EP0070449B1 - Method and device for increasing the reaction sensitivity and the disturbance security in a hazard, particularly a fire alarm installation - Google Patents

Method and device for increasing the reaction sensitivity and the disturbance security in a hazard, particularly a fire alarm installation Download PDF

Info

Publication number
EP0070449B1
EP0070449B1 EP82106039A EP82106039A EP0070449B1 EP 0070449 B1 EP0070449 B1 EP 0070449B1 EP 82106039 A EP82106039 A EP 82106039A EP 82106039 A EP82106039 A EP 82106039A EP 0070449 B1 EP0070449 B1 EP 0070449B1
Authority
EP
European Patent Office
Prior art keywords
value
current
rest
comparison
alarm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82106039A
Other languages
German (de)
French (fr)
Other versions
EP0070449A1 (en
Inventor
Karla Oberstein
Peer Dr.-Ing. Thilo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT82106039T priority Critical patent/ATE16534T1/en
Publication of EP0070449A1 publication Critical patent/EP0070449A1/en
Application granted granted Critical
Publication of EP0070449B1 publication Critical patent/EP0070449B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • G08B29/26Self-calibration, e.g. compensating for environmental drift or ageing of components by updating and storing reference thresholds

Definitions

  • the invention relates to a method for increasing the sensitivity and interference immunity in a hazard, in particular fire alarm system according to the preamble of claim 1 and an arrangement for performing this method.
  • each detector can have a threshold circuit which, when the specified fire parameter (threshold) is exceeded, emits an alarm signal to the control center.
  • threshold the specified fire parameter
  • timers were provided in the detectors or during an evaluation in the control center, which only display an alarm when the absolute threshold has been exceeded for a predetermined time.
  • thresholds for changing a fire parameter above which the alarm is to be triggered have also been defined.
  • a central evaluation of the detector signals has also improved because the alarm threshold could be adapted more easily to the respective requirements.
  • DE-OS 21 47 022 describes a circuit arrangement for achieving greater sensitivity in a fault value signaling system with fluctuating noise levels, in which the individual fault value detectors are queried one after the other and an average noise level value is formed from the signals emitted. The signals coming from the fault value detectors are compared with the mean interference levels, and a signal output device is applied when the signal is exceeded or fallen short of by an adjustable amount.
  • a single mean interference level value is formed for all fault value detectors, which is used as a comparison value adapted to the environment (e.g. solar radiation) for the response of a fault value detector.
  • This arrangement does not eliminate the individual interference level fluctuation of the detector queried in each case. With this arrangement, it is not possible for each detector to have a relevant mean, i.e. H. to create a respective detector idle value that can be updated over time.
  • a change in the idle signal of a detector e.g. B. due to component aging, contamination, wetness etc. lead to changes in sensitivity due to the fixed evaluation thresholds and in the borderline cases to false response or ineffectiveness of the detector concerned.
  • the object of the invention is therefore to provide a method for detector evaluation, in which a high level of interference immunity is ensured over a very long time with high sensitivity. Aging of the components and soiling of the detectors should not have an adverse effect on the sensitivity of the detectors.
  • an average detector measurement value is formed in a central evaluation device for each detector. This is derived as the detector idle value from the respective previous detector measured values and stored in a memory provided for this purpose as the current idle value. For each interrogation cycle, the difference between its current measured value and its last stored idle value is formed for each detector. These differences are used to form a current comparison value, which is stored in a comparison value memory provided for this purpose. This current comparison value is compared in a comparison device with a predetermined limit value. If this current comparison value is smaller than the specified limit value, a new rest value is formed from the current detector measured value and the stored rest value. This is written into the idle value memory for the next processing cycle. If the current comparison value is equal to or greater than the predetermined limit value, the comparison device controls a display device which displays an alarm or fault or another event.
  • a rest value is formed for each detector, either when the system is switched on or on request, e.g. B. during revision or maintenance, can be formed again.
  • the rest value is expediently automatically updated with a large time constant of, for example, one day.
  • the difference between the detector measured value and the idle value is used for the detection of events.
  • This difference is constant, e.g. B. at intervals of a few seconds or with each query cycle, newly determined, evaluated according to their size and evaluated.
  • a comparison value is expediently derived from these differences, which controls a display device when a specified limit value is exceeded.
  • the respective current comparison value is determined from the difference between the current measured value, the stored rest value and the stored comparison value, the difference being reduced by a constant value, so that smaller fluctuations in the measured value, which are below the constant value, do not lead to an event display. Because this result will integrated into a sum signal, ie the result is added to the last stored comparison value.
  • the sum signal obtained in this way corresponds to the current comparison value.
  • In order to limit this comparison value downwards it is compared with zero in a comparison stage. If the result is above zero, it is saved directly in the comparison value memory for calculation in the next cycle. Otherwise zero is saved, just as the comparison value is zero in the first query
  • a detector idle value is expediently formed from the detector measured values with the aid of arithmetic logic units, which can be stored in a memory provided for this purpose, the first detector measured value corresponding to the idle value in the first interrogation cycle. It is used to form the comparison value.
  • EPS a parameter EPS (0 ⁇ EPS ⁇ 1)
  • the detector sensitivity for the formation of the resting value can be influenced by evaluating the difference (MW-RWA) with the specifiable parameter (EPS).
  • the diagram shown in FIG. 1 a shows the course of a detector measured value MW as a function of time T.
  • the diagram shows an alarm threshold, designated AISW, which runs parallel to the time axis.
  • the detector itself has a rest value, which is drawn as a theoretical value as a straight line that rises slightly and is designated RW.
  • a disturbance threshold STSW is drawn at a constant distance CON.
  • the detector measured value MW has increased significantly compared to its idle value RW. However, this increase in the measured value is not so great that it reaches the alarm threshold AISW, and therefore no alarm is displayed. If the detector idle value RW changes in the direction of the alarm threshold ALSW, an identical event would erroneously generate an alarm at time T2.
  • the detector has become more sensitive by itself.
  • the rise in the detector measured value MW which is not greater than at time T1
  • Such a false alarm message is avoided with the method according to the invention, as will be explained in more detail later.
  • the detector value MW is also plotted over time T.
  • the ALSW alarm threshold is shown parallel to the time axis.
  • the detector idle value RW is drawn as a straight line, which, however, tends towards the time axis, i. H. the detector idle value RW changes contrary to the alarm threshold ALSW.
  • Parallel to the rest value RW a straight line is drawn above it at a constant distance CON, which represents the interference threshold STSW.
  • CON represents the interference threshold STSW.
  • the comparison value VW of the detector M is determined from the respective current detector measurement value MW, based on its idle value RW, and from its previously stored comparison value VWA and only then compared with a predetermined limit value GRW. In the exemplary embodiment, this is explained in more detail with reference to FIGS. 3 to 5 for the alarm case.
  • FIG. 2a shows a measured detector value MW over time T, the time axis corresponding to the rest value RW.
  • An interference threshold STSW is shown at a constant distance above the idle value RW.
  • the previously defined alarm threshold for the detector measurement value MW is drawn in by a line parallel to the rest value RW at a corresponding height.
  • the sum signal SUS of the detector is shown as a function of the time T in FIG. 2b.
  • the limit value for the sum signal SUS, at which an alarm is detected, is designated GRW.
  • the diagrams for three typical measured signal images are explained below.
  • the normal detector measured value curve (MW over time T) is shown in FIG. 2a, and the sum signals SUS derived therefrom, which lead to the alarm detection, are shown below.
  • the detector measured value signal is evaluated with each sampling cycle.
  • the difference (MW-RWA) is formed from the respective current detector measured value MW and the stored idle value RWA and is continuously determined, for example with every sampling cycle. This difference is related to a fixed value, namely a disturbance threshold STSW, in order not to add up smaller fluctuations in measured values which lie below this disturbance threshold to form an alarm signal.
  • the sum signal SUS according to FIG. 2b detects when it reaches or exceeds the predetermined threshold, limit value GRW, on alarm.
  • the measured value suddenly rises above the alarm threshold ALSW at time T1 and falls again below the alarm threshold ALSW before time T2. In conventional systems, this event 1 would already result in an alarm if the alarm was not checked again before the alarm was given.
  • the method according to the invention shows no increase in the sum signal SUS beyond the limit value GRW. So there is no alarm.
  • the detector measured value MW falls below the interference threshold STSW (FIG. 2a), which means that when the sum signal SUS (FIG.
  • Another typical measured value signal image shows a slow increase in the measured detector value MW in the direction of the alarm (FIG. 2a).
  • a conventional fire alarm system would not yet recognize an alarm, since the measured value MW had not yet reached the alarm threshold ALSW at time T11.
  • the detector measured value MW based on the idle value RW after it has exceeded the interference threshold STSW (FIG. 2a) is integrated (FIG. 2b) from time T10 and the sum signal SUS already reaches the limit value at time T11 GRW and triggers the alarm AL.
  • a steady increase in the detector measured value in the direction of the alarm threshold is detected at an early stage.
  • FIG. 3 shows an exemplary embodiment for alarm detection in the block diagram. It can be seen from the example of a detector M that the detector measured values MW reach the control center Z from the detector M via the detection line L. On the one hand, the measured value MW reaches a comparison value generating device VWB and a rest value forming device RWB. A memory VWSP is assigned to the device for forming the comparison value VWB, in which the current comparison value VWN is stored. A memory RWSP is assigned to the device for rest value formation RWB, in which the current rest value RWN is stored. For each interrogation cycle, a new comparison value VWN (VWB) is formed for each detector from its current measured value MW, its last stored idle value RWA and its last stored comparison value VWA.
  • VWB new comparison value VWN
  • This current comparison value VWN is stored on the one hand for the next processing cycle in the comparison value memory VWSP, and on the other hand compared with a predetermined limit value GRW, in the exemplary embodiment for alarm, in the comparison device VGE, which is arranged downstream of the two devices. If the current comparison value VWN is greater than or equal to the limit value for alarm GRW, an alarm AL is displayed in the display device ANZ connected downstream of the comparison device VGE. If the current comparison value VWN does not exceed the limit value GRW, the new detector measured value MW can be used together with the old idle value RWA from the idle value memory RWSP to calculate a new idle value RWN, which is used to rewrite the idle value memory RWSP.
  • the block diagram (Fig. 3) illustrates the detection of alarm. In a similar way, faults can be recognized and displayed.
  • the detector value MW passes from the detector to the control center Z and to a first arithmetic logic unit ALU1. There, the old idle value RWA is subtracted from the idle value memory from the detector measured value MW. A predeterminable constant value CON is subtracted in a second arithmetic logic unit ALU2, which is connected downstream of the first ALU1. The second arithmetic logic unit ALU2 is followed by a third arithmetic logic unit ALU3, which adds the result of the ALU2 to the last (stored) comparison value VWA.
  • the comparator K1 connected downstream of the ALU3 with an assigned demultiplexer D1 only compares the result from the ALU3 (sum signal SUS) with the value 0 in order to achieve a downward limitation of the sum signal (SUS according to FIG. 2b). If the value is less than 0, the multiplexer D1 outputs 0 at its output. Is the value however, greater than 0, the sum signal SUS is at the output of the multiplexer D1 as the current comparison value VWN. This output leads to the comparison device VGE, in which the new comparison value VWN is compared with the limit value GRW using a further comparator K2.
  • the second demultiplexer D2 connected downstream of the second comparator K2 controls the display device ANZ when the comparison value VWN is greater than or equal to the limit value GRW (VWN> GRW). If the comparison value VWN is smaller than the limit value GRW (VWN ⁇ GRW), the second demultiplexer D2 controls the rest value formation device RWB and enables the formation of a new rest value RWN, as will be explained in more detail with reference to FIG. 5.
  • FIG. 5 shows the circuit arrangement for forming the idle value RWB. It has a first multiplier MU1, which is followed by an adder AD1 with a first input. It has a subtractor SU1 which is supplied with a constant value EPS (0 ⁇ EPS ⁇ 1). This constant EPS can be used to influence the difference (MW-RWA) from the respective measured measured value (MW) and the stored detector idle value (RWA) for the formation of the idle value.
  • This constant value EPS is given to the first input, the detector measured value MW to the second input of the first multiplier stage MU1.
  • the output signal (1-EPS) of the subtractor SU1 reaches the second multiplier stage MU2, to which the last stored idle value RWA comes from the idle value memory RWSP.
  • the output of the second multiplier stage MU2 leads to the second input of the adder stage AD1, which, controlled by the comparison device VGE, forms the current idle value RWN via the enable input E if VWN ⁇ GRW.
  • the current reporting value MW is multiplied by the constant value EPS in the first multiplier M1.
  • the old idle value RWA from the idle value memory RWSP is multiplied by the value (1 - EPS) in the second multiplier MU2.
  • a slow change in the detector, z. B. compensated for by component aging or contamination.
  • the sensitivity of the detectors remains constant for a very long time. Different applications can usually be served with uniform detectors and evaluation programs.
  • slowly developing fires as well as rapidly spreading fires are detected at the earliest possible point in time, whereby malfunctions and deceptions of the alarm system are largely prevented.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire Alarms (AREA)
  • Emergency Alarm Devices (AREA)
  • Alarm Systems (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Paper (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

A method and apparatus for increasing the response sensitivity and the interference resistance in an alarm system such as a fire alarm system which cyclically samples a plurality of alarm units in the system for obtaining a series of measured values from each alarm unit, the measured values being utilized to form a quiescent value which is stored in a quiescent value memory. With each sampling cycle a current comparison value is formed from the alarm measured value, the stored quiescent value, and a comparison value from a previous sampling cycle stored in a comparison value memory. The current comparison value is then written in the comparison value memory as the new comparison value. The current comparison value is compared with a rated limiting value, and if the comparison value is greater than or equal to the rated limiting value, a display unit is activated indicating an alarm. If the comparison value is less than the rated limiting value, a new quiescent value is formed from the measured value and the stored quiescent value and written into the quiescent value memory.

Description

Die Erfindung betrifft ein Verfahren zur Erhöhung der Ansprechempfindlichkeit und der Störsicherheit in einer Gefahren-, insbesondere Brandmeldeanlage gemäß dem Oberbegriff des Anspruches 1 und eine Anordnung zur Durchführung dieses Verfahrens.The invention relates to a method for increasing the sensitivity and interference immunity in a hazard, in particular fire alarm system according to the preamble of claim 1 and an arrangement for performing this method.

Automatische Meldeanlagen, beispielsweise Brandmeldeanlagen, in denen bestimmte Kenngrößen eines Brandes, wie Rauchdichte, Temperatur, Strahlung, bewertet und ausgewertet werden, um einen Alarm bzw. eine Störung zu erkennen, müssen bei einer hohen Ansprechempfindlichkeit auch eine hohe Störsicherheit aufweisen. Beispielsweise kann jeder Melder eine Schwellwertschaltung aufweisen, die bei Überschreiten der festgelegten Brandkenngröße (Schwelle) ein Alarmsignal zur Zentrale abgibt. Zur Erhöhung der Störsicherheit wurden in den Meldern oder auch bei einer Auswertung in der Zentrale Zeitglieder vorgesehen, die erst einen Alarm anzeigen, wenn die absolute Schwelle eine vorgegebene Zeit lang überschritten wurde. Es wurden auch mehrere Schwellen für die Änderung einer Brandkenngröße festgelegt, oberhalb derer Alarm ausgelöst werden soll. Auch hat eine zentrale Auswertung der Meldersignale eine Verbesserung gebracht, weil die Alarmschwelle den jeweiligen Erfordernissen leichter angepaßt werden konnte.Automatic alarm systems, for example fire alarm systems, in which certain parameters of a fire, such as smoke density, temperature, radiation, are evaluated and evaluated in order to detect an alarm or a fault, must also have a high level of immunity to interference with a high sensitivity. For example, each detector can have a threshold circuit which, when the specified fire parameter (threshold) is exceeded, emits an alarm signal to the control center. To increase interference immunity, timers were provided in the detectors or during an evaluation in the control center, which only display an alarm when the absolute threshold has been exceeded for a predetermined time. Several thresholds for changing a fire parameter above which the alarm is to be triggered have also been defined. A central evaluation of the detector signals has also improved because the alarm threshold could be adapted more easily to the respective requirements.

In der DE-OS 21 47 022 ist eine Schaltungsanordnung zur Erzielung einer größeren Empfindlichkeit bei einer Störwertmeldeanlage mit schwankenden Störpegeln beschrieben, bei der die einzelnen Störwertmelder nacheinander abgefragt und aus den abgegebenen Signalen ein mittlerer Störpegelwert gebildet wird. Die von den Störwertmeldern kommenden Signale werden mit den mittleren Störpegeln verglichen, und bei Über- oder Unterschreiten um einen einstellbaren Betrag wird eine Signalabgabeeinrichtung beaufschlagt. Bei dieser bekannten Anordnung wird für sämtliche Störwertmelder ein einziger mittlerer Störpegelwert gebildet, der als an die Umgebung (z. B. Sonneneinstrahlung) angepaßter Vergleichswert für das Ansprechen eines Störwertmelders herangezogen wird. Diese Anordnung beseitigt nicht die individuelle Störpegelschwankung des jeweils abgefragten Melders. Mit dieser Anordnung ist es nicht möglich für jeden Melder einen betreffenden Mittelwert, d. h. einen jeweiligen Melderruhewert zu bilden, der im Laufe der Zeit nachgeführt werden kann.DE-OS 21 47 022 describes a circuit arrangement for achieving greater sensitivity in a fault value signaling system with fluctuating noise levels, in which the individual fault value detectors are queried one after the other and an average noise level value is formed from the signals emitted. The signals coming from the fault value detectors are compared with the mean interference levels, and a signal output device is applied when the signal is exceeded or fallen short of by an adjustable amount. In this known arrangement, a single mean interference level value is formed for all fault value detectors, which is used as a comparison value adapted to the environment (e.g. solar radiation) for the response of a fault value detector. This arrangement does not eliminate the individual interference level fluctuation of the detector queried in each case. With this arrangement, it is not possible for each detector to have a relevant mean, i.e. H. to create a respective detector idle value that can be updated over time.

Eine Änderung des Ruhesignals eines Melders, z. B. durch Bauteilealterung, Verschmutzung, Nässe usw. führen wegen der festen Auswerteschwellen zu Empfindlichkeitsänderungen und in den Grenzfällen zum Fehlansprechen oder Wirkungsloswerden des betreffenden Melders. Aufgabe der Erfindung ist es daher, ein Verfahren zur Melderauswertung anzugeben, bei dem bei hoher Ansprechempfindlichkeit über eine sehr lange Zeit hinweg eine hohe Störsicherheit gewährleistet ist. Dabei soll eine Alterung der Bauteile und eine Verschmutzung der Melder keinen nachteiligen Einfluß auf die Ansprechempfindlichkeit der Melder haben.A change in the idle signal of a detector, e.g. B. due to component aging, contamination, wetness etc. lead to changes in sensitivity due to the fixed evaluation thresholds and in the borderline cases to false response or ineffectiveness of the detector concerned. The object of the invention is therefore to provide a method for detector evaluation, in which a high level of interference immunity is ensured over a very long time with high sensitivity. Aging of the components and soiling of the detectors should not have an adverse effect on the sensitivity of the detectors.

Diese Aufgabe wird erfindungsgemäß bezüglich des Verfahrens mit den kennzeichnenden Merkmalen des Anspruchs 1 und bezüglich der Anordnung mit den kennzeichnenden Merkmalen des Anspruchs 4 gelöst.This object is achieved according to the invention with respect to the method with the characterizing features of claim 1 and with respect to the arrangement with the characterizing features of claim 4.

Mit diesem Verfahren wird in einer zentralen Auswerteeinrichtung für jeden Melder ein mittlerer Meldermeßwert gebildet. Dieser wird als Melderruhewert aus den jeweiligen vorangehenden Meldermeßwerten abgeleitet und in einem dafür vorgesehenen Speicher als aktueller Ruhewert gespeichert. Bei jedem Abfragezyklus wird für jeden Melder die Differenz aus seinem aktuellen Meßwert und seinem letztgespeicherten Ruhewert gebildet. Diese Differenzen werden zur Bildung eines aktuellen Vergleichswerts herangezogen, der in einem dafür vorgesehenen Vergleichswertspeicher gespeichert wird. Dieser aktuelle Vergleichswert wird in einer Vergleichseinrichtung mit einem vorgegebenen Grenzwert verglichen. Ist dieser aktuelle Vergleichswert kleiner als der vorgegebene Grenzwert, so wird aus dem aktuellen Meldermeßwert und dem gespeicherten Ruhewert ein neuer Ruhewert gebildet. Dieser wird für den nächsten Verarbeitungszyklus in den Ruhewertspeicher eingeschrieben. Ist der aktuelle Vergleichswert gleich groß oder größer als der vorgegebene Grenzwert, so wird von der Vergleichseinrichtung eine Anzeigeeinrichtung angesteuert, die Alarm bzw. Störung oder ein sonstiges Ereignis anzeigt.With this method, an average detector measurement value is formed in a central evaluation device for each detector. This is derived as the detector idle value from the respective previous detector measured values and stored in a memory provided for this purpose as the current idle value. For each interrogation cycle, the difference between its current measured value and its last stored idle value is formed for each detector. These differences are used to form a current comparison value, which is stored in a comparison value memory provided for this purpose. This current comparison value is compared in a comparison device with a predetermined limit value. If this current comparison value is smaller than the specified limit value, a new rest value is formed from the current detector measured value and the stored rest value. This is written into the idle value memory for the next processing cycle. If the current comparison value is equal to or greater than the predetermined limit value, the comparison device controls a display device which displays an alarm or fault or another event.

Mit Hilfe der einzelnen übertragenen Meldermeßwerte wird also für jeden Melder ein Ruhewert gebildet, der entweder beim Einschalten der Anlage oder auf Anforderung, z. B. bei Revision oder Wartung, neu gebildet werden kann. Zweckmäßigerweise wird man den Ruhewert mit einer großen Zeitkonstante von beispielsweise einem Tag selbsttätig nachführen.With the help of the individual transmitted detector measurement values, a rest value is formed for each detector, either when the system is switched on or on request, e.g. B. during revision or maintenance, can be formed again. The rest value is expediently automatically updated with a large time constant of, for example, one day.

Statt des absoluten Meßwertes wird die Differenz aus dem Meldermeßwert und dem Ruhewert für die Erkennung von Ereignissen herangezogen. Diese Differenz wird ständig, z. B. im Abstand von einigen Sekunden oder mit jedem Abfragezyklus, neu ermittelt, entsprechend ihrer Größe bewertet und ausgewertet. Zweckmäßigerweise wird aus diesen Differenzen ein Vergleichswert abgeleitet, der beim Überschreiten eines festgelegten Grenzwertes eine Anzeigeeinrichtung ansteuert. Dabei wird der jeweilige aktuelle Vergleichswert aus dem Differenzbetrag des aktuellen Meßwerts, dem gespeicherten Ruhewert und dem gespeicherten Vergleichswert ermittelt, wobei der Differenzbetrag um einen konstanten Wert verringert wird, damit kleinere Meßwertschwankungen, die unterhalb des konstanten Werts liegen, nicht zu einer Ereignisanzeige führen. Denn dieses Ergebnis wird zu einem Summensignal aufintegriert, d. h. das Ergebnis wird zum letztgespeicherten Vergleichswert addiert. Das so erhaltene Summensignal entspricht dem aktuellen Vergleichswert. Um diesen Vergleichswert nach unten zu begrenzen, wird er in einer Vergleichsstufe mit Null verglichen. Wenn das Ergebnis über Null liegt, wird es direkt für die Berechnung im nächsten Zyklus im Vergleichswertspeicher abgespeichert. Sonst wird Null abgespeichert, so wie beim ersten Abfragezyklus der Vergleichswert Null ist.Instead of the absolute measured value, the difference between the detector measured value and the idle value is used for the detection of events. This difference is constant, e.g. B. at intervals of a few seconds or with each query cycle, newly determined, evaluated according to their size and evaluated. A comparison value is expediently derived from these differences, which controls a display device when a specified limit value is exceeded. The respective current comparison value is determined from the difference between the current measured value, the stored rest value and the stored comparison value, the difference being reduced by a constant value, so that smaller fluctuations in the measured value, which are below the constant value, do not lead to an event display. Because this result will integrated into a sum signal, ie the result is added to the last stored comparison value. The sum signal obtained in this way corresponds to the current comparison value. In order to limit this comparison value downwards, it is compared with zero in a comparison stage. If the result is above zero, it is saved directly in the comparison value memory for calculation in the next cycle. Otherwise zero is saved, just as the comparison value is zero in the first query cycle.

Zweckmäßigerweise wird mit Hilfe arithmetischer logischer Einheiten aus den Meldermeßwerten ein Melderruhewert gebildet, der jeweils in einem dafür vorgesehenen Speicher abspeicherbar ist, wobei beim ersten Abfragezyklus der erste Meldermeßwert dem Ruhewert entspricht. Er wird zur Vergleichswertbildung herangezogen. Über einen Parameter EPS (0<EPS<1) ist die Melderempfindlichkeit für die Ruhewertbildung beeinflußbar, indem mit dem vorgebbaren Parameter (EPS) die Differenz (MW-RWA) bewertet wird.A detector idle value is expediently formed from the detector measured values with the aid of arithmetic logic units, which can be stored in a memory provided for this purpose, the first detector measured value corresponding to the idle value in the first interrogation cycle. It is used to form the comparison value. Using a parameter EPS (0 <EPS <1), the detector sensitivity for the formation of the resting value can be influenced by evaluating the difference (MW-RWA) with the specifiable parameter (EPS).

