EP0133665A2 - Apparatus for the smashing at a distance of calculus - Google Patents

Apparatus for the smashing at a distance of calculus Download PDF

Info

Publication number
EP0133665A2
EP0133665A2 EP84108750A EP84108750A EP0133665A2 EP 0133665 A2 EP0133665 A2 EP 0133665A2 EP 84108750 A EP84108750 A EP 84108750A EP 84108750 A EP84108750 A EP 84108750A EP 0133665 A2 EP0133665 A2 EP 0133665A2
Authority
EP
European Patent Office
Prior art keywords
shock wave
wave tube
converging lens
tube
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84108750A
Other languages
German (de)
French (fr)
Other versions
EP0133665A3 (en
EP0133665B1 (en
Inventor
Karlheinz Dr. Pauli
Helmut Dr. Reichenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0133665A2 publication Critical patent/EP0133665A2/en
Publication of EP0133665A3 publication Critical patent/EP0133665A3/en
Application granted granted Critical
Publication of EP0133665B1 publication Critical patent/EP0133665B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/30Sound-focusing or directing, e.g. scanning using refraction, e.g. acoustic lenses

Definitions

  • the invention relates to a device for the contactless smashing of a concrement located in the body of a living being with a shock wave generator which can be aligned with a target area in the body.
  • Devices of this type are used in medicine, e.g. to destroy stones in the kidney of humans. They are particularly beneficial because they avoid any intervention in the body. It is not necessary to operate surgically. There is also no need to bring probes and devices to the concrement. A risk from infection or injury, e.g. when inserting the probe or operations, can not occur in contactless smashing.
  • a device of the type mentioned is described in DE-AS 23 51 247.
  • a spark discharge is brought about between two electrodes in a first focal point.
  • This causes a shock wave, the wavefront of which extends in all directions, ie spherically.
  • the waves are reflected on the wall of the ellipsoid of revolution. They collect in the second focal point of the ellipsoid of revolution.
  • the reflected waves arrive at the same time.
  • the concrement is destroyed under the collision of the shock waves.
  • the coupling between the one half of the ellipsoid and the body in which the concretion is done via a thin film, which lies against the body without an air gap.
  • the focus chamber is filled with water.
  • This device has the disadvantage that changes in the shock wave energy are possible only within small limits and only with considerable expenditure on equipment by changing the distance between the underwater electrodes.
  • a further disadvantage is that the mutual distance between the electrodes for generating high-intensity shock waves generally has to be a few millimeters, as a result of which the shock wave source has no punctiform geometry and imaging errors can occur during focusing.
  • the underwater electrodes wear heavily with each discharge, so that their life is limited, which necessitates regular maintenance of the facilities.
  • the device according to DE-AS 23 51 247 also brings with it the fact that the patient's body is separated from the high-voltage spark gap only by the coupling film which is in contact with the body and by the water in the device. Damage to the coupling foil carries a certain risk for the patient.
  • DE-OS 29 02 331 describes a device for transcutaneous, bloodless obliteration of small reticular and spider vein varices.
  • controllable ultrasound elements are used as the wave generator, which are arranged parabolically so that their sound energies meet at a focal point in which the varice to be destroyed is placed.
  • the entire arrangement of the ultrasonic elements is longitudinally displaceable by means of a worm drive and an adjusting screw. This allows different distances of the focal point from the applicator end to be set.
  • the power of the ultrasound crystals is not sufficient to crush stones in the deep interior of a human body.
  • the exact setting of the individual ultrasonic vibrators with regard to both the location and the energy is therefore not critical. Switching off individual ultrasonic crystals for the purpose of adjusting the ultrasonic energy in the focal point is not provided.
  • DE-OS 31 19 295 describes a device for destroying concrements in body cavities with the aid of a large-area ultrasound transducer as a vibration generator. It is coming. a focusing ultrasonic transducer with a pulse peak power of at least 100 kW for use. Here it is possible to hide different zones of the body, which lie on the sound path to the concrement and interfere with it, by changing the radiation area.
  • An embodiment is also shown in which individual ring-shaped ultrasound elements, which form the transducer, on a spherical surface are arranged. None is said about a change in performance according to the type and depth of the concretion. In addition, the effort for such a device, particularly with regard to the formation of the ring-shaped ultrasonic elements, should be considerable.
  • shock wave tube As used in principle in the present invention, the structure of a so-called "shock wave tube", as used in principle in the present invention, is described.
  • a copper membrane is located in front of a flat coil, separated by an insulating film.
  • a tube filled with water connects to this copper membrane.
  • a voltage in the range of 2 - 20 kV to the flat coil, a magnetic field is induced in the copper membrane, which causes repulsive forces that suddenly push the membrane away from the coil.
  • Such a shock wave tube is used e.g. for substance studies in chemistry.
  • the object of the present invention is to ensure reliable operation of a device of the type mentioned in the introduction increase, to get an image of a target area with the smallest possible imaging error and to reduce maintenance work.
  • this object is achieved in that a shock wave tube known per se, which essentially produces a plane shock wave, is provided as shock wave generator, and in that the shock wave tube is assigned a lens arrangement which focuses the shock wave on a focal point in the target area.
  • this device uses a shock wave generator that generates plane waves, the shock waves coming from only one direction have to be bundled and focused.
  • imaging errors are less likely than if spherical waves proceeding from a spark gap and traveling in all directions have to be focused.
  • the temporal and spatial reproducibility of the shock wave is significantly improved when generated with a shock wave tube compared to the generation with a spark gap.
  • there is no maintenance work due to wear and tear of the electrodes of a spark gap. Because a shock wave tube generates the shock waves with the help of electromagnetic forces and does not require a spark gap.
  • a shock wave tube is constructed so that it contains a copper membrane at one end of a tube filled with liquid, preferably water, which is separated by an insulating film and arranged in front of a flat coil. Due to a current pulse in the flat coil, the copper membrane is repelled by it and thereby generates the shock wave in the liquid.
  • the copper membrane itself and the pipe section connected to it are usually based on a common reference potential, ie they are grounded. There is therefore no high voltage at the coupling medium conducting the shock wave, which increases the electrical safety of patient and staff.
  • a shock wave tube 1 known per se, consisting of a jacket 2, a flat coil 3 with two electrical connections 5 and 7, an insulating film 9, a copper membrane 11 and a metallic tube piece 13, in front of an acoustic converging lens 15 , which has a focal point F placed.
  • the pipe section 13 is filled with a liquid 14, e.g. B. filled with water.
  • the shock wave tube 1 is coupled to a body 19 via a coupling medium 17 with water-like acoustic properties.
  • the body 19 e.g. a patient has a concrement 23 in his kidney 21 e.g. a kidney stone.
  • the converging lens 15 can be displaced relative to the jacket 2 of the shock wave tube 1 via a fine adjustment 24 with a bolt 24a and a locking wheel 24b in the direction of a double arrow 25.
  • the bolt 24a is guided in a slot-shaped recess 24c in the casing 2.
  • the shock wave tube 1, the converging lens 15 and the fine adjustment 24 are mounted on a common frame, tripod or a mounting plate 26.
  • This mounting plate is mounted on a bearing 26a which can be pivoted on all sides and is displaceable in all spatial directions. As a result, the shock wave tube 1 can be aligned with the concretion 23 such that the focal point F lies in the concretion 23.
  • the copper membrane 11 and the pipe section 13 are electrically connected to a protective potential such as earth 27, as is the connection 7 of the flat coil 3.
  • the other connection 5 of the flat coil 3 is via a switch 29, which comprises an auxiliary contact 31, in a supply and control unit 33 out.
  • a high voltage U is generated in the supply and control unit 33 via a capacitor / resistance circuit (not shown). This can be several kilovolts, for example 20 kV. The voltage U can be adjustable.
  • a control signal which is supplied by the supply and control unit 33 via a control line 35 to the auxiliary contact 31, causes the switch 29 to close.
  • a part of the energy stored in the capacitor (not shown) of the supply and control unit 33 is discharged abruptly into the flat coil 3, which builds up a magnetic field very quickly.
  • a current is induced in the copper membrane 11, which is opposite to the current in the flat coil and generates an opposing magnetic field.
  • the copper membrane 11 is knocked away from the flat coil 3 by the force of the opposing field.
  • This knocking away of the copper membrane 11 creates a flat shock wave, ie an abrupt compression in the liquid 14 upstream of the membrane 22.
  • This shock wave shows a steep pressure increase, for example 200 bar.
  • the pressure wave gains steepness in its course through the pipe section 13, the converging lens 15 and the patient's body 19.
  • the shock wave After passing through the converging lens 15, the shock wave is shaped to converge at the focal point F.
  • the concrement 23 is placed there, and the focused shock wave releases part of its energy content to the concrement 23, which is brittle compared to the environment, by means of tensile or compressive forces. These forces break up the concrement 23 into several parts and thus cause it to be broken up.
  • This explained smashing device offers the considerable advantage that the grounded copper membrane 11 and the grounded pipe section 13 do not represent a source of danger for the patient 19 or the operating personnel.
  • the electrical safety of the device can be improved for the operating personnel by an additional insulating sheath (not shown), e.g. in the form of a plastic coating on the outer surface of the jacket 2, can be increased.
  • an additional insulating sheath e.g. in the form of a plastic coating on the outer surface of the jacket 2
  • the patient 19 has double security against the high electrical voltage. This security is determined on the one hand by the insulating bag wall and on the other hand by the insulating film 9 in front of the flat coil 3.
  • the switch 29 can also be integrated in the supply and control unit 33. It can also be located away from the shock tube assembly. Since a spark gap does not necessarily have to be used for triggering, for example vacuum or more recently SF6 switches in question, there is no need for complex maintenance and operating work that would be associated with the spark gap.
  • FIG. 2 shows a shock wave tube 1 known per se, to which a system 40 acoustic lenses for imaging a flat shock wave onto a concrement 23 in the body of a patient 19 is assigned.
  • the system 40 acoustic lenses consists of a diverging lens 42, a capacitor 44 and a converging lens 46 with a focal point F.
  • the preferred material for the system 40 of the acoustic lenses is acrylic glass or polystyrene.
  • the plane shock wave generated in the shock wave tube 1 is widened in its cross section by the diverging lens 42.
  • the shock wave is directed in parallel by the capacitor 44 and focused on the focal point F by the converging lens 46.
  • the configurations of the shock wave tube 1 and the holding device described for FIG. 1 also apply to this embodiment of the imaging system.
  • the entire system 40 of acoustic lenses can be displaced relative to the shock wave tube 1 in the axial direction of the double arrow 25.
  • the advantage of this embodiment is that the shock wave enters the patient's body 19 over a larger cross-section of the body surface. This makes it possible to keep the energy density in the patient's tissue low, in particular on the body surface 48.

Abstract

Die Erfindung betrifft eine Einrichtung zum berührungslosen Zertrümmern eines Konkrements (23), z.B eines Nierensteins im Körper (19) eines Patienten. Die Anwendung liegt hauptsächlich auf dem medizinischen Sektor. Mit Hilfe eines Stoßwellenrohres (1) wird über magnetische Kraftwirkung eine im wesentlichen ebene Stoßwelle erzeugt. Diese Stoßwelle wird durch eine akustische Sammellinse (15) fokussiert, wobei im Fokuspunkt (F) das zu zerstörende Konkrement (23) plaziert ist. Zur Ankopplung der Stoßwelle an den Patienten ist der Raum, den die Stoßwelle durchläuft, mit einem Ankoppelmedium (14), z.B. mit Wasser, gefüllt. Das Stoßwellenrohr (1), die Sammellinse (15) und eine Feinregulierung (24) zum Verschieben der Sammellinse (15) gegenüber dem Stoßwellenrohr (1) sind auf einem Montagegestell allseitig schwenkbar angebracht. Diese Zertrümmerungseinrichtung mit Stoßwellenrohr (1) hat eine hohe Betriebssicherheit bezüglich Hochspannung, ist wartungsarm und besitzt wegen der Verwendung der Membran (11) und der Sammellinse (15) nur vernachlässigbare Abbildungsfehler.The invention relates to a device for contactlessly crushing a concrement (23), e.g. a kidney stone in the body (19) of a patient. The application is mainly in the medical sector. With the help of a shock wave tube (1) an essentially flat shock wave is generated via magnetic force. This shock wave is focused by an acoustic converging lens (15), the concrement (23) to be destroyed being placed in the focus point (F). To couple the shock wave to the patient, the space through which the shock wave travels must be connected to a coupling medium (14), e.g. filled with water. The shock wave tube (1), the converging lens (15) and a fine adjustment (24) for moving the converging lens (15) relative to the shock wave tube (1) are mounted on all sides on a mounting frame. This shattering device with shock wave tube (1) has a high level of operational reliability with regard to high voltage, is low-maintenance and, because of the use of the membrane (11) and the converging lens (15), has only negligible aberrations.

Description

Die Erfindung betrifft eine Einrichtung zum berührungslosen Zertrümmern eines im Körper eines Lebewesens befindlichen Konkrements mit einem Stoßwellengenerator, der auf ein Zielgebiet im Körper ausrichtbar ist.The invention relates to a device for the contactless smashing of a concrement located in the body of a living being with a shock wave generator which can be aligned with a target area in the body.

Einrichtungen dieser Art werden in der Medizin eingesetzt, z.B. zum Zerstören von Steinen in der Niere des Menschen. Sie sind besonders vorteilhaft, da sie jeglichen Eingriff in den Körper vermeiden. Es ist nicht notwendig, operativ vorzugehen. Auch das Heranführen von Sonden und Geräten an das Konkrement entfällt. Eine Gefährdung durch Infektionen oder Verletzungen, z.B. beim Einführen der Sonde oder Operationen, kann beim berührungslosen Zertrümmern nicht auftreten.Devices of this type are used in medicine, e.g. to destroy stones in the kidney of humans. They are particularly beneficial because they avoid any intervention in the body. It is not necessary to operate surgically. There is also no need to bring probes and devices to the concrement. A risk from infection or injury, e.g. when inserting the probe or operations, can not occur in contactless smashing.

Eine Einrichtung der eingangs erwähnten Art ist in der DE-AS 23 51 247 beschrieben. Hier wird in einer Fokussierungskammer, die als halbförmiger Rotationsellipsoid ausgebildet ist, in einem ersten Brennpunkt eine Funkenentladung zwischen zwei Elektroden herbeigeführt. Diese verursacht eine Stoßwelle, deren Wellenfront sich nach allen Seiten, d.h. kugelförmig ausbreitet. An der Wand des Rotationsellipsoids werden die Wellen reflektiert. Sie sammeln sich im zweiten Brennpunkt des Rotationsellipsoids. In einem zweiten Brennpunkt in dem das Konkrement plaziert ist, treffen die reflektierten Wellen gleichzeitig ein. Unter dem gebündelten Anprall der Stoßwellen wird das Konkrement zerstört. Die Ankopplung zwischen der einen Ellipsoidenhälfte und dem Körper, in welchem sich das Konkrement befindet, geschieht über eine dünne Folie, die luftspaltlos am Körper anliegt. Die Fokussierungskammer ist mit Wasser gefüllt.A device of the type mentioned is described in DE-AS 23 51 247. In a focusing chamber, which is designed as a semi-circular ellipsoid of rotation, a spark discharge is brought about between two electrodes in a first focal point. This causes a shock wave, the wavefront of which extends in all directions, ie spherically. The waves are reflected on the wall of the ellipsoid of revolution. They collect in the second focal point of the ellipsoid of revolution. In a second focal point where the concrement is placed, the reflected waves arrive at the same time. The concrement is destroyed under the collision of the shock waves. The coupling between the one half of the ellipsoid and the body in which the concretion is done via a thin film, which lies against the body without an air gap. The focus chamber is filled with water.

Diese Einrichtung bringt den Nachteil mit sich, daß Änderungen der Schockwellenenergie nur in geringen Grenzen und nur mit einem erheblichen apparativen Aufwand durch Änderung des Abstands der Unterwasserelektroden möglich sind. Weiterhin ist nachteilig, daß der gegenseitige Abstand der Elektroden zur Erzeugung von intensitätsstarken Schockwellen in der Regel einige Millimeter betragen muß, wodurch die Schockwellenquelle keine punktförmige Geometrie besitzt und Abbildungsfehler bei der Fokussierung entstehen können. Außerdem nutzen sich die Unterwasserelektroden bei jeder Entladung stark ab, so daß ihre Lebensdauer begrenzt ist, was eine regelmäßige Wartung der Einrichtungen erforderlich macht.This device has the disadvantage that changes in the shock wave energy are possible only within small limits and only with considerable expenditure on equipment by changing the distance between the underwater electrodes. A further disadvantage is that the mutual distance between the electrodes for generating high-intensity shock waves generally has to be a few millimeters, as a result of which the shock wave source has no punctiform geometry and imaging errors can occur during focusing. In addition, the underwater electrodes wear heavily with each discharge, so that their life is limited, which necessitates regular maintenance of the facilities.

