EP0237404A1 - Method of processing sum and difference signals in a monopulse radar for estimating the parasitic phase between these signals caused by the HF circuits forming sum and difference channels - Google Patents

Method of processing sum and difference signals in a monopulse radar for estimating the parasitic phase between these signals caused by the HF circuits forming sum and difference channels Download PDF

Info

Publication number
EP0237404A1
EP0237404A1 EP87400426A EP87400426A EP0237404A1 EP 0237404 A1 EP0237404 A1 EP 0237404A1 EP 87400426 A EP87400426 A EP 87400426A EP 87400426 A EP87400426 A EP 87400426A EP 0237404 A1 EP0237404 A1 EP 0237404A1
Authority
EP
European Patent Office
Prior art keywords
radar
phase
azimuth
elevation
sum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87400426A
Other languages
German (de)
French (fr)
Other versions
EP0237404B1 (en
Inventor
Jean-Paul Poux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0237404A1 publication Critical patent/EP0237404A1/en
Application granted granted Critical
Publication of EP0237404B1 publication Critical patent/EP0237404B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4436Monopulse radar, i.e. simultaneous lobing with means specially adapted to maintain the same processing characteristics between the monopulse signals

Definitions

  • the present invention relates generally to the radar field and relates more particularly to a method of processing signals from a radar of the monopulse type, with a view to estimating the parasitic phase introduced between these signals by the microwave training circuits. sum and difference paths.
  • a monopulse type radar allows the angular location of targets by processing different signals received simultaneously from these targets and corresponding to different beam directivities.
  • the present invention as defined in the claims relates to a method for estimating the parasitic phase ⁇ making it possible to remove these ambiguities of sign also in the azimuth plane, and the principle of which is also applicable to the estimation of the parasitic phase ⁇ in the elevation plane, as well as in the estimation of the differential phase ⁇ between the azimuth and elevation planes, this latter possibility also constituting, as will be seen below, the basis of another estimation method of the parasitic phase in the azimuth plane.
  • the invention is used on a radar system with coherent or non-coherent emission, circularly polarized, capable of receiving and discriminating right circular polarization and left circular polarization.
  • the azimuth channels will receive the right polarization while the elevation channels will receive the left polarization; the reverse would also be possible.
  • the invention therefore makes it possible to conserve all the angular information included in the signals received, while eliminating the non-coherence of the transmission, by referencing them to the response to the same pulse of different reflectors. This is achieved by the combination of the calculation of expressions S and D and the double polarization.
  • the invention is also used in an azimuth scanning radar system, the antenna rotation speed (in azimuth) being fixed at a value such that the lobes ⁇ - and ⁇ + at the instant k coincide respectively with the lobe ⁇ at time k - 1, as shown in FIG. 3.
  • the rotational speed of the antenna in azimuth is not critical and could be chosen differently.
  • the choice proposed however seems optimal in that it gives the largest values of the difference (Sa ( k + 1) - S a (k-1) ).
  • the factor "a” is therefore written as the sum of a large number of positive reals.
  • the factors bn are assigned a phase term ⁇ n which can be considered as random.
  • the adaptation of the period of repetition of the measurements carried out by the radar (corresponding to the notion of distance and pulse boxes) and of the period of repetition of the instants k, that is to say of the scanning speed of the antenna can be made in various ways, for example by suitably choosing the repetition period of the pulses, or else by performing post-integration on several pulses.
  • FIG. 5 shows a diagram of the product detector used in the treatment carried out according to the invention to estimate the parasitic phase between the sum and difference channels in azimuth.
  • the signals ⁇ a, A a and ⁇ e are applied to the input of this product detector which calculates the expressions: by means of two mixers 5 and 6, one of which receives the signal ⁇ e on the one hand and the signal ⁇ a or the signal ⁇ a on the other hand.
  • the signals ⁇ a, ⁇ a and ⁇ e are moreover transformed into medium frequency signals by means of frequency change stages 8 and 9.
  • the quantities S and D are complex quantities which can be written in the form: I + j Q where I and Q respectively designate their real part and their imaginary part; the quantities I and Q are obtained on two outputs of the product detector.
  • the invention has been described for the estimation of the parasitic phase between the sum and difference channels in azimuth.
  • the principle of the invention is nevertheless applicable to the estimation of the parasitic phase between the sum and difference in elevation channels.
  • the principle of the invention is also applicable to the estimation of the differential parasitic phase ⁇ a - ⁇ e , where ⁇ a and ⁇ e denote respectively the parasitic phase in azimuth and in elevation.
  • the estimation of this differential parasitic phase may be of interest for the following reasons.
  • the antenna scanning constraints described above mean that the estimation of a phase correction factor cannot be carried out during the entire period of use and processing of the radar.
  • the calibration phase has a significant duration compared to the total duration of the mission of a short-range missile.
  • the parasitic phase estimation method according to the invention makes it possible to directly calculate the differential phase ⁇ a - ⁇ e without going through the successive calculations of ⁇ a and ⁇ e , which makes it possible to overcome the risk of error previously. cited.
  • the ambiguity of the sign can therefore be removed and corrected in such a way that the factor "a" is the sum of a large number of positive reals.
  • the average is calculated over several distance boxes and several pulses so as to obtain the desired precision.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Le procédé suivant l'invention, appliqué par exemple à l'estimation de la phase parasite Ψa entre les voies somme Σa et différence Δa en azimut, consiste à calculer les expressions S = Σa . Σe* et D = Δa . Σe* pour différentes mesures successives effectuées par le radar, puis à calculer l'expression [S(k+1) - S(k-1)]. D*(k) pour différents instants successifs k-1, k, k+1, et à effectuer un moyennage du résultat de cette expression pour différents instants k, étant entendu que l'antenne radar balaye en azimut et que l'onde radar émise est polarisée circulairement, les récepteurs monopulse azimut et élévation ne recevant respectivement que l'un des types de polarisation circulaire : droite ou gauche. Application aux radars de poursuite du type monopulse.The method according to the invention, applied for example to the estimation of the parasitic phase Ψa between the sum Σa and difference Δa in azimuth channels, consists in calculating the expressions S = Σa. Σe * and D = Δa. Σe * for different successive measurements made by the radar, then calculating the expression [S (k + 1) - S (k-1)]. D * (k) for different successive instants k-1, k, k + 1, and to carry out an averaging of the result of this expression for different instants k, it being understood that the radar antenna scans in azimuth and that the radar wave emitted is circularly polarized, the azimuth and elevation monopulse receivers respectively receiving only one of the types of circular polarization: right or left. Application to tracking cameras of the monopulse type.

