EP0093125B1 - Thin or thick layer technic voltage divider - Google Patents

Thin or thick layer technic voltage divider Download PDF

Info

Publication number
EP0093125B1
EP0093125B1 EP82903234A EP82903234A EP0093125B1 EP 0093125 B1 EP0093125 B1 EP 0093125B1 EP 82903234 A EP82903234 A EP 82903234A EP 82903234 A EP82903234 A EP 82903234A EP 0093125 B1 EP0093125 B1 EP 0093125B1
Authority
EP
European Patent Office
Prior art keywords
voltage divider
resistance zone
resistance
tap
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82903234A
Other languages
German (de)
French (fr)
Other versions
EP0093125A1 (en
Inventor
Lothar Schmidt
Ulrich Goebel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0093125A1 publication Critical patent/EP0093125A1/en
Application granted granted Critical
Publication of EP0093125B1 publication Critical patent/EP0093125B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material

Definitions

  • the invention relates to a voltage divider according to the preamble of the independent claims 1 and 12.
  • Such thin-film or thick-film technology voltage dividers are already known from the document DE-B-25 18 969, in which the current-carrying ohmic voltage divider resistor consists of two through metallization connected individual resistors. At the same time, the metallization forms the tap used to tap the desired divider voltage.
  • these voltage dividers have the disadvantage that they can only be adjusted to a desired value by increasing the individual resistors that make up the voltage divider resistor, so that the total resistance of the divider and the current and potential distribution in the voltage divider resistor itself, to be changed.
  • the voltage divider according to the invention with the characterizing features of claim 1 has the advantage that a certain equipotential line can be selected at the tap electrode of the tap by moving the change required for the adjustment into the second resistance area belonging to the tap, without the actual voltage divider resistance and its potential distribution must be changed significantly. Further advantageous developments of the invention result from subclaims 2 to 11.
  • Claim 12 provides, as an alternative to claim 1, a second advantageous solution to the adjustment problem with a single, contiguous voltage divider resistor, which is also used as a tap.
  • the voltage divider shown in FIGS. 1 and 2 contains a current-carrying ohmic voltage divider resistor R, (FIG. 2), which consists of a single coherent, first layer of resistance 10, which is constructed using layer technology, a connecting conductor 11 serving for current supply and a connecting conductor 12 serving for current dissipation, wherein the connecting conductors 11 and 12 are designed as conductor tracks (Fig. 1).
  • the first resistance region 10 forms a rectangular region whose length is greater than its width.
  • the connecting conductors 11 and 12 are attached to the narrow sides of this rectangular region and overlap with the first resistance region 10 along these narrow sides.
  • a tap is also provided for tapping off the desired divider voltage.
  • This tap consists of a second resistance region 13, which is implemented using layer technology, and of a removal electrode 14 attached to it, which is designed as a conductor track.
  • the two resistance regions 10 and 13 abut one another in a region 15 which is located on one of the two long sides of the resistance layer 10 in such a way that good electrical contact is established in this region 15 between these two resistance regions 10 and 13.
  • a first laser or sandblast cut 16 and a second laser or sandblast cut 17 are introduced into the second resistance region 13.
  • the two cuts 16 and 17 run parallel to the long side of the first resistance region 10, that is to say cut the equipotential lines formed during operation of the voltage divider.
  • the two cuts 16 and 17 are carried out until the potential at the pick-up electrode 14 of the tap has reached the desired value.
  • the effective value of the resistance R is influenced to a relatively great extent by the adjustment. If this effect interferes, the material of the second resistance region 13 according to the invention becomes more high-resistance than the material of the first Resistance region 10 is selected so that the effective voltage divider resistance formed by the first resistance region 10 and its potential conversion by the adjustment are not be changed significantly.
