EP0094681B1 - Arrangement for electronic speech synthesis - Google Patents

Arrangement for electronic speech synthesis Download PDF

Info

Publication number
EP0094681B1
EP0094681B1 EP83104873A EP83104873A EP0094681B1 EP 0094681 B1 EP0094681 B1 EP 0094681B1 EP 83104873 A EP83104873 A EP 83104873A EP 83104873 A EP83104873 A EP 83104873A EP 0094681 B1 EP0094681 B1 EP 0094681B1
Authority
EP
European Patent Office
Prior art keywords
speech
filters
filter
individual filters
circuit arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83104873A
Other languages
German (de)
French (fr)
Other versions
EP0094681A1 (en
Inventor
Hans Dipl.-Ing. Brandl
Werner Dipl.-Ing. Liegl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT83104873T priority Critical patent/ATE26354T1/en
Publication of EP0094681A1 publication Critical patent/EP0094681A1/en
Application granted granted Critical
Publication of EP0094681B1 publication Critical patent/EP0094681B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L13/00Speech synthesis; Text to speech systems
    • G10L13/02Methods for producing synthetic speech; Speech synthesisers
    • G10L13/04Details of speech synthesis systems, e.g. synthesiser structure or memory management

Definitions

  • the invention relates to a circuit arrangement for electronic speech synthesis, in which speech elements are represented by significant parameters and individual speech elements can be combined to form longer speech segments, in which an excitation signal for representing voiced and unvoiced sounds by a pulse generator and a noise generator using at least some of the significant ones Parameters are generated and fed to a filter circuit and in which the electrical signals on the filter output side are used for the acoustic reproduction of the desired speech elements and segments, the filter circuit consisting of individual filters arranged in parallel with fixed filter coefficients.
  • the first group includes the methods in which the speech elements which were initially scanned in an analysis, possibly digitized and stored, for example, in a read-only memory, are retrieved from the memory and put together again for speech synthesis; redundant components that are not necessary for the intelligibility of the language are also stored, so that in this way good quality speech can be generated per se, although a correspondingly high memory requirement is required to display an extensive vocabulary.
  • redundant speech components are largely hidden and the speech is stored in the form of significant parameters of speech elements, from which speech that is easy to understand for the listener can be generated with a significantly lower memory requirement.
  • a speech synthesis circuit is known from DE-AS2209548, in which an excitation signal to which significant speech parameters are applied is fed to a filter circuit with variable filter coefficients.
  • These filter coefficients are continuously controlled by further significant speech parameters during the entire synthesis process, so that the circuit arrangement for carrying out these methods must have devices for storing these filter coefficients.
  • the circuit arrangement is to be provided with control devices for retrieving these coefficients from the memory and feeding them into the filters.
  • Such tunable filters have relatively large dimensions and are difficult and difficult to implement with the narrow tolerances required for good speech quality.
  • a vocoder which consists of a plurality of individual filters arranged in parallel, which can be connected on the input side to a tone or noise generator. To generate speech, all individual filters are activated at the same time. All filter output signals are multiplied by continuously calculated spectral amplitude values and all individual values obtained in this way are added up.
  • the invention is based on the object of providing a circuit arrangement for electronic speech synthesis which is easier to implement and which generates easily understandable speech.
  • the filter circuit is connected to a filter alternating clock generator which is used for the sequential control of individual specific individual filters and has a pulse period between 10 and 24 ms.
  • the invention has the advantage of a lower memory requirement, combined with the advantage that filters with fixed coefficients can be implemented more easily.
  • individual filters constructed in analog technology can be provided which can be acted upon by a time-discrete analog excitation signal; the implementation of such analog filters is particularly simple. This applies all the more if they are expediently constructed in a further embodiment of the invention as a transversal filter using so-called CCD technology.
  • individual filters constructed in digital technology can also be provided, to which a time-discrete digital excitation signal can be applied, which has the advantage of being able to store the parameter values of the speech signals in a particularly simple manner.
  • the individual filters can be addressed individually for the display of speech elements.
  • a circuit arrangement according to the invention can contain such a number of individual filters that all phonemes of a certain language can be represented. Several phonemes can be generated in a specific chronological order and connected to one another according to the characteristics of the human voice.
  • the individual filters can be interconnected in filter sets to represent longer language segments, the filter sets being controlled by addressing specific to the filter set. Such an alternative is characterized by lower memory requirements and is particularly suitable for the representation of speech in which the same speech segments occur repeatedly.
  • the individual filters can also be arranged in a matrix, in each of which the individual filters of a matrix row are parallel to the respective address supply signal are applied, and the individual filter outputs of one matrix line can be connected sequentially to the matrix output.
  • the individual filters can be designed as linear prediction or formant filters.
  • the formant filters have fixed formant center frequencies and bandwidths. Language elements are represented by rendering at least the three lowest formants.
  • the individual filters can be implemented using what is known as CCD technology. They can also be designed as a transversal filter.
  • FIG. 1 shows a block diagram of a circuit arrangement according to the invention, which in its core comprises a filter circuit F, an excitation generator device G and a control unit StE, which in turn are connected to an input unit EG or a low-pass filter TP and an electroacoustic transducer.
  • the input unit EG may output information about the speech elements to be synthesized to the control unit StE. This information can be entered, for example, using a keypad. Likewise, information about language elements to be synthesized can also be supplied from external systems in a system-conforming representation.
  • the control unit StE may have facilities for temporarily storing and processing this information, e.g. in the so-called "handshake mode" with the filter circuit F and include memories in which speech parameters are stored. As shown in FIG.
  • the control unit StE can lead to the filter circuit F, for example, two line connections, namely one for a filter change clock signal Tw and one for a digital speech element selection signal SEA, the filter change clock signal in the filter circuit F controlling the synthesis of the speech element that is generated by the speech element selection signal SEA is determined.
  • the filter circuit F which can be designed in the manner shown in FIG. 2, for example, contains, among other things, individual filters (F11 ... in FIG. 2) with fixed coefficients.
  • the individual filters supplying an output SA of the filter circuit F with an (electrical) speech signal which, if necessary after digital / analog conversion, is fed via a low-pass filter TP and, if appropriate, via a subsequent amplifier to an electroacoustic converter.
  • the filter circuit F can supply the control unit StE via a control line E with a digital signal which indicates the end of the synthesis process of a speech element and, in the handshake operation already mentioned, requests the information required for the synthesis process of the subsequent speech element determined by the information entered .
  • FIG. 2 shows circuit-specific details of an exemplary embodiment of the filter circuit F, the excitation generator device G and the control unit StE.
  • the filter circuit F includes the columns F11, F21, ... Fnl; ... and lines F11, F12, ... F1Z; ... arranged individual filters, line-specific multiplexers M1, M2, ... Mn a line selection multiplexer ZMF, a selection circuit ZME and, if appropriate, one in FIG. 2, not shown in detail, inserted between the excitation generator device G and the individual filters.
  • the excitation generator device G consists of a controllable pulse and noise generator IG or RG and a switching device.
  • the control unit StE includes, among other things, memories S1 ... Sn, in which speech parameter values are stored, a filter change clock generator FwG, and a memory selection circuit ZMA.