Description

La présente invention se rapporte d'une manière générale au domaine du radar et concerne plus particulièrement un procédé de traitement des signaux d'un radar du type monopulse, en vue d'estimer la phase parasite introduite entre ces signaux par les circuits hyperfréquence de formation des voies somme et différence.The present invention relates generally to the radar field and relates more particularly to a method of processing signals from a radar of the monopulse type, with a view to estimating the parasitic phase introduced between these signals by the microwave training circuits. sum and difference paths.

II est connu qu'un radar du type monopulse permet la localisation angulaire de cibles par traitement de différents signaux reçus simultanément de ces cibles et correspondant à différentes directivités de faisceaux.It is known that a monopulse type radar allows the angular location of targets by processing different signals received simultaneously from these targets and corresponding to different beam directivities.

Ainsi, comme représenté très schématiquement sur la figure 1, en prévoyant deux sources respectivement dans le plan azimut (1a, 2a) et dans le plan élévation (1e, 2e), on dispose en réception, pour chacun de ces plans, de deux signaux sont on peut former, par des moyens hyperfréquence (3,4), la somme Σ et la différence Δ, ce qui revient à disposer d'une antenne avec un faisceau correspondant à la voie Σ et un autre faisceau correspondant à la voie A, et permet ainsi une localisation angulaire des cibles de façon simple.Thus, as shown very schematically in FIG. 1, by providing two sources respectively in the azimuth plane (1a, 2a) and in the elevation plane (1e, 2e), there are two signals available for each of these planes are we can form, by microwave means (3,4), the sum Σ and the difference Δ, which amounts to having an antenna with a beam corresponding to channel la and another beam corresponding to channel A, and thus allows angular localization of the targets in a simple manner.

II est également connu que, le rerayonnement d'une cible étant la somme des ondes réfléchies par chacun des éléments réflecteurs qui la composent, les signaux S et D reçus respectivement sur les voies somme et différence, en azimut ou en élévation, ont pour représentation complexe:

Figure imgb0001
Figure imgb0002
avec:

  • s(θ i) : gain de la voie somme à l'angle θi ;
  • d(θ i) : gain de la voie différence à l'angle θi ;
  • ai: amplitude relative au iemeréflecteur ;
  • φi déphasage introduit par le jèmeréflecteur ;
  • di: distance entre le radar et le ièmeréflecteur ;
  • Ψ: phase parasite introduite entre les voies Σ et A par les circuits hyperfréquence de formation des voies somme et différence.
It is also known that, the re-radiation of a target being the sum of the waves reflected by each of the reflective elements which compose it, the signals S and D received respectively on the sum and difference channels, in azimuth or in elevation, have for representation complex:
Figure imgb0001
Figure imgb0002
with:
  • s (θ i ): gain of the sum channel at angle θ i ;
  • d (θ i ): gain of the channel difference at angle θ i ;
  • a i : amplitude relative to the iemoreflector;
  • φ i phase shift introduced by the jem reflector;
  • d i : distance between the radar and the ith reflector;
  • Ψ: parasitic phase introduced between channels Σ and A by the microwave circuits for forming the sum and difference channels.

II est également connu que, dans le cas particulier du plan élévation, la phase parasite Ψ entre les voies somme et différence peut être évaluée de la façon suivante. Soit P = S x D*

Figure imgb0003
où D* désigne la quantité complexe conjuguée de D, et où :
Figure imgb0004
It is also known that, in the particular case of the elevation plane, the parasitic phase Ψ between the sum and difference channels can be evaluated in the following manner. Let P = S x D *
Figure imgb0003
where D * denotes the complex conjugate quantity of D, and where:
Figure imgb0004

Si l'on effectue le calcul de la valeur moyenne de P sur différentes cases distance du radar, 2d.. la phase φij - w

Figure imgb0005
pouvant être considérée comme aléatoire, on a :
Figure imgb0006
où E désigne l'opérateur espérance mathématique.If the average value of P is calculated over different distance from the radar, 2d .. the phase φ ij - w
Figure imgb0005
can be considered random, we have:
Figure imgb0006
where E denotes the operator mathematical expectation.

Le terme "a" est réel, mais est a priori de signe inconnu à cause des facteurs d (θ i) qui peuvent être positifs ou négatifs. En effet si l'on se reporte à la figure 2 qui représente l'allure des diagrammes somme et différence, Σ et Δ, dans le plan azimut ou dans le plan élévation, le diagramme somme présente un maximum dans la direction de l'axe de l'antenne, alors que le diagramme différence A présente au contraire un minimum dans cette direction, et est, de part et d'autre de cette direction, soit en phase (Δ+) soit en opposition de phase (A-) avec Σ.The term "a" is real, but is a priori of unknown sign because of the factors d (θ i ) which can be positive or negative. Indeed if we refer to Figure 2 which represents the shape of the sum and difference diagrams, Σ and Δ, in the azimuth plane or in the elevation plane, the sum diagram presents a maximum in the direction of the axis of the antenna, while the difference diagram A has on the contrary a minimum in this direction, and is, on either side of this direction, either in phase (Δ +) or in phase opposition (A-) with Σ.

Le moyennage de P ne permet alors a priori d'estimer la phase Ψ qu'au signe près.The averaging of P then allows a priori to estimate the phase Ψ only to the nearest sign.

Or il se trouve que dans le plan élévation, cette ambiguïté de signe peut être levée de façon relativement simple car le signe de d (θ i) est alors lié au rang de la case distance considérée, étant négatif pour les cases distance les plus proches et positif pour les cases distance les plus éloignées. En effectuant le moyennage de P sur les différentes cases distance, on obtient alors, après correction du signe en fonction de la case distance considérée, une estimation de la phase Ψ sans ambiguïté de signe.Now it turns out that in the elevation plane, this sign ambiguity can be removed relatively simply because the sign of d (θ i ) is then linked to the rank of the distance box considered, being negative for the closest distance boxes and positive for the most distant distance boxes. By averaging P over the different distance boxes, we then obtain, after correction of the sign according to the distance box considered, an unambiguous estimate of the phase Ψ.