  • FIG. 3 shows a second exemplary embodiment of a voltage divider according to the invention, in which a tap 13, 14 is attached to one of the two long sides of the first resistance region 10 and two taps 13, 14 are attached to the other long side of the first resistance region 10. The adjustment is carried out in the same way as in the exemplary embodiment according to FIGS. 1 and 2.
  • the first resistance region 10 is designed as an elongated rectangle, as in the exemplary embodiments according to FIGS. 1 and 3.
  • the second resistance region 13 is designed in the form of a strip.
  • the second resistance region 13 runs parallel to the first resistance region 10 and is connected to the first resistance region 10 via a contact zone 15.
  • the contact zone 15 extends over the entire length of the first resistance region 10.
  • a laser or sandblast cut 16 is provided in the second resistance region 13, which runs parallel to the longitudinal direction of the two resistance regions 10, 13.
  • the take-off electrode 14 for the divider voltage to be tapped is designed differently in the exemplary embodiments according to FIGS. 4 to 6.
  • the depth of the laser cut 16 mainly determines the level of the divider voltage to be picked up at the removal electrode 14.
  • the divider voltage tapped at the take-off electrode 14 can be between 0 and 100% of the voltage applied to the connecting conductors 11 and 12.
  • the different choice of the geometry of the removal electrode 14 enables the adjustment characteristic curve to be adapted to the respective requirement.
  • the exemplary embodiment according to FIG. 7 is used to generate arbitrarily selectable, monotonous adjustment characteristic curves and to compensate for the non-linearities of a circuit.
  • This exemplary embodiment differs from the exemplary embodiments according to FIGS. 4 to 6 in that the first resistance region 10 forming the ohmic voltage divider resistor R, deviates from the range widened its first connecting conductor 11 to the area of its second connecting conductor 12.
  • the delimitation of both resistance areas 10 and 13 is rectilinear in the contacting zone 15 and the second resistance area 13 is in the form of a strip.
  • the laser cut 16 runs in the second resistance region 13 parallel to its longitudinal direction.
  • the second resistance region 13 extends over the full length of the first resistance region 10 and at the upper end a little further, a voltage between 0 and 100% of the voltage between the connecting conductors 11 and 12 can also be picked up at the take-off electrode 14 .
  • the entire voltage divider consists of a single resistance layer 110.
  • This resistance layer 110 also forms the current-carrying ohmic voltage divider resistor R 1 and the tap 114. 112 connected area.
  • the connecting conductors 111, 112 can be designed as bond wires.
  • a cut 116 is made in the coherent resistance layer 110, which runs between the part of the layer forming the tap 114 and the region of this layer which serves to supply or discharge current, and so on is carried far until the potential at tap 114 has reached the desired value.
  • the divider voltage tapped at the tap 114 can also be between 0 and 100% of the voltage applied to the connecting conductors 111 and 112.
  • the invention is not limited to the exemplary embodiments described with reference to the drawing.
  • the two resistance regions 10 and 13 can form a single, coherent region if the two regions 10 and 13 consist of the same material. In this case, the contact zone 15 can be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Adjustable Resistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Voltage divider using the thin or thick layer technic, adjustable with an ohmic resistance traversed by an electric current and at least one means to pick up the partial voltage. The ohmic resistance comprises a first resistance area (10) of voltage divider which contains a current input area and a current output area each provided with a conductor (11, 12). The pick up device is comprised by a second resistance area (13) provided between the two areas and connected to the first resistance area (10) as well as of a pick up electrode (14). In said second resistance area (13), there are arranged two slots (16, 17) which traverse equipotential lines which are formed during the operation of the divider and they are extended sufficiently so that on the electrode (14) of the pick up device the potential has the desired value.

