EP0193837B1 - Magnetic field-generating device for a particle-accelerating system - Google Patents

Magnetic field-generating device for a particle-accelerating system Download PDF

Info

Publication number
EP0193837B1
EP0193837B1 EP86102393A EP86102393A EP0193837B1 EP 0193837 B1 EP0193837 B1 EP 0193837B1 EP 86102393 A EP86102393 A EP 86102393A EP 86102393 A EP86102393 A EP 86102393A EP 0193837 B1 EP0193837 B1 EP 0193837B1
Authority
EP
European Patent Office
Prior art keywords
quadrupole
windings
conductor arrangement
triplet
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86102393A
Other languages
German (de)
French (fr)
Other versions
EP0193837A2 (en
EP0193837A3 (en
Inventor
Andreas Dr Jahnke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0193837A2 publication Critical patent/EP0193837A2/en
Publication of EP0193837A3 publication Critical patent/EP0193837A3/en
Application granted granted Critical
Publication of EP0193837B1 publication Critical patent/EP0193837B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/093Deviation, concentration or focusing of the beam by electric or magnetic means by magnetic means

Definitions

  • microtrons With known smaller, circularly designed electron accelerator systems, which are also referred to as "microtrons", particle energies of up to approximately 100 MeV can be achieved with normally conducting magnetic field generating windings. These systems can in particular also be implemented as so-called race track microtrons.
  • the particle trajectories of this type of accelerator systems are composed of two semicircles, each with a corresponding 180 ° deflection magnet, and of two straight track sections (cf. "Nucl. Instr. And Meth.”, Vol. 177, 1980, pages 411 to 416 or Vol. 204, 1982, pages 1 to 20).
  • the magnetic field can be increased with unchanged dimensions of the particle path. Such an increase can be made in particular with superconducting magnets.
  • low-energy electrons are injected into a microtron with a very low magnetic field, which also has superconducting magnet windings, a number of possible field error sources must be taken into account in order to keep the electron losses small during the acceleration phase.
  • the field level for low-energy shot electrons of, for example, 100 keV with a radius of curvature of the accelerator system of, for example, 0.5 m is only about 2.2 mT.
  • Eddy currents in metallic parts of the magnetic device or in its conductors can also lead to corresponding disturbances.
  • shielding currents in the conductors of a superconducting winding or so-called frozen magnetic fluxes in these conductors may represent such sources of interference.
  • the electron accelerator system to be removed has, in each case, the 180 '' magnet with a main winding which generates a dipole field and an additional winding which focuses the particles onto the particle path.
  • a focusing solenoid system is provided in the area of the straight track sections.
  • the normally conductive deflection magnets enclose the corresponding curved section of the particle path with their iron yoke for reasons of the desired field accuracy, so that the synchrotron radiation occurring there cannot be used.
  • the particles in known accelerator systems are generally only at a higher field level, i.e. shot with higher energy. Then the mentioned interference effects are only of minor or subordinate importance.
  • operating the accelerator systems in this way requires corresponding pre-accelerators and is therefore correspondingly complex.
  • the object of the present invention is to design the magnetic field generating device of a particle accelerator system mentioned at the outset such that it can be used to accelerate relatively large currents of electrically charged particles to relatively high energy levels, in the case of electrons, for example to several 100 MeV, without any particular Pre-accelerators are required.
  • quadrupole triplets Systems consisting of three quadrupole windings or coils arranged in series, so-called quadrupole triplets, for focusing beams of electrically charged particles are generally known.
  • a beam guiding system emerges which comprises several such quadrupole triplets in straight lines cut its particle path.
  • double-telescopic beam guidance systems can also be formed, each comprising two quadrupole triplets, which are surrounded symmetrically by the same drift sections of predetermined length.
  • Each quadrupole triplet of such a system is electrically excited in such a way that both the horizontal and the vertical focusing plane coincide with the beginning of the preceding or the end of the following drift path, as seen in the beam guidance direction.
  • FIG. 1 indicates the particle path of a magnetic field generating device with additional windings according to the invention.
  • Figure 2 shows schematically such an additional winding in perspective.
  • FIGS. 3 and 4 show two cross sections through such an additional winding. In the figures, the same parts are provided with the same reference symbols.
  • the magnetic field generating device is to be provided in particular for electronically known accelerator systems of the race track type ("race track microtrons").
  • the dipole deflection magnets required for this are bent semicircularly in accordance with the curved particle path (see, for example, "IEEE Trans. Nucl. Sci.”, Vol. NS-30, No.4, August 1983, pages 2531 to 2533). Since in particular end energies of the particles of a few 100 MeV are aimed for, the main windings of the deflection magnets are preferably created with superconducting material because of the high field strengths required.
  • quadrupole fields are to be formed with additional windings, which at the same time enable an undisturbed outlet of the synchrotron radiation.
  • additional focusing of the electron beam can advantageously be achieved during the still low-energy acceleration phase of the electrons, so that superconducting main windings of the deflection magnets can then also be used.
  • the superconducting deflection magnets can therefore also be used for fields between approximately 2 mT and 100 mT during electron acceleration.
  • the corresponding additional windings for generating the additional quadrupole fields are advantageously arranged in the region of the superconducting deflection magnets.
  • Additional windings can be created both with normally conducting and in particular with superconducting conductors. They are indicated schematically in FIG. 1 as a top view, with the superconducting main windings of the 180 ° deflection magnets being omitted for reasons of clarity.
  • the particle track 2 of the racetrack type shown in FIG. 1 has two curved track sections A 1 and A 2 , between which straight track sections A 3 and A 4 extend.
  • a conductor arrangement 3 or 4 is provided with a corresponding curvature of its conductor parts, each of which is a triplet of three quadrupole windings 5 to 7 or 8 to 10 which are arranged one behind the other and are electrically connected to one another, as seen in the beam guidance direction are executed.
  • the two quadrupot triplets 3 and 4 form a double telescopic beam guidance system.
  • Corresponding systems with quadrupole triplets of this type are known per se (cf., for example, "Nucl. Instr.
  • such triplets can be used to transmit a beam onto a point on the particle path both vertically
  • a particle stream denoted by S which is formed in the straight section A 4 of the particle path by approximately parallel-flying particles, is focused on a point P by means of the quadrupole triplet _3 as beam S ' , which lies approximately in the middle of the axial extent of the straight section A 3 of the particle path 2.
  • this particle beam S ' which is focused on the point P and then diverges again after this point, into the particle beam formed from parallel-flying particles S in the straight section A 4 of the particle path.
  • Such a system with a point-to-parallel and parallel-to-point imaging is called double-telescopic.
  • the current flow directions to be set for this in the windings of the quadrupole coils 5 to 7 or 8 to 10 shown in the top view of FIG. 1 are illustrated by single arrowed lines on the windings lying above the particle path.
  • FIG. 1 a conductor arrangement for generating superimposed quadrupole fields, which form a triplet, is shown in perspective.
  • This quadrupole triplet is, for example, the triplet 4 according to FIG. 1.
  • the magnetic quadrupole fields of the triplet are generated by two current conductors 12 to 13, which are each arranged in parallel planes on one side with respect to the plane in which the particle path 2 lies .
  • the lateral radiation of synchrotron light occurring at higher energies which is to be illustrated by arrowed, dash-dotted lines 11, is not impeded.
  • the triplet is composed of three quadrupoles and two drift sections, the lengths Iq and I d of which are in the ratio Iq: l d : lq: l d : lq as 0.125 :: 0.25: 0.25: 0.25: 0.125.
  • the field strength of the quadrupole fields should be significantly higher than that of the interference fields.
  • a dipole field of 70 mT which corresponds to an electron energy of approximately 10 MeV, includes a quadrupole field with a gradient of approximately 0.18 T / m. This - gradient requires an electrical flooding of the Tripletspulen 12 to 14 cm of about 700 ampere-turns at 4 distance from the electron orbit. 2
  • the conductors of the quadrupole triplets can advantageously be installed in a simple manner in the respective deflection magnets. This fact is readily apparent from Figures 3 and 4.
  • 3 schematically shows a cross section through the quadrupole coil 6 of the conductor arrangement forming the quadrupole triplet 3 according to FIG. 1.
  • the quadrupole coil 6 is formed by an upper conductor turn 14 and a lower conductor turn 15. These turns are arranged on both sides of a plane E, in which the particle path 2 and the radius of curvature R of the deflection magnet lie.
  • the particle trajectory 2 passes through the origin of a coordinate system with R and Z as coordinates, where Z is perpendicular to the plane E or to R.
  • the conductor turns 14 and 15 should be arranged symmetrically with respect to the plane E according to the invention.
  • a quadrupole field can be generated with these conductor turns, which has a focusing effect of +45 ° on the particle beam.
  • the quadrupole field is illustrated by field lines 16, while the focussing or defocusing direction of the Lorentz force is indicated by dashed lines 17 and 17 '.
  • This quadrupole field is superimposed by a dipole field, indicated by field lines 18, which is generated by main windings 19 or 20 of the 180 0 deflection magnet.
  • the two main windings 19 and 20 are approximately symmetrical on both sides of the plane E.
  • a cross-section through the quadrupole coil 7 of the same quadrupole triplet 3 is shown schematically in FIG.
  • the current flow directions in the upper turn 14 and in the lower turn 15 of this coil 7 are opposite to the current flow directions in the adjacent quadrupole coil 6 of the triplet 3, so that the quadrupole field of the coil 7, illustrated by field lines 16 ', focuses or -45 ° has a defocusing effect. That is, the quadrupole field of the coil 7 is rotated by 90 ° with respect to the quadrupole field of the coil 6 shown in FIG. 3.
  • the current flow directions in the quadrupole coil 5 must also be selected in accordance with the directions of current flow in the conductor windings of the quadrupole coil 7.
  • the quadrupole fields to be produced with the configuration of the magnetic field generating device according to the invention are essentially only effective with small dipole fields and high field change rates.
  • B> 1 T and smaller field change velocities B such additional fields are largely superfluous, since then the main windings of the magnetic field generating device can take over the particle guidance only in a known manner.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)

Description

Eine ähnliche Einrichtung geht z.B. aus der Veröffentlichung "Nuclear Instruments and Methods", Vol. 203, 1982, Seiten 1 bis 5 hervor.A similar facility is e.g. from the publication "Nuclear Instruments and Methods", Vol. 203, 1982, pages 1 to 5.

Mit bekannten kleineren, kreisförmig gestalteten Elektronenbeschleuniger-Anlagen, die auch als "Mikrotrons" bezeichnet werden, lassen sich mit normalleitenden magnetfelderzeugenden Wicklungen Teilchenenergien bis etwa 100 MeV erreichen. Diese Anlagen können insbesondere auch als sogenannte Rennbahn-Mikrotrons ("race track microtrons") realisiert werden. Die Teilchenbahnen dieses Typs von Beschleuniger-Anlagen setzen sich dabei aus zwei Halbkreisen mit jeweils einem entsprechenden 180°-Ablenkmagneten und aus zwei geraden Bahnabschnitten zusammen (vgl. "Nucl. Instr. and Meth.", Vol. 177, 1980, Seiten 411 bis 416 oder Vol. 204, 1982, Seiten 1 bis 20).With known smaller, circularly designed electron accelerator systems, which are also referred to as "microtrons", particle energies of up to approximately 100 MeV can be achieved with normally conducting magnetic field generating windings. These systems can in particular also be implemented as so-called race track microtrons. The particle trajectories of this type of accelerator systems are composed of two semicircles, each with a corresponding 180 ° deflection magnet, and of two straight track sections (cf. "Nucl. Instr. And Meth.", Vol. 177, 1980, pages 411 to 416 or Vol. 204, 1982, pages 1 to 20).

Soll die angestrebte Endenergie der Elektronen von etwa MeV auf wesentlich höhere Werte von beispielsweise 700 MeV gesteigert werden, so bietet sich bei unveränderten Abmessungen der Teilchenbahn die Erhöhung des Magnetfeldes an. Eine solche Erhöhung kann insbesondere mit supraleitenden Magneten vorgenommen werden. Injiziert man jedoch bei sehr geringem Magnetfeld niederenergetische Elektronen in ein Mikrotron, das zudem noch supraleitende Magnetwicklungen aufweist, so sind eine Reihe von möglichen Feldfehlerquellen zu beachten, um die Elektronenverluste während der Beschleunigungsphase klein zu halten. Zu Beginn dieser Phase liegt nämlich das Feldniveau für niederenergetisch eingeschossene Elektronen von z.B. 100 keV bei einem Krümmungsradius der Beschleuniger-Anlage von beispielsweise 0,5 m bei nur etwa 2,2 mT. Bei derartig niedrigen Magnetteldstärken oder auch bei hohen Feldänderungsgeschwindigkeiten besteht dann aber die Gefahr, daß aufgrund feldverzerrender Störquellen die einzuhaltenden Feldfehlerschranken gegebenenfalls überschritten werden. Um nämlich durch schwache Fokussierung einen Elektronenstrahl führen zu können, wäre in dem vorgenannten Falle eine Feldgenauigkeit äB/Bo von etwa 10-3 erforderlich; was bedeutet, daß das Feld am Anfang der Beschleunigungsphase auf etwa 0,002 mT genau einstellbar sein müßte. Dann können jedoch Ursache unerwünschter Feldverzerrungen äußerer Felder wie z.B. das Erdfeld mit 0,06 mT oder Felder von magnetisierbaren, d.h. para-, ferri- bzw. ferromagnetischen Teilen der Magneteinrichtung selbst sein. Auch Wirbelströme in metallischen Teilen der Magneteinrichtung bzw. in ihren Leitern können zu entsprechenden Störungen führen. Außerdem stellen gegebenenfalls Abschirmströme in den Leitern einer supraleitenden Wicklung oder sogenannte eingefrorene magnetische Flüsse in diesen Leitern derartige Störquellen dar.If the intended final energy of the electrons is to be increased from approximately MeV to significantly higher values of, for example, 700 MeV, the magnetic field can be increased with unchanged dimensions of the particle path. Such an increase can be made in particular with superconducting magnets. However, if low-energy electrons are injected into a microtron with a very low magnetic field, which also has superconducting magnet windings, a number of possible field error sources must be taken into account in order to keep the electron losses small during the acceleration phase. At the beginning of this phase, the field level for low-energy shot electrons of, for example, 100 keV with a radius of curvature of the accelerator system of, for example, 0.5 m is only about 2.2 mT. With such low magnetic field strengths or even at high field change speeds, however, there is then the risk that the field error barriers to be observed may be exceeded due to field-distorting sources of interference. In order to be able to guide an electron beam through weak focusing, a field accuracy aB / B o of about 10- 3 would be required in the aforementioned case; which means that the field at the beginning of the acceleration phase should be adjustable to about 0.002 mT. Then, however, undesired field distortions of external fields such as the earth field with 0.06 mT or fields of magnetizable, ie para, ferri or ferromagnetic parts of the magnetic device itself can be the cause. Eddy currents in metallic parts of the magnetic device or in its conductors can also lead to corresponding disturbances. In addition, shielding currents in the conductors of a superconducting winding or so-called frozen magnetic fluxes in these conductors may represent such sources of interference.

Die sich aufgrund derartiger Störfeldquellen ergebenden Schwierigkeiten versucht man z.B. durch Abschirmung oder Kompensation der Störfelder zu beseitigen. So wird bei bekannten Elektronenbeschleuniger-Anlagen mit normalleitenden Kupferspulen eine abschirmende Wirkung mittels einer Flußrückführung aus Eisen versucht. Darüber hinaus ist auch eine Lamellierung der Eisenjoche der felderzeugenden Magnete zur Unterdrückung der Ausbildung von Wirbelströmen bekannt. Gegebenenfalls kann auch eine Feldumkehr vorgenommen werden, um reproduzierbar die Hysteresekurve des Eisens der Magneteinrichtung zu durchfahren.The difficulties resulting from such interference field sources are attempted e.g. by shielding or compensating for the interference fields. In the case of known electron accelerator systems with normally conductive copper coils, a shielding effect is attempted by means of an iron flux return. In addition, a lamination of the iron yokes of the field-generating magnets to suppress the formation of eddy currents is known. If necessary, a field reversal can also be carried out in order to reproducibly traverse the hysteresis curve of the iron of the magnet device.

Falls die Teilchen mit verhältnismäßig niedriger Energie in die Teilchenbeschleunigerbahn eingeschossen werden sollen, ergibt sich eine weitere Schwierigkeit, wenn verhältnismäßig hohe Teilchenströme zu erzeugen sind. Dann werden nämlich die zwischen den einzelnen Teilchen wirkenden Abstoßungskräfte verhältnismäßig dominant; d.h., der Teilchenstrom versucht in entsprechendem Maße zu divergieren. Man sieht sich deshalb gezwungen, zusätzliche Maßnahmen zur Fokussierung des Teilchenstrahles vorzusehen. Bei der aus der eingangs genannten Literaturstelle "Nucl. lnstr. and Meth." zu entnehmenden Elektronenbeschleuniger-Anlage weisen deshalb die 180''-Abtenkmagnete jeweils mit einer ein Dipolfeld erzeugenden Hauptwicklung noch eine die Teilchen auf die Teilchenbahn fokussierende Zusatzwicklung auf. Außerdem ist im Bereich der geraden Bahnabschnitte noch ein fokussierendes Solenoidsystem vorgesehen. Bei der bekannten Magneteinrichtung umschließen jedoch die normalleitenden Ablenkmagnete mit ihrem Eisenjoch aus Gründen der angestrebten Feldgenauigkeit den entsprechenden gekrümmten Abschnitt der Teilchenbahn, so daß die dort auftretende Synchrotronstrahlung nicht genutzt werden kann.If the particles are to be injected into the particle accelerator path with relatively low energy, a further difficulty arises when relatively high particle flows are to be generated. Then the repulsive forces acting between the individual particles become relatively dominant; i.e. the particle stream tries to diverge accordingly. One is therefore forced to take additional measures to focus the particle beam. In the case of the "Nucl. Instr. And Meth." For this reason, the electron accelerator system to be removed has, in each case, the 180 '' magnet with a main winding which generates a dipole field and an additional winding which focuses the particles onto the particle path. In addition, a focusing solenoid system is provided in the area of the straight track sections. In the known magnetic device, however, the normally conductive deflection magnets enclose the corresponding curved section of the particle path with their iron yoke for reasons of the desired field accuracy, so that the synchrotron radiation occurring there cannot be used.

Aufgrund der sich insbesondere bei Verwendung von supraleitenden Ablenkmagneten ergebenden Störeffekte auf niederenergetische Teilchenstrahlen werden bei bekannten Beschleuniger-Anlagen die Teilchen im allgemeinen erst auf einem höheren Feldniveau, d.h. mit höherer Energie eingeschossen. Dann sind nämlich die erwähnten Störeffekte nur noch von geringerer bzw. untergeordneter Bedeutung. Eine derartige Betriebsweise der Beschleuniger-Anlagen bedingt jedoch entsprechende Vorbeschleuniger und ist deshalb entsprechend aufwendig.Due to the interfering effects on low-energy particle beams, particularly when using superconducting deflection magnets, the particles in known accelerator systems are generally only at a higher field level, i.e. shot with higher energy. Then the mentioned interference effects are only of minor or subordinate importance. However, operating the accelerator systems in this way requires corresponding pre-accelerators and is therefore correspondingly complex.

Aufgabe der vorliegenden Erfindung ist es, die eingangs genannte magnetfelderzeugende Einrichtung einer Teilchenbeschleuniger-Anlage dahingehend auszugestalten, daß mit ihr verhältnismäßig große Ströme elektrisch geladener Teilchen auf verhältnismäßig hohe Energieniveaus, im Falle von Elektronen auf beispielsweise mehrere 100 MeV, zu beschleunigen sind, ohne daß besondere Vorbeschleuniger erforderlich werden.The object of the present invention is to design the magnetic field generating device of a particle accelerator system mentioned at the outset such that it can be used to accelerate relatively large currents of electrically charged particles to relatively high energy levels, in the case of electrons, for example to several 100 MeV, without any particular Pre-accelerators are required.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des kennzeichnenden Teils des Anspruches 1 gelöstThis object is achieved by the features of the characterizing part of claim 1

Systeme aus drei hintereinander angeordneten Quadrupolwicklungen bzw. -spulen, sogenannte Quadrupoltriplets, zur Fokussierung von Strahlen elektrisch geladener Teilchen sind allgemein bekannt. So geht z.B. aus der Veröffentlichung "Nuci.Instr. and Meth.", Vol. 121, 1974, Seiten 525 bis 532 ein Strahlführungssystem hervor, das mehrere derartiger Quadrupoltriplets in geraden Abschnitten seiner Teilchenbahn aufweist. Mit solchen Quadrupoltriplets können insbesondere auch doppelt-teleskopische Strahlführungssysteme ausgebildet werden, die jeweils zwei Quadrupoltriplets umfassen, welche symmetrisch von gleichen Driftstrecken vorbestimmter Länge umgeben sind. Dabei ist jedes Quadrupoltriplet eines solchen Systems elektrisch so erregt, daß sowohl die horizontale als auch die vertikale Fokussierungsebene mit dem Anfang der in Strahlführungsrichtung gesehen vorhergehenden bzw. dem Ende der nachfolgenden Driftstrecke zusammenfallen.Systems consisting of three quadrupole windings or coils arranged in series, so-called quadrupole triplets, for focusing beams of electrically charged particles are generally known. For example, from the publication "Nuci.Instr. And Meth.", Vol. 121, 1974, pages 525 to 532, a beam guiding system emerges which comprises several such quadrupole triplets in straight lines cut its particle path. With such quadrupole triplets, in particular double-telescopic beam guidance systems can also be formed, each comprising two quadrupole triplets, which are surrounded symmetrically by the same drift sections of predetermined length. Each quadrupole triplet of such a system is electrically excited in such a way that both the horizontal and the vertical focusing plane coincide with the beginning of the preceding or the end of the following drift path, as seen in the beam guidance direction.

Die mit der erfindungsgemäßen Ausgestaltung der magnetfelderzeugenden Einrichtung verbundenen Vorteile sind insbesondere darin zu sehen, daß auch supraleitende Ablenkmagnete für Felder zwischen etwa 2 mT und 100 mT bei der Beschleunigung von insbesondere Elektronen genutzt werden können, indem mit dem mindestens einen Quadrupoltriplet eine Fokussierung der entsprechend niederenergetischen Teilchen auf die Teilchenbahn zu gewährleisten ist. Aufgrund der besonderen Anordnung der Windungen der das Quadrupoltriplet bildenden Leiteranordnung wird dabei die Emission von Synchrotronstrahlung seitlich nach außen hin nicht behindert.The advantages associated with the configuration of the magnetic field generating device according to the invention are to be seen in particular in the fact that superconducting deflection magnets for fields between approximately 2 mT and 100 mT can also be used to accelerate electrons in particular by focusing with the at least one quadrupole triplet on the correspondingly low-energy To ensure particles on the particle path. Because of the special arrangement of the turns of the conductor arrangement forming the quadrupole triplet, the emission of synchrotron radiation is not impeded laterally outwards.

Vorteilhafte Ausgestaltungen der erfindungsgemäßen magnetfelderzeugenden Einrichtung gehen aus den Unteransprüchen hervor.Advantageous refinements of the magnetic field generating device according to the invention emerge from the subclaims.

Zur weiteren Erläuterung der Erfindung und deren Weiterbildungen gemäß den Unteransprüchen wird nachfolgend auf die Zeichnung Bezug genommen, in deren Figur 1 die Teilchenbahn einer magnetfelderzeugenden Einrichtung mit erfindungsgemäßen Zusatzwicklungen angedeutet ist. Figur 2 zeigt schematisch eine derartige Zusatzwicklung in perspektivischer Darstellung. Aus den Figuren 3 und 4 sind zwei Querschnitte durch eine solche Zusatzwicklung ersichtlich. In den Figuren sind gleiche Teile mit den gleichen Bezugszeichen versehen.To further explain the invention and its developments according to the subclaims, reference is made below to the drawing, in which FIG. 1 indicates the particle path of a magnetic field generating device with additional windings according to the invention. Figure 2 shows schematically such an additional winding in perspective. FIGS. 3 and 4 show two cross sections through such an additional winding. In the figures, the same parts are provided with the same reference symbols.

Die magnetfelderzeugende Einrichtung nach der Erfindung soll insbesondere für an sich bekannte Elektronenbeschleuniger-Anlagen vom Rennbahn-Typ ("race track microtrons") vorgesehen sein. Die hierfür erforderlichen Dipolablenkmagnete sind dabei entsprechend der gekrümmten Teilchenbahn halbkreisförmig gebogen (vgl. z.B. "IEEE Trans. Nucl. Sci.", Vol. NS-30, No.4, August 1983, Seiten 2531 bis 2533). Da insbesondere Endenergien der Teilchen von einigen 100 MeV angestrebt werden, sind dann wegen der erforderlichen hohen Feldstärken die Hauptwicklungen der Ablenkmagnete bevorzugt mit supraleitendem Material erstellt. Mit der erfindungsgemäßen Ausgestaltung der magnetfelderzeugenden Einrichtung sollen zusätzlich zu dem Dipolfeld, das von den Hauptwicklungen dieser Ablenkmagnete hervorgerufen wird, Quadrupolfelder mit Zusatzwicklungen ausgebildet werden, die gleichzeitig einen ungestörten Auslaß der Synchrotronstrahlung ermöglichen. Mit derartigen Quadrupolfeldem läßt sich nämlich vorteilhaft eine zusätzliche Fokussierung des Elektronenstrahles während der noch niederenergetische Beschleunigungsphase der Elektronen erreichen, so daß dann auch supraleitende Hauptwicklungen der Ablenkmagnete verwendet werden können. Wegen der zusätzlichen Fokussierung ist es also möglich, Elektronen mit verhältnismäßig niedriger Einschußenergie von z.B. einigen 100 keV und mit verhältnismäßig großer Teilchendichte, d.h. einem Pulsstrom von beispielsweise mindestens 20 mA bei Pulslängen im Mikrosekunden-Bereich, direkt in die Teilchenbahn einzuschießen; d.h. auf besondere Vorbeschleuniger zum Injizieren von Elektronen mit höherer Energie kann dann vorteilhaft verzichtet werden. Die supraleitenden Ablenkmagnete können also auch für Felder zwischen etwa 2 mT und 100 mT bei der Elektronenbeschleunigung genutzt werden. Die entsprechenden Zusatzwicklungen zur Erzeugung der zusätzlichen Quadrupolfelder werden vorteilhaft im Bereich der supraleitenden Ablenkmagnete angeordnet. Diese Zusatzwicklungen können sowohl mit normalleitenden als auch insbesondere mit supraleitenden Leitern erstellt werden. Sie sind in Figur 1 schematisch als Aufsicht angedeutet, wobei auf eine Darstellung der supraleitenden Hauptwicklungen der 180°-Ablenkmagnete aus Gründen der Übersichtlichkeit verzichtet wurde.The magnetic field generating device according to the invention is to be provided in particular for electronically known accelerator systems of the race track type ("race track microtrons"). The dipole deflection magnets required for this are bent semicircularly in accordance with the curved particle path (see, for example, "IEEE Trans. Nucl. Sci.", Vol. NS-30, No.4, August 1983, pages 2531 to 2533). Since in particular end energies of the particles of a few 100 MeV are aimed for, the main windings of the deflection magnets are preferably created with superconducting material because of the high field strengths required. With the configuration of the magnetic field generating device according to the invention, in addition to the dipole field caused by the main windings of these deflecting magnets, quadrupole fields are to be formed with additional windings, which at the same time enable an undisturbed outlet of the synchrotron radiation. With such quadrupole fields, additional focusing of the electron beam can advantageously be achieved during the still low-energy acceleration phase of the electrons, so that superconducting main windings of the deflection magnets can then also be used. Because of the additional focusing, it is therefore possible to shoot electrons directly into the particle path with a relatively low injection energy of, for example, a few 100 keV and with a relatively large particle density, ie a pulse current of, for example, at least 20 mA with pulse lengths in the microsecond range; This means that special pre-accelerators for injecting electrons with higher energy can advantageously be dispensed with. The superconducting deflection magnets can therefore also be used for fields between approximately 2 mT and 100 mT during electron acceleration. The corresponding additional windings for generating the additional quadrupole fields are advantageously arranged in the region of the superconducting deflection magnets. These additional windings can be created both with normally conducting and in particular with superconducting conductors. They are indicated schematically in FIG. 1 as a top view, with the superconducting main windings of the 180 ° deflection magnets being omitted for reasons of clarity.

Die aus Figur 1 ersichtliche Teilchenbahn 2 vom Rennbahn-Typ weist zwei gekrümmte Bahnabschnitte A1 und A2 auf, zwischen denen sich gerade Bahnabschnitte A3 und A4 erstrecken. Im Bereich der gekrümmten Bahnabschnitte A1 und A2 ist jeweils eine Leiteranordnung 3 bzw. 4 mit entsprechender Krümmung ihrer Leiterteile vorgesehen, welche jeweils als ein Triplet von drei in Strahlführungsrichtung gesehen hintereinander angeordneten und elektrisch untereinander verbundenen Quadrupolwicklungen 5 bis 7 bzw. 8 bis 10 ausgeführt sind. Die beiden Quadrupottriptets 3 und 4 bilden dabei ein doppelt-teleskopisches Strahlführungssystem. Entsprechende Systeme mit derartigen Quadrupoltriplets sind an sich bekannt (vgl. z.B. "Nucl. Instr. and Meth., Vol. 121, 1974, Seiten 525 bis 532). Mit solchen Triplets läßt sich bekanntlich ein Strahl auf einen Punkt der Teilchenbahn sowohl in vertikaler wie auch in horizontaler Richtung fokussieren. Gemäß dem dargestellten Ausführungsbeispiel wird z.B. ein mit S bezeichneter Teilchenstrom, der in dem geraden Abschnitt A4 der Teilchenbahn von etwa parallel-fliegenden Teilchen gebildet wird, mittels des Quadrupoltriplets _3 als Strahl S' auf einen Punkt P fokussiert, der etwa in der Mitte der axialen Ausdehnung des geraden Abschnitten A3 der Teilchenbahn 2 liegt. Mit dem Quadrupoitripiet 4 wird dann dieser auf dem Punkt P fokussierte und nach diesem Punkt wieder entsprechend divergierende Teilchenstrahl S' in den aus parallel-fliegenden Teilchen gebildeten Teilchenstrahl S in dem geraden Abschnitt A4 der Teilchenbahn überführt. Ein derartiges System mit einer Punkt-zu-Parallel- und Parallel-zu-Punkt-Abbildung wird als doppelt-teleskopisch bezeichnet. Die hierfür einzustellenden Stromflußrichtungen in den in der Aufsicht der Figur 1 ersichtlichen Windungen der Quadrupolspulen 5 bis 7 bzw. 8 bis 10 sind durch einzelne gepfeilte Linien an den jeweils oberhalb der Teilchenbahn liegenden Windungen veranschaulicht.The particle track 2 of the racetrack type shown in FIG. 1 has two curved track sections A 1 and A 2 , between which straight track sections A 3 and A 4 extend. In the area of the curved path sections A 1 and A 2 , a conductor arrangement 3 or 4 is provided with a corresponding curvature of its conductor parts, each of which is a triplet of three quadrupole windings 5 to 7 or 8 to 10 which are arranged one behind the other and are electrically connected to one another, as seen in the beam guidance direction are executed. The two quadrupot triplets 3 and 4 form a double telescopic beam guidance system. Corresponding systems with quadrupole triplets of this type are known per se (cf., for example, "Nucl. Instr. And Meth., Vol. 121, 1974, pages 525 to 532). As is known, such triplets can be used to transmit a beam onto a point on the particle path both vertically As in the illustrated embodiment, for example, a particle stream denoted by S, which is formed in the straight section A 4 of the particle path by approximately parallel-flying particles, is focused on a point P by means of the quadrupole triplet _3 as beam S ' , which lies approximately in the middle of the axial extent of the straight section A 3 of the particle path 2. With the quadrupoitripiet 4, this particle beam S ', which is focused on the point P and then diverges again after this point, into the particle beam formed from parallel-flying particles S in the straight section A 4 of the particle path. Such a system with a point-to-parallel and parallel-to-point imaging is called double-telescopic. The current flow directions to be set for this in the windings of the quadrupole coils 5 to 7 or 8 to 10 shown in the top view of FIG. 1 are illustrated by single arrowed lines on the windings lying above the particle path.

Diese Stromflußrichtungen sind aus Figur 2 näher ersichtlich. In dieser Figur ist eine Leiteranordnung zur Erzeugung überlagerter Quadrupolfelder, die ein Triplet bilden, perspektivisch dargestellt. Bei diesem Quadrupoltriplet handelt es sich beispielsweise um das Triplet 4 gemäß Figur 1. Die magnetischen Quadrupolfelder des Triplets werden dabei durch zwei Stromleiter 12 bis 13 erzeugt, die in parallelen Ebenen jeweils auf einer Seite bezüglich der Ebene angeordnet sind, in welcher die Teilchenbahn 2 liegt. Bei dieser Anordnung wird die seitliche Abstrahlung von bei höheren Energien auftretendem Synchrotronlicht, das durch gepfeilte, strichpunktierte Linien 11 veranschaulicht sein soll, nicht behindert. Bereiche ohne Quadrupolfeld, die in der Figur mit b1 bzw. b2 bezeichnet sind, werden durch Zusammenlegen von jeweils hin- und rückführenden Leiterteilen überbrückt. Eine Drehung des Quadrupolfeldes um 90° erzeugt man durch Kreuzen der Leiterteile in diesen Bereichen. Um kleine Winkeldivergenzen zu erzielen, werden die axialen Längen der Driftstrecken (Id) und des Quadrupoltriplets (Iq) vorteilhaft im Verhältnis von Id:lq:ld wie etwa 1,5:1:1,5 gewählt. Das Triplet setzt sich aus drei Quadrupolen und zwei Driftstrecken zusammen, deren Längen Iq und Id im Verhältnis Iq:ld:lq:ld:lq wie 0,125::0,25:0,25:0,25:0,125 stehen. Die Feldstärke der Quadrupolfelder soll dabei deutlich über der der Störfelder liegen. Beispielsweise gehört zu einem Dipolfeld von 70 mT, das einer Elektronenenergie von etwa 10 MeV entspricht, ein Quadrupolfeld mit einem Gradienten von etwa 0,18 T/m. Dieser-Gradient erfordert eine elektrische Durchflutung der Tripletspulen 12 bis 14 von etwa 700 Ampere Windungen bei 4 cm Abstand zur Elektronenbahn 2.These current flow directions are shown in FIG seen here. In this figure, a conductor arrangement for generating superimposed quadrupole fields, which form a triplet, is shown in perspective. This quadrupole triplet is, for example, the triplet 4 according to FIG. 1. The magnetic quadrupole fields of the triplet are generated by two current conductors 12 to 13, which are each arranged in parallel planes on one side with respect to the plane in which the particle path 2 lies . With this arrangement, the lateral radiation of synchrotron light occurring at higher energies, which is to be illustrated by arrowed, dash-dotted lines 11, is not impeded. Areas without a quadrupole field, which are denoted by b 1 or b 2 in the figure, are bridged by merging respectively returning conductor parts. The quadrupole field is rotated by 90 ° by crossing the conductor parts in these areas. In order to achieve small angular divergences, the axial lengths of the drift sections (I d ) and the quadrupole triplet (Iq) are advantageously chosen in the ratio of I d : lq: l d, such as 1.5: 1: 1.5. The triplet is composed of three quadrupoles and two drift sections, the lengths Iq and I d of which are in the ratio Iq: l d : lq: l d : lq as 0.125 :: 0.25: 0.25: 0.25: 0.125. The field strength of the quadrupole fields should be significantly higher than that of the interference fields. For example, a dipole field of 70 mT, which corresponds to an electron energy of approximately 10 MeV, includes a quadrupole field with a gradient of approximately 0.18 T / m. This - gradient requires an electrical flooding of the Tripletspulen 12 to 14 cm of about 700 ampere-turns at 4 distance from the electron orbit. 2

Die Leiter der Quadrupoltriplets können vorteilhaft in einfacher Weise in den jeweiligen Ablenkmagneten eingebaut werden. Diese Tatsache ist aus den Figuren 3 und 4 ohne weiteres ersichtlich. Dabei zeigt Figur 3 schematisch einen Querschnitt durch die Quadrupolspule 6 der das Quadrupoltriplet 3 bildenden Leiteranordnung gemäß Figur 1. Die Quadrupolspule 6 wird dabei von einer oberen Leiterwindung 14 und einer unteren Leiterwindung 15 gebildet. Diese Windungen sind zu beiden Seiten einer Ebene E angeordnet, in welcher die Teilchenbahn 2 und der Krümmungsradius R des Ablenkmagneten liegen. Gemäß der Darstellung geht die Teilchenbahn 2 durch den Ursprung eines Koordinatensystems mit R und Z als Koordinaten, wobei Z senkrecht auf der Ebene E bzw. auf R steht. Die Leiterwindungen 14 und 15 sollen dabei gemäß der Erfindung symmetrisch bezüglich der Ebene E angeordnet sein. Mit diesen Leiterwindungen ist ein Quadrupolfeld zu erzeugen, das um +45° fokussierend auf den Teilchenstrahl wirkt. Das Quadrupolfeld ist dabei durch Feldlinien 16 veranschaulicht, während die fokussierende bzw. defokussierende Richtung der Lorentzkraft durch gestrichelte Linien 17 bzw. 17' angedeutet ist. Dieses Quadrupolfeld wird durch ein durch Feldlinien 18 angedeutetes Dipolfeld überlagert, das durch Hauptwicklungen 19 bzw. 20 des 1800-Ablenkmagneten erzeugt wird. Die beiden Hauptwicklungen 19 und 20 liegen dabei etwa symmetrisch zu beiden Seiten der Ebene E. Mit einer derartigen Anordnung der Dipol- und Quadrupolwicklungen wird zum einen erreicht, daß die im Bereich der Ablenkmagnete auftretende Synchrotronstrahlung in der Ebene E ungehindert nach außen treten kann. Werden außerdem auch für die Quadrupolspulen supraleitende .Leiter verwendet, so können zum anderen diese Leiter in einfacher Weise in dem die benachbarte Dipolwicklung aufnehmenden Kryosystem mit angeordnet werden.The conductors of the quadrupole triplets can advantageously be installed in a simple manner in the respective deflection magnets. This fact is readily apparent from Figures 3 and 4. 3 schematically shows a cross section through the quadrupole coil 6 of the conductor arrangement forming the quadrupole triplet 3 according to FIG. 1. The quadrupole coil 6 is formed by an upper conductor turn 14 and a lower conductor turn 15. These turns are arranged on both sides of a plane E, in which the particle path 2 and the radius of curvature R of the deflection magnet lie. According to the illustration, the particle trajectory 2 passes through the origin of a coordinate system with R and Z as coordinates, where Z is perpendicular to the plane E or to R. The conductor turns 14 and 15 should be arranged symmetrically with respect to the plane E according to the invention. A quadrupole field can be generated with these conductor turns, which has a focusing effect of +45 ° on the particle beam. The quadrupole field is illustrated by field lines 16, while the focussing or defocusing direction of the Lorentz force is indicated by dashed lines 17 and 17 '. This quadrupole field is superimposed by a dipole field, indicated by field lines 18, which is generated by main windings 19 or 20 of the 180 0 deflection magnet. The two main windings 19 and 20 are approximately symmetrical on both sides of the plane E. With such an arrangement of the dipole and quadrupole windings, on the one hand it is achieved that the synchrotron radiation occurring in the region of the deflecting magnets can emerge in the plane E unhindered. If superconducting conductors are also used for the quadrupole coils, these conductors can also be arranged in a simple manner in the cryosystem receiving the adjacent dipole winding.

Aus Figur 4 geht in Figur 3 entsprechender Darstellung schematisch ein Querschnitt durch die Quadrupolspule 7 desselben Quadrupoltriplets 3 hervor. Die Stromflußrichtungen in der oberen Windung 14 und in der unteren Windung 15 dieser Spule 7 sind dabei entgegengesetzt zu den Stromflußrichtungen in der benachbarten Quadrupolspule 6 des Triplets 3, so daß das durch Feldlinien 16' veranschaulichte Quadrupolfeld der Spule 7 um -45° fokussierend bzw. defokussierend wirkt. D.h., das Quadrupolfeld der Spule 7 ist um 90° gedreht gegenüber dem in Figur 3 gezeigten Quadrupolfeld der Spule 6. Entsprechend den Stromflußrichtungen in den Leiterwindungen der Quadrupolspule 7 sind auch die Stromflußrichtungen in der Quadrupolspule 5 zu wählen. D.h., in dem Quadrupoltriplet 3 werden in den hintereinander angeordneten Quadrupolspulen 5 bis 7 solche Stromrichtungen in den Leiterwindungen vorgesehen, daß das Vorzeichen der Fokussierungswirkung von Spule zu Spule wechselt. Entsprechendes gilt auch für die Quadrupolspulen 8 bis 10 des Quadrupoltriplets 4.A cross-section through the quadrupole coil 7 of the same quadrupole triplet 3 is shown schematically in FIG. The current flow directions in the upper turn 14 and in the lower turn 15 of this coil 7 are opposite to the current flow directions in the adjacent quadrupole coil 6 of the triplet 3, so that the quadrupole field of the coil 7, illustrated by field lines 16 ', focuses or -45 ° has a defocusing effect. That is, the quadrupole field of the coil 7 is rotated by 90 ° with respect to the quadrupole field of the coil 6 shown in FIG. 3. The current flow directions in the quadrupole coil 5 must also be selected in accordance with the directions of current flow in the conductor windings of the quadrupole coil 7. That is to say, in the quadrupole triplet 3, such current directions are provided in the conductor windings in the quadrupole coils 5 to 7 that the sign of the focusing action changes from coil to coil. The same applies to the quadrupole coils 8 to 10 of the quadrupole triplet 4.

Die mit der erfindungsgemäßen Ausgestaltung der magnetfelderzeugenden Einrichtung hervorzurufenden Quadrupolfelder sind im wesentlichen nur bei kleinen Dipolfeldern und hohen Feldänderungsgeschwindigkeiten wirksam. Bei höheren Feldern mit B > 1 T und kleineren Feldänderungsgeschwindigkeiten B sind derartige Zusatzfelder weitgehend überflüssig, da dann in bekannter Weise die Hauptwicklungen der magnetfelderzeugenden Einrichtung allein die Teilchenführung übemehmen können.The quadrupole fields to be produced with the configuration of the magnetic field generating device according to the invention are essentially only effective with small dipole fields and high field change rates. In the case of higher fields with B> 1 T and smaller field change velocities B, such additional fields are largely superfluous, since then the main windings of the magnetic field generating device can take over the particle guidance only in a known manner.

Claims (8)

1. Magnetic-field-generating device for an installation for accelerating electrically charged particles, the closed particle track (2) of which has curved and straight sections (A1, A2 and A3, A4 respectively), this device having magnetic windings (19, 20) of deflection magnets in the areas of the curved sections (Ai, A2) and being provided with at least one supplementary winding whose conductor arrangement (3, 4) is designed as a quadrupole triplet for focussing the particles onto the particle track, characterised in that to focus the particles during their acceleration phase in the area of at least one of the curved sections (Ai, A2) of the par- tide track (2) the conductor arrangement (3, 4) is arranged together with the magnetic windings (19, 20) of a deflection magnet, and the turns (12, 13; 14, 15) of this conductor arrangement extend symmetrically on both sides of the plane (E) in which the particle track (2) lies.
2. Apparatus according to claim 1, characterised in that the current in corresponding turns (12, 13; 14, 15) of adjacent quadrupole windings (5 to 7; 8 to 10) of the conductor arrangement L3 or 4) forming the quadrupole triplet flows in opposite directions.
3. Apparatus according to claim 1 or 2, characterised in that the magnetic windings (19, 20) of the deflection magnet and/or the conductor arrangement (3, 4) forming the quadrupole triplet contain, at least in part, superconducting conductors.
4. Apparatus according to one of claims 1 to 3, characterised in that there is provided a conductor arrangement (3 or 4) forming a quadrupole triplet in the areas of each curved section (Ai, A2) of the particle track (2).
5. Apparatus according to claim 4, characterised in that two conductor arrangements (3, 4) each forming a quadrupole triplet form a double-telescope system for focussing the particles.
6. Apparatus according to one of claims 1 to 5, characterised in that the extent Id of the drift sections and the extent Iq of the quadrupole triplet (3, 4) in the beam guiding direction are chosen in relation to each other such that at least approximately Id:lq:ld as 1.5:1:1.5 applies.
7. Apparatus according to one of claims 1 to 6, characterised in that the quadrupole windings (5 to 7; 8 to 10) of the conductor arrangement (3 or 4) forming a quadrupole triplet have at least two conductor turns (12, 13; 14, 15) which are arranged on opposite sides with respect to the plane (E).
8. Apparatus according to one of claims 1 to 7, characterised in that electrons are to be accelerated as electrically charged particles.
EP86102393A 1985-03-08 1986-02-24 Magnetic field-generating device for a particle-accelerating system Expired - Lifetime EP0193837B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3508334 1985-03-08
DE3508334 1985-03-08

Publications (3)

Publication Number Publication Date
EP0193837A2 EP0193837A2 (en) 1986-09-10
EP0193837A3 EP0193837A3 (en) 1986-12-03
EP0193837B1 true EP0193837B1 (en) 1990-05-02

Family

ID=6264650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86102393A Expired - Lifetime EP0193837B1 (en) 1985-03-08 1986-02-24 Magnetic field-generating device for a particle-accelerating system