La présente invention telle que définie dans les revendications a pour objet un procédé d'estimation de la phase parasite Ψ permettant de lever ces ambiguïtés de signe également dans le plan azimut, et dont le principe est également applicable à l'estimation de la phase parasite Ψ dans le plan élévation, ainsi qu'à l'estimation de la phase différentielle δΨ entre les plans azimut et élévation, cette dernière possibilité constituant par ailleurs, comme on le verra par la suite, la base d'une autre méthode d'estimation de la phase parasite dans le plan azimut.The present invention as defined in the claims relates to a method for estimating the parasitic phase Ψ making it possible to remove these ambiguities of sign also in the azimuth plane, and the principle of which is also applicable to the estimation of the parasitic phase Ψ in the elevation plane, as well as in the estimation of the differential phase δΨ between the azimuth and elevation planes, this latter possibility also constituting, as will be seen below, the basis of another estimation method of the parasitic phase in the azimuth plane.

D'autres objets et caractéristiques de la présente invention apparaîtront plus clairement à la lecture de la description suivante d'exemples de réalisation, faite en relation avec les dessins ci-annexés dans lesquels :

  • - la figure 1 montre schématiquement la formation des voies somme et différence en azimut et en élévation dans un radar de type monopulse ;
  • - la figure 2 montre la forme des diagrammes somme et différence d'un radar monopulse dans le plan azimut ou dans le plan élévation ;
  • - la figure 3 illustre le balayage de l'antenne radar, suivant l'invention ;
  • - la figure 4 est un schéma synoptique du traitement effectué suivant l'invention ;
  • - la figure 5 est un schéma du détecteur de produit utilisé dans le traitement suivant l'invention.
Other objects and characteristics of the present invention will appear more clearly on reading the following description of exemplary embodiments, given in relation to the attached drawings in which:
  • - Figure 1 schematically shows the formation of sum and difference channels in azimuth and elevation in a radar of the monopulse type;
  • - Figure 2 shows the form of the sum and difference diagrams of a monopulse radar in the azimuth plane or in the elevation plane;
  • - Figure 3 illustrates the scanning of the radar antenna according to the invention;
  • - Figure 4 is a block diagram of the processing carried out according to the invention;
  • - Figure 5 is a diagram of the product detector used in the treatment according to the invention.

L'invention est utilisée sur un système radar à émission cohérente ou non cohérente, polarisée circulairement, capable de recevoir et de discriminer polarisation circulaire droite et polarisation circulaire gauche. Pour fixer les idées dans ce qui suit, les voies azimut recevront la polarisation droite tandis que les voies élévation reçoivent la polarisation gauche ; l'inverse serait également possible.The invention is used on a radar system with coherent or non-coherent emission, circularly polarized, capable of receiving and discriminating right circular polarization and left circular polarization. To fix the ideas in what follows, the azimuth channels will receive the right polarization while the elevation channels will receive the left polarization; the reverse would also be possible.

Ainsi en se référant à une phase absolue hypothétique les signaux somme Σa et Σe, respectivement en azimut et en élévation, et les signaux différence Aa et Δe, respectivement en azimut et en élévation, s'écrivent :

Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
où les indices D et G désignent les voies de réception des polarisations droite et gauche, et les indices a et e les dimensions angulaires, azimut et élévation, et où ϕt désigne la composante de phase non cohérente qui change d'impulsion à impulsion.Thus by referring to a hypothetical absolute phase the sum signals Σa and Σ e , respectively in azimuth and in elevation, and the difference signals A a and Δ e , respectively in azimuth and in elevation, are written:
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
where the indices D and G denote the reception channels of the right and left polarizations, and the indices a and e the angular dimensions, azimuth and elevation, and where ϕ t denotes the non-coherent phase component which changes from pulse to pulse.

A partir des signaux somme et différence Σa, Σe, Δa' Δe, les expressions suivantes sont calculées :

Figure imgb0011
Figure imgb0012
From the sum and difference signals Σa, Σe, Δ a ' Δe, the following expressions are calculated:
Figure imgb0011
Figure imgb0012

Une unité de temps étant fixée suffisamment petite pour que le déphasage entre voies puisse être considéré comme constant, on a à un instant k:

Figure imgb0013
Figure imgb0014
A unit of time being fixed small enough so that the phase shift between channels can be considered as constant, we have at an instant k:
Figure imgb0013
Figure imgb0014

On notera que le calcul des expressions S et D permet, entre autres, de s'affranchir de la composante de phase non cohérente ϕt.It will be noted that the computation of the expressions S and D allows, inter alia, to be freed from the non-coherent phase component ϕt.

On calcule alors l'expression : [S(k+1) - S(k-1)]D* (k) où k-1, k et k+1 désignent trois instants successifs. On a :

Figure imgb0015
Figure imgb0016
avec
Figure imgb0017
We then calculate the expression: [S (k + 1) - S (k-1)] D * (k) where k-1, k and k + 1 denote three successive instants. We have :
Figure imgb0015
Figure imgb0016
with
Figure imgb0017

Dans l'expression Σ bn eiϕ n, les facteurs bn sont affectés d'un terme de phase ϕn qui, pouvant être considéré comme aléatoire, diparaîtra par moyennage de l'expression : [S(k+1) S(k-1)] D*(k) sur plusieurs mesures successives de Σa, Δa, Σe, Δe effectuées par le radar et correspondant à plusieurs instants k successifs.In the expression Σ b n eiϕ n, the factors b n are assigned a phase term ϕ n which, which can be considered as random, will disappear by averaging the expression: [S (k + 1) S (k -1)] D * (k) on several successive measurements of Σa, Δa, Σe, Δe taken by the radar and corresponding to several successive instants k.