  • the filter circuit F receives a filter change clock pulse Tw and a speech element selection signal SEA from the control unit StE.
  • the filter change clock generator FwG arranged in the control unit StE generates equidistant filter change clock pulses with a pulse period Tw, which can be, for example, between 10 and 25 ms.
  • the filter change clock pulses are simultaneously fed to all line-specific multiplexers M1 ...
  • the number of line-specific multiplexers M is equal to the number of said memories S. This number corresponds to the number of lines in the filter matrix. If - as assumed above - different speech segments can be generated by the filter circuit Fn, the filter circuit Fn has filter sets arranged in rows. Each filter set contains at least one individual filter. The language segment generated in the filter set can be composed of several language elements that are generated in the filters belonging to this filter set. The duration of a language element is t w ; the duration of a language segment composed of m language elements is then mt w .
  • the number of individual filters required for the generation of such a language segment can be less than m if the language segment in question contains the same language elements that are synthesized in the same individual filters of the filter set in question.
  • the (analog) language elements Signals are interconnected by the respective line-specific multiplexer M in the filter change cycle Tw to form the (analog) speech signal SA.
  • the pulse sequence generated by the filter change clock generator FWG with the frequency 1 / t w is also supplied to all line-specific memories S in the control unit StE, in which the parameter values of the excitation signals, e.g. B. their frequency f and amplitude U are stored.
  • the excitation generator device G comprises a pulse generator IG which can be controlled in frequency and amplitude, and a noise generator RG which can be controlled in amplitude.
  • the switching device provided on the output side in the excitation generator device G is controlled by the information about the frequency retrieved from the memories S: for frequency values equal to zero, the noise generator RG is coupled to the filter circuit F, for frequency values not equal to zero the pulse generator IG is connected to the filter circuit F coupled.
  • the excitation generator device G delivers pulse or noise signals of a certain amplitude and possibly frequency. Unvoiced speech elements are simulated by noise signals, voiced speech elements of a certain frequency by pulse trains of precisely this frequency.
  • the excitation signals generated by the controllable excitation generator device G are supplied to all filter sets, including those that are not used to generate the selected speech segment.
  • All (analog) signals generated in the filter sets are fed via the line-specific multiplexers M to the line selection multiplexer ZMF, in which the desired speech signal is selected by means of the speech element selection signal SEA, which then appears at the output SA of the line selection multiplexer.
  • the voice signal SA is fed to the low-pass filter TP, which filters out higher frequency components contained in the voice signal, for example on the basis of pulse-like excitation of the filters. It should be noted here that the above explanations are not limited to a speech signal synthesis by means of analog filters loaded with analog excitation signals, but also apply in a corresponding manner to a speech signal arrangement by means of digital filters loaded with digital excitation signals, the filter output signal then also being a digital-analog signal. Undergoes conversion. After any amplification that may still be required, the electrical analog voice signal is finally reproduced via an electroacoustic transducer.
  • the line-specific multiplexers M emit a digital signal E to the selection circuit ZME simultaneously with the switching through of the last speech element generated in the filter set in question, which characterizes the time completion of the speech synthesis process in the filter set.
  • the selection circuit ZME brought from the current speech element selection signal SEA into a corresponding switching position now switches the corresponding digital signal through to the control unit StE, which can thus trigger the synthesis process of the next speech segment.
  • the filter circuit (F in FIG. 2) has no line selection multiplexer (ZMF in FIG. 2) and no selection circuit (ZME in FIG. 2) and no line-specific multiplexer (M in FIG. 2) of the type described above.
  • the control unit (StE in FIG. 2) then has devices for storing individually addressable parameter values for the excitation signals and for interconnecting the speech element signals that can be generated in the individual filters.
  • the filter change clock generator FwG (in FIG. 2) and the controllable excitation generator device G (in FIG. 2) (possibly with a time window circuit) also perform the functions described above in this embodiment.
  • Such an embodiment characterized by optional control of individual filters by means of individual filter-individual addressing, need only have different individual filters, while in the exemplary embodiment according to FIG. 2 the same individual filters can also be arranged in the different filter sets, possibly also in one and the same filter set.
  • the latter alternatives which can be implemented with less control effort due to the filtering-specific addressing compared to the single-filtering addressing, are particularly suitable for the reproduction of speech that repeatedly contains the same language segments.
  • Embodiments that contain both individual filters connected in filter sets and independent individual filters will be of practical importance. In this way, the number of individual filters used and the necessary tax expenditure can be optimized.
  • the individual filters used according to the invention can also be used as linear prediction filters with fixed coefficients according to FIG. 3 be formed.
  • Linear prediction as such is known and described in the relevant specialist literature (such as FLANAGAN, Speech Analysis Synthesis and Perception, Springer-Verlag Berlin, Heidelberg, New York 1972, p. 367 ff., P. 390 ff.), So that a detailed description is unnecessary here.
  • the achievable speech quality is proportional to the number of coefficients within certain limits. Good speech quality can already be achieved with around 10 filter coefficients.
  • a sol The prediction filter is shown in FIG. 3 connected with A11 and B11 to the correspondingly designated connection terminals of the filter circuit F according to FIG. 2 2, in order to form the individual filter F11 there.
  • the linear prediction filters used according to the invention can be designed as analog or digital filters. Accordingly, the filters are supplied with excitation signals in analog or digital form from the excitation generator; accordingly, analog or digital signals result at the filter outputs.
  • the individual filters used according to the invention can, as shown in FIG. 4, also be designed as formant filters with fixed filter coefficients, wherein each individual filter can correspond to a parallel connection of three formant filters for emulating at least the first three (low-frequency) speech formants.
  • the generation of speech by formant synthesis is known and sufficiently described (for example in the literature FLANAGAN p. 339 et seq. Already cited), so that there is no need to describe it here.
  • the formant filters are expediently in the form of bandpasses with certain fixed pass bands and center frequencies of these pass bands.
  • Such a filter circuit can also be implemented in analog and digital technology.
  • the individual filters can be implemented in so-called CCD technology in all of the above cases.
  • the excitation signal is fed to the individual filters in a time-discrete form.
  • the filter circuit (F in FIG. 2) can be shown in FIG. 2 time slot circuit not shown included.
  • the time window circuit can generate a sampling signal of fixed frequency, which has at least twice the frequency with respect to the network signal to be sampled.
  • the controllable excitation generator device G and all individual filters are clocked into the filter circuit F with this scanning signal generated in this way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Machine Translation (AREA)
  • Toys (AREA)

Abstract

A circuit for electronically synthesizing speech has an audio generator for representing voiced sounds and a noise generator for representing voiceless sounds and a means for selecting significant parameters of the various speech elements by sampling and a means for storing those parameters. The circuit also includes a filter unit comprised of a number of individual filters and a means for selectively driving only those individual filters having filter coefficients necessary for representing the significant parameters of the particular speech element to be synthesized. The filters can be utilized individually or combined into selected groups in order to generate longer speech segments. The electronic signal at the output of the filter unit is edited for acoustically reproducing the desired speech elements and segments.