Description

Stand der TechnikState of the art

Die Erfindung betrifft einen Spannungsteiler nach dem Oberbegriff der unabhängiger Patentansprüche 1 und 12. Es sind bereits aus der Druckschrift DE-B-25 18 969 derartige, in Dünn-oder Dickschichttechnik ausgeführte Spannungsteiler bekannt, bei denen der stromdurchflossene ohmsche Spannungsteilerwiderstand aus zwei durch eine Metallisierung verbundenen Einzelwiderständen besteht. Die Metallisierung bildet dabei gleichzeitig den zum Abgreifen der gewünschten Teilerspannung dienenden Abgriff. Diese Spannungsteiler haben aber den Nachteil, daß bei ihnen ein Abgleich des Teilerwiderstandes auf einen gewünschten Wert nur durch Erhöhen der Einzelwiderstände möglich ist, aus denen der Spannungsteilerwiderstand besteht, so daß dadurch der Gesamtwiderstand des Teilers und die Strom- und Potentialverteilung im Spannungsteilerwiderstand selbst mit, verändert werden.The invention relates to a voltage divider according to the preamble of the independent claims 1 and 12. Such thin-film or thick-film technology voltage dividers are already known from the document DE-B-25 18 969, in which the current-carrying ohmic voltage divider resistor consists of two through metallization connected individual resistors. At the same time, the metallization forms the tap used to tap the desired divider voltage. However, these voltage dividers have the disadvantage that they can only be adjusted to a desired value by increasing the individual resistors that make up the voltage divider resistor, so that the total resistance of the divider and the current and potential distribution in the voltage divider resistor itself, to be changed.

Vorteile der ErfindungAdvantages of the invention

Der erfindungsgemäße Spannungsteiler mit den kennzeichnenden Merkmalen des Patentansprüers 1 hat demgegenüber den Vorteil, daß durch das Verlegen der für den Abgleich erforderlichen Veränderung in das zum Abgriff gehörende zweite Widerstandsgebiet eine bestimmte Äquipotentiallinie an der Abnahmeelektrode des Abgriffs ausgewählt werden kann, ohne daü dadurch der eigentliche Spannungsteilerwiderstand und seine Potentialverteilung wesentlich verändert werden müssen. Weitere vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen 2 bis 11. Der Patentansprüch 12 liefert alternativ zum Anspruch 1 eine zweite vorteilhafte Lösung des Abgleichproblems mit einem einzigen zusammenhängenden Spannungsteilerwiderstand, der zugleich als Abgriff mit herangezogen wird.The voltage divider according to the invention with the characterizing features of claim 1 has the advantage that a certain equipotential line can be selected at the tap electrode of the tap by moving the change required for the adjustment into the second resistance area belonging to the tap, without the actual voltage divider resistance and its potential distribution must be changed significantly. Further advantageous developments of the invention result from subclaims 2 to 11. Claim 12 provides, as an alternative to claim 1, a second advantageous solution to the adjustment problem with a single, contiguous voltage divider resistor, which is also used as a tap.

Zeichnungdrawing

Ausführungsbeispiele des erfindungsgemäßen Spannungsteilers sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

  • Figur 1 die Grundvariante eines in Dickschichttechnik ausgeführten erfindungsgemäßen Spannungsteilers in der Draufsicht,
  • Figur 2 das Ersatzschaltbild des in Figur 1 gezeigten Spannungsteilers,
  • Figur 3 bis Figur 8 weitere Varianten von in Dickschichttechnik ausgeführten erfindungsgemäßen Spannungs teilern in de; Draufsicht.
Embodiments of the voltage divider according to the invention are shown in the drawing and explained in more detail in the following description. Show it:
  • FIG. 1 shows the basic variant of a voltage divider according to the invention implemented in thick-film technology in a top view,
  • FIG. 2 shows the equivalent circuit diagram of the voltage divider shown in FIG. 1,
  • Figure 3 to Figure 8 further variants of voltage divider according to the invention executed in thick-film technology in de; Top view.

Beschreibung der ErfindungDescription of the invention

Der in den Figuren 1 und 2 dargestellte Spannungsteiler enthält einen stromdurchflossenen ohmschen Spannungsteilerwiderstand R, (Fig. 2),der aus einer einzigen zusammenhängenden, in Schichttechnik ausgeführten ersten Widerstandsschicht 10, einem zur Stromzufuhr dienenden Anschlußleiter 11 und einem zur Stromabfuhr dienenden Anschlußleiter 12 besteht, wobei die Anschlußleiter 11 und 12 als Leiterbahnen ausgebildet sind (Fig. 1). Das erste Widerstandsgebiet 10 bildet einen rechteckförmigen Bereich, dessen Länge größer als dessen Breite ist. Die Anschlußleiter 11 und 12 sind an den Schmalseiten dieses rechteckförmigen Bereichs angebracht und überlampen sich entlang diesen Schmalseiten mit dem ersten Widerstandsgebiet 10.The voltage divider shown in FIGS. 1 and 2 contains a current-carrying ohmic voltage divider resistor R, (FIG. 2), which consists of a single coherent, first layer of resistance 10, which is constructed using layer technology, a connecting conductor 11 serving for current supply and a connecting conductor 12 serving for current dissipation, wherein the connecting conductors 11 and 12 are designed as conductor tracks (Fig. 1). The first resistance region 10 forms a rectangular region whose length is greater than its width. The connecting conductors 11 and 12 are attached to the narrow sides of this rectangular region and overlap with the first resistance region 10 along these narrow sides.

Ferner ist ein zum Abgreifen der gewünschten Teilerspannung dienender Abgriff vorgesehen. Dieser Abgriff besteht aus einem in Schichttechnik ausgeführten zweiten Widerstandsgebiet 13 und aus einer daran angebrachten Abnahmeelektrode 14, die als Leiterbahn ausgebildet ist. Die beiden Widerstandsgebiete 10 und 13 stoßen in einem Bereich 15, der sich an einer der beiden Längsseiten der Widerstandsschicht 10 befindet, derart aneinander, daß in diesem Bereich 15 zwischen diesen beiden Widerstandsgebieten 10 und 13 ein guter elektrischer Kontakt hergestellt wird.A tap is also provided for tapping off the desired divider voltage. This tap consists of a second resistance region 13, which is implemented using layer technology, and of a removal electrode 14 attached to it, which is designed as a conductor track. The two resistance regions 10 and 13 abut one another in a region 15 which is located on one of the two long sides of the resistance layer 10 in such a way that good electrical contact is established in this region 15 between these two resistance regions 10 and 13.