La notion de mesures effectuées par le radar se rapporte à la notion de cases distance et d'impulsions. Pour une case distance donnée, le moyennage est ensuite effectué sur plusieurs impulsions successives, et le moyennage est ensuite effectué sur plusieurs cases distance. Grâce à la double polarisation les facteurs non affectés d'un tel terme de phase sont limités à l'expression "a" pour laquelle on a l'égalité i = I et j = m. Tous les autres cas (tels que i = j ou m =I) sont en effet exclus car ils correspondraient à des réflecteurs individuels qui renverraient les deux types de polarisation : droite et gauche, c'est-à-dire qui seraient à la fois du type dièdre (nombre pair de réflexions successives, et du type tièdre (nombre impair de réglexions successives).The notion of radar measurements relates to the notion of distance and pulse boxes. For a given distance cell, the averaging is then carried out on several successive pulses, and the averaging is then carried out on several distance cells. Thanks to the double polarization the factors not affected by such a phase term are limited to the expression "a" for which there is the equality i = I and j = m. All the other cases (such as i = j or m = I) are indeed excluded because they would correspond to individual reflectors which would return the two types of polarization: right and left, that is to say which would be at the same time of the dihedral type (even number of successive reflections, and of the lukewarm type (odd number of successive reflections).

L'invention permet donc de conserver toute l'information angulaire comprise dans les signaux reçus, tout en éliminant la non cohérence de l'émission, en les référençant à la réponse à la même impulsion de réflecteurs différents. Ceci est réalisé grâce à la combinaison du calcul des expressions S et D et de la double polarisation.The invention therefore makes it possible to conserve all the angular information included in the signals received, while eliminating the non-coherence of the transmission, by referencing them to the response to the same pulse of different reflectors. This is achieved by the combination of the calculation of expressions S and D and the double polarization.

/Au cours du développement précédent il a été fait l'hypothèse importante qu'entre les instants k-1 et k + 1 les angles d'élévation θe(en l'occurrence θG puisque l'on considère dans cet exemple le cas où les voies azimut reçoivent la polatisation droite tandis que les voies élévation reçoivent la polarisation gauche) sont invariants, ce qui permet leur mise en facteur commun dans l'expression "a". Cette hypothèse est raisonnable dans le cas d'un radar fixe ou d'un radar embarqué si l'unité de temps est suffisamment petite pour que l'avancement de la plate-forme ne change pas la géométrie du système./ During the previous development it was made the important assumption that between the instants k-1 and k + 1 the elevation angles θ e (in this case θ G since we consider in this example the case where the azimuth channels receive the right polarization while the elevation channels receive the left polarization) are invariant, which allows them to be put into common factor in the expression "a". This assumption is reasonable in the case of a fixed radar or an on-board radar if the time unit is small enough so that the advancement of the platform does not change the geometry of the system.

L'invention est par ailleurs utilisée dans un système radar à balayage en azimut, la vitesse de rotation de l'antenne (en azimut) étant fixée à une valeur telle que les lobes Δ - et Δ + à l'instant k coïncident respectivement avec le lobe Σ à l'instant k - 1, comme représenté sur la figure 3.The invention is also used in an azimuth scanning radar system, the antenna rotation speed (in azimuth) being fixed at a value such that the lobes Δ - and Δ + at the instant k coincide respectively with the lobe Σ at time k - 1, as shown in FIG. 3.

Dans ces conditions le produit [Sa(k+1)(θ Di) -sa(k-1)(θ Di)] da(k) (θ Di) est positif pour tout réflecteur élémentaire "i". En effet, si on considère par exemple un réflecteur élémentaire qui se trouve à l'instant k sur le lobe A +, on a alors da(k) qui est positif, sa(k+1 )qui est également positif ; il en serait de même pour un réflecteur élémentaire qui serait à l'instant k sur le lobe Δ-.Under these conditions the product [Sa (k + 1) (θ Di) -s a (k-1) (θ Di)] da (k) (θ Di) is positive for any elementary reflector "i". Indeed, if we consider for example an elementary reflector which is at the instant k on the lobe A +, we then have d a ( k ) which is positive, s a (k + 1) which is also positive; it would be the same for an elementary reflector which would be at the instant k on the lobe Δ-.

La vitesse de rotation de l'antenne en azimut n'est pas critique et pourrait être choisie différemment. Le choix proposé semble cependant optimal en ce qu'il donne les plus grandes valeurs de la différence (Sa(k+ 1) - Sa(k-1)).The rotational speed of the antenna in azimuth is not critical and could be chosen differently. The choice proposed however seems optimal in that it gives the largest values of the difference (Sa ( k + 1) - S a (k-1) ).

Le facteur "a" s'écrit donc comme la somme d'un grand nombre de réels positifs. Au contraire, les facteurs bn sont affectés d'un terme de phase ϕn qui peut être considéré comme aléatoire.The factor "a" is therefore written as the sum of a large number of positive reals. On the contrary, the factors bn are assigned a phase term ϕ n which can be considered as random.

L'examen de plusieurs mesures successives de [S(k+ 1) - (S(k-1)] D* (k) permet par moyennage d'estimer la correction de phase

Figure imgb0018
1 -
Figure imgb0019
3 dont la variance variera inversement au nombre de mesures effectuées, ce nombre de mesures étant fixé a priori ou adapté à la précision désirée par software.The examination of several successive measurements of [S (k + 1) - (S (k-1)] D * (k) allows by averaging to estimate the phase correction
Figure imgb0018
1 -
Figure imgb0019
3 , the variance of which will vary inversely with the number of measurements carried out, this number of measurements being fixed a priori or adapted to the precision desired by software.

L'adaptation de la période de répétition des mesures effectuées par le radar (correspondant à la notion de cases distances et d'impulsions) et de la période de répétition des instants k, c'est-à-dire de la vitesse de balayage de l'antenne, peut être faite de diverses façons, par exemple en choisissant convenablement la période de répétition des impulsions, ou bien en réalisant un post-intégration sur plusieurs impulsions.The adaptation of the period of repetition of the measurements carried out by the radar (corresponding to the notion of distance and pulse boxes) and of the period of repetition of the instants k, that is to say of the scanning speed of the antenna can be made in various ways, for example by suitably choosing the repetition period of the pulses, or else by performing post-integration on several pulses.

On a représenté sur la figure 5 un schéma du détecteur de produit utilisé dans le traitement effectué suivant l'invention pour estimer la phase parasite entre les voies somme et différence en azimut.FIG. 5 shows a diagram of the product detector used in the treatment carried out according to the invention to estimate the parasitic phase between the sum and difference channels in azimuth.