Description

Die Erfindung betrifft eine Schaltungsanordnung zur elektronischen Sprachsynthese, bei der Sprachelemente durch signifikante Parameter dargestellt werden und einzelne Sprachelemente zu längeren Sprachsegmenten zusammengesetzt werden können, bei der ein Anregungssignal zur Darstellung stimmhafter und stimmloser Laute durch einen Impulsgenerator und einen Rauschgenerator unter Verwendung mindestens eines Teils der signifikanten Parameter erzeugt und einer Filterschaltung zugeführt wird und bei der die filterausgangsseitigen elektrischen Signale zur akustischen Wiedergabe der gewünschten Sprachelemente und -segmente verwendet werden, wobei die Filterschaltung aus parallel angeordneten Einzelfiltern mit festen Filterkoeffizienten besteht.The invention relates to a circuit arrangement for electronic speech synthesis, in which speech elements are represented by significant parameters and individual speech elements can be combined to form longer speech segments, in which an excitation signal for representing voiced and unvoiced sounds by a pulse generator and a noise generator using at least some of the significant ones Parameters are generated and fed to a filter circuit and in which the electrical signals on the filter output side are used for the acoustic reproduction of the desired speech elements and segments, the filter circuit consisting of individual filters arranged in parallel with fixed filter coefficients.

Es sind bereits Verfahren zur Erzeugung von Sprachelementen bekannt, die zur Bildung von längeren Sprachsegmenten zusammengesetzt werden können; diese Verfahren lassen sich in die folgenden zwei Gruppen einteilen. Zur ersten Gruppe gehören die Verfahren, bei denen die zunächst in einer Analyse abgetasteten, eventuell digitalisierten und beispielsweise in einem Festwertspeicher abgespeicherten Sprachelemente zur Sprachsynthese aus dem Speicher wieder abgerufen und zusammengesetzt werden; dabei werden auch redundante, für die Verständlichkeit der Sprache nicht notwendige Bestandteile abgespeichert, so dass auf diese Weise an sich Sprache guter Qualität erzeugt werden kann, wobei zur Darstellung eines umfangreichen Wortschatzes allerdings ein entsprechend hoher Speicherbedarf besteht. Bei der zweiten Gruppe der Sprachsyntheseverfahren sind redundante Sprachbestandteile weitgehend ausgeblendet und die Sprache ist in Form von signifikanten Parametern von Sprachelementen gespeichert, aus denen sich so bei wesentlich geringerem Speicherbedarf für den Hörer gut verständliche Sprache erzeugen lässt. Das Kernstück bekannter Schaltungsanordnungen für die Durchführung der letztgenannten Verfahren bilden Filterschaltungen mit variablen Filter-Koeffizienten. So ist beispielsweise aus der DE-AS2209548 eine Sprachsyntheseschaltung bekannt, bei der ein mit signifikanten Sprachparametern beaufschlagtes Anregungssignal einer Filterschaltung mit variablen Filterkoeffizienten zugeführt wird. Diese Filterkoeffizienten werden durch weitere signifikante Sprachparameter fortlaufend während des gesamten Synthesevorganges gesteuert, so dass die Schaltungsanordnung zur Durchführung dieser Verfahren Einrichtungen zur Speicherung eben dieser Filterkoeffizienten aufzuweisen hat. Ausserdem ist die Schaltungsanordnung mit Steuereinrichtungen zum Abrufen dieser Koeffizienten aus dem Speicher und ihrer Zuführung in die Filter zu versehen. Solche abstimmbare Filter weisen dabei relativ grosse Abmessungen auf und lassen sich mit den für gute Sprachqualität notwendigen engen Toleranzen nur schwer und nur unter grossem Aufwand realisieren.Methods for generating language elements are already known which can be put together to form longer language segments; these methods can be divided into the following two groups. The first group includes the methods in which the speech elements which were initially scanned in an analysis, possibly digitized and stored, for example, in a read-only memory, are retrieved from the memory and put together again for speech synthesis; redundant components that are not necessary for the intelligibility of the language are also stored, so that in this way good quality speech can be generated per se, although a correspondingly high memory requirement is required to display an extensive vocabulary. In the second group of speech synthesis methods, redundant speech components are largely hidden and the speech is stored in the form of significant parameters of speech elements, from which speech that is easy to understand for the listener can be generated with a significantly lower memory requirement. The heart of known circuit arrangements for performing the latter method are filter circuits with variable filter coefficients. For example, a speech synthesis circuit is known from DE-AS2209548, in which an excitation signal to which significant speech parameters are applied is fed to a filter circuit with variable filter coefficients. These filter coefficients are continuously controlled by further significant speech parameters during the entire synthesis process, so that the circuit arrangement for carrying out these methods must have devices for storing these filter coefficients. In addition, the circuit arrangement is to be provided with control devices for retrieving these coefficients from the memory and feeding them into the filters. Such tunable filters have relatively large dimensions and are difficult and difficult to implement with the narrow tolerances required for good speech quality.

Aus dem «Journal of the Acoustical Society of America», Vol. 66, No. 5, November 1979, Seite 1328, ist ein Vocoder bekannt, der aus mehreren parallel angeordneten Einzelfiltern besteht, die eingangsseitig mit einem Ton- oder Rauschgenerator verbindbar sind. Zur Erzeugung von Sprache werden gleichzeitig alle Einzelfilter angesteuert. Alle Filterausgangssignale werden mit fortlaufend errechneten Spektralamplitudenwerten multipliziert und alle so gewonnenen Einzelwerte werden aufaddiert.From the "Journal of the Acoustical Society of America", Vol. 66, No. 5, November 1979, page 1328, a vocoder is known which consists of a plurality of individual filters arranged in parallel, which can be connected on the input side to a tone or noise generator. To generate speech, all individual filters are activated at the same time. All filter output signals are multiplied by continuously calculated spectral amplitude values and all individual values obtained in this way are added up.

Der Erfindung liegt nun die Aufgabe zugrunde, eine einfacher realisierbare Schaltungsanordnung zur elektronischen Sprachsynthese zu schaffen, die gut verständliche Sprache erzeugt.The invention is based on the object of providing a circuit arrangement for electronic speech synthesis which is easier to implement and which generates easily understandable speech.

Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Filterschaltung mit einem der sequentiellen Ansteuerung einzelner bestimmter Einzelfilter dienenden Filterwechseltaktgenerator mit einer Impulsperiode zwischen 10 und 24 ms verbunden ist.The object is achieved according to the invention in that the filter circuit is connected to a filter alternating clock generator which is used for the sequential control of individual specific individual filters and has a pulse period between 10 and 24 ms.

Die Erfindung bringt den Vorteil eines geringeren Speicheraufwandes mit sich, verbunden mit dem Vorteil einer einfacheren Realisierbarkeit von Filtern mit festen Koeffizienten.The invention has the advantage of a lower memory requirement, combined with the advantage that filters with fixed coefficients can be implemented more easily.

Weitere vorteilhafte Ausgestaltungen der Erfindungen ergeben sich aus den Unteransprüchen. So können in Analogtechnik aufgebaute Einzelfilter vorgesehen sein, die mit einem zeitdiskreten Analog-Anregungssignal beaufschlagbar sind; die Realisierung solcher Analogfilter ist besonders einfach. Dies gilt um so mehr, wenn sie zweckmässigerweise in einer weiteren Ausgestaltung der Erfindung als Transversalfilter in sogenannter CCD-Technik aufgebaut sind. Alternativ können auch in Digitaltechnik aufgebaute Einzelfilter vorgesehen sein, die mit einem zeitdiskreten Digital-Anregungssignal beaufschlagbar sind, was den Vorteil mit sich bringt, die Parameterwerte der Sprachsignale in besonders einfacher Weise abspeichern zu können.Further advantageous refinements of the inventions result from the subclaims. Thus, individual filters constructed in analog technology can be provided which can be acted upon by a time-discrete analog excitation signal; the implementation of such analog filters is particularly simple. This applies all the more if they are expediently constructed in a further embodiment of the invention as a transversal filter using so-called CCD technology. Alternatively, individual filters constructed in digital technology can also be provided, to which a time-discrete digital excitation signal can be applied, which has the advantage of being able to store the parameter values of the speech signals in a particularly simple manner.

In weiterer Ausgestaltung der Erfindung können die Einzelfilter zur Darstellung von Sprachelementen filterindividuell adressiert werden. Eine Schaltungsanordnung gemäss der Erfindung kann eine solche Anzahl von Einzelfiltern enthalten, dass alle Phoneme einer bestimmten Sprache darstellbar sind. Mehrere Phoneme können in bestimmter zeitlicher Reihenfolge erzeugt und entsprechend der Charakteristik der menschlichen Stimme miteinander verbunden werden.In a further embodiment of the invention, the individual filters can be addressed individually for the display of speech elements. A circuit arrangement according to the invention can contain such a number of individual filters that all phonemes of a certain language can be represented. Several phonemes can be generated in a specific chronological order and connected to one another according to the characteristics of the human voice.

In weiterer Ausgestaltung der Erfindung können die Einzelfilter in Filtersätzen zur Darstellung längerer Sprachsegmente zusammengeschaltet sein, wobei eine wahlfreie Ansteuerung der Filtersätze durch filtersatzindividuelle Adressierung erfolgt. Eine solche Alternative zeichnet sich durch geringeren Speicheraufwand aus und ist besonders für die Darstellung von Sprache geeignet, in der gleiche Sprachsegmente wiederholt auftreten. Die Einzelfilter können auch in einer Matrix angeordnet sein, in der jeweils die Einzelfilter einer Matrixzeile parallel mit dem jeweiligen Anregungssignal beaufschlagt werden, und die Einzelfilterausgänge jeweils einer Matrixzeile sequentiell mit dem Matrixausgang verbindbar sind. In weiterer Ausgestaltung der Erfindung können die Einzelfilter als Linearprädiktions- bzw. als Formantfilter ausgebildet sein. Die Formantfilter weisen feste Formantmittenfrequenzen und -bandbreiten auf. Die Darstellung von Sprachelementen erfolgt dabei durch die Wiedergabe mindestens der drei tiefsten Formanten.In a further embodiment of the invention, the individual filters can be interconnected in filter sets to represent longer language segments, the filter sets being controlled by addressing specific to the filter set. Such an alternative is characterized by lower memory requirements and is particularly suitable for the representation of speech in which the same speech segments occur repeatedly. The individual filters can also be arranged in a matrix, in each of which the individual filters of a matrix row are parallel to the respective address supply signal are applied, and the individual filter outputs of one matrix line can be connected sequentially to the matrix output. In a further embodiment of the invention, the individual filters can be designed as linear prediction or formant filters. The formant filters have fixed formant center frequencies and bandwidths. Language elements are represented by rendering at least the three lowest formants.

Die Einzelfilter können in einer weiteren Ausgestaltung der Erfindung in sogenannter CCD-Technik realisiert sein. Auch können sie als Transversalfilter ausgebildet sein.In a further embodiment of the invention, the individual filters can be implemented using what is known as CCD technology. They can also be designed as a transversal filter.

Die Erfindung wird nun in einem zum Verständnis erforderlichen Umfang anhand von Zeichnungen näher beschrieben. Dabei zeigt

  • FIG. 1 ein Blockschaltbild einer Schaltungsanordnung zur Sprachsynthese.
  • FIG. 2 zeigt das Blockschaltbild eines Ausführungsbeispiels der Erfindung mit in Matrixform angeordneten Einzelfiltern.
  • FIG. 3 und FIG. 4 zeigen die Verwendung von Linearprädiktions- bzw. Formantfiltern.
The invention will now be described in more detail to the extent necessary for understanding with reference to drawings. It shows
  • FIG. 1 shows a block diagram of a circuit arrangement for speech synthesis.
  • FIG. 2 shows the block diagram of an embodiment of the invention with individual filters arranged in matrix form.
  • FIG. 3 and FIG. 4 show the use of linear prediction or formant filters.

FIG. 1 zeigt ein Blockschaltbild einer Schaltungsanordnung gemäss der Erfindung, die im Kern eine Filterschaltung F, eine Anregungsgeneratoreinrichtung G und eine Steuereinheit StE umfasst, die ihrerseits mit einer Eingabeeinheit EG bzw. mit einem Tiefpass TP und einem elektroakustischen Wandler in Verbindung stehen.FIG. 1 shows a block diagram of a circuit arrangement according to the invention, which in its core comprises a filter circuit F, an excitation generator device G and a control unit StE, which in turn are connected to an input unit EG or a low-pass filter TP and an electroacoustic transducer.

Die Eingabeeinheit EG möge Informationen über zu synthetisierende Sprachelemente an die Steuereinheit StE abgeben. Diese Informationen können beispielsweise über ein Tastenfeld eingegeben werden. Ebenso können Informationen über zu synthetisierende Sprachelemente aber auch aus systemexternen Einrichtungen in systemkonformer Darstellung zugeführt werden. Die Steuereinheit StE möge Einrichtungen zur Zwischenspeicherung und Abarbeitung dieser Informationen z.B. im sogenannten «handshake-Betrieb» mit der Filterschaltung F sowie Speicher umfassen, in denen Sprachparameter abgespeichert sind. Wie in FIG. 1 angedeutet ist, können von der Steuereinheit StE zu der Filterschaltung F beispielsweise zwei Leitungsverbindungen führen, nämlich eine für ein Filterwechseltaktsignal Tw und eine für ein digitales Sprachelementauswahlsignal SEA, wobei das Filterwechseltaktsignal in der Filterschaltung F die Synthese desjenigen Sprachelements steuert, das durch das Sprachelementauswahlsignal SEA bestimmt wird. Die Filterschaltung F, die beispielsweise in der aus FIG.2 dargestellten Weise ausgebildet sein kann, enthält unter anderem Einzelfilter (F11 ... in FIG. 2) mit festen Koeffizienten. Mit Hilfe dieser Einzelfilter wird die Sprachsynthese durchgeführt, wobei die Einzelfilter einem Ausgang SA der Filterschaltung F ein (elektrisches) Sprachsignal liefern, das gegebenenfalls nach Digital/Analog-Wandlung über ein Tiefpassfilter TP und gegebenenfalls über einen nachfolgenden Verstärker einem elektroakustischen Wandler zugeführt wird. Wie in FIG. 1 weiter angedeutet ist, kann die Filterschaltung F der Steuereinheit StE über eine Steuerleitung E ein Digitalsignal zuführen, das das Ende des Synthesevorgangs eines Sprachelements anzeigt und im bereits erwähnten handshake-Betrieb die erforderlichen Informationen für den Synthesevorgang des durch die eingegebene Information bestimmten nachfolgenden Sprachelements anfordert.The input unit EG may output information about the speech elements to be synthesized to the control unit StE. This information can be entered, for example, using a keypad. Likewise, information about language elements to be synthesized can also be supplied from external systems in a system-conforming representation. The control unit StE may have facilities for temporarily storing and processing this information, e.g. in the so-called "handshake mode" with the filter circuit F and include memories in which speech parameters are stored. As shown in FIG. 1 is indicated, the control unit StE can lead to the filter circuit F, for example, two line connections, namely one for a filter change clock signal Tw and one for a digital speech element selection signal SEA, the filter change clock signal in the filter circuit F controlling the synthesis of the speech element that is generated by the speech element selection signal SEA is determined. The filter circuit F, which can be designed in the manner shown in FIG. 2, for example, contains, among other things, individual filters (F11 ... in FIG. 2) with fixed coefficients. With the aid of these individual filters, the speech synthesis is carried out, the individual filters supplying an output SA of the filter circuit F with an (electrical) speech signal which, if necessary after digital / analog conversion, is fed via a low-pass filter TP and, if appropriate, via a subsequent amplifier to an electroacoustic converter. As shown in FIG. 1 is further indicated, the filter circuit F can supply the control unit StE via a control line E with a digital signal which indicates the end of the synthesis process of a speech element and, in the handshake operation already mentioned, requests the information required for the synthesis process of the subsequent speech element determined by the information entered .

