EP0050750A1 - Infrared intrusion detector - Google Patents

Infrared intrusion detector Download PDF

Info

Publication number
EP0050750A1
EP0050750A1 EP81107843A EP81107843A EP0050750A1 EP 0050750 A1 EP0050750 A1 EP 0050750A1 EP 81107843 A EP81107843 A EP 81107843A EP 81107843 A EP81107843 A EP 81107843A EP 0050750 A1 EP0050750 A1 EP 0050750A1
Authority
EP
European Patent Office
Prior art keywords
radiation
intrusion detector
detector according
designed
collecting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81107843A
Other languages
German (de)
French (fr)
Other versions
EP0050750B1 (en
Inventor
Peter Wägli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerberus AG
Original Assignee
Cerberus AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerberus AG filed Critical Cerberus AG
Priority to AT81107843T priority Critical patent/ATE9412T1/en
Publication of EP0050750A1 publication Critical patent/EP0050750A1/en
Application granted granted Critical
Publication of EP0050750B1 publication Critical patent/EP0050750B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems
    • G08B13/193Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems using focusing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S250/00Radiant energy
    • Y10S250/01Passive intrusion detectors

Definitions

  • the invention relates to an infrared intrusion detector with optical bundling means and a sensor arrangement, in which the infrared radiation incident from a plurality of separate reception areas is recorded and evaluated for alarm signaling in the event of a predetermined change in the recorded radiation.
  • the infrared radiation emanating from a person in the monitored area is evaluated. If the monitored area is divided into several separate reception areas with dark fields in between, each movement of a person causes a modulation of the infrared radiation received by the sensor element, which can be evaluated by means of a known evaluation circuit to indicate an intruder and to give an alarm signal.
  • intrusion detectors known from US Pat. No. 3,760,399, US Pat. No. 3,829,693 or US Pat. No. 3,958,118 use a reflector common to all reception areas, which bundles the radiation incident from these reception areas onto a plurality of sensor elements arranged next to one another. Since a large number of such sensor elements are used, however, a complicated and fault-prone evaluation circuit is required, to which this large number of sensor elements is connected. In addition, the number of possible sensor elements and thus the number and Selection of reception areas severely restricted.
  • an infrared radiation intrusion detector in which reflector surfaces are formed as part of a spherical surface, the selected surface part determines the detectable solid angle.
  • the IR radiation is directed to a radiation receiver via a radiation conductor bundle composed of a large number of individual radiation-conducting elements (e.g. internally braced hollow conductor).
  • the combination of the radiation beam onto a sensibly small detector is, however, technically difficult to implement.
  • DE-OS 2 836 462 describes a room surveillance reception device in which the IR radiation falls from a focusing lens through a tube onto a radiation converter arranged in the focal plane. Through a reflective layer arranged on the inside of the tube, radiation from further, sector-shaped areas is thrown onto the transducer by multiple reflection. However, the sensitivity of the monitoring device is greatly reduced for the outside areas because of the curved focus surface of the focusing means.
  • the object of the invention is to avoid the disadvantages of the prior art mentioned and in particular to provide an infrared intrusion detector which, with high sensitivity with a single sensor element and a simple optical arrangement with small dimensions, provides infrared radiation from a multiplicity of arbitrarily selectable reception areas safely and without interference is able to record.
  • the sensor arrangement has an elongated radiation collecting element which is arranged at least approximately in the focus surface of the focusing means, the surface of which is designed to be reflective inwards and which has a plurality of radiation entry openings on its long side and an infrared sensor element on one end.
  • Figures 1 a and 1 b show an optical arrangement for an infrared intrusion detector in top view and in cross section.
  • a reflector 1 is provided as the focusing means, which can be designed, for example, as a spherical mirror with a center point C.
  • the focus surface F of such a spherical mirror is known to be a concentric sphere with a half radius.
  • an elongated element 2 is arranged, which serves to collect the infrared radiation focused on the focus area F.
  • This radiation collecting element 2 can be designed, for example, as an air-accessible tube with a mirrored inner surface 3, or as an IR radiation-transparent transparent body, on the surface of which a reflective layer 3 is applied.
  • the cross section of this element can be circular, for example, for reasons of simpler manufacture or adjustability.
  • the axis of this elongated element 2 is curved in accordance with the focus surface F.
  • it can expediently be designed to be flexible.
  • an appropriately corrected optics as a bundling means can also a tube or transparent body with a straight axis can be used.
  • a sensor element 5 is attached to one end of the tube, the other is mirrored or carries a further sensor element.
  • radiation inlet openings 4 are provided on the surface thereof. These can be designed as holes in the jacket of the collecting element 2 as an air-filled tube, and as interruptions in the reflective coating 3 as a transparent body.
  • the radiation that has entered through these radiation inlet openings 4 is reflected many times inside the radiation collecting element 2 on its inner surface 3 and finally arrives at the sensor element 5 attached to one end face, which is connected to an evaluation circuit by means of connecting lines 6. Since the area of the radiation inlet openings 4 only makes up a very small part of the entire inner surface of the radiation collecting element 2, practically all of the radiation that has entered the inside of the collecting element 2 reaches the sensor element 5 without any significant losses.
  • the radiation entrance openings 4 mentioned are now ' just attached at the points where the radiation arriving from certain desired reception areas is focused by the reflector 1.
  • Each radiation entry opening 4 is assigned a specific radiation reception area, the opening angle of which depends on the dimensions of the radiation entry opening 4 and the quality of the image.
  • the radiation inlet openings 4 can be provided on the surface of the radiation collecting element 2.
  • the arrangement can thus be easily adapted to the desired conditions of use.
  • a particularly simple optic is completely sufficient, and only a single sensor element is required, which can be connected to a correspondingly simple and fault-prone evaluation circuit. Since no segment optics are required, but only a single reflector, optimal sensitivity can be achieved.
  • the bundling means designed as a spherical mirror used in the example described can also be designed in a different way.
  • a parabolic mirror can be used that provides a better image at least in the vicinity of the axis
  • refractive optics can be used that can be easily corrected so that the focus surface is not very curved, i.e. is almost flat, so that the radiation collecting element 2 can have a cylindrical shape with a straight axis.
  • FIG. 2 shows an exemplary embodiment with a collecting lens 10 as a focusing means.
  • the radiation collecting element 2 is configured analogously to the previous example and is arranged in the focus surface F of the collecting lens 10.
  • Each of the radiation inlet openings 4 corresponds to a separate reception direction or reception area A 1 , A 2 ... A 5.
  • FIG. 3 shows an infrared intrusion detector with a housing 9, the front side of which is taken up by a bundling means 11, which is designed as a central section of a Fresnel step lens.
  • a bundling means 11 which is designed as a central section of a Fresnel step lens.
  • the distance from the front 9 'of the focal length f corresponds to the Fresnel lens 11, a tubular radiation collecting element 2 with different openings 4 facing the Fresnel lens 11 is again provided.
  • Each opening 4 in turn corresponds to a radiation receiving area, and this evaluation circuit 7 emits a signal via signal lines 8 as soon as the infrared radiation picked up by the sensor element 5 changes in a manner characteristic of the movement of an intruder through the radiation receiving areas.
  • one or more prisms can be provided in front of or behind parts of the converging lens, through which the individual reception beams can each be split into a plurality of beams.
  • the number of radiation receiving areas can be multiplied if a certain intensity weakening of the individual areas can be accepted.
  • a prism 12 can be arranged in front of the lower half of the Fresnel lens 11. This has the effect that the radiation impinging on the lower half is deflected by a certain angle, while the radiation impinging on the upper half remains unaffected.
  • Each reception area is therefore split into two separate areas.
  • the upper half of the lens focuses radiation from direction A 31 onto the middle opening 4 and the lower half the inclined direction A 32 .
  • an infrared intrusion detector can be created in a single way, the reception areas of which have the shape of two radiation curtains to be passed one after the other.
  • the prism element can also be combined with and integrated into the converging lens in that it is designed as a multi-zone lens with zones of different optical axes.
  • one half of the Fresnel lens 11 can have the shape of a wedge 13 on its front or rear side, which replaces the prism 12 and has the same optical effect.
  • Such an optical element is particularly easy to manufacture and requires no special adjustment.
  • the infrared intrusion detector shown has an optimal sensitivity and, moreover, has a particularly simple and interference-free construction. It is particularly suitable for applications where an infrared protective curtain with closely spaced reception areas is desired.
  • the Frensel lens from a material that is preferably transparent in the spectral range of the body radiation in the far infrared and also to use a preferably infrared-sensitive element, for example a pyroelectric element, as the sensor element Element, of the lithium tantalate, polyvinyl difluoride or lead zirconate titanate type.
  • the intrusion detector according to FIG. 3 can be further developed in that the radiation-collecting tube 2 is arranged to rotate uniformly about its just formed axis.
  • the openings are then not fixed on a straight line parallel to the axis, but are provided at different angles of rotation on the pipe surface, for example on a helix.
  • the individual openings 14 then come into the focus area one after the other, i.e. they receive radiation from the assigned reception area at different times. This enables the different reception areas to be scanned over time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Burglar Alarm Systems (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

An infrared intrusion detector wherein a plurality of separate radiation receiving regions or fields of view are focused by a single focusing optic, for instance a reflector or a Fresnel lens upon a single sensor element through an elongate or lengthwise extending radiation collecting element. The radiation collecting element can be constituted by an internally metal coated tube or a transparent body having a reflecting surface layer or coating, wherein the reflection coating is interrupted by radiation inlet openings. The infrared radiation which is focused by the focusing optic enters through such openings into the interior of the radiation collecting element and arrives, after having been reflected a number of times, at the sensor element which is mounted at an end side thereof.

Description

Die Erfindung betrifft einen Infrarot-Einbruchdetektor mit optischen Bündelungsmitteln und einer Sensoranordnung, bei dem die aus mehreren getrennten Empfangsbereichen einfallende Infrarot-Strahlung aufgenommen und zur Alarmsignalgabe bei einer vorbestimmten Aenderung der aufgenommenen Strahlung ausgewertet wird.The invention relates to an infrared intrusion detector with optical bundling means and a sensor arrangement, in which the infrared radiation incident from a plurality of separate reception areas is recorded and evaluated for alarm signaling in the event of a predetermined change in the recorded radiation.

Bei solchen Einbruchdetektoren wird die von einer Person im überwachten Bereich ausgehende Infrarot-Strahlung ausgewertet. Wenn der überwachte Bereich in mehrere getrennte Empfangsbereiche mit dazwischen liegenden Dunkelfeldern aufgeteilt ist, so bewirkt jede Bewegung einer Person eine Modulation der vom Sensorelement empfangenen Infrarotstrahlung, welche mittels einer bekannten Auswerteschaltung zur Anzeige eines Eindringlings und zur Alarmsignalgabe ausgewertet werden kann.With such intrusion detectors, the infrared radiation emanating from a person in the monitored area is evaluated. If the monitored area is divided into several separate reception areas with dark fields in between, each movement of a person causes a modulation of the infrared radiation received by the sensor element, which can be evaluated by means of a known evaluation circuit to indicate an intruder and to give an alarm signal.

Zur Schaffung der erforderlichen getrennten Empfangsbereiche sind verschiedene optische Anordnungen bekannt. Eine besonders gute Empfindlichkeit lässt sich erreichen, wenn aus allen Empfangsbereichen eine möglichst grosse Strahlungsmenge aufgenommen und ausgewertet wird. Aus US 3 760 399, US 3 829 693 oder US 3 958 118 vorbekannte Einbruchdetektoren verwenden dazu einen für alle Empfangsbereiche gemeinsamen Reflektor, der die aus diesen Empfangsbereichen einfallende Strahlung auf mehrere nebeneinander angeordnete Sensorelemente bündelt. Da eine Vielzahl solcher Sensorelemente verwendet wird, ist jedoch eine komplizierte und störanfällige Auswerteschaltung erforderlich, an welche diese Vielzahl von Sensorelementen angeschlossen ist. Zudem ist die Zahl der möglichen Sensorelemente und damit die Anzahl und Auswahl der Empfangsbereiche stark eingeschränkt.Various optical arrangements are known for creating the necessary separate reception areas. A particularly good sensitivity can be achieved if the largest possible amount of radiation is recorded and evaluated from all reception areas. For this purpose, intrusion detectors known from US Pat. No. 3,760,399, US Pat. No. 3,829,693 or US Pat. No. 3,958,118 use a reflector common to all reception areas, which bundles the radiation incident from these reception areas onto a plurality of sensor elements arranged next to one another. Since a large number of such sensor elements are used, however, a complicated and fault-prone evaluation circuit is required, to which this large number of sensor elements is connected. In addition, the number of possible sensor elements and thus the number and Selection of reception areas severely restricted.

Aus anderen Vorpublikationen, beispielsweise US 3 703 718, US 4 058 726 oder US 4 081 680 ist es zwar bekannt, diesen Nachteil dadurch zu vermeiden, dass eine Vielzahl von Reflektoren vorgesehen wird, welche jeweils Strahlung aus einem Empfangsbereich auf ein gemeinsames Sensorelement fokussieren. Hierbei muss jedoch der Nachteil in Kauf genommen werden, dass aus jedem Empfangsbereich nur eine geringe Strahlungsmenge aufgenommen wird und die Empfindlichkeit daher vermindert ist oder die Zahl der Empfangsbereiche beschränkt werden muss.From other prior publications, for example US 3 703 718, US 4 058 726 or US 4 081 680, it is known to avoid this disadvantage by providing a large number of reflectors, each of which focuses radiation from a reception area onto a common sensor element. Here, however, the disadvantage must be accepted that only a small amount of radiation is absorbed from each reception area and the sensitivity is therefore reduced or the number of reception areas has to be limited.

Aus der DE-OS 2 719 191 ist ein Infrarotstrahlungseinbruchdetektor bekannt, bei dem Reflektorflächen als Teil einer Kugeloberfläche ausgebildet sind, der gewählte Oberflächenteil bestimmt den erfassbaren Raumwinkel. Die IR-Strahlung wird über ein aus einer Vielzahl einzelner strahlungsleitender Elemente (z.B. innenversp.Hohlleiter) zusammengesetztes Strahlungsleiterbündel auf einen Strahlungsempfänger geleitet. Die Zusammenfassung des Strahlungsbündels auf einen sinnvollerweise kleinen Detektor ist jedoch technisch schwierig zu realisieren.From DE-OS 2 719 191 an infrared radiation intrusion detector is known, in which reflector surfaces are formed as part of a spherical surface, the selected surface part determines the detectable solid angle. The IR radiation is directed to a radiation receiver via a radiation conductor bundle composed of a large number of individual radiation-conducting elements (e.g. internally braced hollow conductor). The combination of the radiation beam onto a sensibly small detector is, however, technically difficult to implement.

In der DE-OS 2 836 462 ist eine Raumüberwachungs-Empfangseinrichtung beschrieben, bei der die IR-Strahlung von einer Fokussierlinse durch ein Rohr auf einen in der Brennebene angeordneten Strahlungswandler fällt. Durch eine an der Innenseite des Rohres angeordnete Reflexschicht wird durch Mehrfachreflexion Strahlung aus weiteren, sektorförmigen Bereichen auf den Wandler geworfen. Die Empfindlichkeit der Ueberwachungseinrichtung ist für die Aussenbereiche wegen der gekrümmten Fokusfläche des Fokussiermittels jedoch stark reduziert.DE-OS 2 836 462 describes a room surveillance reception device in which the IR radiation falls from a focusing lens through a tube onto a radiation converter arranged in the focal plane. Through a reflective layer arranged on the inside of the tube, radiation from further, sector-shaped areas is thrown onto the transducer by multiple reflection. However, the sensitivity of the monitoring device is greatly reduced for the outside areas because of the curved focus surface of the focusing means.

Aufgabe der Erfindung ist es, die erwähnten Nachteile des Standes der Technik zu vermeiden und insbesondere einen Infrarot-Einbruchdetektor zu schaffen, der bei hoher Empfindlichkeit mit einem einzigen Sensorelement und einer einfachen optischen Anordnung bei kleinen Abmessungen Infrarotstrahlung aus einer Vielzahl beliebig wählbarer Empfangsbereiche sicher und störungsunanfällig aufzunehmen vermag.The object of the invention is to avoid the disadvantages of the prior art mentioned and in particular to provide an infrared intrusion detector which, with high sensitivity with a single sensor element and a simple optical arrangement with small dimensions, provides infrared radiation from a multiplicity of arbitrarily selectable reception areas safely and without interference is able to record.

Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass die Sensoranordnung ein wenigstens angenähert in der Fokus-Fläche der Bündelungsmittel angeordnetes langgestrecktes Strahlungssammelelement aufweist, dessen Oberfläche nach innen reflektierend ausgebildet ist und welches an seiner Längsseite mehrere Strahlungseintrittsöffnungen und an einer Stirnseite ein Infrarot-Sensorelement aufweist.According to the invention, this object is achieved in that the sensor arrangement has an elongated radiation collecting element which is arranged at least approximately in the focus surface of the focusing means, the surface of which is designed to be reflective inwards and which has a plurality of radiation entry openings on its long side and an infrared sensor element on one end.

Die Erfindung wird an Hand der in den Figuren dargestellten Ausführungsbeispiele beschrieben.