Die Wirkungsweise und eine Anordnung zur Durchführung des Verfahrens wird anhand von Diagrammen und einem Schaltbeispiel im folgenden näher erläutert. Es zeigt

  • Fig. 1 ein Meldermeßwertdiagramm für herkömmliche Brandmelder,
  • Fig. ein Diagramm der Meldersignale nach dem erfindungsgemäßen Verfahren,
  • Fig. 3 ein Ausführungsbeispiel im Blockschaltbild,
  • Fig. 4 und 5 Details dieses Blockschaltbildes nach Fig. 3.
The mode of operation and an arrangement for carrying out the method are explained in more detail below with the aid of diagrams and a circuit example. It shows
  • 1 is a detector measurement diagram for conventional fire detectors,
  • 1 shows a diagram of the detector signals according to the method according to the invention,
  • 3 shows an exemplary embodiment in a block diagram,
  • 4 and 5 details of this block diagram of FIG. 3rd

Das in Fig. 1 a dargestellte Diagramm zeigt den Verlauf eines Meldermeßwertes MW in Abhängigkeit der Zeit T. In dem Diagramm ist eine Alarmschwelle, mit AISW bezeichnet, eingezeichnet, die parallel zur Zeitachse verläuft. Der Melder selbst weist einen Ruhewert auf, der als theoretischer Wert als Gerade, die leicht ansteigt, eingezeichnet und mit RW bezeichnet ist. Parallel dazu ist in einem konstanten Abstand CON eine Störschwelle STSW gezeichnet. Etwa zum Zeitpunkt T1 hat sich der Meldermeßwert MW erheblich gegenüber seinem Ruhewert RW vergrößert. Dieser Meßwertanstieg ist aber nicht so groß, daß er die Alarmschwelle AISW erreicht, und somit wird auch kein Alarm angezeigt. Ändert sich der Melderruhewert RW in Richtung der Alarmschwelle ALSW, würde ein gleiches Ereignis etwa zum Zeitpunkt T2 fälschlicherweise einen Alarm erzeugen. Der Melder ist selbsttätig empfindlicher geworden. Der Anstieg des Meldermeßwertes MW, der nicht größer ist als zum Zeitpunkt T1, bewirkt nun ein Überschreiten der Alarmschwelle ALSW, so daß ein Fehlalarm erzeugt wird. Mit dem erfindungsgemäßen Verfahren, wie es später noch näher erläutert wird, wird eine solche Fehlalarmmeldung vermieden.The diagram shown in FIG. 1 a shows the course of a detector measured value MW as a function of time T. The diagram shows an alarm threshold, designated AISW, which runs parallel to the time axis. The detector itself has a rest value, which is drawn as a theoretical value as a straight line that rises slightly and is designated RW. In parallel, a disturbance threshold STSW is drawn at a constant distance CON. Around time T1, the detector measured value MW has increased significantly compared to its idle value RW. However, this increase in the measured value is not so great that it reaches the alarm threshold AISW, and therefore no alarm is displayed. If the detector idle value RW changes in the direction of the alarm threshold ALSW, an identical event would erroneously generate an alarm at time T2. The detector has become more sensitive by itself. The rise in the detector measured value MW, which is not greater than at time T1, now causes the alarm threshold ALSW to be exceeded, so that a false alarm is generated. Such a false alarm message is avoided with the method according to the invention, as will be explained in more detail later.

In der Fig. 1 b ist ebenfalls der Melderwert MW über der Zeit T aufgetragen. Es ist parallel zur Zeitachse die Alarmschwelle ALSW eingezeichnet. Ebenso ist der Melderruhewert RW als Gerade eingezeichnet, die sich aber zur Zeitachse hin neigt, d. h. der Melderruhewert RW verändert sich entgegen der Alarmschwelle ALSW. Parallel zum Ruhewert RW ist darüber in einem konstanten Abstand CON eine Gerade eingezeichnet, die die Störschwelle STSW darstellt. Dieses Diagramm veranschaulicht, daß der Melder im Laufe der Zeit unempfindlicher wird. Etwa zum Zeitpunkt T1 tritt ein Meldermeßwert MW auf, der erheblich vom Ruhewert RW abweicht. Der Meldermeßwert MW ist so groß, daß er die Alarmschwelle ALSW überschreitet und deshalb auf Alarm erkannt wird. Etwa zum Zeitpunkt T2 tritt wieder ein Meldermeßwertanstieg auf, der in etwa, bezogen auf seinen Ruhewert RW, so groß ist, wie zum Zeitpunkt T1. Der Meldermeßwertanstieg ist aber nicht ausreichend groß, um die Alarmschwelle ALSW zu erreichen oder zu überschreiten, so daß zum Zeitpunkt T2 kein Alarm erkannt wird. In einer herkömmlichen Brandmeldeanlage wird also zum Zeitpunkt T2 der Alarm nicht mehr erkannt, weil der Ruhewert RW sich von der Alarmschwelle ALSW weg entwickelt hat. Mit der erfindungsgemäßen Brandmeldeanlage wird dieser verlorengegangene Alarm auch erkannt.1 b, the detector value MW is also plotted over time T. The ALSW alarm threshold is shown parallel to the time axis. Likewise, the detector idle value RW is drawn as a straight line, which, however, tends towards the time axis, i. H. the detector idle value RW changes contrary to the alarm threshold ALSW. Parallel to the rest value RW, a straight line is drawn above it at a constant distance CON, which represents the interference threshold STSW. This diagram shows that the detector becomes less sensitive over time. At around time T1, a detector measured value MW occurs, which deviates considerably from the idle value RW. The detector measured value MW is so large that it exceeds the alarm threshold ALSW and is therefore recognized on alarm. Approximately at time T2, there is an increase in the measured value of the detector, which is approximately as large as at time T1, based on its idle value RW. However, the increase in the detector value is not large enough to reach or exceed the alarm threshold ALSW, so that no alarm is detected at time T2. In a conventional fire alarm system, the alarm is no longer recognized at time T2 because the idle value RW has developed away from the alarm threshold ALSW. With the fire alarm system according to the invention, this lost alarm is also recognized.

Um ein wesentlich sicheres Ansprechen der Melder zu gewährleisten, soll nach dem erfindungsgemäßen Verfahren über eine sehr lange Zeit hinweg die Melderempfindlichkeit konstant bleiben. Deshalb wird statt dem absoluten Meßwert die Differenz zwischen Meßwert und Ruhewert betrachtet. Wie eingangs erwähnt, wird der Vergleichswert VW des Melders M aus dem jeweiligen aktuellen Meldermeßwert MW, bezogen auf seinen Ruhewert RW, und aus seinem gespeicherten bisherigen Vergleichswert VWA ermittelt und dann erst mit einem vorgegebenen Grenzwert GRW verglichen. Im Ausführungsbeispiel wird dies anhand der Fig. 3 bis 5 für den Alarmfall im einzelnen noch erläutert.In order to ensure that the detectors respond significantly more reliably, the detector sensitivity should remain constant over a very long time using the method according to the invention. Therefore, the difference between the measured value and the rest value is considered instead of the absolute measured value. As mentioned at the beginning, the comparison value VW of the detector M is determined from the respective current detector measurement value MW, based on its idle value RW, and from its previously stored comparison value VWA and only then compared with a predetermined limit value GRW. In the exemplary embodiment, this is explained in more detail with reference to FIGS. 3 to 5 for the alarm case.

In Fig. 2a ist ein Meldermeßwert MW über der Zeit T, wobei die Zeitachse dem Ruhewert RW entspricht, dargestellt. Über dem Ruhewert RW ist in einem konstanten Abstand eine Störschwelle STSW dargestellt. Die vorher festgelegte Alarmschwelle für den Meldermeßwert MW ist durch eine parallele Linie zum Ruhewert RW in entsprechender Höhe eingezeichnet. Entsprechend zum Diagramm in Fig. 2a ist darunter in Fig. 2b das Summensignal SUS des Melders in Abhängigkeit der Zeit T dargestellt. Der Grenzwert für das Summensignal SUS, bei dem Alarm erkannt wird, ist mit GRW bezeichnet. Für drei typische Meßwertsignalbilder werden die Diagramme im folgenden erläutert.2a shows a measured detector value MW over time T, the time axis corresponding to the rest value RW. An interference threshold STSW is shown at a constant distance above the idle value RW. The previously defined alarm threshold for the detector measurement value MW is drawn in by a line parallel to the rest value RW at a corresponding height. Corresponding to the diagram in FIG. 2a, the sum signal SUS of the detector is shown as a function of the time T in FIG. 2b. The limit value for the sum signal SUS, at which an alarm is detected, is designated GRW. The diagrams for three typical measured signal images are explained below.