FIG. 2 zeigt schaltungstechnische Einzelheiten eines Ausführungsbeispiels der Filterschaltung F, der Anregungsgeneratoreinrichtung G sowie der Steuereinheit StE.FIG. 2 shows circuit-specific details of an exemplary embodiment of the filter circuit F, the excitation generator device G and the control unit StE.

Dabei geht die Darstellung in FIG. 2 von einer Anordnung der Einzelfilter in einer Matrix aus. Die Filterschaltung F umfasst dabei neben den in Spalten F11, F21, ... Fnl; ... und Zeilen F11, F12, ... F1Z; ... angeordneten Einzelfiltern, zeilenindividuelle Multiplexer M1, M2, ... Mn einen Zeilenauswahlmultiplexer ZMF, eine Auswahlschaltung ZME sowie gegebenenfalls eine in FIG. 2 nicht näher dargestellte, zwischen Anregungsgeneratoreinrichtung G und den Einzelfiltern eingefügten Zeitfensterschaltung.The representation in FIG. 2 from an arrangement of the individual filters in a matrix. The filter circuit F includes the columns F11, F21, ... Fnl; ... and lines F11, F12, ... F1Z; ... arranged individual filters, line-specific multiplexers M1, M2, ... Mn a line selection multiplexer ZMF, a selection circuit ZME and, if appropriate, one in FIG. 2, not shown in detail, inserted between the excitation generator device G and the individual filters.