  • Figur 1 a zeigt die optische Anordnung für einen Einbruchdetektor mit Reflektor in Aufsicht.
  • Figur 1 b zeigt dieser Anordnung im Schnitt.
  • Figur 2 zeigt eine zweite optische Anordnung mit Sammel- Linse.
  • Figur 3 zeigt einen Infrarot-Einbruchdetektor mit Fresnel-Linse.
The invention is described on the basis of the exemplary embodiments shown in the figures.
  • Figure 1 a shows the optical arrangement for an intrusion detector with reflector in supervision.
  • Figure 1 b shows this arrangement in section.
  • FIG. 2 shows a second optical arrangement with a collecting lens.
  • Figure 3 shows an infrared intrusion detector with Fresnel lens.

Die Figuren 1 a und 1 b zeigen eine optische Anordnung für einen Infrarot-Einbruchdetektor in Aufsicht und im Querschnitt. Als Bündelungsmittel ist dabei ein Reflektor 1 vorgesehen, der beispielsweise als Kugelspiegel mit einem Mittelpunkt C ausgebildet sein kann. Die Focus-Fläche F eines solchen Kugelspiegels ist bekanntlich eine dazu konzentrische Kugel mit halbem Radius. In dieser Focus-Fläche F ist ein langgestrecktes Element 2 angeordnet, welches zur Sammlung der auf die Focus-Fläche F gebündelten Infrarotstrahlung dient. Dieses Strahlungssammelelement 2 kann beispielsweise als luftzugängliches Rohr mit verspiegelter Innenfläche 3 ausgebildet sein, oder als IR-strahlungsdurchlässiger Transparentkörper, auf dessen Oberfläche eine reflektierende Schicht 3 aufgebracht ist. Der Querschnitt dieses Elementes kann beispielsweise aus Gründen der einfacheren Herstellung oder Justierbarkeit kreisförmig ausgebildet sein. Die Achse dieses langegestreckten Elementes 2 ist entsprechend der Focus-Fläche F gekrümmt. Um das Strahlungssammelelement 2 auf einfache Weise im Einbruchdetektor montieren zu können, kann es zweckmässigerweise biegsam ausgebildet sein. Bei Verwendung einer entsprechend korrigierten Optik als Bündelungsmittel kann jedoch auch ein Rohr oder Transparentkörper mit gerader Achse Verwendung finden. An einer Stirnseite des Rohres ist ein Sensorelement 5 angebracht, die andere ist verspiegelt oder trägt ein weiteres Sensorelement.Figures 1 a and 1 b show an optical arrangement for an infrared intrusion detector in top view and in cross section. A reflector 1 is provided as the focusing means, which can be designed, for example, as a spherical mirror with a center point C. The focus surface F of such a spherical mirror is known to be a concentric sphere with a half radius. In this focus area F an elongated element 2 is arranged, which serves to collect the infrared radiation focused on the focus area F. This radiation collecting element 2 can be designed, for example, as an air-accessible tube with a mirrored inner surface 3, or as an IR radiation-transparent transparent body, on the surface of which a reflective layer 3 is applied. The cross section of this element can be circular, for example, for reasons of simpler manufacture or adjustability. The axis of this elongated element 2 is curved in accordance with the focus surface F. In order to be able to easily mount the radiation collecting element 2 in the intrusion detector, it can expediently be designed to be flexible. When using an appropriately corrected optics as a bundling means, however, can also a tube or transparent body with a straight axis can be used. A sensor element 5 is attached to one end of the tube, the other is mirrored or carries a further sensor element.

Um die vom Reflektor 1 auf die Oberfläche des Strahlungssammelelementes 2 fokussierte Strahlung in das Element eintreten zu lassen sind auf dessen Oberfläche Strahlungseintrittsöffnungen 4 vorgesehen. Diese können bei der Ausführung des Sammelelementes 2 als luftgefülltes Rohr als Löcher in dessen Mantel ausgebildet sein, bei der Ausführung als Transparentkörper als Unterbrechungen im reflektierenden Belag 3. Die durch diese Strahlungseintrittsöffnungen 4 eingetretene Strahlung wird im Inneren des Strahlungssammelelementes 2 an dessen Innenfläche 3 vielfach reflektiert und gelangt schliesslich auf das an einer Stirnseite angebrachte Sensorelement 5,das mit Anschlussleitungen 6 an eine Auswerteschaltung angeschlossen ist. Da die Fläche der Strahlungseintrittsöffnungen 4 nur einen sehr geringen Teil der gesamten Innenoberfläche des Strahlungssammelelementes 2 ausmacht, so erreicht dabei praktisch die gesamte in das Innere des Sammelelementes 2 eingetretene Strahlung das Sensorelement 5, ohne nennenswerte Verluste. Die genannten Strahlungseintrittsöffnungen 4 sind nun 'gerade an den Stellen angebracht, wo die aus bestimmten gewünschten Empfangsbereichen eintreffende Strahlung durch den Reflektor 1 focussiert wird. Jeder Strahlungseintrittsöffnung 4 ist dabei ein bestimmter Strahlungsempfangsbereich zugeordnet, dessen Oeffnungswinkel von den Abmessungen der Strahlungseintrittsöffnung 4, und der Güte der Abbildung abhängt. Die Strahlungseintrittsöfffnungen 4 können je nach gewünschtem Muster von Empfangsbereichen entsprechend auf der Oberfläche des Strahlungssammelelementes 2 vorgesehen sein.In order to allow the radiation focused by the reflector 1 onto the surface of the radiation collecting element 2 to enter the element, radiation inlet openings 4 are provided on the surface thereof. These can be designed as holes in the jacket of the collecting element 2 as an air-filled tube, and as interruptions in the reflective coating 3 as a transparent body. The radiation that has entered through these radiation inlet openings 4 is reflected many times inside the radiation collecting element 2 on its inner surface 3 and finally arrives at the sensor element 5 attached to one end face, which is connected to an evaluation circuit by means of connecting lines 6. Since the area of the radiation inlet openings 4 only makes up a very small part of the entire inner surface of the radiation collecting element 2, practically all of the radiation that has entered the inside of the collecting element 2 reaches the sensor element 5 without any significant losses. The radiation entrance openings 4 mentioned are now ' just attached at the points where the radiation arriving from certain desired reception areas is focused by the reflector 1. Each radiation entry opening 4 is assigned a specific radiation reception area, the opening angle of which depends on the dimensions of the radiation entry opening 4 and the quality of the image. Depending on the desired pattern of reception areas, the radiation inlet openings 4 can be provided on the surface of the radiation collecting element 2.

Die Anordnung kann also auf einfache Weise an die gewünschten Verwendungsbedingungen angepasst werden. Dabei ist eine besonders einfache Optik völlig ausreichend, und es ist nur ein einziges Sensorelement erforderlich, welches an eine entsprechend einfache und störunanfällige Auswerteschaltung angeschlossen werden kann. Da zu dem keine Segmentoptik erforderlich ist, sondern nur ein einziger Reflektor, so kann eine optimale Empfindlichkeit erreicht werden.The arrangement can thus be easily adapted to the desired conditions of use. A particularly simple optic is completely sufficient, and only a single sensor element is required, which can be connected to a correspondingly simple and fault-prone evaluation circuit. Since no segment optics are required, but only a single reflector, optimal sensitivity can be achieved.

Die dem beschriebenen Beispiel verwendete, als Kugelspiegel ausgebildeten Bündelungsmittel können auch in anderer Weise ausgeführt sein. Beispielsweise kann ein Parabolspiegel verwendet werden, der zumindest in der Nähe der Achse eine bessere Abbildung liefert, oder es kann eine Refraktions-Optik Verwendung finden, die leicht so korrigiert werden kann, dass die Focus-Fläche wenig gekrümmt, d.h. fast eben ist, so dass das Strahlungssammelelement 2 Zylinderform mit gerader Achse besitzen kann.The bundling means designed as a spherical mirror used in the example described can also be designed in a different way. For example, a parabolic mirror can be used that provides a better image at least in the vicinity of the axis, or refractive optics can be used that can be easily corrected so that the focus surface is not very curved, i.e. is almost flat, so that the radiation collecting element 2 can have a cylindrical shape with a straight axis.

Figur 2 zeigt ein Ausführungsbeispiel mit einer Sammel- Linse 10 als Bündelungsmittel. Das Strahlungssammelelement 2 ist analog wie beim vorhergehenden Beispiel ausgebildet und in der Focus-Fläche F der Sammel-Linse 10 angeordnet. Jeder der Strahlungseintrittsöffnungen 4 entspricht eine getrennte Empfangsrichtung oder Empfangsbereich A1, A 2 .... A 5. FIG. 2 shows an exemplary embodiment with a collecting lens 10 as a focusing means. The radiation collecting element 2 is configured analogously to the previous example and is arranged in the focus surface F of the collecting lens 10. Each of the radiation inlet openings 4 corresponds to a separate reception direction or reception area A 1 , A 2 ... A 5.

Figur 3 zeigt einen Infrarot-Einbruchdetektor mit einem Gehäuse 9, dessen Frontseite von einem Bündelungsmittel 11 eingenommen wird, das als zentraler Abschnitt einer Fresnel-Stufenlinse ausgebildet ist. An der Rückseite 9", deren Abstand von der Frontseite 9' der Brennweite f der Fresnel-Linse 11 entspricht, ist wiederum ein rohrförmiges Strahlungssammelelement 2 mit verschiedenen, der Fresnel-Linse 11 zugekehrten Oeffnungen 4 vorgesehen. An einer Stirnseite des Rohres ist wiederum ein Infrarotsensorelement 5 angeordnet, das mit einer integrierten Schaltung 7 verbunden ist, welche beispielsweise gemäss US 4 179 691 oder US 4 166 955 ausgebildet sein kann. Jeder Oeffnung 4 entspricht wiederum ein Strahlungsempfangsbereich,und diese Auswerteschaltung 7 gibt über Signalleitungen 8 ein Signal ab, sobald sich die vom Sensorelement 5 aufgenommene Infrarotstrahlung in einer für die Bewegung eines Eindringlings durch die Strahlungsempfangsbereiche charakteristischer Weise ändert.FIG. 3 shows an infrared intrusion detector with a housing 9, the front side of which is taken up by a bundling means 11, which is designed as a central section of a Fresnel step lens. At the back 9 ", the distance from the front 9 'of the focal length f corresponds to the Fresnel lens 11, a tubular radiation collecting element 2 with different openings 4 facing the Fresnel lens 11 is again provided. An infrared sensor element 5, which is connected to an integrated circuit 7, which can be designed, for example, according to US Pat. No. 4,179,691 or US Pat. No. 4,166,955, is in turn arranged on an end face of the tube. Each opening 4 in turn corresponds to a radiation receiving area, and this evaluation circuit 7 emits a signal via signal lines 8 as soon as the infrared radiation picked up by the sensor element 5 changes in a manner characteristic of the movement of an intruder through the radiation receiving areas.

In einer vorteilhaften Weiterbildung der Erfindung können vor oder hinter Teilen der Sammellinse ein oder mehrere Prismen vorgesehen sein, durch die die einzelnen Empfangsstrahlen jeweils in mehrere Strahlen aufgespalten werden können. Dadurch kann die Anzahl der Strahlungsempfangsbereiche vervielfacht werden, falls eine gewisse Intensitätsschwächung der einzelnen Bereiche in Kauf genommen werden kann.In an advantageous development of the invention, one or more prisms can be provided in front of or behind parts of the converging lens, through which the individual reception beams can each be split into a plurality of beams. As a result, the number of radiation receiving areas can be multiplied if a certain intensity weakening of the individual areas can be accepted.

Bei dem in Figur 3 dargestellten Infrarot-Einbruchdetektor kann beispielsweise vor der unteren Hälfte der Fresnel-Linse 11 ein Prisma 12 angeordnet sein. Dieses bewirkt, dass die auf die untere Hälfte auftreffende Strahlung um einen bestimmten Winkel abgelenkt wird, während die auf die obere Hälfte auftreffende Strahlung unbeeinflusst bleibt. Jeder Empfangsbereich wird daher in zwei getrennte Bereiche aufgespalten. Beispielsweise focussiert die obere Linsen-Hälfte Strahlung aus Richtung A31 auf die mittlere Oeffnung 4, die untere Hälfte aus der dazu geneigten Richtung A32. Bei einer Vielzahl von Oeffnungen lässt sich so auf einzelne Weise ein Infrarot-Einbruchdetektor schaffen, dessen Empfangsbereiche die Form zweier nacheinander zu passierender Strahlungsvorhänge haben.In the infrared intrusion detector shown in FIG. 3, for example, a prism 12 can be arranged in front of the lower half of the Fresnel lens 11. This has the effect that the radiation impinging on the lower half is deflected by a certain angle, while the radiation impinging on the upper half remains unaffected. Each reception area is therefore split into two separate areas. For example, the upper half of the lens focuses radiation from direction A 31 onto the middle opening 4 and the lower half the inclined direction A 32 . In the case of a large number of openings, an infrared intrusion detector can be created in a single way, the reception areas of which have the shape of two radiation curtains to be passed one after the other.

Das Prismen-Element kann auch mit der Sammellinse vereint und in diese integriert sein, indem sie als Mehr-Zonen-Linse mit Zonen unterschiedlicher optischer Achse ausgeführt ist. In Figur 3 kann beispielsweise eine Hälfte der Fresnel-Linse 11 auf ihrer Vorder- oder Rückseite der Form eines Keiles 13 aufweisen, der das Prisma 12 ersetzt und die gleiche optische Wirkung zeigt. Ein solches optisches Element ist besonders einfach herstellbar und erfordert keine spezielle Justierung.The prism element can also be combined with and integrated into the converging lens in that it is designed as a multi-zone lens with zones of different optical axes. In FIG. 3, for example, one half of the Fresnel lens 11 can have the shape of a wedge 13 on its front or rear side, which replaces the prism 12 and has the same optical effect. Such an optical element is particularly easy to manufacture and requires no special adjustment.

Der dargestellte Infrarot-Einbruchdetektor besitzt trotz seiner flachen unauffälligen Form und seiner kleinen Abmessungen eine optimale Empfindlichkeit und weist zu dem eine besonders einfache und störunanfällige Konstruktion auf. Er eignet sich besonders für Verwendungen wo ein Infrarot-Schutzvorhang mit eng nebeneinander in einer Ebene liegenden Empfangsbereichen erwünscht ist. Um den Detektor optimal zum Nachweis von Personen auszubilden, ist es dabei zweckmässig, die Frensel-Linse aus einem Material auszubilden, das vorzugsweise im Spektralbereich der Körperstrahlung im fernen Infrarot durchlässig ist und als Sensorelement ebenfalls ein vorzugsweise im Infrarot empfindlichen Element zu verwenden beispielsweise eine pyroelektrisches Element, vom Lithium-Tantalat-, Polyvinyldifluorid- oder Blei-Zirkonat-Titanat-Typ.Despite its flat, inconspicuous shape and small dimensions, the infrared intrusion detector shown has an optimal sensitivity and, moreover, has a particularly simple and interference-free construction. It is particularly suitable for applications where an infrared protective curtain with closely spaced reception areas is desired. In order to optimally design the detector for the detection of people, it is expedient to form the Frensel lens from a material that is preferably transparent in the spectral range of the body radiation in the far infrared and also to use a preferably infrared-sensitive element, for example a pyroelectric element, as the sensor element Element, of the lithium tantalate, polyvinyl difluoride or lead zirconate titanate type.

Der Einbruchdetektor nach Figur 3 lässt sich noch dadurch weiterbilden, dass das strahlungssammelnde Rohr 2 gleichmässig um seine gerade ausgebildete Achse rotierend angeordnet ist. Die Oeffnungen liegen dann nicht fest auf einer achsenparallelen Geraden, sondern sind bei verschiedenen Drehwinkeln auf der Rohroberfläche vorgesehen, beispielsweise auf einer Schraubenlinie. Bei der Rotation des Rohres 2 geraten die einzelnen Oeffnungen 14 dann nacheinander in die Focus-Fläche, d.h. sie erhalten zu verschiedenen Zeiten Strahlung aus dem zugeordneten Empfangsbereich. Dieser ermöglicht es, die verschiedenen Empfangsbereiche zeitlich gestaffelt abzutasten.The intrusion detector according to FIG. 3 can be further developed in that the radiation-collecting tube 2 is arranged to rotate uniformly about its just formed axis. The openings are then not fixed on a straight line parallel to the axis, but are provided at different angles of rotation on the pipe surface, for example on a helix. When the tube 2 rotates, the individual openings 14 then come into the focus area one after the other, i.e. they receive radiation from the assigned reception area at different times. This enables the different reception areas to be scanned over time.

Claims (12)

1. Infrarot-Einbruchdetektor mit optischen Bündelungsmitteln und einer Sensoranordnung, bei dem die aus mehreren getrennten Empfangsbereichen einfallende Infrarotstrahlung aufgenommen und zur Alarmsignalgabe bei einer vorbestimmten Aenderung der aufgenommenen Strahlung ausgewertet wird, dadurch gekennzeichnet, dass die Sensoranordnung ein wenigstens angenähert in der Focus-Fläche (F) der Bündelungsmittel (1, 10, 11) angeordnetes langgestrecktes Strahlungssammelelement (2) aufweist, dessen Oberfläche (3) nach innen reflektierend ausgebildet ist und welches an seiner Längsseite mehrere Strahlungseintrittsöffnungen (3) und an einer Stirnseite ein Infrarot-Sensorelement (5) aufweist.1.Infrared intrusion detector with optical bundling means and a sensor arrangement in which the infrared radiation incident from a plurality of separate reception areas is recorded and evaluated for alarm signaling in the event of a predetermined change in the recorded radiation, characterized in that the sensor arrangement has an at least approximately in the focus area ( F) the focusing means (1, 10, 11) has an elongated radiation collecting element (2), the surface (3) of which is designed to reflect inwards and which has a plurality of radiation entry openings (3) on its long side and an infrared sensor element (5) on one end face having. 2. Einbruchdetektor nach Anspruch 1, dadurch gekennzeichnet, dass das Strahlungssammelelement (2) einen kreisförmigen Querschnitt aufweist.2. Intrusion detector according to claim 1, characterized in that the radiation collecting element (2) has a circular cross section. 3. Einbruchdetektor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Strahlungssammelelement (2) als innen verspiegeltes luftgefülltes Rohr ausgebildet ist, dessen Mantel (3) Strahlungseintrittsöffnungen-(4) aufweist.3. Intrusion detector according to claim 1 or 2, characterized in that the radiation collecting element (2) is designed as an internally mirrored air-filled tube, the jacket (3) of which has radiation inlet openings (4). 4. Einbruchdetektor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Strahlungssammelelement (2) als Transparentkörper (2) ausgebildet ist, auf dessen Oberfläche (3) ein reflektierender Belag aufgebracht ist, der an mehreren Stellen (4) unterbrochen ist.4. Intrusion detector according to claim 1 or 2, characterized in that the radiation collecting element (2) is designed as a transparent body (2), on the surface (3) of which a reflective coating is applied, which is interrupted at several points (4). 5. Einbruchdetektor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Bündelungsmittel als Reflektor (1) ausgebildet ist.5. Intrusion detector according to one of claims 1 to 4, characterized in that the focusing means is designed as a reflector (1). 6. Einbruchdetektor.nach Anspruch 5, dadurch gekennzeichnet, dass der Reflektor (1) als Kugelspiegel ausgebildet ist und dass das Strahlungssammelelement (2) am Ort einer zum Kugelspiegel (1) konzentrischen Kugel (F) mit halbem Radius angeordnet ist.6. Einbruchdetektor.nach claim 5, characterized in that the reflector (1) is designed as a spherical mirror and that the radiation collecting element (2) is arranged at the location of a sphere (F) concentric with the spherical mirror (1) with a half radius. 7. Einbruchdetektor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Bündelungsmittel als Sammellinse (10) ausgebildet ist.7. Intrusion detector according to one of claims 1 to 4, characterized in that the focusing means is designed as a converging lens (10). 8. Einbruchdetektor nach Anspruch 7, dadurch gekennzeichnet, dass die Sammellinse als Fresnel-Linse (11) ausgebildet ist.8. Intrusion detector according to claim 7, characterized in that the converging lens is designed as a Fresnel lens (11). 9. Einbruchdetektor nach Anspruch 8, dadurch gekennzeichnet, dass die Fresnel-Linse (11) aus im fernen Infrarot durchlässigem Material besteht.9. Intrusion detector according to claim 8, characterized in that the Fresnel lens (11) consists of material which is transparent in the far infrared. 10. Einbruchdetektor nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass vor oder hinter Teilen der Sammellinse (10, 11) wenigstens ein Prismen-Element (12, 13) zur Aufspaltung und Vervielfachung der Empfangsbereiche (A1, A2... A5) angeordnet ist.10. intrusion detector according to one of claims 7 to 9, characterized in that in front of or behind parts of the converging lens (10, 11) at least one prism element (12, 13) for splitting and multiplying the reception areas (A 1 , A 2 .. A5 ) is arranged. 11. Einbruchdetektor nach Anspruch 10, dadurch gekennzeichnet, dass das Prismen-Element (13) mit der Sammel- linse (11) zu einer Mehrzonenlinse vereint ist, die mehrere Zonen mit verschiedener optischer Achse aufweist.11. Intrusion detector according to claim 10, characterized in that the prism element (13) is combined with the converging lens (11) to form a multi-zone lens which has several zones with different optical axes. 12. Einbruchdetektor nach Anspruch 2, dadurch gekennzeichnet, dass das Strahlungssammelelement (2) gleichmässig um seine gerade ausgebildete Achse rotierend angeordnet ist und die Strahlungseintrittsöffnungen (4) bei verschiedenen Drehwinkeln auf der Oberfläche so vorgesehen sind, dass sie bei der Rotation periodisch zu verschiedenen Zeiten in die Focus-Fläche (F) gebracht werden.12. Intrusion detector according to claim 2, characterized in that the radiation collecting element (2) is arranged to rotate uniformly about its just formed axis and the radiation entry openings (4) Different angles of rotation are provided on the surface so that they are brought into the focus area (F) periodically at different times during the rotation.
EP81107843A 1980-10-24 1981-10-02 Infrared intrusion detector Expired EP0050750B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81107843T ATE9412T1 (en) 1980-10-24 1981-10-02 INFRARED INTRUSION DETECTOR.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH7926/80 1980-10-24
CH7926/80A CH650605A5 (en) 1980-10-24 1980-10-24 INFRARED BURGLAR DETECTOR.

Publications (2)

Publication Number Publication Date
EP0050750A1 true EP0050750A1 (en) 1982-05-05
EP0050750B1 EP0050750B1 (en) 1984-09-12

Family

ID=4332490

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81107843A Expired EP0050750B1 (en) 1980-10-24 1981-10-02 Infrared intrusion detector

Country Status (7)

Country Link
US (1) US4429223A (en)
EP (1) EP0050750B1 (en)
JP (1) JPS5797482A (en)
AT (1) ATE9412T1 (en)
AU (1) AU542979B2 (en)
CH (1) CH650605A5 (en)
DE (1) DE3166056D1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2198842A (en) * 1986-12-19 1988-06-22 Philips Electronic Associated Movement sensing infra-red system
WO1998011521A1 (en) * 1996-09-13 1998-03-19 Stephen Barone Passive infrared detector
US6194711B1 (en) * 1997-03-12 2001-02-27 Seiko Instruments Inc. Scanning near-field optical microscope
US6690018B1 (en) 1998-10-30 2004-02-10 Electro-Optic Technologies, Llc Motion detectors and occupancy sensors with improved sensitivity, angular resolution and range
US6921900B2 (en) 2000-09-11 2005-07-26 Electro-Optic Technologies, Llc Effective quad-detector occupancy sensors and motion detectors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2213927A (en) * 1987-12-18 1989-08-23 Philips Electronic Associated Pyroelectric infrared sensors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703718A (en) * 1971-01-07 1972-11-21 Optical Coating Laboratory Inc Infrared intrusion detector system
US4052616A (en) * 1976-06-30 1977-10-04 Cerberus Ag Infrared radiation-burglary detector
DE2836462A1 (en) * 1978-08-21 1980-03-06 Woerl Alarm August Woerl Inhab Room surveillance sensor system - uses optical lens assembly to focus IR emissions onto detector stage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703718A (en) * 1971-01-07 1972-11-21 Optical Coating Laboratory Inc Infrared intrusion detector system
US3703718B1 (en) * 1971-01-07 1982-04-13
US4052616A (en) * 1976-06-30 1977-10-04 Cerberus Ag Infrared radiation-burglary detector
DE2836462A1 (en) * 1978-08-21 1980-03-06 Woerl Alarm August Woerl Inhab Room surveillance sensor system - uses optical lens assembly to focus IR emissions onto detector stage

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2198842A (en) * 1986-12-19 1988-06-22 Philips Electronic Associated Movement sensing infra-red system
GB2198842B (en) * 1986-12-19 1991-01-02 Philips Electronic Associated Movement sensing infra-red system
WO1998011521A1 (en) * 1996-09-13 1998-03-19 Stephen Barone Passive infrared detector
US5929445A (en) * 1996-09-13 1999-07-27 Electro-Optic Technologies, Llc Passive infrared detector
US6239437B1 (en) 1996-09-13 2001-05-29 Electro-Optic Technologies, Llc Passive infrared detector
US6194711B1 (en) * 1997-03-12 2001-02-27 Seiko Instruments Inc. Scanning near-field optical microscope
US6690018B1 (en) 1998-10-30 2004-02-10 Electro-Optic Technologies, Llc Motion detectors and occupancy sensors with improved sensitivity, angular resolution and range
US7053374B2 (en) 1998-10-30 2006-05-30 Electro-Optic Technologies, Llc Motion detectors and occupancy sensors with improved sensitivity, angular resolution and range
US6921900B2 (en) 2000-09-11 2005-07-26 Electro-Optic Technologies, Llc Effective quad-detector occupancy sensors and motion detectors

Also Published As

Publication number Publication date
US4429223A (en) 1984-01-31
EP0050750B1 (en) 1984-09-12
ATE9412T1 (en) 1984-09-15
CH650605A5 (en) 1985-07-31
AU7669381A (en) 1982-04-29
JPS5797482A (en) 1982-06-17
DE3166056D1 (en) 1984-10-18
AU542979B2 (en) 1985-03-28

Similar Documents

Publication Publication Date Title
DE2653110C3 (en) Infrared Radiation Intrusion Detector
EP0050751B1 (en) Optical arrangement for an infrared intrusion detector
EP0652422B1 (en) Device for receiving light rays
EP0113468B1 (en) Optical device for deflecting optical rays
DE2719191C2 (en) Infrared Radiation Intrusion Detector
DE19628050C2 (en) Infrared measuring device and method of detecting a human body through it
EP0014825A2 (en) Optical apparatus for passive infrared movement detector
DE2537380A1 (en) BURGLAR ALARM
DE3129753A1 (en) PASSIVE INFRARED ROOM PROTECTION DEVICE
DE2855322A1 (en) IMPROVED INFRARED SURVEILLANCE SYSTEM
CH684717A5 (en) A detector.
DE2754139A1 (en) SMOKE DETECTOR
DE2103909A1 (en) Monitoring device to determine the presence of an intruder in a room
CH676642A5 (en)
CH622372A5 (en)
DE4137560C1 (en)
CH667744A5 (en) INFRARED INTRUSION DETECTOR.
EP0025188B1 (en) Optical arrangement for a photodetector
EP0050750B1 (en) Infrared intrusion detector
DE3742031A1 (en) MOTION DETECTOR WITH AN INFRARED DETECTOR
DE2645040C3 (en) Radiation detector
EP0558796A1 (en) Optical sensor head
EP0821804B1 (en) Conical optic for focussing radiation and use thereof in optical movement indicators
EP0262241A1 (en) Infra-red intrusion detector
DE19540299A1 (en) Infrared movement warning device with two switchable detectors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19820601

ITF It: translation for a ep patent filed

Owner name: VETTOR GALLETTI DI SAN CATALDO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840911

Year of fee payment: 4

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 9412

Country of ref document: AT

Date of ref document: 19840915

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840924

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840930

Year of fee payment: 4

REF Corresponds to:

Ref document number: 3166056

Country of ref document: DE

Date of ref document: 19841018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19841031

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19841231

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860908

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19871031

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881002

Ref country code: AT

Effective date: 19881002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19881003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19881031

BERE Be: lapsed

Owner name: CERBERUS A.G.

Effective date: 19881031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890701

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81107843.5

Effective date: 19890614