In Fig. 2a ist der normale Meldermeßwertverlauf (MW über der Zeit T) gezeichnet und darunter entsprechend die davon abgeleiteten Summensignale SUS, die zur Alarmerkennung führen. Nach dem erfindungsgemäßen Verfahren ist für die Alarmbewertung, ebenso wie für eine Erkennung auf Störungen, sowohl die Größe des Meldermeßwertes als auch die Dauer des Meldermeßwertes ausschlaggebend. Mit jedem Abtastzyklus wird das Meldermeßwertsignal bewertet. Es wird die Differenz (MW-RWA) aus dem jeweiligen aktuellen Meldermeßwert MW und dem gespeicherten Ruhewert RWA gebildet und ständig, beispielsweise mit jedem Abtastzyklus, neu ermittelt. Dabei wird diese Differenz auf einen festen Wert, nämlich eine Störschwelle STSW, bezogen, um kleinere Meßwertschwankungen, die unterhalb dieser Störschwelle liegen, nicht zu einem Alarmsignal aufzuaddieren.The normal detector measured value curve (MW over time T) is shown in FIG. 2a, and the sum signals SUS derived therefrom, which lead to the alarm detection, are shown below. According to the method according to the invention, both the size of the alarm evaluation and the detection of faults Detector measured value as well as the duration of the detector measured value are decisive. The detector measured value signal is evaluated with each sampling cycle. The difference (MW-RWA) is formed from the respective current detector measured value MW and the stored idle value RWA and is continuously determined, for example with every sampling cycle. This difference is related to a fixed value, namely a disturbance threshold STSW, in order not to add up smaller fluctuations in measured values which lie below this disturbance threshold to form an alarm signal.

Das Summensignal SUS gemäß Fig. 2b erkennt, wenn es die vorgegebene Schwelle, Grenzwert GRW, erreicht oder überschreitet, auf Alarm. In Fig. 2a steigt der Meßwert zum Zeitpunkt T1 schlagartig über die Alarmschwelle ALSW hin an und fällt vor dem Zeitpunkt T2 wieder unter die Alarmschwelle ALSW zurück. Bei herkömmlichen Anlagen hätte dieses Ereignis 1, wenn nicht eine erneute Prüfung auf Alarm vor Alarmgabe erfolgt, schon eine Alarmgabe zur Folge. Das erfindungsgemäße Verfahren zeigt gemäß Fig. 2b, wenn man das Summensignal SUS betrachtet, keinen Anstieg des Summensignals SUS über den Grenzwert GRW hinweg an. Es erfolgt also auch kein Alarm. Zum Zeitpunkt T3 fällt der Meldermeßwert MW unter die Störschwelle STSW (Fig. 2a), was bei der Bildung des Summensignals SUS (Fig. 2b) zur Folge hat, daß er als negatives Signal addiert wird. Um eine Aufintegration des Summensignals SUS in den negativen Bereich zu verhindern, wird, wie noch später anhand eines Ausführungsbeispiels erläutert, bei der Vergleichswertbildung VWB ein Vergleich mit 0 durchgeführt. Zum Zeitpunkt T4 ist dies in diesem Diagramm veranschaulicht. Erst zum Zeitpunkt T5 wird das Summensignal SUS wieder aufintegriert. Zum Zeitpunkt T6 erreicht der Meldermeßwert MW (Fig.2a) die Alarmschwelle ALSW (Ereignis 2). Das Summensignal SUS ist aber noch nicht bis zum vorgegebenen Grenzwert GRW aufintegriert. Erst zum Zeitpunkt T7 erreicht das Summensignal SUS den Grenzwert GRW und veranlaßt eine Alarmgabe AL bis zum Zeitpunkt T8. Es wird also ein Alarm erst gegeben, wenn der Meldermeßwert nicht nur entsprechend groß, sondern auch eine gewisse Zeit lang ansteht.The sum signal SUS according to FIG. 2b detects when it reaches or exceeds the predetermined threshold, limit value GRW, on alarm. In FIG. 2a, the measured value suddenly rises above the alarm threshold ALSW at time T1 and falls again below the alarm threshold ALSW before time T2. In conventional systems, this event 1 would already result in an alarm if the alarm was not checked again before the alarm was given. According to FIG. 2b, if the sum signal SUS is considered, the method according to the invention shows no increase in the sum signal SUS beyond the limit value GRW. So there is no alarm. At time T3, the detector measured value MW falls below the interference threshold STSW (FIG. 2a), which means that when the sum signal SUS (FIG. 2b) is formed, it is added as a negative signal. In order to prevent integration of the sum signal SUS into the negative range, a comparison with 0 is carried out when the comparison value VWB is formed, as will be explained later with reference to an exemplary embodiment. This is illustrated in this diagram at time T4. The sum signal SUS is not integrated again until time T5. At time T6, the detector measured value MW (Fig. 2a) reaches the alarm threshold ALSW (event 2). However, the sum signal SUS has not yet been integrated up to the predetermined limit value GRW. It is only at time T7 that the sum signal SUS reaches the limit value GRW and triggers an alarm AL up to time T8. So an alarm is only given when the detector measured value is not only large enough, but also pending for a certain time.

Ein weiteres typisches Meßwertsignalbild (Ereignis 3) zeigt ein langsames Ansteigen des Meldermeßwertes MW in Richtung Alarm (Fig. 2a). Eine herkömmliche Brandmeldeanlage würde noch keinen Alarm erkennen, da der Meßwert MW zum Zeitpunkt T11 die Alarmschwelle ALSW noch nicht erreicht hat. Nach dem erfindungsgemäßen Verfahren wird aber ab dem Zeitpunkt T10 der Meldermeßwert MW, bezogen auf den Ruhewert RW, nachdem er die Störschwelle STSW (Fig. 2a) überschritten hat, aufintegriert (Fig. 2b) und das Summensignal SUS erreicht schon zum Zeitpunkt T11 den Grenzwert GRW und veranlaßt die Alarmgabe AL. In diesem Fall wird also frühzeitig ein stetiges Ansteigen des Meldermeßwertes in Richtung Alarmschwelle erkannt.Another typical measured value signal image (event 3) shows a slow increase in the measured detector value MW in the direction of the alarm (FIG. 2a). A conventional fire alarm system would not yet recognize an alarm, since the measured value MW had not yet reached the alarm threshold ALSW at time T11. According to the method according to the invention, however, the detector measured value MW, based on the idle value RW after it has exceeded the interference threshold STSW (FIG. 2a), is integrated (FIG. 2b) from time T10 and the sum signal SUS already reaches the limit value at time T11 GRW and triggers the alarm AL. In this case, a steady increase in the detector measured value in the direction of the alarm threshold is detected at an early stage.

In Fig. 3 ist ein Ausführungsbeispiel für Alarmerkennung im Blockschaltbild dargestellt. Am Beispiel für einen Melder M ist zu erkennen, daß die Meldermeßwerte MW von dem Melder M über die Meldelinie L an die Zentrale Z gelangen. Der Meßwert MW gelangt einerseits an eine Vergleichswertbildeeinrichtung VWB und eine Ruhewertbildungseinrichtung RWB. Der Einrichtung zur Vergleichswertbildung VWB ist ein Speicher VWSP zugeordnet, in dem der aktuelle Vergleichswert VWN gespeichert wird. Der Einrichtung zur Ruhewertbildung RWB ist ein Speicher RWSP zugeordnet, in dem der aktuelle Ruhewert RWN gespeichert wird. Bei jedem Abfragezyklus wird für jeden Melder aus seinem aktuellen Meßwert MW, seinem letztgespeicherten Ruhewert RWA und seinem letztgespeicherten Vergleichswert VWA ein neuer Vergleichswert VWN gebildet (VWB). Dieser aktuelle Vergleichswert VWN wird einerseits für den nächsten Verarbeitungszyklus im Vergleichswertspeicher VWSP abgespeichert, andererseits mit einem vorgegebenen Grenzwert GRW, im Ausführungsbeispiel für Alarm, in der Vergleichseinrichtung VGE, die den beiden Einrichtungen nachgeordnet ist, verglichen. Ist der aktuelle Vergleichswert VWN größer oder gleich dem Grenzwert für Alarm GRW, so wird ein Alarm AL in der der Vergleichseinrichtung VGE nachgeschalteten Anzeigeeinrichtung ANZ angezeigt. Überschreitet der aktuelle Vergleichswert VWN den Grenzwert GRW nicht, so kann der neue Meldermeßwert MW gemeinsam mit dem alten Ruhewert RWA aus dem Ruhewertspeicher RWSP zur Berechnung eines neuen Ruhewertes RWN herangezogen werden, mit dem der Ruhewertspeicher RWSP neu beschrieben wird. Das Blockschaltbild (Fig. 3) veranschaulicht die Erkennung von Alarm. In ähnlicher Weise kann man auch Störungen erkennen und diese anzeigen.3 shows an exemplary embodiment for alarm detection in the block diagram. It can be seen from the example of a detector M that the detector measured values MW reach the control center Z from the detector M via the detection line L. On the one hand, the measured value MW reaches a comparison value generating device VWB and a rest value forming device RWB. A memory VWSP is assigned to the device for forming the comparison value VWB, in which the current comparison value VWN is stored. A memory RWSP is assigned to the device for rest value formation RWB, in which the current rest value RWN is stored. For each interrogation cycle, a new comparison value VWN (VWB) is formed for each detector from its current measured value MW, its last stored idle value RWA and its last stored comparison value VWA. This current comparison value VWN is stored on the one hand for the next processing cycle in the comparison value memory VWSP, and on the other hand compared with a predetermined limit value GRW, in the exemplary embodiment for alarm, in the comparison device VGE, which is arranged downstream of the two devices. If the current comparison value VWN is greater than or equal to the limit value for alarm GRW, an alarm AL is displayed in the display device ANZ connected downstream of the comparison device VGE. If the current comparison value VWN does not exceed the limit value GRW, the new detector measured value MW can be used together with the old idle value RWA from the idle value memory RWSP to calculate a new idle value RWN, which is used to rewrite the idle value memory RWSP. The block diagram (Fig. 3) illustrates the detection of alarm. In a similar way, faults can be recognized and displayed.

In Fig. 4 ist die Einrichtung zur Bildung des Vergleichswertes VWB im einzelnen näher dargestellt. Der Melderwert MW gelangt vom Melder zur Zentrale Z und an eine erste arithmetische logische Einheit ALU1. Dort wird der alte Ruhewert RWA aus dem Ruhewertspeicher vom Meldermeßwert MW subtrahiert. In einer zweiten arithmetischen logischen Einheit ALU2, die der ersten ALU1 nachgeschaltet ist, wird ein vorgebbarer konstanter Wert CON abgezogen. Der zweiten arithmetischen logischen Einheit ALU2 ist eine dritte arithmetische logische Einheit ALU3 nachgeschaltet, die das Ergebnis der ALU2 zu dem letzten (gespeicherten) Vergleichswert VWA addiert. Der der ALU3 nachgeschaltete Komparator K1 mit zugeordnetem Demultiplexer D1 führt lediglich einen Vergleich des Ergebnisses aus der ALU3 (Summensignal SUS) mit dem Wert 0 durch, um eine Begrenzung des Summensignals (SUS gemäß Fig. 2b) nach unten zu erreichen. Ist der Wert kleiner als 0, so gibt der Multiplexer D1 an seinem Ausgang 0 ab. Ist der Wert hingegen größer als 0, so steht am Ausgang des Multiplexers D1 das Summensignal SUS als aktueller Vergleichswert VWN. Dieser Ausgang führt auf die Vergleichseinrichtung VGE, in der mit einem weiteren Komparator K2 der neue Vergleichswert VWN mit dem Grenzwert GRW verglichen wird.4 shows the device for forming the comparison value VWB in more detail. The detector value MW passes from the detector to the control center Z and to a first arithmetic logic unit ALU1. There, the old idle value RWA is subtracted from the idle value memory from the detector measured value MW. A predeterminable constant value CON is subtracted in a second arithmetic logic unit ALU2, which is connected downstream of the first ALU1. The second arithmetic logic unit ALU2 is followed by a third arithmetic logic unit ALU3, which adds the result of the ALU2 to the last (stored) comparison value VWA. The comparator K1 connected downstream of the ALU3 with an assigned demultiplexer D1 only compares the result from the ALU3 (sum signal SUS) with the value 0 in order to achieve a downward limitation of the sum signal (SUS according to FIG. 2b). If the value is less than 0, the multiplexer D1 outputs 0 at its output. Is the value however, greater than 0, the sum signal SUS is at the output of the multiplexer D1 as the current comparison value VWN. This output leads to the comparison device VGE, in which the new comparison value VWN is compared with the limit value GRW using a further comparator K2.

Der dem zweiten Komparator K2 nachgeschaltete zweite Demultiplexer D2 steuert, wenn der Vergleichswert VWN größer oder gleich dem Grenzwert GRW (VWN > GRW) ist die Anzeigeeinrichtung ANZ an. Ist der Vergleichswert VWN kleiner als der Grenzwert GRW (VWN < GRW), so steuert der zweite Demultiplexer D2 die Ruhewertbildungseinrichtung RWB an und ermöglicht die Bildung eines neuen Ruhewerts RWN, wie anhand von Fig. 5 noch näher erläutert wird.The second demultiplexer D2 connected downstream of the second comparator K2 controls the display device ANZ when the comparison value VWN is greater than or equal to the limit value GRW (VWN> GRW). If the comparison value VWN is smaller than the limit value GRW (VWN <GRW), the second demultiplexer D2 controls the rest value formation device RWB and enables the formation of a new rest value RWN, as will be explained in more detail with reference to FIG. 5.

In Fig. 5 ist die Schaltungsanordnung zur Ruhewertbildung RWB dargestellt. Sie weist einen ersten Multiplizierer MU1 auf, dem ein Addierer AD1 mit einem ersten Eingang nachgeschaltet ist. Sie weist einen Subtrahierer SU1 auf, der mit einem konstanten Wert EPS (0 < EPS < 1) beaufschlagt ist. Mit dieser Konstanten EPS ist die Differenz (MW-RWA) aus dem jeweiligen Meldemeßwert (MW) und dem gespeicherten Melderruhewert (RWA) für die Ruhewertbildung beeinflußbar. Dieser Konstantwert EPS wird auf den ersten Eingang, der Meldermeßwert MW auf den zweiten Eingang der ersten Multiplizierstufe MU1 gegeben. Das Ausgangssignal (1-EPS) des Subtrahierers SU1 gelangt an die zweite Multiplizierstufe MU2, an die der letztgespeicherte Ruhewert RWA aus dem Ruhewertspeicher RWSP gelangt. Der Ausgang der zweiten Multiplizierstufe MU2 führt zum zweiten Eingang der Addierstufe AD1, die, gesteuert von der Vergleichseinrichtung VGE, über den Enable-Eingang E den aktuellen Ruhewert RWN bildet, wenn VWN < GRW. Der aktuelle Meldewert MW wird im ersten Multiplizierer M1 mit dem konstanten Wert EPS multipliziert. Der alte Ruhewert RWA aus dem Ruhewertspeicher RWSP wird im zweiten Multiplizierer MU2 mit dem Wert (1 - EPS) multipliziert. Der Addierer AD1 liefert dann am Ausgang den neuen Ruhewert RWN (EPS - (MW-RWA)+RWA=RWN).5 shows the circuit arrangement for forming the idle value RWB. It has a first multiplier MU1, which is followed by an adder AD1 with a first input. It has a subtractor SU1 which is supplied with a constant value EPS (0 <EPS <1). This constant EPS can be used to influence the difference (MW-RWA) from the respective measured measured value (MW) and the stored detector idle value (RWA) for the formation of the idle value. This constant value EPS is given to the first input, the detector measured value MW to the second input of the first multiplier stage MU1. The output signal (1-EPS) of the subtractor SU1 reaches the second multiplier stage MU2, to which the last stored idle value RWA comes from the idle value memory RWSP. The output of the second multiplier stage MU2 leads to the second input of the adder stage AD1, which, controlled by the comparison device VGE, forms the current idle value RWN via the enable input E if VWN <GRW. The current reporting value MW is multiplied by the constant value EPS in the first multiplier M1. The old idle value RWA from the idle value memory RWSP is multiplied by the value (1 - EPS) in the second multiplier MU2. The adder AD1 then delivers the new idle value RWN (EPS - (MW-RWA) + RWA = RWN) at the output.

Mit dem erfindungsgemäßen Verfahren wird in vorteilhafter Weise eine langsame Veränderung am Melder, z. B. durch Bauteilealterung oder Verschmutzung, ausgeglichen. Die Empfindlichkeit der Melder bleibt über eine sehr lange Zeit hinweg konstant. Dabei können unterschiedliche Einsatzfälle in der Regel mit einheitlichen Meldern und Auswerteprogrammen bedient werden. Außerdem werden langsam sich entwickelnde Brände ebenso wie rasch sich ausbreitende Brände zum frühest möglichen Zeitpunkt erkannt, wobei Störungen und Täuschungen der Meldeanlage weitgehend verhindert werden.With the inventive method, a slow change in the detector, z. B. compensated for by component aging or contamination. The sensitivity of the detectors remains constant for a very long time. Different applications can usually be served with uniform detectors and evaluation programs. In addition, slowly developing fires as well as rapidly spreading fires are detected at the earliest possible point in time, whereby malfunctions and deceptions of the alarm system are largely prevented.

Claims (6)

1. A method of increasing the response sensitivity and the resistance to interference in an alarm installation, in particular a fire alarm installation, with a central control unit (Z) to which a plurality of automatic monitors (M) are connected and cyclically interrogated, and in which the measured monitor values (MW) are analysed to form a mean value from the individual monitor signals and compared with the monitor signals in question, and in the event that the mean value is overshot or undershot by an adjustable amount, a single device is actuated, characterised in that from the current measured monitor values (MW) for each monitor (M), a mean measured monitor value is formed as a monitor rest value (RWB), and is stored for the monitor in question in a rest value store (RWSP) as current rest value (RWN), that the difference (MW-RWA) between the current measured monitor value (MW) and the stored rest value (RWA) is formed, that in order to obtain a current and storable (VWSP) comparison value (VWN), these differences are integrated to form a sum signal (SUS), and that the current comparison value (VWN) is compared (VGE) with a predetermined limit value (GRW) and in the event that it is overshot (VWN a GRW), the signal display device is actuated for an alarm and interference display device (ANZ), and in the event that it is undershot (VWN < GRW), the current rest value (RWN) is formed.
2. A method as claimed in Claim 1, characterised in that the difference (MW-RWA), which ist formed (ALU1) with each interrogation cycle is reduced (ALU2) by a predeterminable constant (CON) and integrated (ALU2) to form the sum signal (SUS), that with each interrogation cycle the sum signal (SUS) is compared with the value zero (K1, D1) and, when it is greater than or equal to zero (0), is input as a current comparison value (VWN) into a comparison value store (VWSP), where the sum signal (SUS) is set at zero during the first interrogation cycle.
3. A method as claimed in Claim 1, characterised in that for the formation (RWB) of the current rest value (RWN), the current measured monitor value (MW) and the last rest value (RWA) are added (AD1) to be influenced (MU1, SU1, MU2) by a predeterminable constant value (EPS) and input as current rest value (RWN) into the rest value store (RWSP) in dependence upon the current comparison value (VWN < GRW) where, during the first interrogation cycle, the rest value corresponds to the first measured monitor value.
4. An arrangement for the execution of the method claimed in Claim 1, characterised in that the central control unit (Z) is supplied with measured monitor values (MW), a device (RWB) being arranged for the formation of a monitor rest value with an assigned rest value store (RWSP), and a device (VWB) for the formation of a comparison value with an assigned comparison value store (VWSP), and these two devices are followed by a comparison device (VGE), which acts in dependence upon the current comparison value (VWN) in relation to the predetermined limit value (GRW) to operate a following display device (ANZ) or facilitate a new rest value formation (RWB).
5. An arrangement as claimed in Claim 4, characterised in that the device for comparison value formation (VWB) possesses a first substractor (ALU1) supplied with the current measured value (MW) and the stored rest value (RWA), whose output is connected to a second subtractor (ALU2) fed with a constant value (CON), whose output is connected to an adder (ALU3) supplied with the stored comparison value (VWA) and leading to a comparison device which consists of a comparator (K1) having a second input, supplied with the value zero (0), and a following demultiplexer (D1).
6. An arrangement as claimed in Claim 4, characterised in that the rest value formation device (RWB) possesses a first multiplier (MU1) supplied with the current measured monitor value (MW) and a constant value (ESP), and a subtractor (SU1) supplied with a constant value (ESP) and a value »1« and whose output is connected to a second multiplier (MU2) whose second input is supplied with the stored rest value (RWA), and that the output of the first multiplier (MU1) and the output of the second multiplier (MU2) lead to an adder (AD1) by which, in the event that the current comparison value (VWN) undershoots the limit value (GRW), it is possible by means of the enable input (E) to form a current rest value (RWN) which can be input into the rest value store (RWSP).
EP82106039A 1981-07-10 1982-07-06 Method and device for increasing the reaction sensitivity and the disturbance security in a hazard, particularly a fire alarm installation Expired EP0070449B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82106039T ATE16534T1 (en) 1981-07-10 1982-07-06 PROCEDURE AND ARRANGEMENT FOR INCREASING THE RESPONSE SENSITIVITY AND IMMUNITY IN A HAZARD, ESPECIALLY FIRE ALARM SYSTEM.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813127324 DE3127324A1 (en) 1981-07-10 1981-07-10 METHOD AND ARRANGEMENT FOR INCREASING THE SENSITIVITY AND EMERGENCY SAFETY IN A DANGER, IN PARTICULAR FIRE DETECTING SYSTEM
DE3127324 1981-07-10

Publications (2)

Publication Number Publication Date
EP0070449A1 EP0070449A1 (en) 1983-01-26
EP0070449B1 true EP0070449B1 (en) 1985-11-13

Family

ID=6136629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82106039A Expired EP0070449B1 (en) 1981-07-10 1982-07-06 Method and device for increasing the reaction sensitivity and the disturbance security in a hazard, particularly a fire alarm installation

Country Status (7)

Country Link
US (1) US4514720A (en)
EP (1) EP0070449B1 (en)
AT (1) ATE16534T1 (en)
BR (1) BR8203967A (en)
DE (2) DE3127324A1 (en)
DK (1) DK159346C (en)
NO (1) NO156308C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328376B3 (en) * 2003-06-24 2005-02-17 Siemens Ag False alarm prevention method for fire alarm device using respective filters for selecting interference frequency range for suppression of alarm signal and fire characteristic frequency range
US8963726B2 (en) 2004-05-27 2015-02-24 Google Inc. System and method for high-sensitivity sensor
US9318015B2 (en) 2004-05-27 2016-04-19 Google Inc. Wireless sensor unit communication triggering and management

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3405857A1 (en) * 1983-02-24 1984-08-30 Hochiki K.K., Tokio/Tokyo FIRE ALARM SYSTEM
EP0121048B1 (en) * 1983-03-04 1987-05-06 Cerberus Ag Circuit arrangement for the interference level control of detectors, arranged in a danger detection device
JPS59201193A (en) * 1983-04-30 1984-11-14 松下電工株式会社 Fire alarm system
DE3318275C2 (en) * 1983-05-17 1992-05-07 f + g megamos Sicherheitselektronik GmbH, 5250 Engelskirchen Method for monitoring the inclination of a motor vehicle
JPS60144458U (en) * 1984-03-05 1985-09-25 ホーチキ株式会社 fire detection device
GB2158572A (en) * 1984-05-09 1985-11-13 Quantor Corp Detecting low level radiation sources
JPS6115300A (en) * 1984-06-29 1986-01-23 ホーチキ株式会社 Fire alarm
DE3668247D1 (en) * 1985-03-20 1990-02-15 Siemens Ag FIRE DETECTING SYSTEM WITH A SUCTION SYSTEM.
JPS61237197A (en) * 1985-04-12 1986-10-22 ホーチキ株式会社 Fire alarm
JPS6219999A (en) * 1985-07-18 1987-01-28 ホーチキ株式会社 Fire alarm
FR2598524B1 (en) * 1986-05-07 1988-12-02 Berruyer Yves MONITORING METHOD FOR ANTICIPATING THE TRIGGERING OF AN ALARM.
CH669859A5 (en) * 1986-06-03 1989-04-14 Cerberus Ag
US5117457A (en) * 1986-11-05 1992-05-26 International Business Machines Corp. Tamper resistant packaging for information protection in electronic circuitry
US4860351A (en) * 1986-11-05 1989-08-22 Ibm Corporation Tamper-resistant packaging for protection of information stored in electronic circuitry
DE3719988A1 (en) * 1987-06-15 1988-12-29 Total Feuerschutz Gmbh INDIVIDUAL IDENTIFICATION
US5138562A (en) * 1988-04-14 1992-08-11 Fike Corporation Environmental protection system useful for the fire detection and suppression
JP2758671B2 (en) * 1989-01-20 1998-05-28 ホーチキ株式会社 Fire judgment device
DE3904979A1 (en) * 1989-02-18 1990-08-23 Beyersdorf Hartwig METHOD FOR OPERATING AN IONIZATION SMOKE DETECTOR AND IONIZATION SMOKE DETECTOR
US5189399A (en) * 1989-02-18 1993-02-23 Hartwig Beyersdorf Method of operating an ionization smoke alarm and ionization smoke alarm
ATE103427T1 (en) * 1990-01-17 1994-04-15 Siemens Ag PROTECTIVE DEVICE FOR ELECTRICAL MACHINES.
US5155468A (en) * 1990-05-17 1992-10-13 Sinmplex Time Recorder Co. Alarm condition detecting method and apparatus
JP2608168B2 (en) * 1990-08-31 1997-05-07 三菱電機株式会社 Semiconductor test equipment
DE4030108A1 (en) * 1990-09-22 1992-04-02 Bernd Brandes METHOD FOR CHECKING THE GOOD OF AN OBJECT OR STATE
CH681932A5 (en) * 1990-12-04 1993-06-15 Cerberus Ag
EP0501194B1 (en) * 1991-02-26 1997-07-30 Siemens Aktiengesellschaft Method of predetermining the time of maintenance of alarm detectors
US5172096A (en) * 1991-08-07 1992-12-15 Pittway Corporation Threshold determination apparatus and method
JP3217585B2 (en) * 1994-03-18 2001-10-09 能美防災株式会社 Fire detector and fire receiver
FR2723237B1 (en) * 1994-07-29 1996-10-04 Lewiner Jacques FIRE DETECTION DEVICE WITH ANALOGUE ELECTRIC SIGNAL TRANSMISSION TO A CENTRAL UNIT
US5654896A (en) * 1994-10-31 1997-08-05 Ixys Corp Performance prediction method for semiconductor power modules and ICS
US5612674A (en) * 1995-01-05 1997-03-18 Pittway Corporation High sensitivity apparatus and method with dynamic adjustment for noise
US5557262A (en) * 1995-06-07 1996-09-17 Pittway Corporation Fire alarm system with different types of sensors and dynamic system parameters
GB2334575A (en) * 1998-02-19 1999-08-25 Azur Env Ltd Environmental monitor and alarm having an updated allowable measurement range
DE19839047A1 (en) * 1998-06-22 2000-01-05 Martin Daumer Method and device for drift detection
WO1999067758A1 (en) * 1998-06-22 1999-12-29 Martin Daumer Method and device for detecting drifts, jumps and/or outliers of measurement values
DE10104861B4 (en) * 2001-02-03 2013-07-18 Robert Bosch Gmbh Procedure for fire detection
DK1369836T3 (en) * 2002-05-08 2006-05-01 Hekatron Technik Gmbh Fire alarm and method of operating a fire alarm
US7218237B2 (en) * 2004-05-27 2007-05-15 Lawrence Kates Method and apparatus for detecting water leaks
US7228726B2 (en) * 2004-09-23 2007-06-12 Lawrence Kates System and method for utility metering and leak detection
US7250855B2 (en) * 2004-12-27 2007-07-31 Sap Aktiengesellschaft False alarm mitigation using a sensor network
US7336168B2 (en) * 2005-06-06 2008-02-26 Lawrence Kates System and method for variable threshold sensor
EP1905200A1 (en) 2005-07-01 2008-04-02 Terahop Networks, Inc. Nondeterministic and deterministic network routing
US7230528B2 (en) * 2005-09-20 2007-06-12 Lawrence Kates Programmed wireless sensor system
US7142123B1 (en) * 2005-09-23 2006-11-28 Lawrence Kates Method and apparatus for detecting moisture in building materials
WO2009151877A2 (en) 2008-05-16 2009-12-17 Terahop Networks, Inc. Systems and apparatus for securing a container
CN101957618A (en) * 2010-10-18 2011-01-26 上海电机学院 Intelligent home control system
US8681011B2 (en) 2011-02-21 2014-03-25 Fred Conforti Apparatus and method for detecting fires
WO2013186640A2 (en) 2012-05-24 2013-12-19 Lundy Douglas H Threat detection system and method
US9117360B1 (en) 2014-06-06 2015-08-25 Fred Conforti Low battery trouble signal delay in smoke detectors
DE102015223253A1 (en) 2015-11-25 2017-06-01 Minimax Gmbh & Co. Kg Method for determining threshold values of a condition monitoring unit for a fire detection and / or extinguishing control center and condition monitoring unit and system therewith
EP3704679A1 (en) * 2017-10-30 2020-09-09 Carrier Corporation Compensator in a detector device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2147022A1 (en) * 1971-09-21 1973-04-05 Licentia Gmbh CIRCUIT ARRANGEMENT FOR ACHIEVING A GREATER SENSITIVITY IN THE CASE OF A NOISE DETECTION SYSTEM WITH FLUCTUATING NOISE LEVELS
CA1001251A (en) * 1972-02-04 1976-12-07 Honeywell Inc. Supervisory system having a dead band to prevent nuisance alarms as a reported condition erratically changes
CH570016A5 (en) * 1973-03-30 1975-11-28 Cerberus Ag
DE2341087C3 (en) * 1973-08-14 1979-09-27 Siemens Ag, 1000 Berlin Und 8000 Muenchen Automatic fire alarm system
DE2817089B2 (en) * 1978-04-19 1980-12-18 Siemens Ag, 1000 Berlin Und 8000 Muenchen Alarm system
US4283717A (en) * 1979-10-01 1981-08-11 Digital Monitoring Products Monitoring system for a direct-wire alarm system
US4313114A (en) * 1980-05-30 1982-01-26 Leupold & Stevens, Inc. Liquid level recorder apparatus and method for storing level differences in memory

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328376B3 (en) * 2003-06-24 2005-02-17 Siemens Ag False alarm prevention method for fire alarm device using respective filters for selecting interference frequency range for suppression of alarm signal and fire characteristic frequency range
US8963726B2 (en) 2004-05-27 2015-02-24 Google Inc. System and method for high-sensitivity sensor
US8963728B2 (en) 2004-05-27 2015-02-24 Google Inc. System and method for high-sensitivity sensor
US8963727B2 (en) 2004-05-27 2015-02-24 Google Inc. Environmental sensing systems having independent notifications across multiple thresholds
US8981950B1 (en) 2004-05-27 2015-03-17 Google Inc. Sensor device measurements adaptive to HVAC activity
US9007225B2 (en) 2004-05-27 2015-04-14 Google Inc. Environmental sensing systems having independent notifications across multiple thresholds
US9019110B2 (en) 2004-05-27 2015-04-28 Google Inc. System and method for high-sensitivity sensor
US9318015B2 (en) 2004-05-27 2016-04-19 Google Inc. Wireless sensor unit communication triggering and management
US9357490B2 (en) 2004-05-27 2016-05-31 Google Inc. Wireless transceiver
US9474023B1 (en) 2004-05-27 2016-10-18 Google Inc. Controlled power-efficient operation of wireless communication devices

Also Published As

Publication number Publication date
ATE16534T1 (en) 1985-11-15
DK309582A (en) 1983-01-11
EP0070449A1 (en) 1983-01-26
BR8203967A (en) 1983-06-28
NO156308B (en) 1987-05-18
NO822153L (en) 1983-01-11
NO156308C (en) 1987-08-26
DK159346B (en) 1990-10-01
DE3267407D1 (en) 1985-12-19
DE3127324A1 (en) 1983-01-27
DK159346C (en) 1991-03-11
US4514720A (en) 1985-04-30

Similar Documents

Publication Publication Date Title
EP0070449B1 (en) Method and device for increasing the reaction sensitivity and the disturbance security in a hazard, particularly a fire alarm installation
EP0067339B1 (en) Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems
DE3415786C3 (en) Computer controlled fire alarm system
EP0248298B1 (en) Danger alarm installation
DE3624028C2 (en)
DE19622806A1 (en) Method and device for detecting a fire with different types of fire sensors
DE3507344C2 (en)
WO2017089185A1 (en) Method for determining thresholds of a state monitoring unit for a fire detection and/or extinguishing control center, state monitoring unit, and system comprising same
DE2817089B2 (en) Alarm system
EP0042501B1 (en) Device for the transmission of measured values in a fire warning system
EP0066200B1 (en) Method and device for revision in a hazard, particularly a fire alarm system
DE3405857C2 (en)
CH615404A5 (en)
EP1950639A1 (en) Method for operating a process plant, process plant and computer program product
CH660927A5 (en) MONITORING SYSTEM.
EP0418409A1 (en) Method and device to avoid prevailing weather effects on automatic fire alarms
EP0384209B1 (en) Method for the operation of an ionization smoke detector, and ionization smoke detector
EP0660282B1 (en) System for the early detection of fires
EP0098552B1 (en) Method and device for automatically demanding signal measure values and signal identification in an alarm installation
EP0197371B1 (en) Fire detector arrangement with a suction system
DE102008048930A1 (en) Testing the detection lines of a hazard detection system
EP0654771A1 (en) Method for preventing false alarms in a fire detecting system and device for performing this method
EP0098554A1 (en) Method and device for automatically demanding signal measure values and signal identification in an alarm installation
DE102019005978A1 (en) Gas measuring system and method for operating a gas measuring system.
DE3225032C2 (en) Method and device for the optional automatic query of the detector identification or the detector measured value in a hazard alarm system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE FR IT NL SE

17P Request for examination filed

Effective date: 19830615

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE DE FR IT NL SE

REF Corresponds to:

Ref document number: 16534

Country of ref document: AT

Date of ref document: 19851115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3267407

Country of ref document: DE

Date of ref document: 19851219

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880707

ITTA It: last paid annual fee
EUG Se: european patent has lapsed

Ref document number: 82106039.9

Effective date: 19890510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010717

Year of fee payment: 20

Ref country code: BE

Payment date: 20010717

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010724

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010919

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 20020706 *SIEMENS A.G. BERLIN UND MUNCHEN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020706

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020706

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20020706