated, consisting of a graphite pencil covered with a graphite felt and a solid ionic conductive polymer film.

On réalise l'électrolyse avec une densité de courant de 10 mA.cm⁻², pendant deux heures la température obtenue par effet Joule dû à l'électrolyse. En fin d'opération, on détermine le taux de décontamination en tritium de la surface de la pièce et sa perte d'épaisseur en micromètres. Les résultats obtenus et les conditions de traitement sont donnés dans le tableau 4.Electrolysis is carried out with a current density of 10 mA.cm⁻², for two hours the temperature obtained by the Joule effect due to the electrolysis. At the end of the operation, the tritium decontamination rate of the surface of the part is determined and its loss of thickness in micrometers. The results obtained and the treatment conditions are given in Table 4.

L'invention ne se limite aucunement aux modes de réalisation envisagés ou décrits ci-dessus. En particulier, on peut utiliser pour la méthode d'électrolyse dite au tampon des appareillages classiques tels que ceux décrits dans les brevets français FR-A-2 490 685 et FR-A-2 533 356. On peut également utiliser d'autres matériaux pour la réalisation des anodes utilisées dans le procédé de l'invention, ainsi que d'autres matériaux comme électrolyte solide qui peuvent être associés à de l'eau ou à des solutions aqueuses appropriées. Par ailleurs, lorsque l'on met en oeuvre la méthode d'électrolyse dite au tampon, on peut utiliser des électrolytes en solution aqueuse, par exemple une solution de soude ou d'acide sulfurique.

Figure imgb0002
Figure imgb0003
Figure imgb0004
TABLEAU 4 EX.7 (matériau traité) Electrolyte Temps (heure) Densité de courant (mA.cm⁻²) Perte d'épaisseur (µm) TD acier inoxydable H₂O + acide perfluorosulfonique 2 10 10⁻² 10 The invention is in no way limited to the embodiments envisaged or described above. In particular, conventional apparatuses such as those described in French patents FR-A-2 490 685 and FR-A-2 533 356 can be used for the so-called buffer electrolysis method. for producing the anodes used in the process of the invention, as well as other materials as solid electrolyte which can be combined with water or with suitable aqueous solutions. Furthermore, when the so-called buffer electrolysis method is used, it is possible to use electrolytes in aqueous solution, for example a solution of soda or sulfuric acid.
Figure imgb0002
Figure imgb0003
Figure imgb0004
TABLE 4 EX.7 (treated material) Electrolyte Time (hour) Current density (mA.cm⁻²) Thickness loss (µm) TD stainless steel H₂O + perfluorosulfonic acid 2 10 10⁻² 10

Claims (18)