Zum Abgleich des Spannungsteilers ist in das zweite Widerstandsgebiet 13 ein erster Laseroder Sandstrahlschnitt 16 und ein zweiter Laseroder Sandstrahlschnitt 17 eingebracht. Die beiden Schnitte 16 und 17 verlaufen parallel zur Längsseite des ersten Widerstandsgebiets 10, schneiden also die beim Betrieb des Spannungsteilers gebildeten Äquipotentiallinien. Die beiden Schnitte 16 und 17 werde beim Abgleich des Spannungsteilers R" R2 so weit geführt, bis an der Abnahmeelektrode 14 des Abgriffs das Potential den gewünschten Wert erreicht hat.To adjust the voltage divider, a first laser or sandblast cut 16 and a second laser or sandblast cut 17 are introduced into the second resistance region 13. The two cuts 16 and 17 run parallel to the long side of the first resistance region 10, that is to say cut the equipotential lines formed during operation of the voltage divider. During the adjustment of the voltage divider R "R 2, the two cuts 16 and 17 are carried out until the potential at the pick-up electrode 14 of the tap has reached the desired value.

Wenn das Material des ersten Widerstandsgebiets 10 und das Material des zweiten Widerstandsgebiets 13 gleich sind, wird der Effektivwert des Widerstandes R, durch den Abgleich relativ stark beeinflußt Falls dieser Effekt stört, wird erfindungsgemäß das. Material des zweiten Widerstandsgebiets 13 hochohmiger als das Material des ersten Widerstandsgebiets 10 gewählt, damit der durch das erste Widerstandsgebiet 10 gebildete wirksame Spannungsteilerwiderstand und seine Potentialvertelung durch den Abgleich nicht wesentlich verändert werden.If the material of the first resistance region 10 and the material of the second resistance region 13 are the same, the effective value of the resistance R is influenced to a relatively great extent by the adjustment. If this effect interferes, the material of the second resistance region 13 according to the invention becomes more high-resistance than the material of the first Resistance region 10 is selected so that the effective voltage divider resistance formed by the first resistance region 10 and its potential conversion by the adjustment are not be changed significantly.

In Figur 3 ist ein zweites Ausführungsbeispiel eines er-findungsgemäßen Spannungsteilers dargestellt, bei dem an einer der beiden Längsseiten des ersten Widerstandsgebiets 10 ein Abgriff 13, 14 und an der anderen Längsseite des ersten Widerstandsgebiets 10 zwei Abgriffe 13, 14 angebracht sind. Der Abgleich ist in der selben Weise ausgeführt wie beim Ausführungsbeispiel nach den Figuren 1 und 2.FIG. 3 shows a second exemplary embodiment of a voltage divider according to the invention, in which a tap 13, 14 is attached to one of the two long sides of the first resistance region 10 and two taps 13, 14 are attached to the other long side of the first resistance region 10. The adjustment is carried out in the same way as in the exemplary embodiment according to FIGS. 1 and 2.

Bei den Ausführungsbeispielen nach den Figuren 4 bis 6 ist das erste Widerstandsgebiet 10 wie bei den Ausführungsbeispielen nach den Figuren 1 und 3 als langgestrecktes Rechteck ausgebildet. Das zweite Widerstandsgebiet 13 ist wie das erste Widerstandsgebiet 10 streifenförmig ausgebildet. Das zweite Widerstandsgebiet 13 verläuft parallel zum ersten Widerstandsgebiet 10 und steht über eine Kontaktierzone 15 mit dem ersten Widerstandsgebiet 10 in Verbindung. Die Kontaktierzone 15 erstreckt sich dabei über die ganze Länge, des ersten Widerstandsgebiets 10. Zum Abgleich ist im zweiten Widerstandsgebiet 13 ein Laseroder Sandstrahlschnitt 16 vorgesehen, der parallel zur Längsrichtung der beiden Widerstandsgebiete 10, 13 verläuft. Die Abnahmeelektrode 14 für die abzugreifende Teilerspannung ist bei den Ausführungsbeispielen nach den Figuren 4 bis 6 verschieden ausgebildet. Bei allen drei Ausführungsbeispielen bestimmt aber in der Hauptsache die Tiefe des Laserschnitts 16 die Höhe der an der Abnahmelektrode 14 abzugreifenden Teilerspannung. Die an der Abnahmeelektrode 14 abgenommene Teilerspannung kann dabei zwischen 0 und 100 % der an den Anschlußleitern 11 und 12 angelegten Spannung betragen. Bei den Ausführungsbeispielen nach den Figuren 4 bis 6 ermöglicht die verschiedene Wahl der Geometrie der Abnahmeelektrode 14 eine Anpassung der Abgleichkennlinie an den jeweiligen Bedarf.In the exemplary embodiments according to FIGS. 4 to 6, the first resistance region 10 is designed as an elongated rectangle, as in the exemplary embodiments according to FIGS. 1 and 3. Like the first resistance region 10, the second resistance region 13 is designed in the form of a strip. The second resistance region 13 runs parallel to the first resistance region 10 and is connected to the first resistance region 10 via a contact zone 15. The contact zone 15 extends over the entire length of the first resistance region 10. For comparison, a laser or sandblast cut 16 is provided in the second resistance region 13, which runs parallel to the longitudinal direction of the two resistance regions 10, 13. The take-off electrode 14 for the divider voltage to be tapped is designed differently in the exemplary embodiments according to FIGS. 4 to 6. In all three exemplary embodiments, however, the depth of the laser cut 16 mainly determines the level of the divider voltage to be picked up at the removal electrode 14. The divider voltage tapped at the take-off electrode 14 can be between 0 and 100% of the voltage applied to the connecting conductors 11 and 12. In the exemplary embodiments according to FIGS. 4 to 6, the different choice of the geometry of the removal electrode 14 enables the adjustment characteristic curve to be adapted to the respective requirement.

Zum Erzeugen beliebig wählbarer, monotoner Abgleichkennlinien und zum Ausgleich der Nichtlinearitäten einer Schaltung dient das Ausführungsbeispiel nach Figur 7. Dieses Ausführungsbeispiel unterscheidet sich von den Ausführungsbeispielen nach den Figuren 4 bis 6 dadurch, daß sich das den ohmschen Spannungsteilerwiderstand R, bildende erste Widerstandsgebiet 10 vom Bereich seines ersten Anschlußleiters 11 bis zum Bereich seines zweiten Anschlußleiters 12 verbreitert. Die Begrenzung beider Widerstandsgebiete 10 und 13 ist jedoch in der Kontaktierzone 15 geradlinig und das zweite Widerstandsgebiet 13 streifenförmig ausgebildet. Der Laserschnitt 16 verläuft im zweiten Widerstandsgebiet 13 parallel zu dessen Längsrichtung. Da auch hier das zweite Widerstandsgebiet 13 sich über die volle Länge des ersten Widerstandsgebiets 10 und am oberen Ende noch etwas darüber hinaus erstreckt, ist auch hier an der Abnahmeelektrode 14 eine Spannung zwischen 0 und 100 % der zwischen den Anschlußleitern 11 und 12 liegenden Spannung abgreifbar.The exemplary embodiment according to FIG. 7 is used to generate arbitrarily selectable, monotonous adjustment characteristic curves and to compensate for the non-linearities of a circuit. This exemplary embodiment differs from the exemplary embodiments according to FIGS. 4 to 6 in that the first resistance region 10 forming the ohmic voltage divider resistor R, deviates from the range widened its first connecting conductor 11 to the area of its second connecting conductor 12. However, the delimitation of both resistance areas 10 and 13 is rectilinear in the contacting zone 15 and the second resistance area 13 is in the form of a strip. The laser cut 16 runs in the second resistance region 13 parallel to its longitudinal direction. Since here, too, the second resistance region 13 extends over the full length of the first resistance region 10 and at the upper end a little further, a voltage between 0 and 100% of the voltage between the connecting conductors 11 and 12 can also be picked up at the take-off electrode 14 .