Obengenannte Umstände sind bereits in der DE-OS 25 38 960 erkannt. Gemäß dieser Druckschrift können die zitierten Nachteile dadurch behoben werden, daß anstelle der Funkenstrecke ein außerhalb der Fokussierungskammer befindlicher Riesenimpulslaser eingesetzt wird. Dessen Strahl wird durch einen Strahlteiler aufgeweitet und dann durch ein in der Wand der Fokussierungskammer befindliches Linsensystem in einem Brennpunkt der rotationselliptischen Fokussierungskammer vereinigt. Hier wird eine Schockwelle ausgelöst, z.B. durch Konzentration des Energiebündels auf einen absorbierenden Stift oder eine stark absorbierende Flüssigkeit. Auch bei dieser Einrichtung wird ein schwierig herzustellender rotationselliptischer Reflexionskörper verwendet. Außerdem ist der Wirkungsgrad einer solchen Einrichtung mit Laser als gering anzusehen. Die Einrichtung nach der DE-AS 23 51 247 bringt außerdem den Umstand mit sich, daß der Körper des Patienten nur durch die Koppelfolie, die am Körper anliegt, und durch das Wasser in der Einrichtung von der Hochspannungsfunkenstrecke getrennt ist. Beschädigungen der Koppelfolie bergen ein gewisses Risiko für den Patienten in sich.The above-mentioned circumstances are already recognized in DE-OS 25 38 960. According to this publication, the disadvantages cited can be remedied by using a giant pulse laser located outside the focusing chamber instead of the spark gap. Its beam is expanded by a beam splitter and then combined in a focal point of the rotationally elliptical focusing chamber by a lens system located in the wall of the focusing chamber. A shock wave is triggered here, for example by concentrating the energy bundle on an absorbent stick or a highly absorbent liquid. This device also uses a rotationally elliptical reflection body that is difficult to manufacture. In addition, the efficiency of such a device with a laser can be regarded as low. The device according to DE-AS 23 51 247 also brings with it the fact that the patient's body is separated from the high-voltage spark gap only by the coupling film which is in contact with the body and by the water in the device. Damage to the coupling foil carries a certain risk for the patient.

In der DE-OS 29 02 331 ist ein Gerät zur transkutanen, unblutigen Verödung von kleinen retikulären und Besenreiser-Varicen beschrieben. Als Wellengenerator sind gleichzeitig ansteuerbare Ultraschallelemente verwendet, die parabolisch angeordnet sind, damit sich ihre Schallenergien in einem Brennpunkt treffen, in dem die zu zerstörende Varice plaziert ist. Die gesamte Anordnung der Ultraschallelemente ist mittels eines Schneckentriebes und einer Stellschraube längsverschiebbar. Hierdurch können verschiedene Abstände des Brennpunkts vom Applikatorende eingestellt werden. Bei diesem Gerät ist die Leistung der Ultraschallkristalle zum Zertrümmern von Konkrementen im tiefen Innern eines menschlichen Körpers nicht ausreichend. Die genaue Einstellung der einzelnen Ultraschallschwinger sowohl hinsichtlich des Ortes als auch der Energie ist daher unkritisch. Ein Abschalten einzelner Ultraschallkristalle zwecks Einstellung der Ultraschallenergie im Brennpunkt ist nicht vorgesehen.DE-OS 29 02 331 describes a device for transcutaneous, bloodless obliteration of small reticular and spider vein varices. At the same time, controllable ultrasound elements are used as the wave generator, which are arranged parabolically so that their sound energies meet at a focal point in which the varice to be destroyed is placed. The entire arrangement of the ultrasonic elements is longitudinally displaceable by means of a worm drive and an adjusting screw. This allows different distances of the focal point from the applicator end to be set. With this device, the power of the ultrasound crystals is not sufficient to crush stones in the deep interior of a human body. The exact setting of the individual ultrasonic vibrators with regard to both the location and the energy is therefore not critical. Switching off individual ultrasonic crystals for the purpose of adjusting the ultrasonic energy in the focal point is not provided.

In der DE-OS 31 19 295 ist eine Einrichtung zum Zerstören von Konkrementen in Körperhöhlen unter Zuhilfenahme eines großflächigen Ultraschallwandlers als Schwingungserzeuger beschrieben. Es kommt. ein fokussierender Ultraschallwandler mit einer Pulsspitzenleistung von wenigstens 100 kW zur Anwendung. Hier besteht die Möglichkeit, verschiedene Zonen des Körpers, die auf dem Schallweg zum Konkrement liegen und dabei stören, durch Verändern der Abstrahlfläche auszublenden. Es wird auch eine Ausführungsform dargestellt, bei der einzelne ringförmige Ultraschallelemente, die den Wandler bilden, auf einer Kugeloberfläche angeordnet sind. Über eine Veränderung der Leistung entsprechend der Art und Tiefenlage des Konkrements ist nichts ausgesagt. Außerdem dürfte der Aufwand für eine solche Einrichtung, insbesondere im Hinblick auf die Ausbildung der ringförmigen Ultraschallelemente, beträchtlich sein.DE-OS 31 19 295 describes a device for destroying concrements in body cavities with the aid of a large-area ultrasound transducer as a vibration generator. It is coming. a focusing ultrasonic transducer with a pulse peak power of at least 100 kW for use. Here it is possible to hide different zones of the body, which lie on the sound path to the concrement and interfere with it, by changing the radiation area. An embodiment is also shown in which individual ring-shaped ultrasound elements, which form the transducer, on a spherical surface are arranged. Nothing is said about a change in performance according to the type and depth of the concretion. In addition, the effort for such a device, particularly with regard to the formation of the ring-shaped ultrasonic elements, should be considerable.

Außerdem ist anzumerken, daß bei solchen Ultraschallgeräten nur begrenzte Spitzenleistungen der abgestrahlten Schallenergie möglich sind. Darüber hinaus ist bei einem solchen Gerät eine große Anzahl von Ultraschallwandlern erforderlich, was hohen Montage- und Steueraufwand erfordert. Außerdem ist bei Ultraschallwandlern ein unerwünschtes pulsförmiges Unterschwingen zu beobachten, das nur mit erheblichem Aufwand zu reduzieren ist.It should also be noted that only limited peak power levels of the emitted sound energy are possible with such ultrasound devices. In addition, a large number of ultrasonic transducers is required in such a device, which requires high assembly and control costs. In addition, an undesirable pulse-shaped undershoot can be observed in ultrasonic transducers, which can only be reduced with considerable effort.

In der Zeitschrift Akustische Beihefte, 1962, Heft 1, Seiten 185 - 202, ist der Aufbau eines sogenannten "Stoßwellenrohres", wie es im Prinzip in der vorliegenden Erfindung verwendet wird, beschrieben. Vor einer Flachspule, durch eine Isolierfolie getrennt, befindet sich eine Kupfermembran. An diese Kupfermembran schließt ein mit Wasser gefülltes Rohr an. Durch Anlegen einer Spannung im Bereich 2 - 20 kV an die Flachspule wird in der Kupfermembran ein Magnetfeld induziert, welches Abstoßkräfte bewirkt, die die Membran von der Spule schlagartig wegdrücken. Hierdurch entsteht eine ebene Schockwelle, die im wassergefüllten Rohr zu einer steilen Stoßwelle wird und am Rohrende für Experimente zur Verfügung steht. Eingesetzt wird ein solches Stoßwellenrohr z.B. zu Stoffuntersuchungen in der Chemie.In the magazine Akustische Beihefte, 1962, Issue 1, pages 185-202, the structure of a so-called "shock wave tube", as used in principle in the present invention, is described. A copper membrane is located in front of a flat coil, separated by an insulating film. A tube filled with water connects to this copper membrane. By applying a voltage in the range of 2 - 20 kV to the flat coil, a magnetic field is induced in the copper membrane, which causes repulsive forces that suddenly push the membrane away from the coil. This creates a flat shock wave that becomes a steep shock wave in the water-filled pipe and is available for experiments at the end of the pipe. Such a shock wave tube is used e.g. for substance studies in chemistry.

Aufgabe vorliegender Erfindung ist es, bei einer Einrichtung der eingangs genannten Art die Betriebssicherheit zu erhöhen, eine Abbildung auf ein Zielgebiet mit möglichst kleinem Abbildungsfehler zu erhalten und Wartungsarbeiten zu reduzieren.The object of the present invention is to ensure reliable operation of a device of the type mentioned in the introduction increase, to get an image of a target area with the smallest possible imaging error and to reduce maintenance work.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß als Stoßwellengenerator ein an sich bekanntes, im wesentlichen eine ebene Stoßwelle erzeugendes Stoßwellenrohr vorgesehen ist, und daß dem Stoßwellenrohr eine Linsenanordnung zugeordnet ist, welche die Stoßwelle auf einen Fokuspunkt im Zielgebiet fokussiert.According to the invention, this object is achieved in that a shock wave tube known per se, which essentially produces a plane shock wave, is provided as shock wave generator, and in that the shock wave tube is assigned a lens arrangement which focuses the shock wave on a focal point in the target area.

Da diese Einrichtung einen Stoßwellengenerator verwendet, der ebene Wellen erzeugt, müssen die nur aus einer Richtung kommenden Stoßwellen gebündelt und fokussiert werden. Hierbei sind Abbildungsfehler weniger wahrscheinlich, als wenn von einer Funkenstrecke ausgehende, in alle Richtungen laufende Kugelwellen fokussiert werden müssen. Die zeitliche und räumliche Reproduzierbarkeit der Stoßwelle ist bei Erzeugung mit einem Stoßwellenrohr im Vergleich zur Erzeugung mit einer Funkenstrecke wesentlich verbessert. Außerdem entfallen Wartungsarbeiten, die durch Verschleiß und Abbrand der Elektroden einer Funkenstrecke anfallen. Denn ein Stoßwellenrohr erzeugt die Stoßwellen mit Hilfe elektromagnetischer Kräfte und benötigt keine Funkenstrecke.Since this device uses a shock wave generator that generates plane waves, the shock waves coming from only one direction have to be bundled and focused. Here, imaging errors are less likely than if spherical waves proceeding from a spark gap and traveling in all directions have to be focused. The temporal and spatial reproducibility of the shock wave is significantly improved when generated with a shock wave tube compared to the generation with a spark gap. In addition, there is no maintenance work due to wear and tear of the electrodes of a spark gap. Because a shock wave tube generates the shock waves with the help of electromagnetic forces and does not require a spark gap.

Ein Stoßwellenrohr ist so aufgebaut, daß es am einen Ende eines mit Flüssigkeit, bevorzugt mit Wasser gefüllten Rohres eine Kupfermembran enthält, die durch eine Isolierfolie getrennt, vor einer Flachspule angeordnet ist. Aufgrund eines Stromimpulses in der Flachspule wird die Kupfermembran von dieser abgestoßen und erzeugt dabei die Stoßwelle in der Flüssigkeit. Die Kupfermembran selber und das an sie anschließende Rohrstück werden in der Regel auf ein gemeinsames Bezugspotential gelegt, d.h. sie sind geerdet. Es liegt also keine Hochspannung an dem die Stoßwelle leitenden Koppelmedium an, wodurch die elektrische Sicherheit von Patient und Personal erhöht ist.A shock wave tube is constructed so that it contains a copper membrane at one end of a tube filled with liquid, preferably water, which is separated by an insulating film and arranged in front of a flat coil. Due to a current pulse in the flat coil, the copper membrane is repelled by it and thereby generates the shock wave in the liquid. The copper membrane itself and the pipe section connected to it are usually based on a common reference potential, ie they are grounded. There is therefore no high voltage at the coupling medium conducting the shock wave, which increases the electrical safety of patient and staff.

Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der Zeichnungen in Verbindung mit den Unteransprüchen. Es zeigen:

  • Fig. 1 einen seitlichen Schnitt durch eine Zertrümmerungseinrichtung nach der Erfindung, mit einer Sammellinse, und
  • Fig. 2 einen seitlichen Schnitt durch eine Zertrümmerungseinrichtung nach der Erfindung mit einem System akustischer Linsen.
Further advantages and details of the invention emerge from the following description of an exemplary embodiment with reference to the drawings in conjunction with the subclaims. Show it:
  • Fig. 1 shows a lateral section through a smashing device according to the invention, with a converging lens, and
  • Fig. 2 shows a side section through a smashing device according to the invention with a system of acoustic lenses.

In Figur 1 ist ein an sich bekanntes Stoßwellenrohr 1, bestehend aus einem Mantel 2, aus einer Flachspule 3 mit zwei elektrischen Anschlüssen 5 und 7, aus einer Isolierfolie 9, aus einer Kupfermembran 11 und aus einem metallischen Rohrstück 13, vor einer akustischen Sammellinse 15, die einen Brennpunkt F besitzt plaziert. Das Rohrstück 13 ist mit einer Flüssigkeit 14, z. B. Wasser gefüllt.1 shows a shock wave tube 1 known per se, consisting of a jacket 2, a flat coil 3 with two electrical connections 5 and 7, an insulating film 9, a copper membrane 11 and a metallic tube piece 13, in front of an acoustic converging lens 15 , which has a focal point F placed. The pipe section 13 is filled with a liquid 14, e.g. B. filled with water.

Über ein Koppelmedium 17 mit wasserähnlichen akustischen Eigenschaften ist das Stoßwellenrohr 1 an einen Körper 19 angekoppelt. Der Körper 19 z.B. ein Patient, hat in seiner Niere 21 ein Konkrement 23 z.B. einen Nierenstein.The shock wave tube 1 is coupled to a body 19 via a coupling medium 17 with water-like acoustic properties. The body 19 e.g. a patient has a concrement 23 in his kidney 21 e.g. a kidney stone.

Die Sammellinse 15 ist über eine Feinregulierung 24 mit Bolzen 24a und Feststellrad 24b in Richtung eines Doppelpfeils 25 relativ zum Mantel 2 des Stoßwellenrohrs 1 verschiebbar. Der Bolzen 24a wird dabei in einer schlitzförmigen Aussparung 24c im Mantel 2 geführt.The converging lens 15 can be displaced relative to the jacket 2 of the shock wave tube 1 via a fine adjustment 24 with a bolt 24a and a locking wheel 24b in the direction of a double arrow 25. The bolt 24a is guided in a slot-shaped recess 24c in the casing 2.

Das Stoßwellenrohr 1, die Sammellinse 15 und die Feinregulierung 24 sind auf einem gemeinsamen Gestell, Stativ oder einer Montageplatte 26 montiert. Diese Montageplatte ist auf einem Lager 26a angebracht, welches allseitig schwenkbar und in allen Raumrichtungen verschiebbar ist. Dadurch kann das Stoßwellenrohr 1 auf das Konkrement 23 so ausgerichtet werden, daß der Brennpunkt F im Konkrement 23 liegt.The shock wave tube 1, the converging lens 15 and the fine adjustment 24 are mounted on a common frame, tripod or a mounting plate 26. This mounting plate is mounted on a bearing 26a which can be pivoted on all sides and is displaceable in all spatial directions. As a result, the shock wave tube 1 can be aligned with the concretion 23 such that the focal point F lies in the concretion 23.

Die Kupfermembran 11 und das Rohrstück 13 sind elektrisch an ein Schutzpotential wie Erde 27 gelegt, ebenso der Anschluß 7 der Flachspule 3. Der andere Anschluß 5 der Flachspule 3 ist über einen Schalter 29, der einen Hilfskontakt 31 umfaßt, in eine Versorgungs- und Steuereinheit 33 geführt.The copper membrane 11 and the pipe section 13 are electrically connected to a protective potential such as earth 27, as is the connection 7 of the flat coil 3. The other connection 5 of the flat coil 3 is via a switch 29, which comprises an auxiliary contact 31, in a supply and control unit 33 out.

Über eine (nicht gezeigte) Kondensator/Widerstandsschaltung wird in der Versorgungs- und Steuereinheit 33 eine Hochspannung U erzeugt. Diese kann mehrere, Kilovolt, z.B. 20 kV betragen. Die Spannung U kann dabei einstellbar sein. Ein Steuersignal, welches von der Versorgungs- und Steuereinheit 33 über eine Steuerleitung 35 an den Hilfskontakt 31 gegeben wird, bewirkt das Schließen des Schalters 29. Ein Teil der in dem (nicht gezeigten) Kondensator der Versorgungs- und Steuereinheit 33 gespeicherten Energie entlädt sich dabei schlagartig in die Flachspule 3, die sehr schnell ein magnetisches Feld aufbaut. In der Kupfermembran 11 wird ein Strom induziert, der dem Strom in der Flachspule entgegengerichtet ist und ein magnetisches Gegenfeld erzeugt. Durch die Kraftwirkung des Gegenfeldes wird die Kupfermembran 11 von der Flachspule 3 weggeschlagen. Dieses Wegschlagen der Kupfermembran 11 erzeugt eine ebene Stoßwelle, d.h. eine schlagartige Kompression in der der Membran 22 vorgelagerten Flüssigkeit 14. Diese Stoßwelle zeigt einen steilen Druckanstieg, z.B. auf 200 bar. Die Druckwelle gewinnt in ihrem Lauf durch das Rohrstück 13, die Sammellinse 15 und dem Körper 19 des Patienten noch an Steilheit. Nach dem Durchgang durch die Sammellinse 15, ist die Stoßwelle so geformt, daß sie im Brennpunkt F konvergiert. Dort ist das Konkrement 23 plaziert, und die fokussierte Stoßwelle gibt einen Teil ihres Energieinhalts durch Zug- oder Druckkräfte an das im Vergleich zur Umgebung spröde Konkrement 23 ab. Diese Kräfte zerlegen das Konkrement 23 in mehrere Teile und bewirken so seine Zertrümmerung.A high voltage U is generated in the supply and control unit 33 via a capacitor / resistance circuit (not shown). This can be several kilovolts, for example 20 kV. The voltage U can be adjustable. A control signal, which is supplied by the supply and control unit 33 via a control line 35 to the auxiliary contact 31, causes the switch 29 to close. A part of the energy stored in the capacitor (not shown) of the supply and control unit 33 is discharged abruptly into the flat coil 3, which builds up a magnetic field very quickly. A current is induced in the copper membrane 11, which is opposite to the current in the flat coil and generates an opposing magnetic field. The copper membrane 11 is knocked away from the flat coil 3 by the force of the opposing field. This knocking away of the copper membrane 11 creates a flat shock wave, ie an abrupt compression in the liquid 14 upstream of the membrane 22. This shock wave shows a steep pressure increase, for example 200 bar. The pressure wave gains steepness in its course through the pipe section 13, the converging lens 15 and the patient's body 19. After passing through the converging lens 15, the shock wave is shaped to converge at the focal point F. The concrement 23 is placed there, and the focused shock wave releases part of its energy content to the concrement 23, which is brittle compared to the environment, by means of tensile or compressive forces. These forces break up the concrement 23 into several parts and thus cause it to be broken up.

Je nach Größe und Konsistenz des Konkrementes 23 muß dieser Einstrahlvorgang mehrmals wiederholt werden.Depending on the size and consistency of the calculus 23, this irradiation process must be repeated several times.

Diese erläuterte Zertrümmerungseinrichtung bietet den beachtlichen Vorteil, daß die geerdete Kupfermembran 11 und das geerdete Rohrstück 13 keine Gefahrenquelle für den Patienten 19 oder das Bedienungspersonal darstellen. Die elektrische Sicherheit der Einrichtung kann für das Bedienpersonal durch eine (nicht gezeigte) zusätzliche isolierende Umhüllung, z.B. in Form einer Kunststoffbeschichtung der äußeren Fläche des Mantels 2, noch gesteigert werden. Bei Verwendung eines mit dem Koppelmedium 17 gefüllten Sacks 37 an der Eintrittsstelle der Stoßwelle in den Patienten 19 ergibt sich eine doppelte Sicherheit für den Patienten 19 vor der elektrischen Hochspannung. Diese Sicherheit wird zum einen durch die isolierende Sackwand und zum anderen durch die Isolierfolie 9 vor der Flachspule 3 bestimmt.This explained smashing device offers the considerable advantage that the grounded copper membrane 11 and the grounded pipe section 13 do not represent a source of danger for the patient 19 or the operating personnel. The electrical safety of the device can be improved for the operating personnel by an additional insulating sheath (not shown), e.g. in the form of a plastic coating on the outer surface of the jacket 2, can be increased. When a sack 37 filled with the coupling medium 17 is used at the point of entry of the shock wave in the patient 19, the patient 19 has double security against the high electrical voltage. This security is determined on the one hand by the insulating bag wall and on the other hand by the insulating film 9 in front of the flat coil 3.

Der Schalter 29 kann im übrigen in der Versorgungs- und Steuereinheit 33 integriert sein. Er kann auch von der Stoßwellenrohranordnung entfernt gelegen sein. Da zum Auslösen nicht notwendigerweise eine Funkenstrecke verwendet werden muß, es kommen nämlich z.B. auch Vakuum-oder neuerdings auch SF6-Schalter in Frage, entfallen aufwendige Wartungs- und Betriebsarbeiten, die mit der Funkenstrecke verbunden wären.The switch 29 can also be integrated in the supply and control unit 33. It can also be located away from the shock tube assembly. Since a spark gap does not necessarily have to be used for triggering, for example vacuum or more recently SF6 switches in question, there is no need for complex maintenance and operating work that would be associated with the spark gap.

Die Figur 2 zeigt ein an sich bekanntes Stoßwellenrohr 1 dem ein System 40 akustische Linsen zur Abbildung einer ebenen Stoßwelle auf ein Konkrement 23 im Körper eines Patienten 19 zugeordnet ist. Das System 40 akustische Linsen besteht aus einer Zerstreuungslinse 42, einem Kondensator 44 und einer Sammellinse 46 mit einem Brennpunkt F. Das bevorzugte Material für das System 40 der akustischen Linsen ist Acrylglas oder Polystyrol. Die im Stoßwellenrohr 1 erzeugte ebene Stoßwelle wird durch die Zerstreuungslinse 42 in ihrem Querschnitt aufgeweitet. Durch den Kondensator 44 wird die Stoßwelle parallel gerichtet und durch die Sammellinse 46 auf den Brennpunkt F fokussiert.FIG. 2 shows a shock wave tube 1 known per se, to which a system 40 acoustic lenses for imaging a flat shock wave onto a concrement 23 in the body of a patient 19 is assigned. The system 40 acoustic lenses consists of a diverging lens 42, a capacitor 44 and a converging lens 46 with a focal point F. The preferred material for the system 40 of the acoustic lenses is acrylic glass or polystyrene. The plane shock wave generated in the shock wave tube 1 is widened in its cross section by the diverging lens 42. The shock wave is directed in parallel by the capacitor 44 and focused on the focal point F by the converging lens 46.

Die zu Figur 1 beschriebenen Ausgestaltungen des Stoßwellenrohrs 1 und der Haltevorrichtung gelten auch für diese Ausführungsform des Abbildungssystems. So ist hier das gesamte System 40 akustischer Linsen relativ zum Stoßwellenrohr 1 in axialer Richtung des Doppelpfeils 25 verschiebbar.The configurations of the shock wave tube 1 and the holding device described for FIG. 1 also apply to this embodiment of the imaging system. Here, the entire system 40 of acoustic lenses can be displaced relative to the shock wave tube 1 in the axial direction of the double arrow 25.

Vorteil dieses Ausführungsbeispiels ist, daß die Stoßwelle über einen größeren Querschnitt der Körperoberfläche in den Körper 19 des Patienten eintritt. Hierdurch ist es möglich die Energiedichte im Gewebe des Patienten, insbesondere an der Körperoberfläche 48 klein zu halten.The advantage of this embodiment is that the shock wave enters the patient's body 19 over a larger cross-section of the body surface. This makes it possible to keep the energy density in the patient's tissue low, in particular on the body surface 48.

Claims (9)

1. Einrichtung zum berührungslosen Zertrümmern eines im Körper eines Lebewesens befindlichen Konkrements mit einem Stoßwellengenerator, der auf ein Zielgebiet im Körper ausrichtbar ist, dadurch gekennzeichnet, daß als Stoßwellengenerator ein an sich bekanntes, im wesentlichen eine ebene Stoßwelle erzeugendes Stoßwellenrohr (1) vorgesehen ist, und daß dem Stoßwellenrohr (1) eine Linsenanordnung (15; 40) zugeordnet ist, welche die Stoßwelle auf einen Fokuspunkt (F) im Zielgebiet (23) fokussiert.1. A device for contactlessly crushing a concrement located in the body of a living being with a shock wave generator which can be aligned with a target area in the body, characterized in that a shock wave tube (1) which is known per se and essentially generates a plane shock wave is provided as the shock wave generator, and that the shock wave tube (1) is assigned a lens arrangement (15; 40) which focuses the shock wave on a focal point (F) in the target area (23). 2. Zertrümmerungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zum Ausrichten des Stoßwellenrohrs (1) auf das Zielgebiet (23) eine mechanische Einrichtung vorgesehen ist.2. Shattering device according to claim 1, characterized in that a mechanical device is provided for aligning the shock wave tube (1) on the target area (23). 3. Zertrümmerungseinrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die mechanische Einrichtung einen Feintrieb (24) umfaßt, der zum Verstellen der Tiefe des Fokuspunktes (F) im Körper (19) dient.3. Smashing device according to claim 2, characterized in that the mechanical device comprises a fine drive (24) which serves to adjust the depth of the focal point (F) in the body (19). 4. Zertrümmerungseinrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die mechanische Einrichtung einen Feintrieb (26, 26a) umfaßt, der zum Verstellen des Fokuspunktes (F) senkrecht zur Abstrahlrichtung der Stoßwelle dient.4. Shattering device according to claim 2, characterized in that the mechanical device comprises a fine drive (26, 26a) which serves to adjust the focal point (F) perpendicular to the radiation direction of the shock wave. 5. Zertrümmerungseinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Linsenanordnung eine einzelne akustische Sammellinse (15) ist (Figur 1).5. Smashing device according to one of claims 1 to 4, characterized in that the lens arrangement is a single acoustic converging lens (15) (Figure 1). 6. Zertrümmerungseinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet , daß die Linsenanordnung ein Linsensystem (40) bestehend aus mehreren akustischen Linsen, ist.6. Smashing device according to one of claims 1 to 4, characterized in that the lens arrangement is a lens system (40) consisting of several acoustic lenses. 7. Zertrümmerungseinrichtung nach Anspruch 6, dadurch gekennzeichnet, daß das Linsensystem (40) aus einer akustischen Zerstreuungslinse (42), aus einem Kondensator (44) und einer akustischen Sammellinse (46) besteht (Figur 2).7. Smashing device according to claim 6, characterized in that the lens system (40) consists of an acoustic diverging lens (42), a capacitor (44) and an acoustic converging lens (46) (Figure 2). 8. Zertrümmerungseinrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet , daß die Linsenanordnung (15; 40) als Abschluß des Stoßwellenrohrs (1) vorgesehen ist.8. Smashing device according to one of claims 5 to 7, characterized in that the lens arrangement (15; 40) is provided as the end of the shock tube (1). 9. Zertrümmerungseinrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet , daß der äußere Mantel (2) des Stoßwellenrohrs (1) elek- trisch auf ein Schutzpotential (27) gelegt ist.9. Shattering device according to one of claims 1 to 8, characterized in that the outer jacket (2) of the shock wave tube (1) is placed electrically on a protective potential (27).
EP84108750A 1983-08-03 1984-07-24 Apparatus for the smashing at a distance of calculus Expired EP0133665B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3328051 1983-08-03
DE19833328051 DE3328051A1 (en) 1983-08-03 1983-08-03 DEVICE FOR CONTACTLESS CRUSHING OF CONCRETE