  1. Process for the decontamination of the surface of a metal part contaminated by tritium, characterized in that it comprises the following stages:
    1) connecting the part to be decontaminated to the negative pole of a direct current generator,
    2) contacting at least one portion of the surface of the part to be decontaminated with a mixture incorporating water and an electrolyte able to release hydrogen by electrolysis, and
    3) passing an electric current between the part to be decontaminated and an anode connected to the positive pole of the electric current generator and in contact with the mixture incorporating water and an electrolyte, by applying to the part to be decontaminated a current density of 10 to 50 mA/cm⁺² in order to cathodically charge with hydrogen the surface of the part to be decontaminated and thus replace by hydrogen the tritium adsorbed on the surface of the part to be decontaminated.
  2. Process according to claim 1, characterized in that the mixture incorporating water and electrolyte is constituted by an aqueous solution of alkali metal hydroxide or sulphuric acid.
  3. Process according to claim 2, characterized in that the mixture incorporating water and electrolyte is constituted by an aqueous soda solution.
  4. Process according to any one of the claims 1 to 3, characterized in that the anode is made from polytetrafluoroethylene wax-impregnated graphite.
  5. Process according to any one of the claims 1 to 4, characterized in that the part to be decontaminated is immersed in water or aqueous solution.
  6. Process according to claim 5, characterized in that the anode is constituted by a vessel containing the water-electrolyte mixture.
  7. Process according to either of the claims 1 and 4, characterized in that the electrolyte is a solid electrolyte.
  8. Process according to claim 7, characterized in that the solid electrolyte is an ionic conductive polymer.
  9. Process according to claim 8, characterized in that the solid electrolyte is perfluoro-sulphonic acid of formula:
    Figure imgb0006
    in which R represents an organic radical and n is a polymerization number.
  10. Process according to any one of the claims 7 to 9, characterized in that an assembly incorporating the anode and the solid electrolyte is moved over the surface of the part and in that water or an aqueous solution is circulated between the anode, the solid electrolyte and the surface of the part to be decontaminated.
  11. Process according to any one of the claims 1 to 10, characterized in that the part to be decontaminated is of stainless steel or a copper alloy.
  12. Apparatus for performing the process for decontaminating the surface of a tritium-contaminated metal part according to any one of the claims 7 to 10, characterized in that it comprises a hollow electricity conducting material body (1) connected to one of the poles of an electric current generator (5), the hollow body being provided with at least one liquid outlet port ( 1a) to which is applied a porous, permeable element (2) made from electricity conducting material, a solid electrolyte (3) applied to the outer surface of the porous, permeable element and means (7) for displacing the hollow body on the surface of the part to be treated, so that the solid electrolyte is in contact with the part (9) and means (1b) for introducing a liquid into the hollow body and for circulating it through the outlet port between the porous, permeable electricity conducting material element and the surface of the part to be treated.
  13. Apparatus according to claim 12, characterized in that body (1) is of polytetrafluoroethylene wax-impregnated graphite.
  14. Apparatus according to either of the claims 12 and 13, characterized in that the porous, permeable element (2) is of graphite felt.
  15. Apparatus according to any one of the claims 12 to 14, characterized in that the solid electrolyte (3) is an ionic conductive polymer.
  16. Apparatus according to any one of the claims 12 to 15, characterized in that it also comprises a cathodic palladium black and/or nickel element (4) in which the hydrogen can diffuse, said element being applied to the solid electrolyte (3) in such a way that when the hydrogen has diffused into said element, it is directly implanted in the part to be decontaminated.
  17. Apparatus according to claim 16, characterized in that the cathodic adsorption element is fitted into the solid electrolyte (3).
  18. Apparatus according to either of the claims 16 and 17, characterized in that the cathodic element (4) has a thickness of approximately 250 µm.
EP87403007A 1987-01-05 1987-12-30 Process for decontaminating the surface of a metallic component contaminated by tritium, and device for using said process Expired - Lifetime EP0274329B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8700017A FR2609352B1 (en) 1987-01-05 1987-01-05 PROCESS FOR DECONTAMINATION OF THE SURFACE OF A METAL PART CONTAMINATED BY TRITIUM AND DEVICE FOR USE THEREOF
FR8700017 1987-01-05

Publications (2)

Publication Number Publication Date
EP0274329A1 EP0274329A1 (en) 1988-07-13
EP0274329B1 true EP0274329B1 (en) 1992-03-18

Family

ID=9346685

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87403007A Expired - Lifetime EP0274329B1 (en) 1987-01-05 1987-12-30 Process for decontaminating the surface of a metallic component contaminated by tritium, and device for using said process

Country Status (6)

Country Link
US (1) US4836900A (en)
EP (1) EP0274329B1 (en)
JP (1) JP2562164B2 (en)
CA (1) CA1326643C (en)
DE (1) DE3777598D1 (en)
FR (1) FR2609352B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE58904254D1 (en) * 1988-07-28 1993-06-09 Siemens Ag ELECTROPOLISHING METHOD FOR THE PURPOSE OF DECONTAMINATION.
DE4420139C1 (en) * 1994-06-09 1995-12-07 Kraftanlagen En Und Industriea Process for the electrochemical decontamination of radioactive surfaces of metal components from nuclear facilities
US5678232A (en) * 1995-07-31 1997-10-14 Corpex Technologies, Inc. Lead decontamination method
US5591270A (en) * 1995-07-31 1997-01-07 Corpex Technologies, Inc. Lead oxide removal method
US5814204A (en) * 1996-10-11 1998-09-29 Corpex Technologies, Inc. Electrolytic decontamination processes
DE19944776C2 (en) * 1999-09-17 2003-06-18 Karlsruhe Forschzent Process for tritium decontamination of the first wall of a nuclear fusion device
CN100577893C (en) * 2005-12-23 2010-01-06 中国辐射防护研究院 Electrolytic decontaminating method for removing radioactive contaminant from metal surface
FR2936720B1 (en) * 2008-10-03 2010-10-29 Commissariat Energie Atomique PROCESS FOR ELECTROKINETIC DECONTAMINATION OF A POROUS SOLID MEDIUM.
RU2771172C1 (en) * 2021-05-11 2022-04-28 Общество с ограниченной ответственностью "ИННОПЛАЗМАТЕХ" Apparatus for plasma decontamination of structural elements of a nuclear reactor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1192522B (en) * 1960-05-17 1965-05-06 Chemische Maschb Werke Veb Method and device for the decontamination of radioactively contaminated objects and surfaces
FR1481593A (en) * 1965-05-29 1967-05-19 Hoechst Ag Method and device for the treatment of metal surfaces by electrolytic pickling
US3515655A (en) * 1967-09-15 1970-06-02 Israel Defence Electrolytic decontamination of radioactively contaminated equipment
US3957597A (en) * 1974-05-28 1976-05-18 The United States Of America As Represented By The United States Energy Research And Development Administration Process for recovering tritium from molten lithium metal
FR2533356A1 (en) * 1982-09-22 1984-03-23 Dalic Device for radioactive decontamination of metal surfaces by electrolysis with a buffer and electrolytes which can be used for carrying out this decontamination.
DE3343396A1 (en) * 1983-11-30 1985-06-05 Kraftwerk Union AG, 4330 Mülheim METHOD FOR DECONTAMINATING METALLIC COMPONENTS OF A NUCLEAR TECHNICAL PLANT
FR2561672B1 (en) * 1984-03-21 1989-09-01 Travaux Milieu Ionisant ELECTROLYSIS DEVICE, ESPECIALLY FOR RADIOACTIVE DECONTAMINATION OF METAL SURFACES

Also Published As

Publication number Publication date
FR2609352B1 (en) 1992-10-30
JPS63214698A (en) 1988-09-07
CA1326643C (en) 1994-02-01
US4836900A (en) 1989-06-06
DE3777598D1 (en) 1992-04-23
EP0274329A1 (en) 1988-07-13
JP2562164B2 (en) 1996-12-11
FR2609352A1 (en) 1988-07-08

Similar Documents

Publication Publication Date Title
EP0082061B1 (en) Process and device for treating solutions containing tritiated water, electrode to be used in this device and its manufacturing process
US10738387B2 (en) Electrochemical cell containing a graphene coated electrode
EP0274329B1 (en) Process for decontaminating the surface of a metallic component contaminated by tritium, and device for using said process
FR2463200A1 (en) ELECTRODE COMPRISING A HYDROPHILIC SURFACE POLYMER, ELECTROLYTIC CELL OBTAINED AND METHOD OF OBTAINING HALOGEN
CN102428213A (en) Method for treating the surface of a metal
FR2643005A1 (en) ELECTROCHEMICAL MACHINING PROCESS AVOIDING EROSION AND DEVICE FOR CARRYING OUT THE METHOD
FR2611988A1 (en) PROCESS FOR MANUFACTURING A NICKEL HYDROXIDE ELECTRODE
FR3008429A1 (en) PROCESS FOR THE SYNTHESIS OF A METALLIC FOAM, METALLIC FOAM, USES THEREOF AND DEVICE COMPRISING SUCH A METAL FOAM
Zhu et al. A low-cost and non-corrosive electropolishing strategy for long-life zinc metal anode in rechargeable aqueous battery
CS325391A3 (en) Method of dissolving radioactive contaminated surfaces of objects made of metals and a decontamination agent to making the same
CN115369297B (en) Magnesium-lithium alloy member, method for manufacturing same, optical device, and imaging device
FR2511546A1 (en) PROCESS FOR LOADING METAL BATTERY PLATES AND PLATES OBTAINED
FR3053364A1 (en) PROCESS FOR THE RECOVERY OF PLATINUM BY ELECTROCHEMICAL MEANS FROM A MATERIAL IN WHICH IT IS CONTENT
FR2624885A1 (en) Electrodes-solid polymeric electrolyte system usable, for example, for the electrolysis of water, and process for its manufacture
JP7466182B2 (en) Electrode and method for producing hydrogen peroxide using said electrode
FR2509446A1 (en) METHOD FOR MANUFACTURING A SELECTIVE SOLAR SENSOR ABSORBER AND SELECTIVE ABSORBER OBTAINED
US3986893A (en) Method for making nickel and cadmium electrodes for batteries
EP3388555B1 (en) Process for selective recovery of silver in the presence of aluminium, electrochemically and in aqueous solution
JPH07302581A (en) Alkaline battery
JP5051575B2 (en) Method of forming hydrogen storage device and hydrogen storage alloy electrode using photovoltaic power generation, and hydrogen storage alloy electrode thereof
KR100272297B1 (en) Nickel containing zirconium and zirconium alloy stabilization
EP3388554A1 (en) Method for recovering silver present on a substrate, electrochemically, in the presence of an ionic liquid
EP3559321B1 (en) Chemical wall-treatment method that reduces the formation of coke
Mengoli et al. Electrolytic insertion/extraction of hydrogen (Deuterium) at AuPd surface
FR3065228B1 (en) PROCESS FOR RECOVERING SILVER PRESENT ON SUBSTRATE, ELECTROCHEMICALLY AND IN AQUEOUS SOLUTION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19881215

17Q First examination report despatched

Effective date: 19900928

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

REF Corresponds to:

Ref document number: 3777598

Country of ref document: DE

Date of ref document: 19920423

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19951207

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19961231

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ETABLISSEMENT D

Effective date: 19961231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011218

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020102

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020306

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051230