Beim Ausführungsbeispiel nach Figur 8 besteht der gesamte Spannungsteiler aus einer einzigen Widerstandsschicht 110. Diese Widerstandsschicht 110 bildet zugleich den stromdurchflossenen ohmschen Spannungsteilerwiderstand R1 und den Abgriff 114. Die Widerstandsschicht 110 weist einen zur Stromzufuhr und einen zur Stromabfuhr dienenden, mit je einem Anschlußleiter 111, 112 verbunden Bereich auf. Die Anschlußleiter 111, 112 können dabei als Bonddrähte ausgebildet sein. Zum Erzeugen einer Teilerspannung am Abgriff 114, der Bestandteil der Widerstandsschicht 110 ist, ist ein Schnitt 116 in die zusammenhängende Widerstandsschicht 110 eingebracht, der zwischen dem den Abgriff 114 bildenden Teil dieser Schicht und dem zur Stromzufuhr oder zur Stromabfuhr dienenden Bereich dieser Schicht verläuft und so weit geführt ist, bis am Abgriff 114 das Potential den gewünschten Wert erreicht hat. Die am Abgriff 114 abgenommene Teilerspannung kann je nach Tiefe des Laserschnitts 116 auch hier zwischen 0 und 100 % der an den Anschlußleitern 111 und 112 angelegten Spannung betragen. Die Erfindung ist nicht auf die anhand der Zeichnung beschriebenen Ausführungsbeispiele beschränkt. Insbesondere können bei den Ausführungsbeispielen nach den Figuren 1 und 3 bis 7 die beiden Widerstandsgebiete 10 und 13 ein einziges, zusammenhängendes Gebiet bilden, wenn die beiden Gebiete 10 und 13 aus demselben Material bestehen. In diesem Falle kann also die Kontaktierzone 15 entfallen.In the exemplary embodiment according to FIG. 8, the entire voltage divider consists of a single resistance layer 110. This resistance layer 110 also forms the current-carrying ohmic voltage divider resistor R 1 and the tap 114. 112 connected area. The connecting conductors 111, 112 can be designed as bond wires. In order to generate a divider voltage at the tap 114, which is a component of the resistance layer 110, a cut 116 is made in the coherent resistance layer 110, which runs between the part of the layer forming the tap 114 and the region of this layer which serves to supply or discharge current, and so on is carried far until the potential at tap 114 has reached the desired value. Depending on the depth of the laser cut 116, the divider voltage tapped at the tap 114 can also be between 0 and 100% of the voltage applied to the connecting conductors 111 and 112. The invention is not limited to the exemplary embodiments described with reference to the drawing. In particular, in the exemplary embodiments according to FIGS. 1 and 3 to 7, the two resistance regions 10 and 13 can form a single, coherent region if the two regions 10 and 13 consist of the same material. In this case, the contact zone 15 can be omitted.

Claims (12)

1. Trimmable voltage divider made by thin film technique or thick-film technique with current- carrying ohmic voltage divider resistor (R1), with at least one tap serving for tapping of a required divider voltage, with one region serving for power supply and one serving for power removal on the ohmic voltage divider resistor (R,), each connected to a connecting conductor (11, 12), characterised in that the ohmic voltage divider resistor (R,) includes a single, contiguous resistance zone (10), the tap consists of a second resistance zone (13) between these two regions and adjoining the first resistance zone (10) and a collector electrode (14) attached to this second zone, and in that a change is made at the second resistance zone (13) by means of a laser cut or sand blast cut (16, 17)-cutting the equipotential lines formed during operation of the voltage divider (R, R2) until the length of the cut has resulted in the required value of the potential at the collector electrode (14) of the tap.
2. Voltage divider according to claim 1, characterised in that the regions serving for power supply and for power removal of the first resistance zone (10) are mutually opposite end sections of this resistance zone (10) and in that the connecting conductors (11, 12) connected to these regions are conductor tracks.
3. Voltage divider according to claim 2, characterised in that the conductor tracks (11, 12) connected to the end sections of the first resistance zone (10) extend over these entire end sections.
4.Voltage divider according to one of claims 1 to 3, characterised in that the material of the second resistance zone (13) is chosen to be more highly resistive than the material of the first resistance zone (10) in order not to change substantially the effective voltage divider resistor (R,) of the first resistance zone (10) and its potential distribution by the trimming.
5. Voltage divider according to one of claims 1 to 4, characterised in that the first resistance zone (10) and the second resistance zone (13) consist of various materials and are thereby in connection with each other such that they slightly overlap.
6. Voltage divider according to one of claims 1 to 5, characterised in that the first resistance zone (10) forming the ohmic voltage divider resistor (R,) forms a preferably rectangular designed strip extending from the region of its first connecting conductor (11) to the region of its second connecting conductor (12).
7. Voltage divider according to claim 6 with at least one tap, characterised in that the region (15) of the second resistance zone (13) of each tap which is in connection with the first resistance zone (10) extends only over part of the length of the first resistance zone (10).
8. Voltage divider according to claim 7, characterised in that at least one tap (13, 14) is attached at each of the two longitudinal sides of the first resistance zone (10).
9. Voltage divider according to claim 6, characterised in that the second resistance zone (13) forms a strip which is in connection with the strip-shaped first resistance zone (10) over its entire length, and in that for trimming a laser or sand blast cut (16) is provided in the second resistance zone (13) which runs parallel to the longitudinal direction of the first resistance zone (10).
10. Voltage divider according to one of claims 1 to 5, characterised in that the first resistance zone (10) forming the ohmic voltage divider resistor (R,) changes in its width from the region of its first connecting conductor (11) to the region of its second connecting conductor (12). 11. Voltage divider according to claim 10, characterised in that the first resistance zone (10) is delimited in a straight line on one side from the region of its first connecting conductor (11) to the region of its second connecting conductor (12), in that the second resistance zone (13) is designed in a strip shape and along this entire side is in connection with the first resistance zone (10), and in that for trimming a cut (16) is provided in the second resistance zone (13) which runs parallel to its longitudinaldirection.
12. Trimmable voltage divider made by thin-film technique or thick-film technique with current- carrying ohmic voltage divider resistor (R,), with at least one tap (114) serving for tapping of a required divider voltage, with one region serving for power supply and one region serving for power removal at the ohmic voltage divider resistor (R,), each connected to a connecting conductor (111, 112), characterised in that the ohmic voltage divider resistor (R,) forms a single, contiguous resistance zone (110), that the tap (114) is a constituent part of the contiguous resistance layer (110) forming the voltage divider resistor (R,), and in that, for generation of a divider voltage, a laser or sand blast cut (116) is made at the tap (114) into the contiguous resistance layer (110), extends between the part of this layer (110) forming the tap (114) and the region of this layer (110) serving for power supply or power removal and is continued until the potential at the tap (114) has reached the required value (Fig. 8).
EP82903234A 1981-11-07 1982-10-28 Thin or thick layer technic voltage divider Expired EP0093125B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813144252 DE3144252A1 (en) 1981-11-07 1981-11-07 VOLTAGE DIVIDER IN THICK OR THICK FILM TECHNOLOGY
DE3144252 1981-11-07

Publications (2)

Publication Number Publication Date
EP0093125A1 EP0093125A1 (en) 1983-11-09
EP0093125B1 true EP0093125B1 (en) 1986-02-26

Family

ID=6145844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82903234A Expired EP0093125B1 (en) 1981-11-07 1982-10-28 Thin or thick layer technic voltage divider

Country Status (5)

Country Link
US (1) US4531111A (en)
EP (1) EP0093125B1 (en)
JP (2) JPS58501890A (en)
DE (2) DE3144252A1 (en)
WO (1) WO1983001708A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19601135C1 (en) * 1996-01-13 1997-05-28 Itt Ind Gmbh Deutsche Semiconductor structure
US6111494A (en) * 1996-08-03 2000-08-29 Robert Bosch Gmbh Adjustable voltage divider produced by hybrid technology

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475099A (en) * 1983-06-27 1984-10-02 Analogic Corporation Voltage divider
US4626822A (en) * 1985-05-02 1986-12-02 Motorola, Inc. Thick film resistor element with coarse and fine adjustment provision
GB2181009B (en) * 1985-09-23 1989-11-29 Fluke Mfg Co John Apparatus and method for providing improved resistive ratio stability of a resistive divider network
US4792782A (en) * 1985-09-23 1988-12-20 Hammond Robert W Apparatus and method for providing improved resistive ratio stability of a resistive divider network
DE3813627C2 (en) * 1988-04-22 1997-03-27 Bosch Gmbh Robert Method for comparing the functions of an electronic circuit
US5198794A (en) * 1990-03-26 1993-03-30 Matsushita Electric Industrial Co., Ltd. Trimmed resistor
DE4039594C2 (en) * 1990-12-12 1994-01-20 Benning Elektrotechnik Method for calibrating the voltage thresholds in a voltage tester for the gradual, in particular visual display of a voltage
US5506494A (en) * 1991-04-26 1996-04-09 Nippondenso Co., Ltd. Resistor circuit with reduced temperature coefficient of resistance
JP3049843B2 (en) * 1991-04-26 2000-06-05 株式会社デンソー Method of forming resistor electrode structure
US5287083A (en) * 1992-03-30 1994-02-15 Dale Electronics, Inc. Bulk metal chip resistor
US5929746A (en) * 1995-10-13 1999-07-27 International Resistive Company, Inc. Surface mounted thin film voltage divider
DE29703892U1 (en) * 1997-03-04 1997-05-07 Ecr Gmbh Elektronische Bauelem Potentiometers in thick-film technology, circuit board and grinder for this
DE19848930C2 (en) * 1998-10-23 2000-09-21 Moeller Gmbh Precision resistance
US6489881B1 (en) * 1999-10-28 2002-12-03 International Rectifier Corporation High current sense resistor and process for its manufacture
DE102006015479A1 (en) * 2006-04-03 2007-10-04 Conti Temic Microelectronic Gmbh Laboratory resistor for providing measurement of current flow between strip conductors of Ampere, has potential pick-up connection staying electrically in contact with resistor unit between two strip conductor connections
WO2020241517A1 (en) * 2019-05-29 2020-12-03 三菱電機株式会社 Voltage divider device
CN114914041A (en) * 2022-05-19 2022-08-16 西安高研电器有限责任公司 Resistor or resistor divider sharing substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2518969B1 (en) * 1975-04-29 1976-12-30 Hermsdorf Keramik Veb Conductive track and contact for thin-film circuits - has surface with uniformly arranged tinned portions
AU502302B2 (en) * 1975-05-12 1979-07-19 Gillette Company, The Wet shaving system
US4100525A (en) * 1976-05-10 1978-07-11 Allen-Bradley Company Single setting variable resistor
JPS5622548A (en) * 1979-08-01 1981-03-03 Hitachi Ltd Armature coil for electrical rotary machine
US4284970A (en) * 1979-08-09 1981-08-18 Bell Telephone Laboratories, Incorporated Fabrication of film resistor circuits
US4270268A (en) * 1979-12-07 1981-06-02 The Gillette Company Razor blade assembly
US4475099A (en) * 1983-06-27 1984-10-02 Analogic Corporation Voltage divider

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19601135C1 (en) * 1996-01-13 1997-05-28 Itt Ind Gmbh Deutsche Semiconductor structure
US6111494A (en) * 1996-08-03 2000-08-29 Robert Bosch Gmbh Adjustable voltage divider produced by hybrid technology

Also Published As

Publication number Publication date
US4531111A (en) 1985-07-23
DE3269452D1 (en) 1986-04-03
JPH04120201U (en) 1992-10-27
DE3144252A1 (en) 1983-05-19
JPS58501890A (en) 1983-11-04
WO1983001708A1 (en) 1983-05-11
EP0093125A1 (en) 1983-11-09

Similar Documents

Publication Publication Date Title
EP0093125B1 (en) Thin or thick layer technic voltage divider
WO1998006110A1 (en) Adjustable voltage divider produced by hybrid technology
DE1639019B2 (en) CONTROLLED SEMI-CONDUCTOR RECTIFIER
DE2023219B2 (en) Programmable semiconductor read-only memory
DE2021160A1 (en) Semiconductor switching device
DE2653484A1 (en) INTEGRATED CONSTANT RESISTOR
DE1614858C3 (en) Semiconductor device
DE1212221B (en) Semiconductor component with a disk-shaped semiconductor body and two non-blocking base electrodes
DE2301855B2 (en) Circuit arrangement with field effect transistors for level adjustment
DE1514228C3 (en) Field effect transistor
DE3328958C2 (en)
EP0156022B1 (en) Semiconductor device controlled by field effect
EP0184645A2 (en) Chip varistor and production process
DE2363284C2 (en) Ionization device
DE2756514A1 (en) SEMICONDUCTOR COMPONENT
DE1260566B (en) A microwave device having a waveguide section containing a semiconductor element
DE102018100893A1 (en) Section insulator
DE2700388C2 (en) Interference suppression arrangement on a power tool or device with a housing made entirely or partially of metal
DE965827C (en) Attenuation regulator from a homogeneous surface resistance
CH676441A5 (en)
DE2329872A1 (en) THYRISTOR
DE2932715A1 (en) Thick film potentiometer on ceramic substrate - has narrow conductive paths spaced along and perpendicular to curved resistive track
DE3917864A1 (en) Electrical switch with potentiometer - has contact track terminated by slot to avoid particle build-up causing problems
DE1953039B2 (en) LOW THIN FILM RESISTANCE ADJUSTABLE WITH A SANDER
DE1806257A1 (en) Printed electrical component, in particular sheet resistance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830627

AK Designated contracting states

Designated state(s): CH DE FR GB LI NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 3269452

Country of ref document: DE

Date of ref document: 19860403

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011008

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011017

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011019

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011026

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011211

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20021027

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20021027

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20021027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20021028

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20021027

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20021028