Country Status (4)

Country Link
US (1) US4710722A (en)
EP (1) EP0193837B1 (en)
JP (1) JPH0754760B2 (en)
DE (1) DE3670943D1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824080B2 (en) * 1987-06-24 1996-03-06 株式会社日立製作所 Electron storage ring
GB2223350B (en) * 1988-08-26 1992-12-23 Mitsubishi Electric Corp Device for accelerating and storing charged particles
DE3842792A1 (en) * 1988-12-20 1990-06-28 Kernforschungsz Karlsruhe Particle guidance magnet guiding electrically charged particles
US5198674A (en) * 1991-11-27 1993-03-30 The United States Of America As Represented By The United States Department Of Energy Particle beam generator using a radioactive source
US7002160B1 (en) * 2003-11-07 2006-02-21 University Of Louisiana At Lafayette Sextuplet quadrupole lens system for charged particle accelerators
EP2259664B1 (en) 2004-07-21 2017-10-18 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
EP1764132A1 (en) * 2005-09-16 2007-03-21 Siemens Aktiengesellschaft Method and device for configuring a beam path in a particle beam therapy system
EP2389981A3 (en) 2005-11-18 2012-03-07 Still River Systems, Inc. Charged particle radiation therapy
US20110158369A1 (en) * 2007-02-24 2011-06-30 Delbert John Larson Cellular, electron cooled storage ring system and method for fusion power generation
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
JP6254600B2 (en) 2012-09-28 2017-12-27 メビオン・メディカル・システムズ・インコーポレーテッド Particle accelerator
TW201422279A (en) 2012-09-28 2014-06-16 Mevion Medical Systems Inc Focusing a particle beam
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
CN104812444B (en) 2012-09-28 2017-11-21 梅维昂医疗系统股份有限公司 The energy adjustment of the particle beams
CN104813749B (en) 2012-09-28 2019-07-02 梅维昂医疗系统股份有限公司 Control the intensity of the particle beams
TW201438787A (en) 2012-09-28 2014-10-16 Mevion Medical Systems Inc Controlling particle therapy
TW201433331A (en) 2012-09-28 2014-09-01 Mevion Medical Systems Inc Adjusting coil position
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
CN110237447B (en) 2013-09-27 2021-11-02 梅维昂医疗系统股份有限公司 Particle therapy system
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
EP3645111A1 (en) 2017-06-30 2020-05-06 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
WO2020185544A1 (en) 2019-03-08 2020-09-17 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
US10766775B1 (en) 2019-08-05 2020-09-08 Daniel Hodes Method of producing diamond using shockwaves
US11802053B2 (en) 2021-06-10 2023-10-31 Daniel Hodes Method and apparatus for the fabrication of diamond by shockwaves

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3344357A (en) * 1964-07-13 1967-09-26 John P Blewett Storage ring
GB1329412A (en) * 1969-09-18 1973-09-05 Science Res Council Electrical coils for generating magnetic fields
DE2446142A1 (en) * 1974-09-27 1976-04-15 Hrvoje Prof Babic Race-track microtron with electron gun - has device for perfect direction of electrons from an electron gun to an accelerator
SE398191B (en) * 1976-06-03 1977-12-05 Rosander Staffan PROCEDURE FOR CORRECTION OF ALIGNMENT ERRORS BETWEEN TWO MAGNETIC MAIN FIELDS AND A LINE ACCELERATOR IN A RACE-TRACK MICROTRON, AND DEVICE FOR PERFORMING THE PROCEDURE
US4200844A (en) * 1976-12-13 1980-04-29 Varian Associates Racetrack microtron beam extraction system
JPS5495897A (en) * 1978-01-13 1979-07-28 Hidetsugu Ikegami Method and device for accelerating or storing particles by using electrical current sheet magnet
SE436962B (en) * 1983-06-17 1985-01-28 Scanditronix Instr RACE-TRACK MICROTRON FOR STORING AN ENERGY-rich ELECTRON RADIATION

Also Published As

Publication number Publication date
JPS61208800A (en) 1986-09-17
JPH0754760B2 (en) 1995-06-07
EP0193837A2 (en) 1986-09-10
US4710722A (en) 1987-12-01
EP0193837A3 (en) 1986-12-03
DE3670943D1 (en) 1990-06-07

Similar Documents

Publication Publication Date Title
EP0193837B1 (en) Magnetic field-generating device for a particle-accelerating system
EP0193038B1 (en) Magnetic-field generating device for a particle accelerating system
EP0208163B1 (en) Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles
DE3928037C2 (en) Device for accelerating and storing charged particles
EP0191392B1 (en) Magnetic field-generating device
EP0348403B1 (en) Magnetic deflector system for charged particles
DE4000666A1 (en) ELECTROMAGNET FOR PARTICLE ACCELERATOR
DE2730985C2 (en) Irradiation device using charged particles
EP3115082B1 (en) Particle beam therapy installation with solenoid magnets
DE102007046508A1 (en) Irradiation plant with a beam guiding magnet
DE1565881B2 (en) Method and arrangement for the controlled heating of a target material in a high vacuum electron beam furnace
DE3020281C2 (en) Device for double deflection scanning of a particle beam
DE1244972B (en) Method for irradiating by means of corpuscular rays
DE2433989A1 (en) ELECTROMAGNETIC DEFLECTOR
DE1268236B (en) Reciprocal electromagnetic waveguide
EP0416414B1 (en) Procedure and device for deviating a beam
DE3943786C2 (en) Charged particle storage device
DE3010674C2 (en) Ribbon conductor for the formation of poles for a dipole or multipole which is used to deflect and / or focus particle beams and can be operated in pulsed mode
DE1464845A1 (en) Circular particle accelerator
DE19513683C2 (en) High current pulsed lens multiplet for the beam guidance and beam optics of electrically charged particles
DE3938628C2 (en) Device for storing charged particles
DE1287710B (en)
DE1491445C (en) Permanent magnet system for generating at least two consecutive and opposing magnetic fields for the bundled guidance of an electron beam, in particular for traveling wave tubes
DE1491445B2 (en) PERMANENT MAGNETSYSTEM FOR GENERATING AT LEAST TWO SIDE-ON AND OPPOSITE MAGNETIC FIELDS FOR THE CONCENTRATED GUIDANCE OF AN ELECTRON BEAM, IN PARTICULAR FOR WALKING FIELD TUBES
DE1565881C (en) Method and arrangement for the controlled heating of a target material in a high vacuum electron beam furnace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19870109

17Q First examination report despatched

Effective date: 19880713

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3670943

Country of ref document: DE

Date of ref document: 19900607

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940224

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940419

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940517

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950228

Ref country code: CH

Effective date: 19950228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050224