Publications (3)

Publication Number Publication Date
EP0133665A2 true EP0133665A2 (en) 1985-03-06
EP0133665A3 EP0133665A3 (en) 1985-04-03
EP0133665B1 EP0133665B1 (en) 1988-06-22

Family

ID=6205689

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84108750A Expired EP0133665B1 (en) 1983-08-03 1984-07-24 Apparatus for the smashing at a distance of calculus

Country Status (3)

Country Link
US (1) US4674505A (en)
EP (1) EP0133665B1 (en)
DE (2) DE3328051A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545381A1 (en) * 1985-12-20 1987-06-25 Siemens Ag ULTRASONIC TRANSDUCER FOR MEASURING THE SOUND POWER OF A FOCUSED ULTRASONIC FIELD
EP0229981A1 (en) * 1985-12-20 1987-07-29 Siemens Aktiengesellschaft Method for controlling the focussing characteristics of an ultrasonic field and device for carrying out said method
JPS62155819U (en) * 1986-03-25 1987-10-03
EP0240797A1 (en) * 1986-04-01 1987-10-14 Siemens Aktiengesellschaft Shockwave generator with increased efficiency
EP0243650A1 (en) * 1986-04-01 1987-11-04 Siemens Aktiengesellschaft Shockwave generator with an improved focus zone
EP0253053A1 (en) * 1986-07-14 1988-01-20 Siemens Aktiengesellschaft Shock-wave generator for a device for non-contacting desintegration of concretions in a living body
EP0254104A1 (en) * 1986-07-16 1988-01-27 Siemens Aktiengesellschaft Shock-wave generator for producing an acoustic shock-wave pulse
EP0256438A1 (en) * 1986-08-18 1988-02-24 Siemens Aktiengesellschaft Sensor for recording shock wave impulses
EP0258561A1 (en) * 1986-07-08 1988-03-09 Siemens Aktiengesellschaft Shock-wave generator, particularly for lithotripsy
EP0263349A1 (en) * 1986-10-06 1988-04-13 Siemens Aktiengesellschaft Shock wave generator
AU572027B2 (en) * 1985-06-26 1988-04-28 Yachiyoda Kogyo Co. Ltd. Apparatus for disintegrating calculus by underwater shock wave from outside human body
EP0266538A1 (en) * 1986-10-06 1988-05-11 Siemens Aktiengesellschaft Shock wave generator
EP0275460A1 (en) * 1986-12-22 1988-07-27 Siemens Aktiengesellschaft Shock waves emitting head for the non-invasive fragmentation of concrements
EP0328943A1 (en) * 1988-02-16 1989-08-23 Siemens Aktiengesellschaft Shock wave generator for the non-contacting disintegration of concretions
EP0441997A1 (en) * 1990-02-12 1991-08-21 Siemens Aktiengesellschaft Medical ultrasonic applicator for use in an acoustic shock-wave-conducting propagation-medium
US5056069A (en) * 1989-02-10 1991-10-08 Siemens Aktiengesellschaft Ultrasonic sensor
EP0461287A1 (en) * 1990-06-13 1991-12-18 Siemens Aktiengesellschaft Electrically-driven acoustic shock-wave generator
EP0486815A1 (en) * 1990-11-22 1992-05-27 Dornier Medizintechnik Gmbh Acoustic focussing device
DE19723499C1 (en) * 1997-06-05 1998-08-13 Dornier Medizintechnik Shock wave source based on electromagnetic principle

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE33590E (en) * 1983-12-14 1991-05-21 Edap International, S.A. Method for examining, localizing and treating with ultrasound
US5143073A (en) * 1983-12-14 1992-09-01 Edap International, S.A. Wave apparatus system
FR2578081B1 (en) * 1985-02-28 1987-05-07 Centre Nat Rech Scient MULTI-LENS ACOUSTIC DEVICE WITH VARIABLE MAGNIFICATION AND FOCAL
EP0205878B1 (en) * 1985-05-28 1989-04-26 Siemens Aktiengesellschaft Apparatus for the contactless disintegration of concrements
US4813402A (en) * 1986-02-19 1989-03-21 Siemens Aktiengesellschaft Coupling member for a shock wave therapy device
US4796608A (en) * 1986-06-16 1989-01-10 Siemens Aktiengesellschaft Shock wave generator for an apparatus for non-contacting disintegration of calculi in the body of a life form
US5095891A (en) * 1986-07-10 1992-03-17 Siemens Aktiengesellschaft Connecting cable for use with a pulse generator and a shock wave generator
US4782821A (en) * 1986-07-14 1988-11-08 Siemens Aktiengesellschaft Shock wave generator for an installation for non-contacting disintegration of calculi in the body of a life form
EP0255636B1 (en) * 1986-07-30 1990-04-25 Siemens Aktiengesellschaft Acoustic shock wave sensor
DE3634378A1 (en) * 1986-10-09 1988-04-21 Wolf Gmbh Richard ELECTROMAGNETIC CONVERTER, ESPECIALLY SOUND TRANSMITTER FOR MEDICAL APPLICATIONS
EP0265742A1 (en) * 1986-10-23 1988-05-04 Siemens Aktiengesellschaft Lithotripter with a locating device
EP0265741B1 (en) * 1986-10-24 1992-03-11 Siemens Aktiengesellschaft Fluid circuit for an apparatus for the disintegration of calculi in a living being
US4811725A (en) * 1986-12-22 1989-03-14 Siemens Aktiengesellschaft Extracorporeal lithotripsy apparatus
DE8701218U1 (en) * 1987-01-26 1988-05-26 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
DE3704909A1 (en) * 1987-02-17 1988-08-25 Wolf Gmbh Richard DEVICE FOR SPACIOUS LOCATION AND DESTRUCTION OF INTERIOR OBJECTS WITH ULTRASOUND
DE8709363U1 (en) * 1987-07-07 1988-11-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US4928672A (en) * 1987-07-31 1990-05-29 Siemens Aktiengesellschaft Shockwave source having a centrally disposed ultrasound locating system
DE3739393C2 (en) * 1987-11-20 1996-07-18 Siemens Ag Lithotripter with adjustable focus
DE3806532A1 (en) * 1988-03-01 1989-09-14 Wolf Gmbh Richard DEVICE FOR PRODUCING THE GROWTH OF PATHOLOGICAL TISSUE OR THE LIKE RESTRICTING OR OBLIGATING OR RESOLVING ULTRASONIC SIGNAL FORMS FOR AN ULTRASONIC SENDING ARRANGEMENT
US5209221A (en) * 1988-03-01 1993-05-11 Richard Wolf Gmbh Ultrasonic treatment of pathological tissue
EP0355177A1 (en) * 1988-08-17 1990-02-28 Siemens Aktiengesellschaft Apparatus for the contactless desintegration of concrements in a living thing body
EP0355175A1 (en) * 1988-08-17 1990-02-28 Siemens Aktiengesellschaft Apparatus for the contactless disintegration of concrements in the body of a living being
US5078144A (en) * 1988-08-19 1992-01-07 Olympus Optical Co. Ltd. System for applying ultrasonic waves and a treatment instrument to a body part
EP0359863B1 (en) * 1988-09-23 1994-05-04 Siemens Aktiengesellschaft High voltage generator and method for producing a high-voltage pulse with a large current for driving a shock-wave generator
DE3900433A1 (en) * 1989-01-10 1990-07-12 Schubert Werner Method and device for treating disorders with ultrasonic waves
EP0404997A1 (en) * 1989-06-30 1991-01-02 Siemens Aktiengesellschaft Patient-supporting device having a swivelling patient-supporting plate
DE58908635D1 (en) * 1989-06-30 1994-12-15 Siemens Ag Patient support table with a cut-out support plate and a base part supporting the support plate.
DE58908634D1 (en) * 1989-06-30 1994-12-15 Siemens Ag Patient table with a cut-out table.
EP0405282A1 (en) * 1989-06-30 1991-01-02 Siemens Aktiengesellschaft Apparatus for treatment of a living body with focused shockwaves
US4945898A (en) * 1989-07-12 1990-08-07 Diasonics, Inc. Power supply
US5065761A (en) * 1989-07-12 1991-11-19 Diasonics, Inc. Lithotripsy system
EP0412202A1 (en) * 1989-08-11 1991-02-13 Siemens Aktiengesellschaft Shock wave generator to produce focused shock waves with a reflector shaped as a paraboloid of revolution
DE4130796A1 (en) * 1990-09-27 1992-04-02 Siemens Ag ELECTRICALLY DRIVABLE SHOCK WAVE SOURCE
DE4032357C1 (en) * 1990-10-12 1992-02-20 Dornier Medizintechnik Gmbh, 8000 Muenchen, De
DE59010891D1 (en) * 1990-10-29 2000-01-27 Siemens Ag Acoustic pressure pulse generator
DE4034533C1 (en) * 1990-10-30 1992-01-30 Siemens Ag, 8000 Muenchen, De
DE4102447C1 (en) * 1991-01-28 1992-04-09 Siemens Ag, 8000 Muenchen, De
US5350352A (en) * 1991-02-21 1994-09-27 Siemens Aktiengesellschaft Acoustic pressure pulse generator
DE4110102A1 (en) * 1991-03-27 1992-10-01 Siemens Ag Electromagnetically driven pressure pulse source for medical use - has electrically conducting membrane formed as annular array of zones activated by drive coils having variable timings
DE4118443C2 (en) * 1991-06-05 2000-04-06 Siemens Ag Acoustic pressure pulse generator
DE4122223C1 (en) * 1991-07-04 1992-10-01 Siemens Ag, 8000 Muenchen, De Acoustic, focussed, pressure pulse generator - has presser pulse source, pulse reflector, and acoustic lens between reflector and focus
DE4130761A1 (en) * 1991-09-16 1993-03-18 Siemens Ag DEVICE FOR TREATING A LIVING BEING WITH ACOUSTIC WAVES
IL100750A (en) * 1992-01-24 1996-01-31 Avner Spector Apparatus particularly useful for treating osteoporosis
DE4212809C2 (en) * 1992-04-16 1996-08-14 Siemens Ag Therapy device for treating a living being with focused acoustic waves
DE4213586C2 (en) * 1992-04-24 1995-01-19 Siemens Ag Therapy device for treatment with focused acoustic waves
DE4229630C2 (en) * 1992-09-04 1994-06-16 Siemens Ag Acoustic lens
DE4232683C1 (en) * 1992-09-29 1994-04-28 Siemens Ag Ultrasound therapy device with X=ray imaging system - has carrier for acoustic wave source and patient table each adjusted to adjust acoustic wave focus position.
DE4241161C2 (en) * 1992-12-07 1995-04-13 Siemens Ag Acoustic therapy facility
US5393296A (en) * 1992-12-09 1995-02-28 Siemens Aktiengesellschaft Method for the medical treatment of pathologic bone
DE4404140B4 (en) * 1993-02-10 2005-11-10 Siemens Ag Use of a pressure pulse source pulse-like shock waves and provided for such use pressure pulse source
DE4306460C2 (en) * 1993-03-02 1995-04-20 Siemens Ag Therapy device for treatment with focused acoustic waves
DE4306459C1 (en) * 1993-03-02 1994-04-28 Siemens Ag Ultrasound therapy device using X-ray imaging - uses mounting allowing X-ray imaging from two different directions, with corresponding adjustment of acoustic wave focus
DE4315282C2 (en) * 1993-05-07 1999-10-07 Siemens Ag Use of an acoustic pressure pulse source
DE4325213C2 (en) * 1993-07-27 1996-11-21 Siemens Ag Therapy device for treatment with acoustic waves
DE4325214C2 (en) * 1993-07-27 1996-02-29 Siemens Ag Urological workplace
DE4325212C2 (en) * 1993-07-27 1996-04-11 Siemens Ag Medical device
DE4327509A1 (en) * 1993-08-16 1995-02-23 Siemens Ag Method and device for the mechanical strength testing of components
DE4329167C2 (en) * 1993-08-30 1996-06-05 Siemens Ag Medical device with a device part
DE4447665B4 (en) * 1994-01-14 2004-04-29 Siemens Ag Medical device with an X-ray diagnostic device for generating X-ray silhouettes
DE19538054C1 (en) * 1995-10-12 1996-12-05 Siemens Ag Therapeutic unit with patient support plate, for e.g. shock wave generator used to break up kidney stones
US20050228319A1 (en) * 1996-12-30 2005-10-13 Kenny Daniele J Neoplasm cell destruction device
US20090318838A1 (en) * 1996-12-30 2009-12-24 Daniele Kenny Neoplastic cell destruction device and method utilizing low frequency sound waves to disrupt or displace cellular materials
US20090318839A1 (en) * 1996-12-30 2009-12-24 Daniele Kenny Neoplastic cell destruction device and method utilizing low frequency sound waves to disrupt or displace cellular materials
US20090318840A1 (en) * 1996-12-30 2009-12-24 Daniele Kenny Neoplastic cell destruction device and method utilizing low frequency sound waves to disrupt or displace cellular materials
DE19743376A1 (en) * 1997-09-30 1999-04-22 Siemens Ag Acoustic wave therapy device for lithotripsy or pain treatment
US6312434B1 (en) 1999-04-14 2001-11-06 Northgate Technologies, Inc. Device for producing a shock wave to impact an object
DE19916891C1 (en) * 1999-04-14 2000-08-31 Siemens Ag Equipment for generating acoustic waves incorporates a switching device and a high-voltage capacitor to be discharged by this switching device
US7048699B2 (en) * 2001-09-12 2006-05-23 Moshe Ein-Gal Non-cylindrical acoustic wave device
US6869407B2 (en) * 2001-09-12 2005-03-22 Moshe Ein-Gal Acoustic wave device
WO2003043500A1 (en) * 2001-11-20 2003-05-30 Mia Norman Andersen Method and product for depiction of the heart
DE10158519B4 (en) * 2001-11-29 2005-01-13 Dornier Medtech Holding International Gmbh Shock and shock wave therapy device
DE10207737C1 (en) * 2002-02-22 2003-04-17 Siemens Ag Acoustic wave generation circuit has diode or diode module connected in parallel across HV capacitor
DE10215416B4 (en) * 2002-04-08 2020-10-29 Ferton Holding S.A. Medical device for the treatment of biological tissue
US20030199857A1 (en) * 2002-04-17 2003-10-23 Dornier Medtech Systems Gmbh Apparatus and method for manipulating acoustic pulses
DE10225709B4 (en) * 2002-06-10 2005-09-22 Siemens Ag Bellows for coupling a source of acoustic waves to a living being
DE10229112B4 (en) * 2002-06-28 2004-07-15 Siemens Ag Circuit for an electromagnetic source for generating acoustic waves
DE10234144A1 (en) * 2002-07-26 2004-02-05 Dornier Medtech Gmbh lithotripter
DE102005037043C5 (en) * 2005-08-05 2017-12-14 Dornier Medtech Systems Gmbh Shock wave therapy device with image acquisition
US20070239074A1 (en) * 2006-02-15 2007-10-11 Moshe Ein-Gal Line focusing acoustic wave source
US7770689B1 (en) * 2009-04-24 2010-08-10 Bacoustics, Llc Lens for concentrating low frequency ultrasonic energy
US8776625B2 (en) * 2010-05-21 2014-07-15 Focus-In-Time, LLC Sonic resonator system for use in biomedical applications
CA2809746C (en) * 2010-08-27 2019-02-12 Socpra Sciences Et Genie S.E.C. Mechanical wave generator and method thereof
AR087170A1 (en) * 2011-07-15 2014-02-26 Univ Texas APPARATUS FOR GENERATING THERAPEUTIC SHOCK WAVES AND ITS APPLICATIONS
DE102012013534B3 (en) 2012-07-05 2013-09-19 Tobias Sokolowski Apparatus for repetitive nerve stimulation for the degradation of adipose tissue by means of inductive magnetic fields
US11491342B2 (en) * 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US10569094B2 (en) 2015-07-01 2020-02-25 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10549110B1 (en) 2015-07-01 2020-02-04 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10549109B2 (en) 2015-07-01 2020-02-04 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10695575B1 (en) 2016-05-10 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10478633B2 (en) 2015-07-01 2019-11-19 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10471269B1 (en) 2015-07-01 2019-11-12 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10478634B2 (en) 2015-07-01 2019-11-19 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11266850B2 (en) 2015-07-01 2022-03-08 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
US9937358B2 (en) 2015-07-01 2018-04-10 Btl Holdings Limited Aesthetic methods of biological structure treatment by magnetic field
US10709894B2 (en) 2015-07-01 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10569095B1 (en) 2015-07-01 2020-02-25 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US20180001107A1 (en) 2016-07-01 2018-01-04 Btl Holdings Limited Aesthetic method of biological structure treatment by magnetic field
US10695576B2 (en) 2015-07-01 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10821295B1 (en) 2015-07-01 2020-11-03 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10493293B2 (en) 2015-07-01 2019-12-03 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11253717B2 (en) 2015-10-29 2022-02-22 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US10709895B2 (en) 2016-05-10 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US10583287B2 (en) 2016-05-23 2020-03-10 Btl Medical Technologies S.R.O. Systems and methods for tissue treatment
US10556122B1 (en) 2016-07-01 2020-02-11 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
TWI653026B (en) 2018-01-08 2019-03-11 寶健科技股份有限公司 Shock-wave head for shifting focal point
CN110038225A (en) * 2018-01-15 2019-07-23 宝健科技股份有限公司 Varifocal seismic wave head and its Zooming method
CN113286630A (en) 2019-04-11 2021-08-20 比特乐医疗科技有限公司 Method and device for cosmetic treatment of biological structures by radiofrequency and magnetic energy
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
WO2021224678A1 (en) 2020-05-04 2021-11-11 Btl Medical Technologies S.R.O. Device and method for unattended treatment of a patient
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
GB2621187A (en) * 2022-08-05 2024-02-07 First Light Fusion Ltd Component for manipulating an input shockwave

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2436856A1 (en) * 1973-08-06 1975-02-20 Gen Electric DEVICE FOR FOCUSING AND COLLIMATION OF ULTRASOUND WAVES
JPS5540257B2 (en) * 1977-01-13 1980-10-16
DE2913251A1 (en) * 1979-04-03 1980-10-23 Wolf Gmbh Richard Kidney stone contactless disintegration equipment - has hydraulic shock wave generator in water filled housing closed by membrane
EP0131653A1 (en) * 1983-07-19 1985-01-23 N.V. Optische Industrie "De Oude Delft" Apparatus for the non-contact disintegration of stony objects present in a body by means of sound shockwaves

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3168659A (en) * 1960-01-11 1965-02-02 Gen Motors Corp Variable focus transducer
US3245251A (en) * 1962-03-02 1966-04-12 Transformatoren & Roentgenwerk Ultrasonic diagnostic testing apparatus
US3982223A (en) * 1972-07-10 1976-09-21 Stanford Research Institute Composite acoustic lens
CH574734A5 (en) * 1973-10-12 1976-04-30 Dornier System Gmbh
US3958559A (en) * 1974-10-16 1976-05-25 New York Institute Of Technology Ultrasonic transducer
US4001766A (en) * 1975-02-26 1977-01-04 Westinghouse Electric Corporation Acoustic lens system
DE2538960C2 (en) * 1975-09-02 1985-04-11 Dornier System Gmbh, 7990 Friedrichshafen Device for the contactless smashing of calculus in a living being
US4131025A (en) * 1976-07-26 1978-12-26 Rca Corporation Pulse-echo ultrasonic-imaging display system
US4333347A (en) * 1978-07-24 1982-06-08 Mannesmann Aktiengesellschaft Stimulating electro-acoustical transducers
DE2902331A1 (en) * 1979-01-22 1980-07-31 Gerhart Dr Med Tepohl Medical instrument for varicose vein treatment - has ring of crystals to concentrate ultrasonic energy on treatment zone, with focus adjustment
US4315514A (en) * 1980-05-08 1982-02-16 William Drewes Method and apparatus for selective cell destruction
US4423637A (en) * 1980-12-18 1984-01-03 Soloway Mahlon R Ultrasonic testing instrument and method
DE3119295A1 (en) * 1981-05-14 1982-12-16 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR DESTROYING CONCRETE IN BODIES

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2436856A1 (en) * 1973-08-06 1975-02-20 Gen Electric DEVICE FOR FOCUSING AND COLLIMATION OF ULTRASOUND WAVES
JPS5540257B2 (en) * 1977-01-13 1980-10-16
DE2913251A1 (en) * 1979-04-03 1980-10-23 Wolf Gmbh Richard Kidney stone contactless disintegration equipment - has hydraulic shock wave generator in water filled housing closed by membrane
EP0131653A1 (en) * 1983-07-19 1985-01-23 N.V. Optische Industrie "De Oude Delft" Apparatus for the non-contact disintegration of stony objects present in a body by means of sound shockwaves

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Akustische Beihefte, Vol. 12 (1962), Heft 1, S. 185-202 *
EP-A- 013 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU572027B2 (en) * 1985-06-26 1988-04-28 Yachiyoda Kogyo Co. Ltd. Apparatus for disintegrating calculus by underwater shock wave from outside human body
US4764905A (en) * 1985-12-20 1988-08-16 Siemens Aktiengesellschaft Ultrasonic transducer for the determination of the acoustic power of a focused ultrasonic field
EP0229981A1 (en) * 1985-12-20 1987-07-29 Siemens Aktiengesellschaft Method for controlling the focussing characteristics of an ultrasonic field and device for carrying out said method
US4725989A (en) * 1985-12-20 1988-02-16 Siemens Aktiengesellschaft Method controlling the focusing of an ultrasonic field and apparatus for performing said method
DE3545381A1 (en) * 1985-12-20 1987-06-25 Siemens Ag ULTRASONIC TRANSDUCER FOR MEASURING THE SOUND POWER OF A FOCUSED ULTRASONIC FIELD
JPS62155819U (en) * 1986-03-25 1987-10-03
EP0242565B1 (en) * 1986-03-25 1990-06-06 Siemens Aktiengesellschaft Device for the fragmentation of concretions
EP0240797A1 (en) * 1986-04-01 1987-10-14 Siemens Aktiengesellschaft Shockwave generator with increased efficiency
EP0243650A1 (en) * 1986-04-01 1987-11-04 Siemens Aktiengesellschaft Shockwave generator with an improved focus zone
EP0258561A1 (en) * 1986-07-08 1988-03-09 Siemens Aktiengesellschaft Shock-wave generator, particularly for lithotripsy
EP0253053A1 (en) * 1986-07-14 1988-01-20 Siemens Aktiengesellschaft Shock-wave generator for a device for non-contacting desintegration of concretions in a living body
EP0254104A1 (en) * 1986-07-16 1988-01-27 Siemens Aktiengesellschaft Shock-wave generator for producing an acoustic shock-wave pulse
EP0256438A1 (en) * 1986-08-18 1988-02-24 Siemens Aktiengesellschaft Sensor for recording shock wave impulses
EP0263349A1 (en) * 1986-10-06 1988-04-13 Siemens Aktiengesellschaft Shock wave generator
EP0266538A1 (en) * 1986-10-06 1988-05-11 Siemens Aktiengesellschaft Shock wave generator
EP0275460A1 (en) * 1986-12-22 1988-07-27 Siemens Aktiengesellschaft Shock waves emitting head for the non-invasive fragmentation of concrements
EP0328943A1 (en) * 1988-02-16 1989-08-23 Siemens Aktiengesellschaft Shock wave generator for the non-contacting disintegration of concretions
US5056069A (en) * 1989-02-10 1991-10-08 Siemens Aktiengesellschaft Ultrasonic sensor
EP0441997A1 (en) * 1990-02-12 1991-08-21 Siemens Aktiengesellschaft Medical ultrasonic applicator for use in an acoustic shock-wave-conducting propagation-medium
EP0461287A1 (en) * 1990-06-13 1991-12-18 Siemens Aktiengesellschaft Electrically-driven acoustic shock-wave generator
EP0486815A1 (en) * 1990-11-22 1992-05-27 Dornier Medizintechnik Gmbh Acoustic focussing device
DE19723499C1 (en) * 1997-06-05 1998-08-13 Dornier Medizintechnik Shock wave source based on electromagnetic principle

Also Published As

Publication number Publication date
US4674505A (en) 1987-06-23
EP0133665A3 (en) 1985-04-03
DE3472209D1 (en) 1988-07-28
DE3328051A1 (en) 1985-02-14
EP0133665B1 (en) 1988-06-22

Similar Documents

Publication Publication Date Title
EP0133665B1 (en) Apparatus for the smashing at a distance of calculus
EP0133946B1 (en) Apparatus for the contactless disintegration of concrements
DE3328039C2 (en) FACILITIES FOR THE CONTACTLESS SMASHING OF A CONCERMENT IN THE BODY OF A LIVING BEING
DE4213586C2 (en) Therapy device for treatment with focused acoustic waves
EP0701731B1 (en) Device for the treatment of biological tissue and concretions in the body
DE4241161C2 (en) Acoustic therapy facility
DE3119295C2 (en)
DE3319871C2 (en)
EP0300315A1 (en) Shock wave generator for an apparatus for non-contact disintegration of concrements, present in a body
DE2538960C2 (en) Device for the contactless smashing of calculus in a living being
EP0188750A1 (en) Shock sound waves apparatus for the disintegration of calculi
EP0183236A2 (en) Apparatus for the contactless disintegration of concrements in the bodies of living beings
DE3732131A1 (en) FOCUSING ULTRASONIC transducer
US4928671A (en) Shock wave generator for generating an acoustical shock wave pulse
EP0372119B2 (en) Lithotripter
EP0111047B1 (en) Apparatus to generate a succession of impulse-shock wave pulses
EP0167670B1 (en) Device for comminuting concrements inside a living body
EP0240797B1 (en) Shockwave generator with increased efficiency
EP0266538B1 (en) Shock wave generator
EP0441997A1 (en) Medical ultrasonic applicator for use in an acoustic shock-wave-conducting propagation-medium
EP0243650B1 (en) Shockwave generator with an improved focus zone
DE8322413U1 (en) Device for the contactless smashing of concrements
EP0461287A1 (en) Electrically-driven acoustic shock-wave generator
DE3328066A1 (en) Crushing device for concrements in the body of a living being
DE4039408A1 (en) Shock wave generator with reflector - has several reflector sections, each associated with different focus zone enabling rapid focus zone displacement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB NL

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19850426

17Q First examination report despatched

Effective date: 19860613

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3472209

Country of ref document: DE

Date of ref document: 19880728

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030708

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030710

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030725

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030916

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040724

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent