EP0025481A1 - Process for the production of castings by investment casting - Google Patents

Process for the production of castings by investment casting Download PDF

Info

Publication number
EP0025481A1
EP0025481A1 EP80103836A EP80103836A EP0025481A1 EP 0025481 A1 EP0025481 A1 EP 0025481A1 EP 80103836 A EP80103836 A EP 80103836A EP 80103836 A EP80103836 A EP 80103836A EP 0025481 A1 EP0025481 A1 EP 0025481A1
Authority
EP
European Patent Office
Prior art keywords
model
ceramic
cores
casting
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80103836A
Other languages
German (de)
French (fr)
Other versions
EP0025481B1 (en
Inventor
Hans Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Hans
Original Assignee
Schneider Hans
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Hans filed Critical Schneider Hans
Publication of EP0025481A1 publication Critical patent/EP0025481A1/en
Application granted granted Critical
Publication of EP0025481B1 publication Critical patent/EP0025481B1/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns

Definitions

  • the invention relates to a process for the preparation of castings by precision casting using lost patterns with inserted cores, the ceramic mold produced using the model fired after the dissolution and for the Abg u ss is heated before theblingiessende melt poured and after their Solidify the core is detached.
  • Cores for precision castings have so far been made from ceramic material, the basic substance of which is generally silicon dioxide and aluminum oxide. Especially in the case of cores with narrow diameters and / or complicated shapes, this removal is a lengthy and time-consuming process step, since only weak movements of the highly viscous “solvent” for the ceramic core material can be generated in such cores, which makes the removal of dissolved core material very difficult and delayed .
  • ceramic cores are very brittle, which leads to high breakage rates or complicated working methods for cores with small cross sections. For example, it is necessary to produce models of turbine blades with such cores in two work operations and with two tools. The blade core, which is penetrated by cores, is sprayed practically without pressure with almost liquid wax, then the solid blade root is sprayed with wax from the solid / liquid area with pressure.
  • the object of the invention is to provide cores with better mechani see properties to be used which allow a simple method of model production and decisively accelerate the step of removing the core material from the finished casting.
  • This object is achieved according to the present invention in that a metal is used as the core material which can be oxidized below the solidification temperature of the melt to be poured off, and the oxide of which escapes by sublimation.
  • the core is dissolved at a solid / gaseous interface; in the gas phase, the diffusion and mobility of the "solvent" particles are orders of magnitude greater than in highly viscous melts, which considerably speeds up the removal of cores.
  • Molybdenum which in the simplest case is inserted into the models in the form of drawn wires, has proven to be the core material for the new process.
  • the preferred model materials for the lost models required for the production of the ceramic casting mold are known to be wax and urea.
  • the urea as a model material, there are additional advantages with the present invention: As is known, the last remnants of the detached model must be removed from the ceramic casting mold before the melt is poured in. This is generally done by burning; In order to avoid the formation of carbon residues, molds containing wax residues must be exposed to elevated temperatures in an oxygen-containing atmosphere. If one works at temperatures below 300 ° C., this "burning out" of the mold also requires relatively long times, while at higher temperatures there is a risk of premature oxidation of the core. In contrast, model residues made from urea do not require oxygen to be removed. You can therefore at any high temperature with the exclusion of oxygen from the. Form can be removed without pre Early oxidation phenomena can occur on the cores.
  • a turbine blade for a gas turbine is to be produced from the well-known nickel-based alloy IN 738 as a precision casting, the nominal composition of which is known (in% by weight): C 0.11; Cr 16.0; Co 8.5; Mo 1.7; W 2.6; Ta 1.7; Nb 0.9; Al 3.5; Ti 3.5; Zr 0.05; B 0.01 and Ni rest.
  • the blade to be cast is interspersed with cooling air channels with relatively small diameters, the cavities of which are created in the casting by inserted cores.
  • the core material used is molybdenum in the form of wires of suitable diameter, which are first inserted into the mold for model manufacture and fixed in the desired position in the usual manner, for example with the aid of core bearings.
  • the ver is now known in a simple manner in the mold thus prepared lorene model of the casting.
  • a ceramic mold is then built up in the manner customary for precision molds;
  • the model is, for example, immersed several times in a dipping compound made of enamel mullite, which is attached with an ethyl silicate binder. Each immersion layer is then sanded with granular enamel mullite. The dipping and sanding are continued until a desired mold thickness is reached, which requires, for example, 10 dips.
  • the urea model is removed from the mold with the help of water and this - in order to remove the model residues - to about 1000 ° C with exclusion of air - in a protective gas atmosphere, for example made of argon, or in a vacuum, for example with a root Blower generated and at a pressure of 10 -4 bar - heated and burned for about 4 hours, which happens for example in a suitable vacuum oven.
  • a protective gas atmosphere for example made of argon
  • a vacuum for example with a root Blower generated and at a pressure of 10 -4 bar - heated and burned for about 4 hours, which happens for example in a suitable vacuum oven.
  • the casting material is melted in a vacuum casting device under a pressure of approximately 5 ⁇ 10 -4 mbar in a commercially available crucible made of Si-Al oxide. The heating of the melt is continued until its temperature is about 1400-1450 ° C.
  • the cast into the heated mold is also carried out in a vacuum or under protective gas.
  • the shape can be exposed to the air, so that part of the core material already oxidizes and sublimates when the casting is cooled.
  • the casting is then re-heated to over 500 ° C in one oxygen-containing atmosphere. The high temperature reached is maintained until all core material has escaped from the casting through oxidation and sublimation.
  • a similar turbine blade made of the same material should solidify in a directional manner or grow as a single crystal.
  • This coating which in the present case consists of aluminum oxide, is deposited on the molybdenum wire with the aid of the plasma spraying method, without using customary and known parameters and starting materials; its thickness can be up to 0.1 mm, for example.
  • a coating with such a layer thickness is not self-supporting, so that it collapses when its Mo core is sublimed and can easily be removed from the casting.
  • the ceramic casting mold in this case consists only of a molded shell, which is placed on a cooling device in a known manner, the molded shell, if necessary, for the control of the cooling conditions, additionally being surrounded by a heating device that can be displaced in the axial direction relative to it
  • a further deviation of the method according to Example 2 compared to Example 1 is that the melt - and possibly also the shape - is higher before the casting be heated.
  • the mold temperature is, for example, up to 1200 ° C, while the superheating of the melt is driven up to temperatures of 1550 - 1600 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

Als Material für die Herstellung von Kernen für Präzisionsgießformen wird ein Metall verwendet, das bei relativ tiefen Temperaturen, d.h. unterhalb der Erstarrungstemperatur der abzugießenden Schmelzen oxidierbar ist und durch Oxid-Sublimieren direkt vom festen Zustand in die Gasphase übergeht. Dadurch wird das Herauslösen von Kernen, besonders von solchen geringen Durchmessers, aus den Gußstücken erheblich beschleunigt.A metal is used as the material for the production of cores for precision casting molds, which at relatively low temperatures, i.e. is oxidizable below the solidification temperature of the melts to be poured off and passes directly from the solid state into the gas phase by oxide sublimation. This significantly speeds up the removal of cores, especially those of small diameter, from the castings.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Gussstücken durch Präzisionsgiessen unter Verwendung von verlorenen Modellen mit eingelegten Kernen, wobei die mit Hilfe des Modells hergestellte keramische Giessform nach dessen Herauslösen gebrannt und für den Abguss aufgeheizt wird, ehe die abzugiessende Schmelze eingegossen und nach ihrem Erstarren der Kern herausgelöst wird.The invention relates to a process for the preparation of castings by precision casting using lost patterns with inserted cores, the ceramic mold produced using the model fired after the dissolution and for the Abg u ss is heated before the abzugiessende melt poured and after their Solidify the core is detached.

Kerne für Präzisionsgussstücke werden bisher aus keramische Material hergestellt, dessen Grundsubstanz im allgemeinen Siliziumdioxid und Aluminiumoxid sind.Das Herauslösen derartiger Kerne aus dem fertigen Gussstück erfolgt mit Hilfe von hochviskosen Schmelzen von Natriumhydroxid. Besonders bei Kernen mit engen Durchmessern und/oder komplizierten Formen ist dieses Herauslösen ein langwieriger und zeitraubender Verfahrensschritt, da in derartigen Kernen nur schwache Bewegungen des hochviskosen "Lösungsmittels" für das keramische Kernmaterial erzeugt werden können, was den Abtransport von gelöstem Kernmaterial sehr erschwert und verzögert. Zudem sind keramische Kerne sehr spröde, was bei Kernen mit kleinen Querschnitten zu hohen Bruchraten oder komplizierten Arbeitsmethoden führt. So ist es zum Beispiel notwendig, Modelle von Turbinenschaufeln mit solchen Kernen in zwei Arbeitsoperationen und mit zwei Werk zeugen herzustellen. Dabei wird das von Kernen durchzogene Schaufelblatt mit fast flüssigem Wachs praktisch drucklos gespritzt, anschliessend der massivere Schaufelfuss mit Wachs aus dem Fest/flüssig-Bereich mit Druck gespritzt.Cores for precision castings have so far been made from ceramic material, the basic substance of which is generally silicon dioxide and aluminum oxide. Especially in the case of cores with narrow diameters and / or complicated shapes, this removal is a lengthy and time-consuming process step, since only weak movements of the highly viscous “solvent” for the ceramic core material can be generated in such cores, which makes the removal of dissolved core material very difficult and delayed . In addition, ceramic cores are very brittle, which leads to high breakage rates or complicated working methods for cores with small cross sections. For example, it is necessary to produce models of turbine blades with such cores in two work operations and with two tools. The blade core, which is penetrated by cores, is sprayed practically without pressure with almost liquid wax, then the solid blade root is sprayed with wax from the solid / liquid area with pressure.

Aufgabe der Erfindung ist es, Kerne mit besseren mechanisehen Eigenschaften zu verwenden, welche eine einfache Methode der Modellherstellung erlauben und den Schritt des Herauslösens des Kernmaterials aus dem fertigen Gussstück entscheidend zu beschleunigen. Diese Aufgabe wird gemäss der vorliegenden Erfindung dadurch gelöst, dass als Kernmaterial ein Metall verwendet wird, das unterhalb der Erstarrungstemperatur der abzugiessenden Schmelze oxidierbar ist, und dessen Oxid durch Sublimation entweicht.The object of the invention is to provide cores with better mechani see properties to be used which allow a simple method of model production and decisively accelerate the step of removing the core material from the finished casting. This object is achieved according to the present invention in that a metal is used as the core material which can be oxidized below the solidification temperature of the melt to be poured off, and the oxide of which escapes by sublimation.

Bei dem neuen Verfahren erfolgt das Auflösen des Kerns an einer Grenzfläche fest/gasförmig; in der Gasphase sind Diffusion und Beweglichkeit der "Lösungsmittel"-Partikel um Grössenordnungen grösser als in hochviskosen Schmelzen, wodurch das Herauslösen von Kernen erheblich beschleunigt wird. Als Kernmaterial für das neue Verfahren hat sich Molybdän, das im einfachsten Fall in Form von gezogenen Drähten in die Modelle eingelegt wird, bewährt.With the new method, the core is dissolved at a solid / gaseous interface; in the gas phase, the diffusion and mobility of the "solvent" particles are orders of magnitude greater than in highly viscous melts, which considerably speeds up the removal of cores. Molybdenum, which in the simplest case is inserted into the models in the form of drawn wires, has proven to be the core material for the new process.

Die bevorzugten Modellwerkstoffe für die zur Herstellung der keramischen Giessform benötigten verlorenen Modelle sind bekanntlich Wachs und Harnstoff. Bei der Verwendung des Harnstoffes als Modellwerkstoff ergeben sich mit der vorliegenden Erfindung zusätzliche Vorteile: Die letzten Reste des herausgelösten Modells müssen aus der keramischen Giessform bekanntlich vor dem Eingiessen der Schmelze entfernt werden. Dies erfolgt im allgemeinen durch Verbrennen; um die Bildung von Kohlenstoffrückständen zu vermeiden, müssen dabei Wachsreste enthaltende Giessformen in einer sauerstoffhaltigen Atmosphäre erhöhten Temperaturen ausgesetzt werden. Arbeitet man bei Temperaturen unter 3000 C, so erfordert dieses "Ausbrennen" der Form ebenfalls relativ lange Zeiten, während bei höheren Temperaturen die Gefahr einer vorzeitigen Oxidation des Kerns besteht. Demgegenüber erfordern Modell-Reste aus Harnstoff zu ihrer Beseitigung keinen Sauerstoff. Sie können daher bei beliebig hohen Temperaturen unter Ausschluss von Sauerstoff aus der. Form entfernt werden, ohne dass vorzeitige Oxidationserscheinungen an den Kernen auftreten können.The preferred model materials for the lost models required for the production of the ceramic casting mold are known to be wax and urea. When using the urea as a model material, there are additional advantages with the present invention: As is known, the last remnants of the detached model must be removed from the ceramic casting mold before the melt is poured in. This is generally done by burning; In order to avoid the formation of carbon residues, molds containing wax residues must be exposed to elevated temperatures in an oxygen-containing atmosphere. If one works at temperatures below 300 ° C., this "burning out" of the mold also requires relatively long times, while at higher temperatures there is a risk of premature oxidation of the core. In contrast, model residues made from urea do not require oxygen to be removed. You can therefore at any high temperature with the exclusion of oxygen from the. Form can be removed without pre Early oxidation phenomena can occur on the cores.

Um ein gerichtetes Wachstum der Kristalle in dem zu fertig den Gussstück zu erreichen, ist es unter Umständen notwend die Abkühlung und damit das Erstarren der Schmelze relativ langsam durchzuführen; hierbei kann die Schmelze dann in nicht zu vernachlässigender Menge das Metall des Kernmaterials als Legierungsbestandteil aufnehmen. Eine solche Veränderung der Zusammensetzung der Legierung des Gussstückes lässt sich auf einfache Weise verhindern, wenn der metallische Kern vor dem Einlegen in das Modell mit einer keramischen Schutzschicht überzogen wird; ein bevorzugter keramischer Stoff für eine solche Schutzschicht ist Alumin oxid (A1 2 0 3).In order to achieve a directed growth of the crystals in the finished casting, it may be necessary to cool down and thus solidify the melt relatively slowly; The melt can then absorb the metal of the core material as an alloy component in a not insignificant amount. Such a change in the composition of the alloy of the casting can be prevented in a simple manner if the metallic core is covered with a ceramic protective layer before being inserted into the model; a preferred ceramic material for such a protective layer is aluminum oxide ( A1 2 0 3 ).

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.The invention is explained in more detail below on the basis of exemplary embodiments.

Beispiel 1example 1

Als Präzisionsgussstück soll eine Turbinenschaufel für ein Gasturbine aus der bekannten Nickel-Basis-Legierung IN 738 hergestellt werden, deren nominelle Zusammensetzung bekann lich (in Gew.-%) lautet: C 0,11; Cr 16,0; Co 8,5; Mo 1,7; W 2,6; Ta 1,7; Nb 0,9; Al 3,5; Ti 3,5; Zr 0,05; B 0,01 und Ni Rest.A turbine blade for a gas turbine is to be produced from the well-known nickel-based alloy IN 738 as a precision casting, the nominal composition of which is known (in% by weight): C 0.11; Cr 16.0; Co 8.5; Mo 1.7; W 2.6; Ta 1.7; Nb 0.9; Al 3.5; Ti 3.5; Zr 0.05; B 0.01 and Ni rest.

Die zu giessende Schaufel ist durchsetzt von Kühlluftkanäl mit relativ geringen Durchmessern, deren Hohlräume in dem Gussstück durch eingelegte Kerne erzeugt werden.The blade to be cast is interspersed with cooling air channels with relatively small diameters, the cavities of which are created in the casting by inserted cores.

Als Kernmaterial dient Molybdän in Form von Drähten geeign ten Durchmessers, die zunächst in die Kokillenform für die Modellherstellung eingelegt und in der gewünschten Lage in üblicher Weise, beispielsweise mit Hilfe von Kernlagern, fixiert werden. Im Spritzgussverfahren wird nun in bekannt einfacher Weise in der so vorbereiteten Kokille das verlorene Modell des Gussstückes hergestellt.The core material used is molybdenum in the form of wires of suitable diameter, which are first inserted into the mold for model manufacture and fixed in the desired position in the usual manner, for example with the aid of core bearings. In the injection molding process, the ver is now known in a simple manner in the mold thus prepared lorene model of the casting.

Mit Hilfe dieses Modells wird anschliessend eine keramische Giessform in der für Präzisionsgiessformen üblichen Weise aufgebaut; das Modell wird dabei beispielsweise mehrfach in eine Tauchmasse aus Schmelzmullit getaucht, der mit einem Aethylsilikatbinder angesetzt ist. Jede Tauchschicht wird anschliessend mit körnigem Schmelzmullit besandet. Die Tauchungen und das Besanden werden solange fortgesetzt, bis eine gewünschte Formdicke erreicht ist, was beispielsweise 10 Tauchungen erfordert.With the help of this model, a ceramic mold is then built up in the manner customary for precision molds; The model is, for example, immersed several times in a dipping compound made of enamel mullite, which is attached with an ethyl silicate binder. Each immersion layer is then sanded with granular enamel mullite. The dipping and sanding are continued until a desired mold thickness is reached, which requires, for example, 10 dips.

Nunmehr wird das Harnstoffmodell, wie üblich, mit Hilfe von Wasser aus der Form herausgelöst und diese - zu Beseitigung der Modellreste - auf etwa 1000° C unter Luftabschluss - also in einer Schutzgasatmosphäre, beispielsweise aus Argon, oder im Vakuum, das beispielsweise mit einem Roots-Gebläse erzeugt und bei dem ein Druck von 10-4 bar gehalten wird - erhitzt und etwa 4 Stunden gebrannt, was beispielsweise in einem geeigneten Vakuum-Ofen geschieht.Now, as usual, the urea model is removed from the mold with the help of water and this - in order to remove the model residues - to about 1000 ° C with exclusion of air - in a protective gas atmosphere, for example made of argon, or in a vacuum, for example with a root Blower generated and at a pressure of 10 -4 bar - heated and burned for about 4 hours, which happens for example in a suitable vacuum oven.

Unabhängig davon und gleichzeitig erfolgt das Schmelzen des Gussmaterials in einer Vakuum-Giesseinrichtung unter einem Druck von etwa 5 x 10-4 mbar in einem handelsüblichen Tiegel aus Si-Al-Oxid. Die Aufheizung der Schmelze wird solange fortgesetzt, bis ihre Temperatur etwa 1400 - 1450° C beträgt.Regardless of this, and at the same time, the casting material is melted in a vacuum casting device under a pressure of approximately 5 × 10 -4 mbar in a commercially available crucible made of Si-Al oxide. The heating of the melt is continued until its temperature is about 1400-1450 ° C.

Mit dieser Temperatur erfolgt der Abguss in die aufgeheizte Form ebenfalls im Vakuum oder unter Schutzgas.At this temperature, the cast into the heated mold is also carried out in a vacuum or under protective gas.

Kurze Zeit nach dem Abguss kann die Form der Luft ausgesetzt werden, so dass ein Teil des Kernmaterials bereits beim Abkühlen des Gussstückes oxidiert und sublimiert.A short time after the casting, the shape can be exposed to the air, so that part of the core material already oxidizes and sublimates when the casting is cooled.

Falls die Kerne während des Abkühlens nicht restlos aus dem Gussstück verdampft sind, wird anschliessend noch ein erneutes Aufheizen des Gusstückes auf über 500° C in einer sauerstoffhaltigen Atmosphäre vorgenommen. Die dabei erreichte hohe Temperatur wird solange gehalten bis alles Kernmaterial durch Oxidation und Sublimation aus dem Gussstück entwichen ist.If the cores have not completely evaporated from the casting during cooling, the casting is then re-heated to over 500 ° C in one oxygen-containing atmosphere. The high temperature reached is maintained until all core material has escaped from the casting through oxidation and sublimation.

Beispiel 2Example 2

Eine gleichartige Turbinenschaufel aus dem gleichen Material soll gerichtet erstarren oder als Einkristall wachsen.A similar turbine blade made of the same material should solidify in a directional manner or grow as a single crystal.

Wie bereits erwähnt, wird ein derartiges Kristallwachstum durch gesteuertes relativ langsames Erstarren der Schmelze erreicht. Die Verfahrensbedingungen des Beispiels 1 müssen daher in einigen Punkte geändert werden:

  • Zum einen wird als Kernmaterial Molybdän-Draht verwendet, der zuvor mit einer Schutzschicht aus keramischem, bevorzungoxidischem Material überzogen worden ist.
As already mentioned, such crystal growth is achieved by controlled, relatively slow solidification of the melt. The process conditions of Example 1 must therefore be changed in a few points:
  • On the one hand, molybdenum wire is used as the core material, which has previously been covered with a protective layer of ceramic, pre-tongue oxide material.

Dieser Ueberzug, der im vorliegenden Fall aus Aluminiumoxid besteht, wird mit Hilfe des Plasmaspritzverfahrens un Verwendung üblicher und bekannter Parameter und Ausgangsmaterialien auf dem Molybdän-Draht niedergeschlagen; sein Dicke kann beispielsweise bis zu O,1 mm betragen. Ein Ueberzug mit einer solchen Schichtdicke ist nicht selbsttragend, so dass er beim Absublimieren seines Mo-Kernes zusammenbricht und leicht aus dem Gussstück entfernt werd< kann.This coating, which in the present case consists of aluminum oxide, is deposited on the molybdenum wire with the aid of the plasma spraying method, without using customary and known parameters and starting materials; its thickness can be up to 0.1 mm, for example. A coating with such a layer thickness is not self-supporting, so that it collapses when its Mo core is sublimed and can easily be removed from the casting.

Weiterhin besteht die keramische Giessform in diesem Fall lediglich aus einer Formschale, die in bekannter Weise au eine Kühleinrichtung aufgesetzt wird, wobei gegebenenfall für die Steuerung der Abkühlungsbedingungen die Formschal, zusätzlich von einer relativ zu ihr in Achsrichtung verschiebbaren Warmhalte-Heizeinrichtung umschlossen sein kaFurthermore, the ceramic casting mold in this case consists only of a molded shell, which is placed on a cooling device in a known manner, the molded shell, if necessary, for the control of the cooling conditions, additionally being surrounded by a heating device that can be displaced in the axial direction relative to it

Eine weitere Abweichung des Verfahrens nach Beispiel 2 gegenüber Beispiel 1 besteht darin, dass die Schmelze - und gegebenenfalls auch die Form - vor dem Abguss höher erhitzt werden. Die Formtemperatur beträgt dabei beispielsweise bis zu 1200°C, während die Ueberhitzung der Schmelze bis auf Temperaturen von 1550 - 1600° C getrieben wird.A further deviation of the method according to Example 2 compared to Example 1 is that the melt - and possibly also the shape - is higher before the casting be heated. The mold temperature is, for example, up to 1200 ° C, while the superheating of the melt is driven up to temperatures of 1550 - 1600 ° C.

Claims (5)

1. Verfahren zur Herstellung von Gussstücken durch Präzisionsgiessen unter Verwendung von verlorenen Modellen mit eingelegten Kernen, wobei die mit Hilfe des Modells herge stellte keramische Giessform nach dessen Herauslösen gebrannt und für den Abguss aufgeheizt wird, ehe die abzugiessende Schmelze eingegossen und nach ihrem Erstarren d Kern herausgelöst wird, dadurch gekennzeichnet, dass als Kernmaterial ein Metall verwendet wird, das unterhalb der Erstarrungstemperatur der abzugiessenden Schmelze oxidier ist, und dessen Oxid durch Sublimation entweicht.1. Process for the production of castings by precision casting using lost models with inserted cores, whereby the ceramic casting mold produced with the model is fired after it has been removed and heated for the cast, before the melt to be poured is poured in and after its solidification, the core is extracted, characterized in that a metal is used as the core material, which is oxidized below the solidification temperature of the melt to be poured, and the oxide of which escapes by sublimation. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, das als Kernmaterial Molybdän in Form eines Drahtes verwendet wird.2. The method according to claim 1, characterized in that molybdenum is used as the core material in the form of a wire. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichr dass als Modellmaterial Harnstoff verwendet wird und dass ferner das Brennen und Aufheizen der keramischen Giessfor unter Ausschluss von Sauerstoff erfolgt.3. The method according to claim 1 or 2, characterized gekennzeichr that urea is used as the model material and that the burning and heating of the ceramic Giessfor takes place in the absence of oxygen. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der metallische Kern vor dem Einlege in das Modell mit einer keramischen Schutzschicht überzogen wird.4. The method according to any one of claims 1 to 3, characterized in that the metallic core is coated with a ceramic protective layer before insertion into the model. 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, da: als Schutzschicht durch Plasmaspritzen aufgebrachtes Alw oxid (Al2O3) verwendet wird.5. The method according to claim 4, characterized in that: Alw oxide (Al 2 O 3 ) applied as a protective layer by plasma spraying is used.
EP80103836A 1979-09-10 1980-07-05 Process for the production of castings by investment casting Expired EP0025481B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH8131/79 1979-09-10
CH813179A CH640441A5 (en) 1979-09-10 1979-09-10 METHOD FOR PRODUCING CASTING PIECES BY PRECISION CASTING.

Publications (2)

Publication Number Publication Date
EP0025481A1 true EP0025481A1 (en) 1981-03-25
EP0025481B1 EP0025481B1 (en) 1983-02-16

Family

ID=4335637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80103836A Expired EP0025481B1 (en) 1979-09-10 1980-07-05 Process for the production of castings by investment casting

Country Status (5)

Country Link
US (1) US4287932A (en)
EP (1) EP0025481B1 (en)
JP (1) JPS5645248A (en)
CH (1) CH640441A5 (en)
DE (1) DE3062019D1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240190A2 (en) * 1986-03-31 1987-10-07 Ngk Insulators, Ltd. Process for manufacturing ceramic sintered bodies and mold to be used therefor
US5012853A (en) * 1988-09-20 1991-05-07 Sundstrand Corporation Process for making articles with smooth complex internal geometries
US9579714B1 (en) 2015-12-17 2017-02-28 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US9968991B2 (en) 2015-12-17 2018-05-15 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US9987677B2 (en) 2015-12-17 2018-06-05 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10046389B2 (en) 2015-12-17 2018-08-14 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10099276B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10099283B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10099284B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having a catalyzed internal passage defined therein
US10118217B2 (en) 2015-12-17 2018-11-06 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10137499B2 (en) 2015-12-17 2018-11-27 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10150158B2 (en) 2015-12-17 2018-12-11 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10286450B2 (en) 2016-04-27 2019-05-14 General Electric Company Method and assembly for forming components using a jacketed core
US10335853B2 (en) 2016-04-27 2019-07-02 General Electric Company Method and assembly for forming components using a jacketed core

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA23886C2 (en) * 1996-03-12 2002-04-15 Юнайтед Технолоджіз Корп. Пратт Енд Уітні METHOD OF MANUFACTURE OF HOLLOW PRODUCTS OF COMPLEX FORM
US6637500B2 (en) * 2001-10-24 2003-10-28 United Technologies Corporation Cores for use in precision investment casting
US7575039B2 (en) * 2003-10-15 2009-08-18 United Technologies Corporation Refractory metal core coatings
US7207374B2 (en) * 2004-10-26 2007-04-24 United Technologies Corporation Non-oxidizable coating
US7240718B2 (en) * 2005-09-13 2007-07-10 United Technologies Corporation Method for casting core removal
US7334625B2 (en) * 2005-09-19 2008-02-26 United Technologies Corporation Manufacture of casting cores
US7243700B2 (en) * 2005-10-27 2007-07-17 United Technologies Corporation Method for casting core removal
US20070240845A1 (en) * 2006-04-18 2007-10-18 Graham Stephen D Investment cast article and method of production thereof
CN102204485B (en) * 2011-04-18 2013-01-09 北京林业大学 Three-dimensional flower stand
US11325182B2 (en) * 2020-03-12 2022-05-10 Raytheon Technologies Corporation Method for removing refractory metal cores

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3259492A (en) * 1965-03-24 1966-07-05 Mertronics Corp Thallium-zinc-lead-mercury alloys
FR2143777A1 (en) * 1971-06-29 1973-02-09 Kewanee Oil Co
US4043381A (en) * 1976-08-09 1977-08-23 The United States Of America As Represented By The Secretary Of The Air Force Self-destructive core mold materials for metal alloys

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1109886A (en) * 1898-08-09 1914-09-08 Welsbach Light Co Manufacture of electric filament.
US1025469A (en) * 1908-09-08 1912-05-07 Gen Electric Tubular metallized filament.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3259492A (en) * 1965-03-24 1966-07-05 Mertronics Corp Thallium-zinc-lead-mercury alloys
FR2143777A1 (en) * 1971-06-29 1973-02-09 Kewanee Oil Co
US4043381A (en) * 1976-08-09 1977-08-23 The United States Of America As Represented By The Secretary Of The Air Force Self-destructive core mold materials for metal alloys

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240190A2 (en) * 1986-03-31 1987-10-07 Ngk Insulators, Ltd. Process for manufacturing ceramic sintered bodies and mold to be used therefor
EP0240190A3 (en) * 1986-03-31 1988-01-07 Ngk Insulators, Ltd. Process for manufacturing ceramic sintered bodies and mold to be used therefor
US5012853A (en) * 1988-09-20 1991-05-07 Sundstrand Corporation Process for making articles with smooth complex internal geometries
US9579714B1 (en) 2015-12-17 2017-02-28 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US9968991B2 (en) 2015-12-17 2018-05-15 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US9975176B2 (en) 2015-12-17 2018-05-22 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US9987677B2 (en) 2015-12-17 2018-06-05 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10046389B2 (en) 2015-12-17 2018-08-14 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10099276B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10099283B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10099284B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having a catalyzed internal passage defined therein
US10118217B2 (en) 2015-12-17 2018-11-06 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10137499B2 (en) 2015-12-17 2018-11-27 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10150158B2 (en) 2015-12-17 2018-12-11 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10286450B2 (en) 2016-04-27 2019-05-14 General Electric Company Method and assembly for forming components using a jacketed core
US10335853B2 (en) 2016-04-27 2019-07-02 General Electric Company Method and assembly for forming components using a jacketed core
US10981221B2 (en) 2016-04-27 2021-04-20 General Electric Company Method and assembly for forming components using a jacketed core

Also Published As

Publication number Publication date
DE3062019D1 (en) 1983-03-24
JPS5645248A (en) 1981-04-24
CH640441A5 (en) 1984-01-13
EP0025481B1 (en) 1983-02-16
US4287932A (en) 1981-09-08

Similar Documents

Publication Publication Date Title
EP0025481B1 (en) Process for the production of castings by investment casting
DE2659168C2 (en)
DE1758845C3 (en) Process for the production of precision casting molds for reactive metals
DE69907385T2 (en) Mattress compositions and moldings with improved performance for casting gas turbine components
DE2628582B2 (en) Composite turbine wheel and process for its manufacture
DE2122353C3 (en) GAS TURBINE BLADE
EP1186682B1 (en) Cylindrical sputtering target and process for its manufacture
DE2754460C2 (en)
DE2730945A1 (en) CASTING PROCESS
DE2933761C2 (en) Process for the production of directionally solidified castings
DE2606600C3 (en) Metallurgical mold, process for its manufacture and device for carrying out the process
WO1999006166A1 (en) Turbine blade and method for producing a turbine blade
DE10221418A1 (en) Impregnated alumina-based core and process for its manufacture
DE3300701A1 (en) DIE CASTING METHOD AND DEVICE FOR ITS IMPLEMENTATION
DE2159815C2 (en) Process for the production of a fine-grain cast body from a superalloy
DE1257364B (en) Graphite coating for refractory molds and process for its manufacture
DE2534050B2 (en) COMPOSITE CASTING PROCESS
EP0330858B1 (en) Precipitation-hardenable nickel-based superalloy with particular mechanical properties in the temperature range of 600 to 750o c
WO2006005416A1 (en) Method for producing a nonstick ingot mold
DE102005029039A1 (en) Production of non-stick ingot mold for non-metals involves coating a container with a silicon nitride powder-containing layer which is then burned
EP0590186B1 (en) Investment casting core
DE102004008691A1 (en) Production of shaped bodies for construction of light metal castings, used in production of Al strands (sic) through ceramic nozzles, ingot mold rings, intermediate tubes, sleeves (sic) and/or heating head rings
DE3227315C2 (en) Ceramic mold core for casting components with channel-like recesses
DE2837286A1 (en) CASTING MOLD DESIGN AND METHOD OF ITS MANUFACTURING
DE3636848A1 (en) METHOD FOR HEAT TREATING A METAL BODY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19800705

AK Designated contracting states

Designated state(s): BE DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHNEIDER, HANS

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3062019

Country of ref document: DE

Date of ref document: 19830324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19830831

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840621

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840723

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19840731

BERE Be: lapsed

Owner name: SCHNEIDER HANS

Effective date: 19840705

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860402

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT