EP0084886B1 - Process for increasing the hydrocarbon yield from a subterranean formation - Google Patents

Process for increasing the hydrocarbon yield from a subterranean formation Download PDF

Info

Publication number
EP0084886B1
EP0084886B1 EP83100637A EP83100637A EP0084886B1 EP 0084886 B1 EP0084886 B1 EP 0084886B1 EP 83100637 A EP83100637 A EP 83100637A EP 83100637 A EP83100637 A EP 83100637A EP 0084886 B1 EP0084886 B1 EP 0084886B1
Authority
EP
European Patent Office
Prior art keywords
formation
increasing
viscosity
process according
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83100637A
Other languages
German (de)
French (fr)
Other versions
EP0084886A2 (en
EP0084886A3 (en
Inventor
Wolfgang Dr. Littmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veba Oel Technologie und Automatisierung GmbH
Original Assignee
Veba Oel Technologie und Automatisierung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veba Oel Technologie und Automatisierung GmbH filed Critical Veba Oel Technologie und Automatisierung GmbH
Priority to AT83100637T priority Critical patent/ATE16623T1/en
Publication of EP0084886A2 publication Critical patent/EP0084886A2/en
Publication of EP0084886A3 publication Critical patent/EP0084886A3/en
Application granted granted Critical
Publication of EP0084886B1 publication Critical patent/EP0084886B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/592Compositions used in combination with generated heat, e.g. by steam injection

Definitions

  • Heat is usually supplied to the deposit by injecting hot water or steam into an injection well located a suitable distance from the production well (s).
  • the injected water or water vapor also serves as a displacer for the oil that has become mobile due to the supply of heat.
  • the yield of a heavy oil deposit can be increased considerably or even made possible in the first place, it is still far below the yields achieved in medium and light oil deposits.
  • One reason for this is the viscosities of the displacing media hot water or steam, which are much lower than those of heavy oil, which means that the heavy oil is only partially displaced.
  • the steam is concentrated in the upper part of a deposit and quickly breaks through to the conveyor probes there, so that it is not possible to build up a sufficient pressure gradient in the deposit to displace the oil.
  • hydrophilic polymers are e.g. B. polysaccharides, hydroxyethyl cellulose and in particular not or only partially hydrolyzed polyacrylamides.
  • these chemicals are generally sensitive to temperature, they are not readily usable for extracting heavy oil during hot water flooding. According to US Pat. No.
  • 3,373,814 they are used before or during the injection of steam into a borehole, but are said to be used together with an agent which retards their water absorption and swelling, such as alkali metal or alkaline earth metal halides, and together with water- and oil-insoluble fine-particle substances , such as lime, pumice, heavy spar, can be used to prevent unwanted steam breakthroughs by clogging the formation at the vulnerable points.
  • an agent which retards their water absorption and swelling such as alkali metal or alkaline earth metal halides
  • water- and oil-insoluble fine-particle substances such as lime, pumice, heavy spar
  • the formation can be heated in various ways, e.g. in that part of the heavy oil is burned with the addition of oxygen or air. It is also possible to heat the formation electrothermally.
  • US Pat. No. 3,958,636 describes an electrothermal heating of the formation, an aqueous solution, in particular of strongly dissociated inorganic salts, being pressed into the formation during and after the heating, the solution thus heating up with the formation.
  • the formation is heated electrothermally and then flooded with hot water, steam, hot gas or a solvent for the heavy oil.
  • the formation heating mentioned above is preferred by means of injected steam or hot water.
  • the formation should reach temperatures between 50 and 350 ° C. Temperatures between 100 and 250 ° C. are preferred, the temperature of the formation at the injection borehole generally being higher than at the production borehole.
  • Hydroxyethyl cellulose or polysaccharides can be used as viscosity-increasing polymers. It is preferred to use polyacrylamides which are not or only partially hydrolyzed. It is also possible to add surfactants to the solutions in addition to the polymers, for. B. alkali salts of sulfated alkoxylated alkyl, aryl or alkylaryl hydroxy compounds.
  • the amounts of polymer are measured so that the viscosity of the solution at the temperature reached during the displacement of the heavy oil at least reaches the viscosity of the heavy oil to be displaced at this temperature. Generally these are 0.5 to 30, preferably 1 to 6 kgm- 3 .
  • the polymer solution is flooded with a temperature such that its temperature in the formation does not rise so much that the polymers lose their viscosity-increasing effect. In the non-partially or partially hydrolyzed polyacrylamides preferably used, this temperature limit is 110 to 130 ° C. In order to avoid exceeding this temperature, the polymer solution should be used at temperatures between 5 and 50, preferably 15 and 30 ° C for after-flooding.
  • the method according to the invention is not only applicable to heavy oil deposits; it can also be used for other similar deposits, especially bitumen deposits and tar sands, and can also be used in light and medium oil deposits.
  • a heavy oil had to be extracted from a deposit with a thickness of 8.5 m, a permeability of 1.5 ⁇ m 2 and a porosity of 30%, the viscosity of which was 1,600 mPa.s at the deposit temperature of 23 ° C.
  • Fig. 1 the viscosity of this oil is plotted in mPa.s against the reciprocal absolute temperature. 1 denotes the range with viscosities between 15 and 100 mPa.s, which at reciprocal temperatures is between 0.002 9 and 0.002 6 K- 1, corresponding to 70 to 110 ° C, in which polyacrylamides which are not or only partially hydrolyzed are sufficiently stable and Mobility of heavy oil enables its promotion.
  • curve 9 shows the production rate in m 3 d- 1 (left division of the ordinate) and curve 10 shows the degree of de-oiling of the formation (right division of the ordinate) against the production time in days.
  • the production rate did not reach 1 m 3 d -1 during the hot water flooding and increased to about 16 m 3 d -1 when the production holes were reached through the polymer front . While the degree of deoiling did not reach 15% with hot flooding alone, the subsequent flooding with cold polymer solution led to a degree of deoiling of more than 40%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Fats And Perfumes (AREA)

Abstract

Heavy crude oil is recovered from a subterranean formation by a process comprising (a) heating said formation, and (b) subsequently flooding the formation with a cold aqueous solution containing a polymer additive which increases its viscosity.

Description

In vielen erdölführenden unterirdischen Formationen steht das Erdöl unter einem Druck, der das Erdöl aus der Formation zu einem Produktionsbohrloch treibt, aus dem es zur Erdoberfläche gefördert werden kann. Diese allgemein als Primärförderphase bezeichnete Erdölgewinnung führt bei Schweröllagerstätten jedoch, wenn überhaupt, nur zur Förderung eines sehr geringen Teiles des Öles. Dies ist darauf zurückzuführen, daß Schweröle wegen ihrer hohen Viskosität unter den initialen Lagerstättenbedingungen kaum oder gar nicht fließfähig sind. Man führt daher derartigen Lagerstätten Wärme zu, was zu einer Verringerung der Viskosität des Öles führt, wodurch dieses fließfähig wird.In many petroleum-bearing underground formations, petroleum is under pressure that drives the oil out of the formation to a production well, from which it can be extracted to the surface of the earth. This oil production, which is generally referred to as the primary production phase, leads to the extraction of a very small part of the oil in heavy oil deposits, if at all. This is due to the fact that heavy oils are hardly or not flowable under the initial deposit conditions due to their high viscosity. Such deposits are therefore supplied with heat, which leads to a reduction in the viscosity of the oil, which makes it flowable.

Die Wärmezufuhr in die Lagerstätte erfolgt gewöhnlich durch die Injektion von heißem Wasser oder Wasserdampf in ein Injektionsbohrloch, das sich in geeigneter Entfernung von dem oder den Produktionsbohrlöchern befindet. Das injizierte Wasser bzw. der injizierte Wasserdampf dient neben der Erwärmung der Lagerstätte gleichzeitig als Verdrängungsmittel für das durch die Wärmezufuhr beweglich gewordene Öl. Zwar läßt sich hierdurch die Ausbeute einer Schweröllagerstätte erheblich steigern bzw. überhaupt erst ermöglichen, doch liegt sie noch weit unter den Ausbeuten, die in Mittel- und Leichtöllagerstätten erreicht werden. Ein Grund hierfür liegt in den gegenüber Schweröl wesentlich geringeren Viskositäten der verdrängenden Medien Heißwasser oder Wasserdampf, wodurch das Schweröl nur unvollständig verdrängt wird. Weiterhin kommt es aufgrund von Dichteunterschieden beim Dampffluten dazu, daß sich der Dampf im oberen Teil einer Lagerstätte konzentriert, dort schnell zu den Fördersonden durchbricht, so daß es nicht möglich ist, in der Lagerstätte einen zur Verdrängung des Öles ausreichenden Druckgradienten aufzubauen.Heat is usually supplied to the deposit by injecting hot water or steam into an injection well located a suitable distance from the production well (s). In addition to heating the deposit, the injected water or water vapor also serves as a displacer for the oil that has become mobile due to the supply of heat. Although the yield of a heavy oil deposit can be increased considerably or even made possible in the first place, it is still far below the yields achieved in medium and light oil deposits. One reason for this is the viscosities of the displacing media hot water or steam, which are much lower than those of heavy oil, which means that the heavy oil is only partially displaced. Furthermore, due to differences in density during steam flooding, the steam is concentrated in the upper part of a deposit and quickly breaks through to the conveyor probes there, so that it is not possible to build up a sufficient pressure gradient in the deposit to displace the oil.

Ähnliche Probleme sind in US-PS 3 477 510 für die Gewinnung von viskosen Ölen beschrieben und als Maßnahme wird das alternierende Einbringen von Dampf und Wasser in ein Injektionsbohrloch vorgeschlagen. Durch eine erste Dampfinjektion wird naturgemäß der obere Teil der Formation erhitzt, bei dem nachfolgenden Einführen von Wasser der untere Teil der Formation. Eine zweite Dampfinjektion führt schließlich zu einer etwa vertikalen Lage der Isotherme. Wegen der gegenüber Erdöl sehr geringen Viskosität des Wassers wird jedoch hierbei Schweröl nur unvollständig verdrängt. Dies gilt auch für das Verfahren nach DE-AS 26 02 450, bei dem die Ausbeute von Erdöl-Lagerstätten, insbesondere von hochviskosem Erdöl, dadurch verbessert werden soll, daß die Lagerstätte zunächst durch Heißwasserfluten auf eine Temperatur aufgewärmt wird, bei der sich stabile Emulsionen aus dem Erdöl und einer alkalischen Lösung bilden, dann diese alkalische Lösung heiß injiziert und schließlich zur Förderung mit Kaltwasser geflutet wird.Similar problems are described in US Pat. No. 3,477,510 for the production of viscous oils and as a measure the alternating introduction of steam and water into an injection borehole is proposed. The first part of the formation is naturally heated by a first steam injection, and the lower part of the formation when water is subsequently introduced. A second steam injection finally leads to an approximately vertical position of the isotherm. Because of the very low viscosity of the water compared to petroleum, heavy oil is only partially displaced. This also applies to the process according to DE-AS 26 02 450, in which the yield of petroleum deposits, in particular of highly viscous petroleum, is to be improved in that the deposit is first heated to a temperature by hot water flooding at which stable emulsions are formed form from the petroleum and an alkaline solution, then this alkaline solution is injected hot and finally flooded with cold water for production.

Andererseits ist es bekannt, daß der Verdrängungswirkungsgrad bei der Erdölgewinnung durch Fluten wesentlich gesteigert werden kann, wenn dem Flutwasser geringe Mengen von hydrophilen Polymerisaten zugesetzt werden, die die Viskosität der Lösung erhöhen. Geeignete Polymerisate sind z. B. Polysaccharide, Hydroxy- äthylzellulosen und insbesondere nicht oder nur teilweise hydrolysierte Polyacrylamide. Da aber diese Chemikalien im allgemeinen temperaturempfindlich sind, sind sie für die Gewinnung von Schweröl beim Heißwasserfluten nicht ohne weiteres verwendbar. Nach US-PS 3 373 814 werden sie zwar vor oder während der Injektion von Dampf in ein Bohrloch eingesetzt, sollen jedoch zusammen mit einem ihre Wasseraufnahme und ihr Schwellen verzögernden Mittel, wie Alkali-oder Erdalkalihalogeniden, und zusammen mit wasser- und ölunlöslichen feinteiligen Stoffen, wie Kalk, Bimsstein, Schwerspat, verwendet werden, um unerwünschte Dampfdurchbrüche dadurch zu verhindern, daß die Formation an den gefährdeten Stellen verstopft wird.On the other hand, it is known that the displacement efficiency in petroleum extraction by flooding can be significantly increased if small amounts of hydrophilic polymers are added to the flood water, which increase the viscosity of the solution. Suitable polymers are e.g. B. polysaccharides, hydroxyethyl cellulose and in particular not or only partially hydrolyzed polyacrylamides. However, since these chemicals are generally sensitive to temperature, they are not readily usable for extracting heavy oil during hot water flooding. According to US Pat. No. 3,373,814, they are used before or during the injection of steam into a borehole, but are said to be used together with an agent which retards their water absorption and swelling, such as alkali metal or alkaline earth metal halides, and together with water- and oil-insoluble fine-particle substances , such as lime, pumice, heavy spar, can be used to prevent unwanted steam breakthroughs by clogging the formation at the vulnerable points.

Es wurde nun gefunden, daß die geschilderten Schwierigkeiten dadurch überwunden und die Ausbeute an Kohlenwasserstoffen aus einer unterirdischen, insbesondere Schweröl, Bitumen oder Teer führenden Formation dadurch gesteigert werden kann, daß man die Formation zunächst erhitzt und dann mit einer kalten wäßrigen Lösung flutet, die einen Zusatz von ihre Viskosität erhöhenden Polymerisaten enthält.It has now been found that the difficulties outlined above can be overcome and the yield of hydrocarbons from a subterranean formation, in particular heavy oil, bitumen or tar, can be increased by first heating the formation and then flooding it with a cold aqueous solution, one Addition of their viscosity-increasing polymers.

Das Erhitzen der Formation kann auf verschiedene Weisen erfolgen, z..B. dadurch, daß ein Teil des Schweröles unter Zuführung von Sauerstoff oder Luft verbrannt wird. Auch ist es möglich, die Formation elektrothermisch zu erwärmen. US-PS 3 958 636 beschreibt eine elektrothermische Erhitzung der Formation, wobei während und nach der Erhitzung eine wäßrige Lösung insbesondere von stark dissoziierten anorganischen Salzen in die Formation gedrückt wird, die Lösung sich also mit der Formation aufheizt. Auch nach US-PS 4 084 637 wird die Formation elektrothermisch aufgeheizt und anschließend mit Heißwasser, Dampf, Heißgas oder einem Lösungsmittel für das Schweröl geflutet.The formation can be heated in various ways, e.g. in that part of the heavy oil is burned with the addition of oxygen or air. It is also possible to heat the formation electrothermally. US Pat. No. 3,958,636 describes an electrothermal heating of the formation, an aqueous solution, in particular of strongly dissociated inorganic salts, being pressed into the formation during and after the heating, the solution thus heating up with the formation. Also according to US Pat. No. 4,084,637, the formation is heated electrothermally and then flooded with hot water, steam, hot gas or a solvent for the heavy oil.

Bevorzugt wird jedoch die eingangs erwähnte Erhitzung der Formation mittels injiziertem Wasserdampf oder Heißwasser. Dabei sollte die Formation Temperaturen zwischen 50 und 350 °C annehmen. Bevorzugt werden Temperaturen zwischen 100 und 250 °C, wobei in der Regel die Temperatur der Formation am Injektionsbohrloch höher ist als am Produktionsbohrloch.However, the formation heating mentioned above is preferred by means of injected steam or hot water. The formation should reach temperatures between 50 and 350 ° C. Temperatures between 100 and 250 ° C. are preferred, the temperature of the formation at the injection borehole generally being higher than at the production borehole.

Als viskositätserhöhende Polymerisate können Hydroxyäthylzellulose oder Polysaccharide verwendet werden. Bevorzugt wird der Einsatz von Polyacrylamiden, die nicht oder partiell hydrolysiert sind. Auch ist es möglich, den Lösungen neben den Polymerisaten Tenside zuzusetzen, z. B. Alkalisalze von sulfatierten alkoxylierten Alkyl-, Aryl- oder Alkylaryl-hydroxyverbindungen.Hydroxyethyl cellulose or polysaccharides can be used as viscosity-increasing polymers. It is preferred to use polyacrylamides which are not or only partially hydrolyzed. It is also possible to add surfactants to the solutions in addition to the polymers, for. B. alkali salts of sulfated alkoxylated alkyl, aryl or alkylaryl hydroxy compounds.

Die Mengen an Polymerisat werden so bemessen, daß die Viskosität der Lösung bei der während der Verdrängung des Schweröls erreichten Temperatur mindestens die Viskosität des zu verdrängenden Schweröles bei dieser Temperatur erreicht. Im allgemeinen sind dies 0,5 bis 30, vorzugsweise 1 bis 6 kgm-3. Die Polymerisatlösung wird mit einer solchen Temperatur geflutet, daß ihre Temperatur in der Formation nicht so stark ansteigt, daß die Polymerisate ihre viskositätssteigernde Wirkung verlieren. Bei den bevorzugt eingesetzten nicht oder teilweise hydrolysierten Polyacrylamiden liegt diese Temperaturgrenze bei 110 bis 130 °C. Um die Überschreitung dieser Temperatur zu vermeiden, sollte die Polymerenlösung mit Temperaturen zwischen 5 und 50, vorzugsweise 15 und 30 °C zum Nachfluten eingesetzt werden.The amounts of polymer are measured so that the viscosity of the solution at the temperature reached during the displacement of the heavy oil at least reaches the viscosity of the heavy oil to be displaced at this temperature. Generally these are 0.5 to 30, preferably 1 to 6 kgm- 3 . The polymer solution is flooded with a temperature such that its temperature in the formation does not rise so much that the polymers lose their viscosity-increasing effect. In the non-partially or partially hydrolyzed polyacrylamides preferably used, this temperature limit is 110 to 130 ° C. In order to avoid exceeding this temperature, the polymer solution should be used at temperatures between 5 and 50, preferably 15 and 30 ° C for after-flooding.

Das erfindungsgemäße Verfahren ist nicht nur bei Schweröllagerstätten anwendbar; es ist auch für andere, ähnliche Lagerstätten, speziell Bitumenlagerstätten und Teersande brauchbar und kann auch in Leicht- und Mittelöllagerstätten eingesetzt werden.The method according to the invention is not only applicable to heavy oil deposits; it can also be used for other similar deposits, especially bitumen deposits and tar sands, and can also be used in light and medium oil deposits.

Beispielexample

Aus einer Lagerstätte mit einer Mächtigkeit von 8,5 m, einer Permeabilität von 1,5 µm2 und einer Porosität von 30 % war ein Schweröl zu fördern, dessen Viskosität bei der Lagerstättentemperatur von 23 °C 1 600 mPa.s betrug. In Fig. 1 ist die Viskosität dieses Öles in mPa.s gegen die rezipröke absolute Temperatur aufgetragen. Mit 1 ist der Bereich mit Viskositäten zwischen 15 und 100 mPa.s gekennzeichnet, der bei reziproken Temperaturen zwischen 0,002 9 und 0,002 6 K-1 entsprechend 70 bis 110°C liegt, in dem also nicht oder teilweise hydrolysierte Polyacrylamide ausreichend beständig sind und die Mobilität des Schweröles seine Förderung ermöglicht.A heavy oil had to be extracted from a deposit with a thickness of 8.5 m, a permeability of 1.5 µm 2 and a porosity of 30%, the viscosity of which was 1,600 mPa.s at the deposit temperature of 23 ° C. In Fig. 1 the viscosity of this oil is plotted in mPa.s against the reciprocal absolute temperature. 1 denotes the range with viscosities between 15 and 100 mPa.s, which at reciprocal temperatures is between 0.002 9 and 0.002 6 K- 1, corresponding to 70 to 110 ° C, in which polyacrylamides which are not or only partially hydrolyzed are sufficiently stable and Mobility of heavy oil enables its promotion.

In ein Injektionsbohrloch, das von 4 Produktionsbohrlöchern im Abstand von jeweils 70 m umgeben war, wurden 5 m3h-' Heißwasser mit einer Temperatur von 270 °C und einem Druck von 54 bar geflutet. Nach 500 Tagen hatte sich der in der Kurve 2 in Fig. 2 als Funktion des Abstandes vom Injektionsbohrloch dargestellte Temperaturverlauf eingestellt.5 m 3 h of hot water at a temperature of 270 ° C. and a pressure of 54 bar were flooded into an injection borehole, which was surrounded by 4 production boreholes each 70 m apart. After 500 days, the temperature curve shown in curve 2 in FIG. 2 as a function of the distance from the injection borehole had set in.

Anschließend wurde mit 5 m3h-1 einer 1,5 kgm-3 Polymerisat enthaltenden Lösung gespült. Als Polymerlösung wurde partiell hydrolysiertes Polyacrylamid in Süßwasser verwendet. Die Lösung hatte eine Temperatur von 20 °C. In Fig. 2 ist der Temperaturverlauf in der Lagerstätte nach 10 Tagen als Kurve 3, nach 50 Tagen als Kurve 4, nach 100 Tagen als Kurve 5, nach 500 Tagen als Kurve 6 und nach 1 000 Tagen als Kurve 7 dargestellt. Kurve 8 zeigt den Temperaturverlauf an der das Polymerisat enthaltenden Kaltwasserfront. Die höchste Temperatur wurde mit 90 °C nach ca. 150 Tagen erreicht. Sie lag noch deutlich unter den Temperaturen, bei welchen ein merklicher Abbau des Polymerisats zu befürchten ist.It was then rinsed with 5 m 3 h -1 of a solution containing 1.5 kgm- 3 polymer. Partially hydrolyzed polyacrylamide in fresh water was used as the polymer solution. The solution had a temperature of 20 ° C. 2 shows the temperature profile in the deposit after 10 days as curve 3, after 50 days as curve 4, after 100 days as curve 5, after 500 days as curve 6 and after 1,000 days as curve 7. Curve 8 shows the temperature profile on the cold water front containing the polymer. The highest temperature was reached at 90 ° C after about 150 days. It was still significantly below the temperatures at which a noticeable degradation of the polymer is to be feared.

In Fig. 3 ist als Kurve 9 die Produktionsrate in m3d-1 (linke Einteilung der Ordinate) und als Kurve 10 der Entölungsgrad der Formation (rechte Einteilung der Ordinate) gegen die Produktionszeit in Tagen dargestellt. Die Produktionsrate erreichte während des Heißwasserflutens nicht 1 m3d-1 und steigerte sich beim Erreichen der Produktionslöcher durch die Polymerenfront auf ca. 16 m3d-1. Während allein mit Heißfluten der Entölungsgrad 15 % nicht erreichte, führte das nachfolgende Fluten mit kalter Polymerenlösung zu einem Entölungsgrad von mehr als 40 %.In Fig. 3, curve 9 shows the production rate in m 3 d- 1 (left division of the ordinate) and curve 10 shows the degree of de-oiling of the formation (right division of the ordinate) against the production time in days. The production rate did not reach 1 m 3 d -1 during the hot water flooding and increased to about 16 m 3 d -1 when the production holes were reached through the polymer front . While the degree of deoiling did not reach 15% with hot flooding alone, the subsequent flooding with cold polymer solution led to a degree of deoiling of more than 40%.

Claims (6)

1. Process for increasing the yield of hydrocarbons from an underground formation bearing in particular heavy oil, bitumen or tar, in which the formation is first heated and subsequently flooded with a cold aqueous solution, characterised in that, after heating, the formation is flooded with a cold aqueous solution containing a polymer additive increasing its viscosity.
2. Process according to Claim 1, characterised in that the formation is heated by means of hot water or steam.
3. Process according to Claim 1 or 2, characterised in that the formation is heated to temperatures of between 50 °C and 350 °C, preferably between 100°C and 250 °C.
4. Process according to one of Claims 1 to 3, characterised in that polysaccharides, hydroxyethylcellulose or, in particular, non-hydrolysed or partially hydrolysed polyacrylamides are used as the viscosity-increasing polymer.
5. Process according to one of Claims 1 to 4, characterised in that the aqueous solution contains polymers in quantities of 0.5 kgm-3 to 30 kgm-3, preferably 1 kgm-3 to 6 kgm-3.
6. Process according to one of Claims 1 to 5, characterised in that the aqueous solution is used for flooding at temperatures of between 5 °C and 50 °C, especially between 15 °C and 30 °C.
EP83100637A 1982-01-27 1983-01-25 Process for increasing the hydrocarbon yield from a subterranean formation Expired EP0084886B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83100637T ATE16623T1 (en) 1982-01-27 1983-01-25 METHOD OF INCREASING THE YIELD OF HYDROCARBONS FROM AN UNDERGROUND FORMATION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3202492 1982-01-27
DE3202492A DE3202492C2 (en) 1982-01-27 1982-01-27 Process for increasing the yield of hydrocarbons from a subterranean formation

Publications (3)

Publication Number Publication Date
EP0084886A2 EP0084886A2 (en) 1983-08-03
EP0084886A3 EP0084886A3 (en) 1983-09-28
EP0084886B1 true EP0084886B1 (en) 1985-11-21

Family

ID=6153981

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83100637A Expired EP0084886B1 (en) 1982-01-27 1983-01-25 Process for increasing the hydrocarbon yield from a subterranean formation

Country Status (7)

Country Link
US (1) US4508170A (en)
EP (1) EP0084886B1 (en)
AT (1) ATE16623T1 (en)
CA (1) CA1193186A (en)
DE (2) DE3202492C2 (en)
GR (1) GR77392B (en)
NO (1) NO158473C (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4646833A (en) * 1985-12-23 1987-03-03 Atlantic Richfield Company Flooding to recover oil from subterranean formations and employing injection of hot, low-viscosity polymer solution that becomes more viscous than the oil out in the formation
US5027896A (en) * 1990-03-21 1991-07-02 Anderson Leonard M Method for in-situ recovery of energy raw material by the introduction of a water/oxygen slurry
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
EP1276967B1 (en) 2000-04-24 2006-07-26 Shell Internationale Researchmaatschappij B.V. A method for treating a hydrocarbon containing formation
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US20030075318A1 (en) * 2000-04-24 2003-04-24 Keedy Charles Robert In situ thermal processing of a coal formation using substantially parallel formed wellbores
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20030066642A1 (en) * 2000-04-24 2003-04-10 Wellington Scott Lee In situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US7004251B2 (en) 2001-04-24 2006-02-28 Shell Oil Company In situ thermal processing and remediation of an oil shale formation
AU2002353888B1 (en) 2001-10-24 2008-03-13 Shell Internationale Research Maatschappij B.V. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
CA2503394C (en) 2002-10-24 2011-06-14 Shell Canada Limited Temperature limited heaters for heating subsurface formations or wellbores
CA2524689C (en) 2003-04-24 2012-05-22 Shell Canada Limited Thermal processes for subsurface formations
BRPI0414985A (en) * 2003-10-02 2006-11-21 Proflux Systems Llp method for reducing viscosity of viscous fluids
US7809538B2 (en) 2006-01-13 2010-10-05 Halliburton Energy Services, Inc. Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7770643B2 (en) 2006-10-10 2010-08-10 Halliburton Energy Services, Inc. Hydrocarbon recovery using fluids
US7832482B2 (en) 2006-10-10 2010-11-16 Halliburton Energy Services, Inc. Producing resources using steam injection
US20080196892A1 (en) * 2007-02-20 2008-08-21 Lau Philip Y Enzyme enhanced oil recovery (EEOR) for waterflooding operations
RU2465624C2 (en) 2007-10-19 2012-10-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Adjustable transformer with switched taps
US20090260823A1 (en) 2008-04-18 2009-10-22 Robert George Prince-Wright Mines and tunnels for use in treating subsurface hydrocarbon containing formations
AU2012367347A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
CA2972203C (en) 2017-06-29 2018-07-17 Exxonmobil Upstream Research Company Chasing solvent for enhanced recovery processes
CA2974712C (en) 2017-07-27 2018-09-25 Imperial Oil Resources Limited Enhanced methods for recovering viscous hydrocarbons from a subterranean formation as a follow-up to thermal recovery processes
CA2978157C (en) 2017-08-31 2018-10-16 Exxonmobil Upstream Research Company Thermal recovery methods for recovering viscous hydrocarbons from a subterranean formation
CA2983541C (en) 2017-10-24 2019-01-22 Exxonmobil Upstream Research Company Systems and methods for dynamic liquid level monitoring and control

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3135326A (en) * 1960-11-21 1964-06-02 Oil Sand Conditioning Corp Secondary oil recovery method
US3131761A (en) * 1960-12-16 1964-05-05 Pan American Petroleum Corp Combination in situ combustionwaterflooding process
US3204694A (en) * 1964-02-19 1965-09-07 California Research Corp Thermal additive waterflooding method
US3353598A (en) * 1964-09-11 1967-11-21 Phillips Petroleum Co High-pressure steam drive oil production process
US3347313A (en) * 1964-11-13 1967-10-17 Shell Oil Co Steam drive with viscous volatile buffer
US3302713A (en) * 1965-07-06 1967-02-07 Exxon Production Research Co Surfactant-waterflooding process
US3373814A (en) * 1966-04-14 1968-03-19 Dow Chemical Co Steam injection using steam-loss inhibiting materials
US3439743A (en) * 1967-07-13 1969-04-22 Gulf Research Development Co Miscible flooding process
US3483924A (en) * 1968-01-26 1969-12-16 Chevron Res Method of assisting the recovery of hydrocarbons using a steam drive
US3477510A (en) * 1968-02-01 1969-11-11 Exxon Production Research Co Alternate steam-cold water injection for the recovery of viscous crude
US3572437A (en) * 1969-02-14 1971-03-30 Mobil Oil Corp Oil recovery by steam injection followed by hot water
US3648771A (en) * 1969-12-29 1972-03-14 Marathon Oil Co In situ recovery of oil from tar sands using oil-external micellar dispersions
US3802508A (en) * 1969-12-29 1974-04-09 Marathon Oil Co In situ recovery of oil from tar sands using water-external micellar dispersions
CA943750A (en) * 1971-03-22 1974-03-19 William G. Halbert (Jr.) Tar recovery method
US3823776A (en) * 1973-04-26 1974-07-16 Mobil Oil Corp Oil recovery method by oxidation and forming surfactants in situ
US3958636A (en) * 1975-01-23 1976-05-25 Atlantic Richfield Company Production of bitumen from a tar sand formation
FR2387134A1 (en) * 1976-01-23 1978-11-10 Sev Marchal AIR CONDITIONING DEVICE, ESPECIALLY FOR MOTOR VEHICLES
DE2602450C3 (en) * 1976-01-23 1979-01-18 Wintershall Ag, 3100 Celle Process for the extraction of petroleum
US4050513A (en) * 1976-07-15 1977-09-27 Texaco Inc. Method of treating a high temperature formation to permit the use therein of temperature sensitive hydrophilic, viscosity increasing polymers
US4084637A (en) * 1976-12-16 1978-04-18 Petro Canada Exploration Inc. Method of producing viscous materials from subterranean formations
US4175618A (en) * 1978-05-10 1979-11-27 Texaco Inc. High vertical and horizontal conformance thermal oil recovery process
US4280559A (en) * 1979-10-29 1981-07-28 Exxon Production Research Company Method for producing heavy crude

Also Published As

Publication number Publication date
EP0084886A2 (en) 1983-08-03
NO158473B (en) 1988-06-06
ATE16623T1 (en) 1985-12-15
CA1193186A (en) 1985-09-10
DE3361245D1 (en) 1986-01-02
NO830251L (en) 1983-07-28
DE3202492A1 (en) 1983-08-11
DE3202492C2 (en) 1983-12-01
NO158473C (en) 1988-09-14
US4508170A (en) 1985-04-02
GR77392B (en) 1984-09-11
EP0084886A3 (en) 1983-09-28

Similar Documents

Publication Publication Date Title
EP0084886B1 (en) Process for increasing the hydrocarbon yield from a subterranean formation
DE3105913C2 (en) Process for the extraction of oil from underground reservoirs by emulsion flooding
US3279538A (en) Oil recovery
US3822748A (en) Petroleum recovery process
US2920041A (en) Waterflooding method of secondary recovery
DE2615874B2 (en) Application of a method for extracting crude oil and bitumen from underground deposits by means of a combustion front in deposits of any content of intermediate hydrocarbons in the crude oil or bitumen
US3354954A (en) Steam injection process for recovery of petroleum
DE2440429C2 (en) Process for the thermal insulation of a pipeline suspended in a borehole and process for the extraction of petroleum from a subterranean formation
US3854531A (en) Viscous petroleum recovery process
US3690376A (en) Oil recovery using steam-chemical drive fluids
WO2014167012A1 (en) Method for hydraulically fracturing a subterranean formation using aluminium particles
US3360045A (en) Recovery of heavy crude oil by steam drive
DE2606100A1 (en) METHOD OF TREATING A DRILL HOLE
DE2420554A1 (en) PROCESS FOR BITUMEN EXTRACTION
DE2817657A1 (en) PROCESS FOR EXTRACTION OF PETROLEUM BY MEANS OF HEAT
US3732926A (en) Method for recovery of hydrocarbons utilizing steam injection
DE2727700A1 (en) PROCESS FOR THE PRE-TREATMENT OF AN UNDERGROUND FORMATION CONTAINING PETROLEUM FOR THE RECOVERY OF PETROLEUM BY FLOODING WITH A LIQUID CONTAINING A HYDROPHILE, VISCOSITY-INCREASING POLYMERIZATE
DE2817658A1 (en) PROCESS FOR EXTRACTION OF PETROLEUM BY MEANS OF HEAT
US3703927A (en) Waterflood stabilization for paraffinic crude oils
US2664954A (en) Hydraulic fracturing to increase well productivity
EP0058871B1 (en) Process for recovering oil from subterranean reservoirs
DE2508421A1 (en) Displacement of viscous oils from tar sand or bitumen deposits - by injection of miscible gas under pressure
US3853178A (en) Method for recovery of oil
EP2559844B1 (en) Method for transporting crude oil from subterranean storage areas
WO2015132240A1 (en) Anhydrous method for hydrofracturing an underground formation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT DE FR GB IT NL

AK Designated contracting states

Designated state(s): AT DE FR GB IT NL

EL Fr: translation of claims filed
17P Request for examination filed

Effective date: 19840309

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VEBA OEL ENTWICKLUNGS-GESELLSCHAFT MBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

AK Designated contracting states

Designated state(s): AT DE FR GB IT NL

REF Corresponds to:

Ref document number: 16623

Country of ref document: AT

Date of ref document: 19851215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3361245

Country of ref document: DE

Date of ref document: 19860102

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19881124

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890131

Year of fee payment: 8

Ref country code: FR

Payment date: 19890131

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19900125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900717

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900928

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910125

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940617

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951003