DK174755B1 - System for connecting a wind turbine generator to the electrical supply network - Google Patents

System for connecting a wind turbine generator to the electrical supply network Download PDF

Info

Publication number
DK174755B1
DK174755B1 DK200200053A DKPA200200053A DK174755B1 DK 174755 B1 DK174755 B1 DK 174755B1 DK 200200053 A DK200200053 A DK 200200053A DK PA200200053 A DKPA200200053 A DK PA200200053A DK 174755 B1 DK174755 B1 DK 174755B1
Authority
DK
Denmark
Prior art keywords
electrical
current
wind turbine
control
supply network
Prior art date
Application number
DK200200053A
Other languages
Danish (da)
Inventor
Lorenz Feddersen
Jarle Eek
Original Assignee
Vestas Wind Sys As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vestas Wind Sys As filed Critical Vestas Wind Sys As
Priority to DK200200053A priority Critical patent/DK174755B1/en
Priority to AU2002351727A priority patent/AU2002351727A1/en
Priority to PCT/DK2002/000841 priority patent/WO2003058789A1/en
Publication of DK200200053A publication Critical patent/DK200200053A/en
Application granted granted Critical
Publication of DK174755B1 publication Critical patent/DK174755B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/102Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for limiting effects of transients
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • H02H7/062Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors for parallel connected generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Description

Nærværende opfindelse angår et system til at forbinde en vindmøllegenerator med det elektriske forsyningsnet, af den art, som er angivet i indledningen til krav 1.The present invention relates to a system for connecting a wind turbine generator to the electrical supply network, of the kind set forth in the preamble of claim 1.

DK 174755 B1DK 174755 B1

Teknisk område 5Technical area 5

Kendt teknik I systemer, til at forbinde en vindmøllegenerator med det elektriske forsyningsnet, af denne art, er det kendt at forbinde generatoren direkte med forsyningsnettet via en 10 afbryderindretning, som afbryder generatoren fra forsyningsnettet i tilfælde af at forsyningsnettet udsættes for en fejlsituation, såsom en kortslutning. Den normale procedure til at forbinde en sådan vindmøllegenerator igen, har været at fastholde afbrydelsen indtil forsyningsnettet er stabiliseret efter fjernelse af fejlen.Prior Art In systems for connecting a wind turbine generator to the electrical supply grid, of this kind, it is known to connect the generator directly to the supply grid via a switching device which disconnects the generator from the supply grid in the event that the supply grid is exposed to an error situation such as a short circuit. The normal procedure for reconnecting such a wind turbine generator has been to maintain the shutdown until the supply network is stabilized after the fault is removed.

15 Ulempen ved denne procedure er, at vindmøllegeneratoren ikke kan deltage aktivt i stabiliseringen af forsyningsnettet til en stabil tilstand, hvorved en sådan stabilisering er afhængig af andre typer generatorer, som er i stand til at levere den nødvendige effekt til at stabilisere forsyningsnettet, før vindmøllegeneratorerne atter forbindes. På grund af udbredelsen af vindenergi indenfor forsyningsnettet er der således et behov 20 for at vindmøllerne er i stand til at deltage aktivt i frembringelsen af elektrisk effekt under fejl i forsyningsnettet og bidrage til en højere vedvarende kortslutningsstrøm.The disadvantage of this procedure is that the wind turbine generator cannot participate actively in the stabilization of the supply grid to a steady state, whereby such stabilization is dependent on other types of generators capable of delivering the power needed to stabilize the supply grid before the wind turbine generators. reconnected. Thus, because of the distribution of wind energy within the supply network, there is a need 20 for the wind turbines to be able to participate actively in the generation of electrical power during faults in the supply grid and contribute to a higher sustained short-circuit current.

DE-A-3.213.793 beskriver et forsyningsnetsystem, som omfatter adskillige generatorer samt et detektionskredsløb til at detektere fejltilstande i forsyningsnettet. I tilfælde af 25 en fejl i forsyningsnettet, adskilles nettet i to separate dele, som hver især omfatter en gruppe generatorer, og én gruppe af generatorer kan fungere på stort set normal måde, idet adskillelsen begrænser den strøm, som trækkes fra denne gruppe af generatorer til den fejlbehæftede gruppe ved hjælp af passende impedanser, og genetablering af forbindelsen forenkles ved opretholdelse af synkronisering via de nævnte 30 impedanser. Intet i dette skrift indikerer muligheden for at anvende et sådant system af adskillende impedanser for hver enkelt generator, som er forbundet med forsyningsnettet. Impedanserne er således ikke forbundet imellem generatoren og nettet, men imellem de separate dele i nettet.DE-A-3,213,793 describes a supply network system comprising several generators as well as a detection circuit for detecting failure states in the supply network. In the event of a fault in the supply grid, the grid is separated into two separate parts, each comprising a group of generators, and one group of generators can operate in a substantially normal manner, the separation limiting the current drawn from this group of generators. to the faulty group by means of appropriate impedances, and the re-establishment of the connection is simplified by maintaining synchronization via said 30 impedances. Nothing in this specification indicates the possibility of using such a system of separate impedances for each generator connected to the supply network. Thus, the impedances are not connected between the generator and the grid, but between the separate parts of the grid.

DK 174755 B1 2DK 174755 B1 2

Omtale af opfindelsenDisclosure of the Invention

Det er hensigten med nærværende opfindelse, at tilvejebringe et system, til at forbinde en vindmøllegenerator med et elektrisk forsyningsnet, af den art, som er angivet 5 ovenfor, hvormed det er muligt at holde vindmøllegeneratoren forbundet med forsyningsnettet under fejl i forsyningsnettet og således deltage aktivt i stabiliseringen af forsyningsnettet umiddelbart under og efter ophævelse af fejlen. Dette formål opnås med et system, til at forbinde en vindmøllegenerator med det elektriske forsyningsnet > af den nævnte art, som i overensstemmelse med nærværende opfindelse også om-10 fatter de træk, som er angivet i den kendetegnende del af krav 1. Med dette arrangement er vindmøllegeneratorsystemet beskyttet mod de elektriske transienter under en fejlsituation på forsyningsnettet, ved hjælp af strømbegrænseme, og deltager aktivt i stabiliseringen af forsyningsnettet, og vindmøllen tilvejebringer et kortslutningsbidrag under sådanne fejlsituationer. For sædvanlige asynkron maskiner er det kendt, at der 15 ikke foreligger noget vedvarende kortslutningsstrømbidrag. Med nærværende opfindelse implementeret på en vindmølle med asynkrongenerator, vil asynkron generatoren bidrage til det vedvarende kortslutningsstrømniveau og bidrage til at aktivere beskyttelsesudstyret i det elektriske forsyningsnetsystem. Yderligere begrænses også vindmølleoverhastighed på grund af det faktum, at kortslutningseffektniveauet forøges 20 ved at indføre strømbegrænseme og det elektriske moment opretholdes således på et vist niveau. Dette vil også reducere de mekaniske belastninger på. møllen, eftersom den dynamiske momentændring begrænses.It is the object of the present invention to provide a system for connecting a wind turbine generator to an electrical supply network, of the kind set forth above, by which it is possible to keep the wind turbine generator connected to the supply grid under failures in the supply grid and thus actively participate. in the stabilization of the supply network immediately during and after the fault is eliminated. This object is achieved by a system for connecting a wind turbine generator to the electrical supply network of the kind, which in accordance with the present invention also comprises the features as defined in the characterizing part of claim 1. With this arrangement For example, the wind turbine generator system is protected against the electrical transients during a fault situation on the power grid, by means of the power constraints, and actively participates in the stabilization of the grid, and the wind turbine provides a short-circuit contribution in such fault situations. For conventional asynchronous machines, it is known that there is no sustained short-circuit current contribution. With the present invention implemented on a wind turbine with asynchronous generator, the asynchronous generator will contribute to the sustained short-circuit current level and help activate the protective equipment in the electrical supply network system. Further, wind turbine speed is also limited due to the fact that the short-circuit power level is increased by introducing the current limits and the electric torque is thus maintained at a certain level. This will also reduce the mechanical loads on. mill, since the dynamic torque change is limited.

Kort beskrivelse af tegningen 25 I den følgende detaljerede del af nærværende beskrivelse vil opfindelsen blive forklaret mere detaljeret under henvisning til udførelseseksemplet på et system til at forbinde en vindmøllegenerator med det elektriske forsyningsnet i overensstemmelse med opfindelsen, som vist på tegningen, hvor: 30BRIEF DESCRIPTION OF THE DRAWINGS In the following detailed part of the present description, the invention will be explained in more detail with reference to the exemplary embodiment of a system for connecting a wind turbine generator to the electrical supply network according to the invention, as shown in the drawing, wherein:

Fig. 1 viser et skematisk diagram af et system til at forbinde en vindmøllegenerator med det elektriske forsyningsnet i overensstemmelse med en foretrukken udførelses-form, og 35 fig. 2 viser et mere detaljeret skematisk diagram af strømbegrænseren 6, som anvendes i fig. 1.FIG. 1 is a schematic diagram of a system for connecting a wind turbine generator to the electrical supply network in accordance with a preferred embodiment; and FIG. 2 shows a more detailed schematic diagram of the current limiter 6 used in FIG. First

3 DK 174755 B13 DK 174755 B1

Beskrivelse af den foretrukne udførelsesformDescription of the preferred embodiment

Systemet til at forbinde en vindmøllegenerator med det elektriske forsyningsnet, som er vist i fig. 1, omfatter en vindmølledrevet rotor 1 med rotorvinklinger og en stator 2 5 med statorviklinger, som er forbundet til at forsyne elektrisk effekt til det elektriske forsyningsnet 3. Generatoren, som er vist i fig. 1, er en asynkron generator med variabel hastighed, hvori den elektriske effekt, som genereres, styres af en styring 5, ved at styre strømmen i rotorviklingerne. Naturligvis kan opfindelsen anvendes i forbindelse med andre typer generatorer, såsom synkrongeneratorer, koblede reluktans-10 generatorer, etc., og i en hver situation, hvor de trasiente strømme bør begrænses.The system for connecting a wind turbine generator to the electrical supply network shown in FIG. 1, a wind turbine-driven rotor 1 includes rotor angles and a stator 260 with stator windings connected to supply electrical power to the electrical supply grid 3. The generator shown in FIG. 1 is a variable speed asynchronous generator in which the electrical power generated is controlled by a control 5 by controlling the current in the rotor windings. Of course, the invention can be used in conjunction with other types of generators such as synchronous generators, coupled reluctance generators, etc., and in any situation where the transient currents should be limited.

I den viste udførelsesform er styringen 5 forbundet med en nødstrømsforsyning (UPS) 9 og med en pitchstyring 12, som styrer pitchen for vingerne på vindmøllerotoren 11. Vindmøllerotoren 11 er forbundet med generatorrotoren 1, eventuelt via en gear-15 udveksling til at omforme den langsomme rotation for vindmøllerotoren 11 til den hurtige rotationshastighed for generatorrotoren 1. Ved passende styring af strømmen i rotorviklingerne, som udføres af styringen 5, vil statorviklingerne og rotorviklingerne levere elektrisk effekt til det elektriske forsyningsnet via strømbegrænserne 6 og hovedkontaktoren 10. Passende strømmåleindretninger 4 er forbundet til at måle den 20 strøm, som leveres i hver enkelt fase til forsyningsnettet 3 fra generatoren og til at levere strømsignaler til styringen 5. Strømbegrænserne 6 styres af styringen 5, dvs. strømbegrænserne aktiveres eller deaktiveres, i afhængighed af de modtagne strøm-signaler fra strømmåleindretningerne 4. Yderligere kan målinger af spænding og frekvens anvendes til at foretage beslutning om aktivering og deaktivering af strøm-25 begrænserne, idet disse målinger foretages for at detektere transiente elektriske forløb, som indikerer forekomsten af en fejl i det elektriske forsyningsnet henholdsvis ophævelse af fejlen.In the embodiment shown, the control 5 is connected to an emergency power supply (UPS) 9 and to a pitch control 12 which controls the pitch of the blades on the wind turbine rotor 11. The wind turbine rotor 11 is connected to the generator rotor 1, possibly via a gear exchange to convert the slow rotation of the wind turbine rotor 11 to the rapid rotation speed of the generator rotor 1. By appropriately controlling the current in the rotor windings carried out by the control 5, the stator windings and the rotor windings will supply electrical power to the electrical supply network via the current limits 6 and the main contactor 10. Appropriate current measuring devices 4 are connected to measuring the 20 current supplied in each phase to the supply network 3 from the generator and to supply current signals to the control 5. The current limits 6 are controlled by the control 5, ie. the current limiters are activated or deactivated, depending on the received current signals from the current measuring devices 4. Further, voltage and frequency measurements can be used to decide on activating and deactivating the current limits, these measurements being made to detect transient electrical circuits, which indicates the occurrence of a fault in the electrical supply network and cancellation of the fault respectively.

I en foretrukken udførelsesform omfatter strømbegrænserne 6 serieimpedanser 7 30 parallelt med elektroniske effektomkoblere 8, som vist i fig. 2, hvilke elektroniske effektomkoblere 8 styres af styringen 5, med henblik på elektrisk kortslutning af serie-impedanserne 7 i afhængighed af de modtagne strømsignaler fra strømmåleindretningerne 4, og yderligere målinger, som angivet ovenfor.In a preferred embodiment, the current limiters 6 comprise series impedances 7 in parallel with electronic power switches 8, as shown in FIG. 2, which electronic power switches 8 are controlled by the control 5 for electrically shorting the series impedances 7 in dependence on the received current signals from the current measuring devices 4, and further measurements as indicated above.

35 Under normal drift, dvs. når der ikke foreligger nogen fejl i det elektriske forsyningsnet 3, trigges de elektroniske effektomkoblere 8 til elektrisk kortslutning af serieimpe- 4 DK 174755 B1 danserne 7, og generatoren leverer elektrisk effekt til det elektriske forsyningsnet 3, idet den nævnte effekt styres af styringen 5 ved at styre strømmen i rotorviklingerne og pitchen for vingerne på vindmøllerotoren 11. Hvis den strøm, som detekteres af strømmåleindretningerne 4, stiger over et forudbestemt niveau, eller yderligere må-5 linger indikerer forekomsten af en fejl, aktiverer styringen 5 den tilsvarende strøm-begrænser 6, dvs. trigningen af de elektroniske effektomkoblere 8 afbrydes og følgelig forbindes serieimpdansen 7 i serie med den tilsvarende fase, hvorved strømmen i denne fase begrænses og den genererede elektriske effekt afgives i den nævnte serieimpedans 7. I det system, som er vist i fig. 1, er det muligt at aktivere og deak-10 tivere de individuelle strømbegrænsere 6 i overensstemmelse med de tilsvarende målte strømme, eller andre målinger, i de individuelle faser. Aktiveringen af strøm-begrænserne 6 tilvejebringer følgende foredele: i) generatorsystemet, dvs. generatoren og de tilknyttede elektriske komponenter, 15 beskyttes imod elektriske transienter under fejlsituationen på det elektriske forsyningsnet, ii) generatoren leverer et kortslutningsbidrag til det elektriske forsyningsnet 3 under fejlsituationen, 20 iii) vindmøllen beskyttes imod overhastighed på grund af effektforbruget i serieimpedansen 7, hvilket forøger kortslutningseffektniveauet og således opretholder det elektriske moment på generatoren på et vist niveau, og 25 iv) de mekaniske belastninger på vindmøllen reduceres på grund af begrænsningen af de dynamiske momentændringer.In normal operation, ie. when there is no fault in the electrical supply network 3, the electronic power switches 8 are electrically short-circuited by the series importers 7, and the generator supplies electrical power to the electrical supply network 3, said power being controlled by the control 5 by controlling the current in the rotor windings and pitch of the blades on the wind turbine rotor 11. If the current detected by the current measuring devices 4 rises above a predetermined level, or further measurements indicate the occurrence of a fault, the control 5 activates the corresponding current limiter 6 , i.e. the triggering of the electronic power switches 8 is interrupted and consequently the series impedance 7 is connected in series with the corresponding phase, whereby the current in this phase is limited and the generated electrical power is output in said series impedance 7. In the system shown in fig. 1, it is possible to activate and deactivate the individual current limiters 6 in accordance with the corresponding measured currents, or other measurements, in the individual phases. The activation of the current limiters 6 provides the following advantages: i) the generator system, i. the generator and associated electrical components, 15 are protected against electrical transients during the failure of the electrical supply network, ii) the generator provides a short-circuit contribution to the electrical supply grid 3 during the fault situation, iii) the wind turbine is protected against over-speed due to power consumption in the series impedance 7, which increases and (iv) the mechanical loads on the wind turbine are reduced due to the limitation of the dynamic torque changes.

Yderligere er vindmøllegeneratoren i stand til at bidrage til stabiliseringen af det elektriske forsyningsnet 3 under fejlsituationen, og det er muligt at styre vindmøllen til 30 at afgive en styret effekt under fejlsituationen, indtil spændingen på det elektriske forsyningsnet genetableres, og direkte effektstyring efter at fejlen er fjernet.Further, the wind turbine generator is capable of contributing to the stabilization of the electrical supply grid 3 during the fault situation and it is possible to control the wind turbine to deliver a controlled power during the fault situation until the voltage on the electrical supply grid is restored and direct power control after the fault is removed.

De elektroniske effektomkoblere kan være af enhver art for sådanne omkoblere, som sikrer en kort reaktionstid, og omkoblingen udføres under anvendelse af eksempelvis 35 en komparator eller en estimator, hvorved styringsforsinkelsen, fra opnåelse af det maksimale strømniveau, eller anden måling, som indikerer forekomsten afen fejl, indtil 5 DK 174755 B1 impedansen indkobles, kan minimeres. Yderligere er et overvågningssystem installeret til at tilvejebringe genindkoblingsfunktionalitet til normal drift, når fejlen er fjernet. Overvågningssystemet vil også håndtere styringen af rotorviklingsstrømmen. Ved at detektere overstrømmen i hver enkelt fase, er det muligt kun at indføje impedanser i 5 sådanne faser, som er udsat for en overstrøm, i tilfælde af asymmetriske fejl. De , elektroniske effektomkoblere 8 indfører yderligere tab, på grund af det faktum, at under normal drift leder disse den strøm, som afgives til det elektriske forsyningsnet, 4 men disse tab estimeres til at være omtrent 0,5% af den totale produktion.The electronic power switches can be of any kind for such switches which ensure a short reaction time, and the switching is carried out using, for example, a comparator or estimator whereby the control delay, from obtaining the maximum current level, or other measurement indicating the presence of the error until the impedance is switched on can be minimized. Further, a monitoring system is installed to provide reconnect functionality for normal operation when the fault is removed. The monitoring system will also handle the control of the rotor winding current. By detecting the overcurrent in each phase, it is possible to insert impedances only in 5 such phases that are subject to an overcurrent, in the case of asymmetric errors. The electronic power switches 8 impose additional losses due to the fact that during normal operation they conduct the power supplied to the electrical supply network 4 but these losses are estimated to be approximately 0.5% of the total output.

10 Spændingen på generatorterminalerne opretholdes på grund af møllens evne til at opretholde en effektproduktion igennem den forøgede fejlimpedans. Denne spænding styres i fase og amplitude ved hjælp af styringen 5. Nødstrømsforsyningen (UPS) 9 sikrer styringsfunktionaliteten, selv om terminalspændingen falder til et lavt niveau.10 The voltage at the generator terminals is maintained due to the mill's ability to maintain a power output through the increased fault impedance. This voltage is controlled in phase and amplitude by the control 5. The emergency power supply (UPS) 9 ensures the control functionality, although the terminal voltage drops to a low level.

Under fejltilstanden vil styringen 5 ændre tilstand fra styring af konstant effekt til styring 15 af statorspænding, -fase og -frekvens, i overensstemmelse med spændingsreferencen før indføring af fejlen. Fortrinsvis vil styresystemet forberede genoprettelsen af forsyningsnetspændingen under fejltilstanden og styre strømmen til det lavest mulige niveau, med henblik på at minimere påvirkningen fra den returnerende netværksspænding. Under fejltilstanden er effektstyringen således sat ud af funktion, hvorved 20 der muliggøres spændingstyring med en hurtig strømstyring. Når spændingen vender tilbage, vil impedansen blive formindsket for at vende tilbage til normale driftsbetingelser, og genindkoblingen vil blive foretaget under strømmens nulgennemgang, med henblik på at minimere virkningen af genoprettelsen af netværksspændingen, hvorpå styresystemet vender tilbage fra spændingsstyring til effektstyring under gen-25 optagelse af effektniveauet fra før fejlens opståen.During the fault condition, control 5 will change state from constant power control to stator voltage, phase and frequency control 15, in accordance with the voltage reference before introducing the fault. Preferably, the control system will prepare the restoration of the supply network voltage during the failure state and control the current to the lowest possible level, in order to minimize the influence of the returning network voltage. Thus, during the fault condition, the power control is disabled, thereby enabling voltage control with a fast current control. When the voltage returns, the impedance will be reduced to return to normal operating conditions and the reconnection will be made during zero current flow to minimize the effect of network voltage recovery, after which the control system returns from voltage control to power control during re-recording. of the power level from before the error occurred.

Møllestyresystemet er i stand til at gennemløbe elektriske transienter, så længe komponentbegrænsningerne for generatoren og dens elektriske udstyr ikke nås, . hvilket kan sikres ved hjælp af strømbegrænsningsfunktionen. På denne måde er 30 møllen i stand til at levere en kontinuert effekt og følgelig et kortslutningsbidrag, som kan kræves af forsyningsnettet 3, med henblik på at sikre aktivering af beskyttelsesrelæerne, med henblik på at isolere de fejlbehæftede dele fra forsyningsnettet 3.The turbine control system is capable of passing electrical transients as long as the component limitations of the generator and its electrical equipment are not reached,. which can be ensured by the power limiting function. In this way, the 30 mill is capable of delivering a continuous power and, consequently, a short-circuit contribution that may be required by the supply network 3 to ensure the activation of the protective relays, in order to isolate the faulty parts from the supply network 3.

Det er et primært mål, at holde møllen forbundet under en fejl og vende tilbage til drift 35 som før fejlens opståen, så hurtigt som muligt efter at fejlen er fjernet. Således be- i 6 DK 174755 B1 grænser opfindelsen elektriske trasienter og undgår nødvendigheden for at afbryde møllegeneratoren fra det elektriske forsyningsnet 3.It is a primary goal to keep the mill connected during a failure and return to operation 35 as before the failure occurred, as soon as possible after the fault is removed. Thus, the invention limits electrical transients and avoids the need to disconnect the turbine generator from the electrical supply network 3.

Ovenfor er opfindelsen beskrevet i forbindelse med en foretrukken udførelsesform og 5 adskillige modifikationer kan udtænkes indenfor de følgende kravs område.Above, the invention is described in connection with a preferred embodiment and several modifications can be devised within the scope of the following claims.

ff

Claims (6)

1. System til at forbinde en vindmøllegenerator med det elektriske forsyningsnet, omfattende en vindmølledrevet rotor (1) og en stator (2), som er forbundet til at levere 5 elektrisk effekt til det elektriske forsyningsnet (3), kendetegnet ved, at omfatte en indretning (4) til detektion af elektriske transienter, til at afgive signaler til en styring (5), og et antal strømbegrænsere (6) i form af styrede impedanser, som er forbundet imellem 10 det elektriske forsyningsnet (3) og generatoren, idet strømbegrænserne (6) aktiveres af styringen (5) i afhængighed af detektionen af de elektriske transienter.A system for connecting a wind turbine generator to the electrical supply grid, comprising a wind turbine-driven rotor (1) and a stator (2) connected to supply electrical power to the electrical supply grid (3), characterized by comprising a a device (4) for detecting electrical transients, for delivering signals to a control (5), and a plurality of current limiters (6) in the form of controlled impedances connected between the electrical supply network (3) and the generator, the current limiters (6) is activated by the control (5) depending on the detection of the electrical transients. 2. System i overensstemmelse med krav 1, kendetegnet ved, at indretningen (4) til detektion af elektriske transienter, omfatter en strømmåleindretning (4) i hver fase, for 15 afgivelse af strømsignaler til styringen (5).System according to claim 1, characterized in that the device (4) for detecting electrical transients comprises a current measuring device (4) in each phase for delivering current signals to the control (5). 3. System i overensstemmelse med krav 1 eller 2, kendetegnet ved, at strømbegrænserne (6) omfatter serieimpedanser (7) parallelt med elektroniske effektomkoblere (8) til elektrisk at kortslutte serieimpedanserne (7) i afhængighed af detektionen af de 20 elektriske transienter.System according to claim 1 or 2, characterized in that the current limiters (6) comprise series impedances (7) in parallel with electronic power switches (8) for electrically shorting the series impedances (7) depending on the detection of the 20 electrical transients. 4. System i overensstemmelse med krav 1, 2 eller 3, kendetegnet ved, at strømbegrænserne (6) er forbundet i serie med forbindelserne til det elektriske forsyningsnet (3) og aktiveres individuelt i afhængighed af de detekterede elektriske transiente 25 signaler.System according to claim 1, 2 or 3, characterized in that the current limiter (6) is connected in series with the connections to the electrical supply network (3) and is activated individually in dependence on the detected electrical transient signals. , 5. System i overensstemmelse med ethvert af de foregående krav, kendetegnet ved, at styringen (5) forsynes med effekt via en nødstrømsforsyning (9) (UPS). 30System according to any one of the preceding claims, characterized in that the control (5) is powered by an emergency power supply (9) (UPS). 30 6. System i overensstemmelse med ethvert af de foregående krav, kendetegnet ved yderligere at omfatte et overvågningssystem til at initiere reetablering af normal drift, dvs. med strømbegrænserne (6) deaktiverede, når strømmålinger og/eller tilsvarende spændingsmålinger og/eller den elektriske transientdetektionsindretning (4) indikerer, at normal drift kan genoptages. 35System according to any one of the preceding claims, characterized by further comprising a monitoring system for initiating the re-establishment of normal operation, ie. with the current limiters (6) deactivated when current measurements and / or corresponding voltage measurements and / or the electrical transient detection device (4) indicate that normal operation can be resumed. 35
DK200200053A 2002-01-14 2002-01-14 System for connecting a wind turbine generator to the electrical supply network DK174755B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DK200200053A DK174755B1 (en) 2002-01-14 2002-01-14 System for connecting a wind turbine generator to the electrical supply network
AU2002351727A AU2002351727A1 (en) 2002-01-14 2002-12-11 Power grid connection system for a wind turbine generator
PCT/DK2002/000841 WO2003058789A1 (en) 2002-01-14 2002-12-11 Power grid connection system for a wind turbine generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK200200053A DK174755B1 (en) 2002-01-14 2002-01-14 System for connecting a wind turbine generator to the electrical supply network
DK200200053 2002-01-14

Publications (2)

Publication Number Publication Date
DK200200053A DK200200053A (en) 2003-07-15
DK174755B1 true DK174755B1 (en) 2003-10-20

Family

ID=8160993

Family Applications (1)

Application Number Title Priority Date Filing Date
DK200200053A DK174755B1 (en) 2002-01-14 2002-01-14 System for connecting a wind turbine generator to the electrical supply network

Country Status (3)

Country Link
AU (1) AU2002351727A1 (en)
DK (1) DK174755B1 (en)
WO (1) WO2003058789A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2531770C (en) * 2003-08-07 2010-02-16 Vestas Wind Systems A/S Method of controlling a wind turbine connected to an electric utility grid during malfunction in said electric utility grid, control system, wind turbine and family hereof
DE102005012762A1 (en) * 2005-03-19 2006-09-21 Alstom Energy delivery system for electric power system , has resistor, provided in rotor circuit of asynchronous machine, which has first value before short circuit in network and second value after short circuit in network
US7514907B2 (en) 2005-05-24 2009-04-07 Satcon Technology Corporation Device, system, and method for providing a low-voltage fault ride-through for a wind generator farm
US7253537B2 (en) * 2005-12-08 2007-08-07 General Electric Company System and method of operating double fed induction generators
US7425771B2 (en) 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
CN101401294B (en) 2006-03-17 2013-04-17 英捷电力技术有限公司 Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
US7622815B2 (en) 2006-12-29 2009-11-24 Ingeteam Energy, S.A. Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid
ES2360433B1 (en) * 2008-05-23 2012-04-20 Ingeteam S.A. METHOD AND CONTROL SYSTEM OF A WIND INSTALLATION BEFORE NETWORK FAULTS.
US20120038154A1 (en) * 2009-02-17 2012-02-16 Bittor Gurutz Lekerika Ugarte Method and apparatus for powering a wind turbine
DE102010034356A1 (en) 2010-08-16 2012-02-16 Siemens Aktiengesellschaft Method for verifiable delivery of an item
WO2012055416A1 (en) 2010-10-28 2012-05-03 Vestas Wind Systems A/S A wind turbine generator
DK2461026T4 (en) * 2010-12-03 2017-03-13 Siemens Ag Device and method for testing a system for producing electricity
DK2461027T3 (en) * 2010-12-03 2013-09-30 Siemens Ag Device and method for testing an electrical power generating system
US20120147637A1 (en) 2010-12-13 2012-06-14 Northern Power Systems, Inc. Methods, Systems, and Software for Controlling a Power Converter During Low (Zero)-Voltage Ride-Through Conditions
US9419442B2 (en) 2012-08-14 2016-08-16 Kr Design House, Inc. Renewable energy power distribution system
EP3072199B1 (en) 2013-11-18 2018-07-11 Rensselaer Polytechnic Institute Methods to form and operate multi-terminal power systems
CN114865720B (en) * 2022-07-07 2022-09-27 中国科学院电工研究所 Direct power regulation and control method for network-following type distributed energy grid-connected system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1429996A (en) * 1964-04-13 1966-02-25 Licentia Gmbh Overcurrent limitation system
DE4135367A1 (en) * 1991-10-26 1992-05-14 Klaus Rohatsch Reducing reaction effect on mains with asynchronous generator switch=on - voltage jumps occurring at machine formerly with bridging of series resistances
ZA957189B (en) * 1994-10-21 1996-04-17 Kenetech Windpower Inc Transient suppressor for electronics systems

Also Published As

Publication number Publication date
AU2002351727A1 (en) 2003-07-24
WO2003058789A1 (en) 2003-07-17
DK200200053A (en) 2003-07-15

Similar Documents

Publication Publication Date Title
DK174755B1 (en) System for connecting a wind turbine generator to the electrical supply network
US10156225B2 (en) Method for black starting wind turbine, wind farm, and restoring wind farm and wind turbine, wind farm using the same
US9459320B2 (en) Fault detection in brushless exciters
US9209732B2 (en) Power supply system of marine vessel
JP4210286B2 (en) Method, control system, wind turbine, and group of wind turbines for controlling a wind turbine connected to a malfunctioning power grid
CN110799925B (en) Apparatus and method for gathering and supplying energy
US10107260B2 (en) Wind turbine auxiliary circuit control
JP2006514523A5 (en)
EP2837942B1 (en) Ground fault detecting circuit and power conversion device using same
EP3046196B1 (en) A method of clearing a fault in a HVDC electrical network
US20160134121A1 (en) Method for feeding electric power into an electric supply network
JP5449204B2 (en) Power supply apparatus and method
KR20160071338A (en) Power generation system and method with resistive braking capability
WO2011018549A2 (en) A protection arrangement of an electric power system
EP2842221A1 (en) Power converter system, damping system, and method of operating power converter system
US20040113592A1 (en) Method of and apparatus for detecting sensor loss in a generator control system
CN110957753A (en) System and method for controlling an uninterruptible power supply for an electric power system
WO2008145191A1 (en) Method and arrangement for performing voltage ride through in case of power grid failures
JP7128132B2 (en) Power system stabilization system
JP5454042B2 (en) Grid-connected power generation system
US11626792B2 (en) Inverter with monitoring unit for intermediate circuit protection
AU2012327353B2 (en) Improvement of the motor protection of a DC drive
Saleh et al. Impacts of grounding configurations on responses of ground protective relays for DFIG-based WECSs-part II: High-impedance ground faults
Settemsdal et al. DP3 class power system solutions for dynamically positioned vessels
JP2022108939A (en) Power supply system

Legal Events

Date Code Title Description
PBP Patent lapsed

Effective date: 20170131