Les signaux Σa, Aa et Σe sont appliqués à l'entrée de ce détecteur de produit qui calcule les expressions :

Figure imgb0020
Figure imgb0021
au moyen de deux mélangeurs 5 et 6 dont l'un reçoit d'une part le signal Σe et d'autre part, soit le signal Σa, soit le signal Δa. Les signaux Σa, Δa et Σesont par ailleurs transformés en signaux à moyenne fréquence au moyen d'étages de changement de fréquence 8 et 9.The signals Σa, A a and Σ e are applied to the input of this product detector which calculates the expressions:
Figure imgb0020
Figure imgb0021
by means of two mixers 5 and 6, one of which receives the signal Σ e on the one hand and the signal Σa or the signal Δa on the other hand. The signals Σa, Δa and Σ e are moreover transformed into medium frequency signals by means of frequency change stages 8 and 9.

II est à noter que l'on n'utilise pas S et D aux mêmes instants, puisque seul le produit [S(k+1) - S(k-1)] D*(k) importe. II est donc possible de n'utiliser qu'un seul détecteur de produit, adressé successivement, grâce à un commutateur 10 par les voies Ea et Ec puis Δaet Σe.It should be noted that S and D are not used at the same times, since only the product [S (k + 1) - S (k-1)] D * (k) matters. It is therefore possible to use only one product detector, addressed successively, by means of a switch 10 by the channels Ea and Ec then Δ a and Σe.

Les grandeurs S et D sont des grandeurs complexes qui peuvent s'écrire sous la forme : I + j Q où I et Q désignent respectivement leur partie réelle et leur partie imaginaire ; les grandeurs I et Q sont obtenues sur deux sorties du détecteur de produit.The quantities S and D are complex quantities which can be written in the form: I + j Q where I and Q respectively designate their real part and their imaginary part; the quantities I and Q are obtained on two outputs of the product detector.

Les autres étapes du procédé peuvent être réalisées grâce à un logiciel adapté.The other steps of the process can be carried out using suitable software.

Dans ce qui précède, l'invention a été décrite pour l'estimation de la phase parasite entre les voies somme et différence en azimut. Le principe de l'invention est néanmoins applicable à l'estimation de la phase parasite entre les voies somme et différence en élévation.In the foregoing, the invention has been described for the estimation of the parasitic phase between the sum and difference channels in azimuth. The principle of the invention is nevertheless applicable to the estimation of the parasitic phase between the sum and difference in elevation channels.

Dans ce cas on calculerait les expressions :

Figure imgb0022
Figure imgb0023
In this case we would calculate the expressions:
Figure imgb0022
Figure imgb0023

La contrainte sur le balayage deviendrait alors une contrainte sur le balayage en élévation, et l'hypothèse qu'entre les instants k-1, k et k+1 les angles d'azimut sont invariants devrait également être faite.The constraint on the scan would then become a constraint on the elevation scan, and the assumption that between the instants k-1, k and k + 1 the azimuth angles are invariant should also be made.

Comme on va le voir maintenant, le principe de l'invention est également applicable à l'estimation de la phase parasite différentielle Ψa - Ψe, où Ψa et Ψe désignent respectivement la phase parasite en azimut et en élévation. L'estimation de cette phase parasite différentielle peut présenter un intérêt pour les raisons suivantes.As we will see now, the principle of the invention is also applicable to the estimation of the differential parasitic phase Ψ a - Ψ e , where Ψ a and Ψ e denote respectively the parasitic phase in azimuth and in elevation. The estimation of this differential parasitic phase may be of interest for the following reasons.

Dans le cas notamment d'un radar porté par un missile dont la vitesse supersonique décroît en cours de vol jusqu'à des valeurs subsoniques, les écarts importants de température entre le début et la fin de la mission entraînent une variation des phases parasites en azimut et en élévation.In the case in particular of a radar carried by a missile whose supersonic speed decreases during flight to subsonic values, the significant temperature differences between the start and the end of the mission cause a variation of the parasitic phases in azimuth and in elevation.

Or, les contraintes de balayage d'antenne exposées précédemment font que l'estimation d'un facteur correctif de phase n'est pas réalisable durant toute la période d'utilisation et de traitement du radar.However, the antenna scanning constraints described above mean that the estimation of a phase correction factor cannot be carried out during the entire period of use and processing of the radar.

Partant de la constatation que les quatre récepteurs (deux en azimut, et deux en élévation) sont physiquement proches les uns des autres et thermiquement solidaires, donc que les variations de Ψa et Ψe seront similaires, il suffit alors d'évaluer Ψa et Ψe lors d'une phase dite de calibration (préalable à tout fonctionnement en mode recherche ou poursuite) et de calculer la différence Ψa - Ψe qui restera constante pendant toute la durée du vol. En phase poursuite il est toujours possible comme rappelé dans l'introduction de calculer Ψe par un mode d'evaluation qui n'offre aucune contrainte de position d'antenne ou de fréquence. Il est alors possible d'en déduire Ψa.Starting from the observation that the four receivers (two in azimuth, and two in elevation) are physically close to each other and thermally interdependent, therefore that the variations of Ψ a and Ψ e will be similar, it suffices then to evaluate Ψ a and Ψ e during a so-called calibration phase (prior to any operation in search or pursuit mode) and to calculate the difference Ψ a - Ψ e which will remain constant throughout the duration of the flight. In the tracking phase it is always possible, as recalled in the introduction, to calculate Ψ e by an evaluation mode which offers no constraint on antenna position or frequency. It is then possible to deduce Ψa from it.

Cependant une évaluation successive de Ψa et Ψe au cours de la phase de calibration risque d'induire une erreur sur Ψa - Ψe dans la mesure où la température peut avoir changé entre les deux évaluations. De plus, la phase de calibration a une durée importante par rapport à la durée totale de la mission d'un missile courte portée.However, a successive evaluation of Ψ a and Ψ e during the calibration phase risks inducing an error on Ψ a - Ψ e since the temperature may have changed between the two evaluations. In addition, the calibration phase has a significant duration compared to the total duration of the mission of a short-range missile.

Le procédé d'estimation de phase parasite suivant l'invention permet de calculer directement la phase différentielle Ψa - Ψe sans passer par les calculs successifs de Ψa et Ψe, ce qui permet de s'affranchir du risque d'erreur précédemment cité.The parasitic phase estimation method according to the invention makes it possible to directly calculate the differential phase Ψ a - Ψ e without going through the successive calculations of Ψ a and Ψ e , which makes it possible to overcome the risk of error previously. cited.

On décrit maintenant ce procédé, appliqué à l'estimation de la phase différentielle Ψa Ψe. Comme précédemment, les signaux reçus par les quatre voies d'écartométrie s'écrivent :

Figure imgb0024
Figure imgb0025
Figure imgb0026
Figure imgb0027
où les indices D et G désignent les voies de réception des polarisations droite et gauche (en supposant toujours que les voies azimut reçoivent la polarisation droite, et les voies élévation la polarisaton gauche) et les indices a et e les dimensions angulaires, azimut et élévation.

  • ai est l'amplitude du iéme réflecteur individuel ;
  • φ est le déphasage introduit par le ième réflecteur ;
  • di est la distance radar-ième réflecteur ;
  • ϕt est la composante de phase non cohérente qui change d'impulsion à impulsion ;
  • Ψ1, Ψ2, Ψ3, Ψ4 sont les phases parasites introduites sur les quatre voies de réception.
We now describe this process, applied to the estimation of the differential phase Ψ a Ψ e . As before, the signals received by the four deviation channels are written:
Figure imgb0024
Figure imgb0025
Figure imgb0026
Figure imgb0027
where the indices D and G denote the reception channels of the right and left polarizations (always assuming that the azimuth channels receive the right polarization, and the elevation channels the left polarization) and the indices a and e the angular dimensions, azimuth and elevation .
  • a i is the amplitude of the ith individual reflector;
  • φ is the phase shift introduced by the ith reflector;
  • d i is the radar-th reflector distance;
  • ϕt is the non-coherent phase component which changes from pulse to pulse;
  • Ψ 1 , Ψ 2 , Ψ 3 , Ψ 4 are the parasitic phases introduced on the four reception channels.

Suivant la même méthode que précédemment, un détecteur de produit calcule.:

Figure imgb0028
Figure imgb0029
Alors : [S(k+1) -S(k-1)] D* (k) = e-j(Ψ2-Ψ1 + Ψ3-Ψ4)[a +
Figure imgb0030
bn e jφn] où les phases φn peuvent être considérées comme des phases aléatoires et où : a =
Figure imgb0031
[sa(k + 1)Di) -sa(k-1)Di)] da(k)Di)seGj)deGj)a2 Dia2GjUsing the same method as before, a product detector calculates:
Figure imgb0028
Figure imgb0029
So : [S (k + 1) -S (k-1)] D * (k) = ej (Ψ2-Ψ1 + Ψ3-Ψ4) [a +
Figure imgb0030
bn e jφn] where the phases φn can be considered as random phases and where: a =
Figure imgb0031
[s a (k + 1)Di ) -s a (k-1)D i)] d a (k)Di ) s eGj ) d eG j) a 2 Sun a 2 Gj

Or la vitesse de rotation en azimut du radar a été choisie de telle façon que le produit : [sa(k + 1)Di) sa(k-1)Di] da(k)Di) soit positif pour tous les réflecteurs élémentaires. De plus seGj) est positif, a2Dia2Gj est positif, et de (θ Gj) est négatif pour les cases distances les plus proches, et est positif pour les cases distances les plus éloignées.Now the speed of rotation in azimuth of the radar was chosen in such a way that the product: [s a (k + 1)Di ) s a (k-1)Di ] d a (k)D i) is positive for all the elementary reflectors. Furthermore s eG j) is positive, a 2 Dia 2 Gj is positive, and de (θ G j) is negative for the closest distance boxes, and is positive for the most distant distance boxes.

L'ambiguïté de signe peut donc être levée et corrigée de telle façon que le facteur "a" soit la somme d'un grand nombre de réels positifs.The ambiguity of the sign can therefore be removed and corrected in such a way that the factor "a" is the sum of a large number of positive reals.

L'examen de plusieurs mesures successives de [ S(k + 1)-S(k-1)] D* (k) permet par moyennage d'estimer la correction de phase

Figure imgb0032
1 -
Figure imgb0032
2 -
Figure imgb0032
3+
Figure imgb0032
4 c'est-à-dire Ψa - Ψe.The examination of several successive measurements of [S (k + 1) -S (k-1)] D * (k) allows by averaging to estimate the phase correction
Figure imgb0032
1 -
Figure imgb0032
2 -
Figure imgb0032
3+
Figure imgb0032
4 i.e. Ψa - Ψe.

La moyenne est calculée sur plusieurs cases distances et plusieurs impulsions de façon à obtenir la précision désirée.The average is calculated over several distance boxes and several pulses so as to obtain the desired precision.

Claims (3)

1. Procédé de traitement des signaux somme Σ et différence A, en azimut : Ea, Δa, et en élévation : Σe, Ae, d'un radar du type monopulse, en vue d'estimer la phase parasite Ψ introduite entre ces signaux par les circuits hyperfréquence (3, 4) de formation des voies somme et différence, caractérisé en ce qu'il consiste à : - calculer pour chaque mesure effectuée par le radar les expressions S et D, avec
Figure imgb0036
ou
Figure imgb0037
ou
Figure imgb0038
(où le symbole * désigne la quantité complexe conjuguée), suivant que l'on désire estimer la phase parasite Ψa en azimut dans le premier cas, ou la phase parasite Ψe en élévation dans le deuxième cas ou la phase parasite différentielle δΨ = Ψa - Ψe dans le troisième cas, étant entendu que l'onde radar émise est polarisée circulairement et que les récepteurs monopulse azimut (1a, 2a) et élévation (1e, 2e) ne reçoivent respectivement que l'un des types de polarisation circulaire : droite ou gauche,
- calculer l'expression [S(k+1) -S(k-1) ] D*(k) étant entendu que l'antenne radar balaye au cours du tenps en azimut dans le premier et dans le troisième cas, en élévation dans le deuxième et que k-1, k, k+1 désignent trois instants successifs tels que la différence s(k+1(θ)- s(k-1)(θ) soit de même signe que d(k)(θ), où s(k+1) (θ) et S(k-1)(θ) désignent respectivement le gain de la voie somme à l'angle (θ), en azimut dans le premier et dans le troisième cas, en élévation dans le deuxième cas, respectivement aux instants k+ 1 et k-1, et où d(k)(θ) désigne le gain de la voie différence à l'angle θ et à l'instant k, en azimut dans le premier et dans le troisième cas, en élévation dans le deuxième cas; - calculer la valeur moyenne du résultat de l'expression précédente pour plusieurs instants successifs correspondant à plusieurs mesures effectuées successivement par le radar, ce qui permet d'obtenir une expression de la forme ejΨ. a, où Ψ est la phase parasite recherchée et "a" un nombre réel de valeur absolue et signe déterminés.
1. Method for processing the sum Σ and difference A signals, in azimuth: Ea, Δa, and in elevation: Σ e , A e , of a monopulse type radar, with a view to estimating the parasitic phase Ψ introduced between these signals by the microwave circuits (3, 4) for forming the sum and difference channels, characterized in that it consists of: - calculate for each measurement carried out by the radar the expressions S and D, with
Figure imgb0036
or
Figure imgb0037
or
Figure imgb0038
(where the symbol * denotes the complex conjugate quantity), depending on whether one wishes to estimate the parasitic phase Ψa in azimuth in the first case, or the parasitic phase Ψe in elevation in the second case or the differential parasitic phase δΨ = Ψ a - Ψ e in the third case, it being understood that the transmitted radar wave is circularly polarized and that the azimuth (1a, 2a) and elevation (1e, 2e) monopulse receivers respectively receive only one of the types of circular polarization: right or left,
- calculate the expression [S (k + 1) -S (k-1)] D * (k) it being understood that the radar antenna scans during the tenps in azimuth in the first and in the third case, in elevation in the second and that k-1, k, k + 1 denote three successive instants such that the difference s (k + 1 (θ) - s (k-1) (θ) has the same sign as d (k) ( θ), where s (k + 1) (θ) and S (k-1) (θ) denote the gain of the sum channel at angle (θ) respectively, in azimuth in the first and in the third case, in elevation in the second case, respectively at times k + 1 and k-1, and where d (k) (θ) denotes the gain of the difference path at angle θ and at time k, in azimuth in the first and in the third case, in elevation in the second case; - calculate the average value of the result of the previous expression for several successive instants corresponding to several measurements carried out successively by the radar, which makes it possible to obtain an expression of the form ejΨ. a, where Ψ is the parasitic phase sought and "a" a real number of determined absolute value and sign.
2. Procédé selon la revendication 1, caractérisé en ce que la phase parasite différentielle δΨ est estimée dans une phase de calibration préalable à la phase d'utilisation du radar, et mettant en oeuvre un balayage d'antenne, la phase parasite Ψa en azimut étant ensuite déduite, au cours de la phase d'utilisation du radar, de la phase parasite différentielle δΨ ainsi estimée au cours de la phase de calibration, et de la phase parasite en élévation Ψeestimée au cours de la phase d'utilisation du radar, sans qu'il soit nécessaire de mettre en oeuvre un balayage d'antenne, par moyennage de l'expression Σa. Δa* sur plusieurs mesures successives effectuées par le radar.2. Method according to claim 1, characterized in that the differential parasitic phase δΨ is estimated in a calibration phase prior to the use phase of the radar, and implementing an antenna scan, the parasitic phase Ψ has in azimuth then being deduced, during the radar use phase, from the differential parasitic phase δΨ thus estimated during the calibration, and of the parasitic phase in elevation Ψ e estimated during the phase of use of the radar, without it being necessary to implement an antenna scan, by averaging the expression Σ a . Δa * on several successive measurements made by the radar. 3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que, seul le produit [ S(k+ 1) - S(k-1)] D*(k) important, les expressions S et D sont calculées au moyen d'un dispositif unique utilisé successivement pour le calcul de S et D.3. Method according to one of claims 1 and 2, characterized in that only the product [S (k + 1) - S (k-1)] D * (k) important, the expressions S and D are calculated at means of a single device used successively for the calculation of S and D.
EP87400426A 1986-02-28 1987-02-26 Method of processing sum and difference signals in a monopulse radar for estimating the parasitic phase between these signals caused by the hf circuits forming sum and difference channels Expired - Lifetime EP0237404B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8602877 1986-02-28
FR8602877A FR2595144B1 (en) 1986-02-28 1986-02-28 SUM AND DIFFERENCE SIGNAL PROCESSING OF A MONOPULSE-TYPE RADAR, WITH A VIEW TO ESTIMATING THE INTERFERENCE PHASE INTRODUCED BETWEEN THESE SIGNALS BY THE SUM AND DIFFERENCE PATHWAY HYPERFREQUENCY CIRCUITS

Publications (2)

Publication Number Publication Date
EP0237404A1 true EP0237404A1 (en) 1987-09-16
EP0237404B1 EP0237404B1 (en) 1990-08-08

Family

ID=9332663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87400426A Expired - Lifetime EP0237404B1 (en) 1986-02-28 1987-02-26 Method of processing sum and difference signals in a monopulse radar for estimating the parasitic phase between these signals caused by the hf circuits forming sum and difference channels

Country Status (4)

Country Link
US (1) US4713666A (en)
EP (1) EP0237404B1 (en)
DE (1) DE3764121D1 (en)
FR (1) FR2595144B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429090A2 (en) * 1989-11-24 1991-05-29 SELENIA INDUSTRIE ELETTRONICHE ASSOCIATE S.p.A. Device for the automatic correction of the differential error, preferably for a monopulse radar receiver
EP0499375A1 (en) * 1991-02-11 1992-08-19 Hughes Aircraft Company Radar guidance system correcting hardware induced channel-to-channel phase errors

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2609224B1 (en) * 1986-12-30 1989-04-07 Thomson Csf DEVICE AND METHOD FOR TRANSMITTING AND / OR ACQUIRING DATA USING TWO CROSS POLARIZATIONS OF AN ELECTROMAGNETIC WAVE AND MAGNETIC RECORDING DEVICE
US5808578A (en) * 1996-12-20 1998-09-15 Barbella; Peter F. Guided missile calibration method
US5986605A (en) * 1997-05-23 1999-11-16 Raytheon Company Method for improving monopulse processing of aperture segment outputs
DE10146643C1 (en) * 2001-09-21 2003-08-14 Eads Deutschland Gmbh Procedure for calibrating the radar signals at the subapertures of the antenna of a two-channel SAR / MTI radar system
JP5352959B2 (en) * 2007-03-16 2013-11-27 富士通株式会社 Direct sequence spread spectrum radar, method used in radar and computer program
CN102323579A (en) * 2011-08-12 2012-01-18 西安天伟电子系统工程有限公司 Height measurement method for continuous wave search radar
CN104362437B (en) * 2014-11-22 2018-07-13 成都锦江电子系统工程有限公司 S-band single pulse self-tracking antenna system
EP3255731B1 (en) * 2015-02-02 2020-11-04 Mitsubishi Electric Corporation Antenna device and antenna excitation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794998A (en) * 1972-04-26 1974-02-26 Raytheon Co Monopulse radar receiver with error correction
EP0038734A1 (en) * 1980-04-23 1981-10-28 Thomson-Csf Apparatus for normalizing the gradient of the off-boresight measurement by radar and air-earth radar comprising such an apparatus
US4368468A (en) * 1980-12-22 1983-01-11 Westinghouse Electric Corp. Monopulse radio receiver compensation apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568940A (en) * 1981-12-22 1986-02-04 Hughes Aircraft Company Dual-mode radar receiver
FR2555319B1 (en) * 1983-11-23 1987-07-31 Trt Telecom Radio Electr FREQUENCY MODULATED SINGLE-PULSE CONTINUOUS WAVE RADAR SYSTEM WITH IMPROVED AXIS STABILITY
US4646095A (en) * 1985-08-16 1987-02-24 Raytheon Company Method of resolving closely spaced targets

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794998A (en) * 1972-04-26 1974-02-26 Raytheon Co Monopulse radar receiver with error correction
EP0038734A1 (en) * 1980-04-23 1981-10-28 Thomson-Csf Apparatus for normalizing the gradient of the off-boresight measurement by radar and air-earth radar comprising such an apparatus
US4368468A (en) * 1980-12-22 1983-01-11 Westinghouse Electric Corp. Monopulse radio receiver compensation apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429090A2 (en) * 1989-11-24 1991-05-29 SELENIA INDUSTRIE ELETTRONICHE ASSOCIATE S.p.A. Device for the automatic correction of the differential error, preferably for a monopulse radar receiver
EP0429090A3 (en) * 1989-11-24 1991-12-04 Selenia Industrie Elettroniche Associate S.P.A. Device for the automatic correction of the differential error, preferably for a monopulse radar receiver
EP0499375A1 (en) * 1991-02-11 1992-08-19 Hughes Aircraft Company Radar guidance system correcting hardware induced channel-to-channel phase errors
TR25707A (en) * 1991-02-11 1993-09-01 Hughes Aircraft Co EQUIPMENT ORIGINAL, CHANNEL-TO-CHANNEL PHASE ERRORS WITH RADAR REMOVAL SYSTEM.

Also Published As

Publication number Publication date
US4713666A (en) 1987-12-15
DE3764121D1 (en) 1990-09-13
FR2595144B1 (en) 1988-05-13
FR2595144A1 (en) 1987-09-04
EP0237404B1 (en) 1990-08-08

Similar Documents

Publication Publication Date Title
EP0063517B1 (en) Passive range-finding system
FR2692681A1 (en) A method of discriminating obstacles from a radar, and applications.
EP2574957B1 (en) Method for estimating the unambiguous Doppler frequency of a moving target, in particular marine, and radar implementing said method
FR2501868A1 (en) APPARATUS FOR DETERMINING THE PRESENCE OF MULTIPLE REFLECTION CONDITIONS DURING TARGET PURSUIT USING RADAR
FR2517435A1 (en) MISSILE GUIDING SYSTEM WITH CARD EQUALIZER HORIZONTAL AND VERTICAL BRAND CONTROL
FR2669117A1 (en) METHOD FOR RESOLVING AN AMBIGUUITE DURING DETERMINATION OF ANTENNA ANGLE AND DOPPLER FREQUENCY IN AN OPENING SYNTHESIS RADAR
EP0237404B1 (en) Method of processing sum and difference signals in a monopulse radar for estimating the parasitic phase between these signals caused by the hf circuits forming sum and difference channels
EP0143497B1 (en) Axis-stable fmcw monopulse radar system
US5559516A (en) Dual cancellation interferometric AMTI radar
FR2709834A1 (en) Method and device for detecting and locating obstacles in the environment of a vehicle
EP3022573B1 (en) Device for detecting electromagnetic signals
EP2455778A1 (en) Method for estimating the angular position of a target by radar detection and radar implementing the method
EP0014619B1 (en) Dynamic non-linear filter device for angle measurement noise in a radar, and radar unit comprising same
EP3391072A1 (en) Method for locating sources emitting electromagnetic pulses
EP2990824B1 (en) Sonar method and device for determining the speed of movement of a marine vehicle relative to the seabed
EP1695115A1 (en) Device for avoiding obstacles for high-speed multi-hulled watercraft
EP0026134B1 (en) Device for increasing the angular resolution of an airborne doppler radar
FR2632420A1 (en) METHOD AND APPARATUS FOR COMPENSATING FOR SCALE SPEED IN COHERENT DOPPLER RADAR WITH VARIABLE AMBIGE SPEED
EP1324065B1 (en) Method for passively finding the position of a target and especially for air-air locating
FR3070766A1 (en) IMPROVED RADAR SYSTEM FOR ENHANCED TRACKING
FR2998975A1 (en) Method for filtering ambiguities in retrodiffused radar signal of multichannel radar system on-board aircraft, involves calculating filter to be applied to matrix to minimize power of unwanted echoes within retrodiffused radar signal
EP0335753B1 (en) Radar for correcting artillery fire
FR2895089A1 (en) METHOD AND DEVICE FOR SIGNAL PROCESSING FOR ANGULAR DETERMINATION USING HYPERFREQUENCY MOTION SENSORS
FR2725526A1 (en) RADAR MONOPULSE AIR-GROUND TYPE AIRCRAFT
FR2550347A1 (en) Improvements to pulsed Doppler radars

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19880220

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19891222

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900808

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3764121

Country of ref document: DE

Date of ref document: 19900913

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950119

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950120

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960226

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050226