Die Anregungsgeneratoreinrichtung G besteht gemäss FIG 2 aus je einem steuerbaren Impuls-und Rauschgenerator IG bzw. RG sowie einer Schaltvorrichtung. Die Steuereinheit StE umfasst unter anderem Speicher S1 ... Sn, in denen Sprachparameterwerte abgespeichert sind, einen Filterwechseltaktgenerator FwG, sowie eine Speicherauswahlschaltung ZMA. Die Filterschaltung F erhält von der Steuereinheit StE einen Filterwechsel-Taktpuls Tw und ein Sprachelementauswahlsignal SEA. Der in der Steuereinheit StE angeordnete Filterwechseltaktgenerator FwG erzeugt äquidistante Filterwechseltaktimpulse mit einer Impulsperiode Tw, die beispielsweise zwischen 10 und 25 ms betragen kann. Die Filterwechseltaktimpulse werden allen in der Filterschaltung F befindlichen zeilenindividuellen Multiplexern M1 ... und den in der Steuereinheit StE angeordneten Speichern S1 ... gleichzeitig zugeführt. Bei dem hier betrachteten Ausführungsbeispiel ist die Anzahl der zeilenindividuellen Multiplexer M gleich der Anzahl der genannten Speicher S. Diese Zahl entspricht der Zeilenzahl der Filtermatrix. Wenn - wie oben unterstellt - durch die Filterschaltung Fn unterschiedliche Sprachsegmente erzeugbar sind, so weist die Filterschaltung Fn zeilenweise angeordnete Filtersätze auf. Jeder Filtersatz umfasst mindestens ein Einzelfilter. Das im Filtersatz erzeugte Sprachsegment kann aus mehreren Sprachelementen zusammengesetzt werden, die in den zu diesem Filtersatz gehörenden Filtern erzeugt werden. Die Dauer eines Sprachelementes beträgt tw; die Dauer eines aus m Sprachelementen zusammengesetzten Sprachsegments beträgt dann m.tw. Die Anzahl der für die Erzeugung eines solchen Sprachsegments erforderlichen Einzelfilter kann kleiner als m sein, wenn das betreffende Sprachsegment untereinander gleiche Sprachelemente enthält, die in gleichen Einzelfiltern des betreffenden Filtersatzes synthetisiert werden. Die (analogen) Sprachelementsignale werden durch den jeweiligen zeilenindividuellen Multiplexer M im Filterwechseltakt Tw zum (analogen) Sprachsignal SA zusammengeschaltet. Die vom Filterwechseltaktgenerator FWG erzeugte Impulsfolge mit der Frequenz 1/tw wird auch allen in der Steuereinheit StE befindlichen, zeilenindividuellen Speichern S zugeführt, in denen die Parameterwerte der Anregungssignale, z. B. deren Frequenz f und Amplitude U abgespeichert sind. Durch die vom Filterwechseltaktgenerator FwG erzeugte Impulsfolge werden diese Parameterwerte aus den Speichern S abgerufen und der Speicherauswahlschaltung ZMA zugeführt. Diese wählt dann nach Massgabe des ihr ebenfalls zugeführten Sprachelement auswahlsignals SEA die Parameterwerte des zu erzeugenden Sprachsegments aus und führt diese der steuerbaren Anregungsgeneratoreinrichtung G zu. Die Anregungsgeneratoreinrichtung G umfasst einen in Frequenz und Amplitude steuerbaren Impulsgenerator IG sowie einen in der Amplitude steuerbaren Rauschgenerator RG. Die in der Anregungs- generatoreinrichtung G ausgangsseitig vorgesehene -Schaltvorrichtung wird durch die aus den Speichern S abgerufene Information über die Frequenz gesteuert: Für Frequenzwerte gleich Null wird der Rauschgenerator RG an die Filterschaltung F gekoppelt, für Frequenzwert ungleich Null wird der Impulsgenerator IG an die Filterschaltung F gekoppelt. Die Anregungsgeneratoreinrichtung G liefert abhängig von den Parameterwerten f und U Impuls- oder Rauschsignale bestimmter Amplitude und ggf. Frequenz. Stimmlose Sprachelemente werden durch Rauschsignale, stimmhafte Sprachelemente bestimmter Frequenz durch Impulsfolgen eben dieser Frequenz nachgebildet. Die von der steuerbaren Anregungsgeneratoreinrichtung G erzeugten Anregungssignale werden bei dem hier beschriebenen Ausführungsbeispiel allen Filtersätzen zugeführt, also auch denjenigen, die nicht der Erzeugung des ausgewählten Sprachsegments dienen. Alle in den Filtersätzen erzeugten (Analog)signale werden über die zeilenindividuellen Multiplexer M dem Zeilenauswahlmultiplexer ZMF zugeführt, in dem mittels des Sprachelementauswahlsignals SEA das gewünschte Sprachsignal ausgewählt wird, das dann am Ausgang SA des Zeilenauswahlmultiplexers auftritt. Das Sprachsignal SA wird dem Tiefpass TP zugeführt, der etwa auf Grund impulsartiger Anregung der Filter im Sprachsignal enthaltene höhere Frequenzbestandteile ausfiltert. Es sei hier bemerkt, dass die vorstehenden Erläuterungen nicht auf eine Sprachsignalsynthese mittels durch Analog-Anregungssignale beaufschlagte Analogfilter beschränkt sind, sondern in entsprechender Weise auch für eine Sprachsignalanordnung mittels durch Digital-Anregungssignale beaufschlagte Digitalfilter gelten, wobei dann das Filterausgangssignal noch einer Digital-Analog-Umwandlung unterzogen wird. Nach einer gegebenenfalls noch erforderlichen Verstärkung wird schliesslich das elektrische Analog-Sprachsignal, über einen elektroakustischen Wandler wiedergegeben.According to FIG. 2, the excitation generator device G consists of a controllable pulse and noise generator IG or RG and a switching device. The control unit StE includes, among other things, memories S1 ... Sn, in which speech parameter values are stored, a filter change clock generator FwG, and a memory selection circuit ZMA. The filter circuit F receives a filter change clock pulse Tw and a speech element selection signal SEA from the control unit StE. The filter change clock generator FwG arranged in the control unit StE generates equidistant filter change clock pulses with a pulse period Tw, which can be, for example, between 10 and 25 ms. The filter change clock pulses are simultaneously fed to all line-specific multiplexers M1 ... in the filter circuit F and the memories S1 ... arranged in the control unit StE. In the exemplary embodiment considered here, the number of line-specific multiplexers M is equal to the number of said memories S. This number corresponds to the number of lines in the filter matrix. If - as assumed above - different speech segments can be generated by the filter circuit Fn, the filter circuit Fn has filter sets arranged in rows. Each filter set contains at least one individual filter. The language segment generated in the filter set can be composed of several language elements that are generated in the filters belonging to this filter set. The duration of a language element is t w ; the duration of a language segment composed of m language elements is then mt w . The number of individual filters required for the generation of such a language segment can be less than m if the language segment in question contains the same language elements that are synthesized in the same individual filters of the filter set in question. The (analog) language elements Signals are interconnected by the respective line-specific multiplexer M in the filter change cycle Tw to form the (analog) speech signal SA. The pulse sequence generated by the filter change clock generator FWG with the frequency 1 / t w is also supplied to all line-specific memories S in the control unit StE, in which the parameter values of the excitation signals, e.g. B. their frequency f and amplitude U are stored. Due to the pulse sequence generated by the filter change clock generator FwG, these parameter values are retrieved from the memories S and fed to the memory selection circuit ZMA. The latter then selects the parameter values of the speech segment to be generated in accordance with the speech element selection signal SEA which is also supplied to it and feeds them to the controllable excitation generator device G. The excitation generator device G comprises a pulse generator IG which can be controlled in frequency and amplitude, and a noise generator RG which can be controlled in amplitude. The switching device provided on the output side in the excitation generator device G is controlled by the information about the frequency retrieved from the memories S: for frequency values equal to zero, the noise generator RG is coupled to the filter circuit F, for frequency values not equal to zero the pulse generator IG is connected to the filter circuit F coupled. Depending on the parameter values f and U, the excitation generator device G delivers pulse or noise signals of a certain amplitude and possibly frequency. Unvoiced speech elements are simulated by noise signals, voiced speech elements of a certain frequency by pulse trains of precisely this frequency. In the exemplary embodiment described here, the excitation signals generated by the controllable excitation generator device G are supplied to all filter sets, including those that are not used to generate the selected speech segment. All (analog) signals generated in the filter sets are fed via the line-specific multiplexers M to the line selection multiplexer ZMF, in which the desired speech signal is selected by means of the speech element selection signal SEA, which then appears at the output SA of the line selection multiplexer. The voice signal SA is fed to the low-pass filter TP, which filters out higher frequency components contained in the voice signal, for example on the basis of pulse-like excitation of the filters. It should be noted here that the above explanations are not limited to a speech signal synthesis by means of analog filters loaded with analog excitation signals, but also apply in a corresponding manner to a speech signal arrangement by means of digital filters loaded with digital excitation signals, the filter output signal then also being a digital-analog signal. Undergoes conversion. After any amplification that may still be required, the electrical analog voice signal is finally reproduced via an electroacoustic transducer.

Die zeilenindividuellen Multiplexer M geben gleichzeitig mit dem Durchschalten des letzten in dem betreffenden Filtersatz erzeugten Sprachelements ein Digitalsignal E an die Auswahlschaltung ZME ab, das den zeitlichen Abschluss des Sprachsynthesevorgangs in dem Filtersatz kennzeichnet. Die ebenso wie der Zeilenauswahlmultiplexer ZMF von dem momentanen Sprachelementauswahlsignal SEA in eine entsprechende Schaltstellung gebrachte Auswahlschaltung ZME schaltet nun das entsprechende Digitalsignal zu der Steuereinheit StE durch, die damit den Synthesevorgang des nächstfolgenden Sprachsegments auslösen kann.The line-specific multiplexers M emit a digital signal E to the selection circuit ZME simultaneously with the switching through of the last speech element generated in the filter set in question, which characterizes the time completion of the speech synthesis process in the filter set. Like the line selection multiplexer ZMF, the selection circuit ZME brought from the current speech element selection signal SEA into a corresponding switching position now switches the corresponding digital signal through to the control unit StE, which can thus trigger the synthesis process of the next speech segment.

Abweichend von der Darstellung in FIG. 2 können die Einzelfilter mit festen Koeffizienten auch einzeln adressierbar sein. In diesem Fall weist die Filterschaltung (F in FIG. 2) keinen Zeilenauswahlmultiplexer (ZMF in FIG. 2) und keine Auswahlschaltung (ZME in FIG. 2) sowie keine zeilenindividuellen Multiplexer (M in FIG.2) der oben beschriebenen Art auf. Vielmehr verfügt die Steuereinheit (StE in FIG. 2) dann über Einrichtungen zur Speicherung individuell adressierbarer Parameterwerte für die Anregungssignale und zur Zusammenschaltung der in den Einzelfiltern erzeugbaren Sprachelementesignale. Der Filterwechseltaktgenerator FwG (in FIG. 2) und die steuerbare Anregungs-Generatoreinrichtung G (in FIG.2) (ggf. mit Zeitfensterschaltung) erfüllen auch bei dieser Ausführungsform die oben beschriebenen Funktionen. Eine solche durch wahlfreie Ansteuerung von Einzelfiltern mittels einzelfilterindividueller Adressierung gekennzeichnete Ausführungsform braucht nur unterschiedliche Einzelfilter aufzuweisen, während bei dem Ausführungsbeispiel gemäss FIG.2 auch untereinander gleiche Einzelfilter in den verschiedenen Filtersätzen, ggf. auch in ein- und demselben Filtersatz angeordnet sein können. Die letzteren Alternativen, die sich wegen der filtersatzindividuellen Adressierung gegenüber der einzelfilterindividuellen Adressierung mit geringerem steuertechnischen Aufwand realisieren lassen, sind besonders für die Wiedergabe von Sprache geeignet, die wiederholt gleiche Sprachsegmente enthält. Praktisch bedeutsam werden Ausführungsformen sein, die sowohl in Filtersätzen verbundene Einzelfilter als auch unabhängige Einzelfilter enthalten. Auf diese Weise lässt sich die Zahl der verwendeten Einzelfilter und der notwendige steuertechnische Aufwand optimieren.Deviating from the representation in FIG. 2, the individual filters with fixed coefficients can also be addressed individually. In this case, the filter circuit (F in FIG. 2) has no line selection multiplexer (ZMF in FIG. 2) and no selection circuit (ZME in FIG. 2) and no line-specific multiplexer (M in FIG. 2) of the type described above. Rather, the control unit (StE in FIG. 2) then has devices for storing individually addressable parameter values for the excitation signals and for interconnecting the speech element signals that can be generated in the individual filters. The filter change clock generator FwG (in FIG. 2) and the controllable excitation generator device G (in FIG. 2) (possibly with a time window circuit) also perform the functions described above in this embodiment. Such an embodiment, characterized by optional control of individual filters by means of individual filter-individual addressing, need only have different individual filters, while in the exemplary embodiment according to FIG. 2 the same individual filters can also be arranged in the different filter sets, possibly also in one and the same filter set. The latter alternatives, which can be implemented with less control effort due to the filtering-specific addressing compared to the single-filtering addressing, are particularly suitable for the reproduction of speech that repeatedly contains the same language segments. Embodiments that contain both individual filters connected in filter sets and independent individual filters will be of practical importance. In this way, the number of individual filters used and the necessary tax expenditure can be optimized.

Die erfindungsgemäss verwendeten Einzelfilter können auch als Linearprädiktionsfilter mit festen Koeffizienten gemäss FIG. 3 ausgebildet sein. Lineare Prädiktion als solche ist bekannt und in der einschlägigen Fachliteratur (so beispielsweise FLANAGAN, Speech Analysis Synthesis and Perception, Springer-Verlag Berlin, Heidelberg, New York 1972, S. 367 ff., S.390 ff.) beschrieben, so dass sich hier eine nähere Darstellung erübrigt. Dabei ist die erreichbare Sprachqualität in bestimmten Grenzen proportional zur Zahl der Koeffizienten. Gute Sprachqualität lässt sich bereits mit etwa 10 Filterkoeffizienten realisieren. Ein solches Prädiktionsfilter wird mit seinen in FIG. 3 mit A11 und B11 bezeichneten Anschlussklemmen an die entsprechend bezeichneten Anschlussklemmen der Filterschaltung F gemäss FIG.2 2 angeschlossen, um dort das Einzelfilter F11 zu bilden. Die erfindungsgemäss verwendeten Linearprädiktionsfilter können als Analog- oder als Digitalfilter ausgebildet sein. Dementsprechend werden den Filtern Anregungssignale in analoger oder digitaler Form vom Anregungsgenerator zugeführt; entsprechend ergeben sich an den Filterausgängen analoge oder digitale Signale.The individual filters used according to the invention can also be used as linear prediction filters with fixed coefficients according to FIG. 3 be formed. Linear prediction as such is known and described in the relevant specialist literature (such as FLANAGAN, Speech Analysis Synthesis and Perception, Springer-Verlag Berlin, Heidelberg, New York 1972, p. 367 ff., P. 390 ff.), So that a detailed description is unnecessary here. The achievable speech quality is proportional to the number of coefficients within certain limits. Good speech quality can already be achieved with around 10 filter coefficients. A sol The prediction filter is shown in FIG. 3 connected with A11 and B11 to the correspondingly designated connection terminals of the filter circuit F according to FIG. 2 2, in order to form the individual filter F11 there. The linear prediction filters used according to the invention can be designed as analog or digital filters. Accordingly, the filters are supplied with excitation signals in analog or digital form from the excitation generator; accordingly, analog or digital signals result at the filter outputs.

Die erfindungsgemäss verwendeten Einzelfilter können, wie in FIG.4 dargestellt, auch als Formantfilter mit festen Filterkoeffizienten ausgebildet sein, wobei jedem Einzelfilter eine Parallelschaltung von drei Formantfiltern zur Nachbildung mindestens der ersten drei (niederfrequenten) Sprachformanten entsprechen kann. Die Spracherzeugung durch Formantsynthese ist bekannt und hinreichend beschrieben (so beispielsweise in der bereits zitierten Literatur FLANAGAN S. 339 ff.), so dass sich eine Darstellung an dieser Stelle wiederum erübrigt. Die Formanttilter sind zweckmässigerweise als Bandpässe mit bestimmten festen Durchlassbereichen und Mittenfrequenzen dieser Durchlassbereiche ausgebildet. Auch eine solche Filterschaltung kann in Analog- und Digitaltechnik realisiert sein.The individual filters used according to the invention can, as shown in FIG. 4, also be designed as formant filters with fixed filter coefficients, wherein each individual filter can correspond to a parallel connection of three formant filters for emulating at least the first three (low-frequency) speech formants. The generation of speech by formant synthesis is known and sufficiently described (for example in the literature FLANAGAN p. 339 et seq. Already cited), so that there is no need to describe it here. The formant filters are expediently in the form of bandpasses with certain fixed pass bands and center frequencies of these pass bands. Such a filter circuit can also be implemented in analog and digital technology.

Die Einzelfilter können in allen vorstehend genannten Fällen in sogenannter CCD-Technik realisiert sein. Bei Verwendung von Transversalfiltern beziehungsweise Rekursivfiltern wird das Anregungssignal den Einzelfiltern in zeitdiskreter Form zugeführt. Hierzu kann die Filterschaltung (F in FIG.2) eine in FIG. 2 nicht näher dargestellte Zeitfensterschaltung enthalten. Die Zeitfensterschaltung kann entsprechend dem Abtasttheorem ein Abtastsignal fester Frequenz erzeugen, die mindestens die doppelte Frequenz bezogen auf das abzutastende Netzsignal aufweist. Mit diesem so erzeugten Abtastsignal werden die steuerbare Anregungsgeneratoreinrichtung G sowie sämtliche Einzelfilter in die Filterschaltung F getaktet.The individual filters can be implemented in so-called CCD technology in all of the above cases. When using transversal filters or recursive filters, the excitation signal is fed to the individual filters in a time-discrete form. For this purpose, the filter circuit (F in FIG. 2) can be shown in FIG. 2 time slot circuit not shown included. According to the sampling theorem, the time window circuit can generate a sampling signal of fixed frequency, which has at least twice the frequency with respect to the network signal to be sampled. The controllable excitation generator device G and all individual filters are clocked into the filter circuit F with this scanning signal generated in this way.

Claims (11)

1. A circuit arrangement for electronic speech synthesis, wherein the speech elements are represented by significant parameters and individual speech elements can be assembled to form longer speech segments (SA), wherein an excitation signal for the representation of vocal and non-vocal sounds is produced by a pulse generator (IG) and a noise generator (RG) by employing at least a portion of the significant parameters and is supplied to a filter circuit (F) and wherein the electrical signals at the filter output end are used for the acoustic reproduction of the required speech elements and speech segments, where the filter circuit (F) comprises parallel individual filters (F11, F12,..., F1M1; F21, F22,...; Fn1 ...) and has a pulse period of between 10 and 25ms.
2. A circuit arrangement as claimed in claim 1, characterised in that there are provided individual filters which are constructed in analogue technology and can be acted upon by a time-discrete analogue excitation signal.
3. A circuit arrangement as claimed in claim 1, characterised in that there are provided individual filters which are constructed in digital technology and which can be acted upon by a time-discrete digital excitation signal, and that the obtained speech signal is digital/analogue-converted for the speech reproduction.
4. A circuit arrangement as claimed in claim 2 or 3, characterised by the random control of individual filters by individually addressing individual filters.
5. A circuit arrangement as claimed in claim 2 or 3, characterised in that the individual filters are arranged in filter sets for the representation of long speech segments, where a random control of the filter sets is effected by filter set-individual addressing.
6. A circuit arrangement as claimed in claim 5, characterised in that the individual filters are arranged in a matrix, wherein the individual filters of a matrix line can be respectively acted upon in parallel by the respective excitation signal and the outputs of the individual filters of one matrix line can be sequentially connected to the matrix output.
7. A circuit arrangement as claimed in claim 5 or 6, characterised in that for each filter set a storage unit is provided wherein parameters of the excitation signal for the representation of a speech segment are stored.
8. A circuit arrangement as claimed in one of claims 4 to 7, characterised in that the individual filters are designed as so-called linear predictive filters.
9. A circuit arrangement as claimed in one of claims 4 to 7, characterised in that the individual filters are designed as formant filters having fixed formant centre frequency coefficients and formant bandwidth coefficients for the production of speech by the representation of at least the three lowest formants.
10. A circuit arrangement as claimed in one of claims 4 to 9, characterised in that the individual filters are realised in so-called CCD-technology.
11. A circuit arrangement as claimed in one of claims 4 to 10, characterised in that the individual filters are designed as transversal filters.
EP83104873A 1982-05-18 1983-05-17 Arrangement for electronic speech synthesis Expired EP0094681B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83104873T ATE26354T1 (en) 1982-05-18 1983-05-17 CIRCUIT ARRANGEMENT FOR ELECTRONIC SPEECH SYNTHESIS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3218755 1982-05-18
DE3218755A DE3218755A1 (en) 1982-05-18 1982-05-18 CIRCUIT ARRANGEMENT FOR THE ELECTRONIC VOICE SYNTHESIS

Publications (2)

Publication Number Publication Date
EP0094681A1 EP0094681A1 (en) 1983-11-23
EP0094681B1 true EP0094681B1 (en) 1987-04-01

Family

ID=6163962

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83104873A Expired EP0094681B1 (en) 1982-05-18 1983-05-17 Arrangement for electronic speech synthesis

Country Status (5)

Country Link
US (1) US4694496A (en)
EP (1) EP0094681B1 (en)
JP (1) JPS58205200A (en)
AT (1) ATE26354T1 (en)
DE (2) DE3218755A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311022B1 (en) * 1987-10-06 1994-03-30 Kabushiki Kaisha Toshiba Speech recognition apparatus and method thereof
DE19860133C2 (en) * 1998-12-17 2001-11-22 Cortologic Ag Method and device for speech compression

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2060321A (en) * 1936-02-18 1936-11-10 Jr Elmer E Johnson Safety razor
US2121142A (en) * 1937-04-07 1938-06-21 Bell Telephone Labor Inc System for the artificial production of vocal or other sounds
US2194298A (en) * 1937-12-23 1940-03-19 Bell Telephone Labor Inc System for the artificial production of vocal or other sounds
US2881257A (en) * 1956-08-16 1959-04-07 Bell Telephone Labor Inc Spectrum synthesizer
US3624301A (en) * 1970-04-15 1971-11-30 Magnavox Co Speech synthesizer utilizing stored phonemes
US3836717A (en) * 1971-03-01 1974-09-17 Scitronix Corp Speech synthesizer responsive to a digital command input
NL7306902A (en) * 1972-05-26 1973-11-28
NL7902238A (en) * 1978-04-27 1979-10-30 Kawai Musical Instr Mfg Co DEVICE FOR GENERATING A VOCAL SOUND SIGNAL IN AN ELECTRONIC MUSICAL INSTRUMENT.
JPS56140400A (en) * 1980-04-03 1981-11-02 Tokyo Shibaura Electric Co Signal synthesizing circuit
US4454609A (en) * 1981-10-05 1984-06-12 Signatron, Inc. Speech intelligibility enhancement
US4475228A (en) * 1981-11-27 1984-10-02 Bally Manufacturing Corporation Programmable sound circuit for electronic games

Also Published As

Publication number Publication date
DE3218755A1 (en) 1983-11-24
JPS58205200A (en) 1983-11-30
EP0094681A1 (en) 1983-11-23
DE3370707D1 (en) 1987-05-07
ATE26354T1 (en) 1987-04-15
US4694496A (en) 1987-09-15

Similar Documents

Publication Publication Date Title
DE69816221T2 (en) LANGUAGE SPEED CHANGE METHOD AND DEVICE
DE2115258C3 (en) Method and arrangement for speech synthesis from representations of individually spoken words
DE3590157T (en) System for storing and retrieving the voice of a telephone operator
EP0126962A2 (en) Electronic keyboard musical instrument, and device for using it
DE2920298A1 (en) BINARY INTERPOLATOR CIRCUIT FOR AN ELECTRONIC MUSICAL INSTRUMENT
DE2622423B2 (en) Electrical arrangement for the transmission or storage of a speech or sound signal in coded form
DE69934069T2 (en) Sound effect adding device
DE19720651A1 (en) Digital hearing aid
DE3006339C2 (en) Speech synthesizer
DE69233622T2 (en) Device for generating announcements
DE1811040C3 (en) Arrangement for synthesizing speech signals
EP0094681B1 (en) Arrangement for electronic speech synthesis
EP1755110A2 (en) Method and device for adaptive reduction of noise signals and background signals in a speech processing system
EP0126975A2 (en) Electronic keyboard musical instrument
DE3246712C2 (en)
DE2649540A1 (en) Speech synthesis system using time quantised signals - has discrete sets of amplitudes and phases Fourier transform processed
DE3037276A1 (en) TONSYNTHESIZER
DE3232835C2 (en)
DE2826570C2 (en)
DE2854601A1 (en) CLAY SYNTHESIZER AND METHOD FOR CLAY PROCESSING
DE2431989A1 (en) PROCESS AND EQUIPMENT FOR GENERATING ARTIFICIAL REVIEWS
DE2209548C3 (en) Electric speech synthesizer circuit
DE2657430A1 (en) DEVICE FOR SYNTHETIZING HUMAN LANGUAGE
DE4426534C2 (en) Method for controlling the signal recording for a digital answering machine
DE2016572A1 (en) Method and device for speech synthesis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB

17P Request for examination filed

Effective date: 19840521

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB

REF Corresponds to:

Ref document number: 26354

Country of ref document: AT

Date of ref document: 19870415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3370707

Country of ref document: DE

Date of ref document: 19870507

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890517

Ref country code: AT

Effective date: 19890517

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST