DK156813B - A NISOTROP SYNTHETIC MEMBRANE WITH MULTILAYER STRUCTURE - Google Patents

A NISOTROP SYNTHETIC MEMBRANE WITH MULTILAYER STRUCTURE Download PDF

Info

Publication number
DK156813B
DK156813B DK463478AA DK463478A DK156813B DK 156813 B DK156813 B DK 156813B DK 463478A A DK463478A A DK 463478AA DK 463478 A DK463478 A DK 463478A DK 156813 B DK156813 B DK 156813B
Authority
DK
Denmark
Prior art keywords
membrane
membranes
layer
coagulation
concentration
Prior art date
Application number
DK463478AA
Other languages
Danish (da)
Other versions
DK463478A (en
DK156813C (en
Inventor
Lefebvre Michel Serge Maxime
Christopher Joseph Dalzel Fell
Original Assignee
Unisearch Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisearch Ltd filed Critical Unisearch Ltd
Publication of DK463478A publication Critical patent/DK463478A/en
Publication of DK156813B publication Critical patent/DK156813B/en
Application granted granted Critical
Publication of DK156813C publication Critical patent/DK156813C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/14Membrane materials having negatively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/16Membrane materials having positively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

DK 156813 BDK 156813 B

Den foreliggende opfindelse angâr hidtil ukendte stærkt permeable syntetiske polymermembraner, der kan anvendes ved membranadskillelse af forbindelser i sàdanne processer som ultrafiltrering, dialyse, elektrodialyse og omvendt osmose.The present invention relates to novel highly permeable synthetic polymer membranes which can be used in membrane separation of compounds in such processes as ultrafiltration, dialysis, electrodialysis and reverse osmosis.

5 Ved sàdanne processer anvendes semipermeable membraner, som skelner mellem oploselige molekyler og oplosningsmiddelmolekyler pâ basis af forskelle i molekylstorrelse, form, kemisk struktur eller elektrisk ladning.5 In such processes semipermeable membranes are used which distinguish between soluble molecules and solvent molecules on the basis of differences in molecular size, shape, chemical structure or electrical charge.

Denne type membran kan ogsâ fordelagtigt anvendes ved gaspermeation 10 og gasdiffusion.This type of membrane can also advantageously be used in gas permeation 10 and gas diffusion.

Ultrafiltrering (UF) er det udtryk, der anvendes til at betegne ad-skillelse af oploste stoffer med relativ hoj molekylvægt og kolloidt dispergerede stoffer fra deres oplosningsmidler. Det osmotiske tryk af det opleste stof er sædvanligvis ubetydeligt spiller ingen vigtig 15 rolle ved adskillelsesprocessen.Ultrafiltration (UF) is the term used to denote the separation of relatively high molecular weight solutes and colloidly dispersed substances from their solvents. The osmotic pressure of the solute is usually insignificant does not play an important role in the separation process.

Omvendt osmose (RO) er det udtryk, der normalt anvendes til be-tegnelse af adskillelse af oploste stoffer med lav molekylvægt fra deres oplosningsmiddel. I dette tilfælde skal det drivende tryk til effektiv adskillelse overstige oplosningens osmotiske tryk.Reverse osmosis (RO) is the term commonly used to denote the separation of low molecular weight solutes from their solvent. In this case, the driving pressure for effective separation must exceed the osmotic pressure of the solution.

20 Bâde ved UF og RO flyder en oplosning under tryk hen over overfladen af en understettet membran, og under indvirkning af den pâlagte tryk-gradient hen over membranen gâr oplosningsmiddel og visse oploste stoffer gennem membranen og opsamles som permeat. Oplosningsmidlet og oplost stof, som tilbageholdes af membranen, betegnes som retentatet.Both at UF and RO a solution under pressure flows across the surface of a supported membrane, and under the influence of the applied pressure gradient across the membrane, solvent and certain solutes pass through the membrane and are collected as permeate. The solvent and solute retained by the membrane is referred to as the retentate.

25 Ved et passende membranvalg er det muligt at koncentrere, rense og fraktionsvis adskille praktisk taget en hvilken som helst oplosning ad simpel fysisk vej, hvor det eneste energibehov er den tilforte væskes kompressionsenergi. En sâdan teknik er især velegnet ved fremstilling af termisk eller kemisk ustabile produkter, hvor 30 sædvanlige adskillelsesprocesser, f.eks. inddampning, selektivBy a suitable membrane selection, it is possible to concentrate, purify and fractionally separate virtually any solution by simple physical path, the only energy requirement being the compression energy of the supplied liquid. Such a technique is particularly well-suited for the production of thermally or chemically unstable products, in which 30 conventional separation processes, e.g. evaporation, selective

DK 156813 BDK 156813 B

2 ekstraktion og selektiv udfældning, ofte forer til produkttab eller -odelæggelse.2 extraction and selective precipitation, often leading to product loss or destruction.

Membraner, der sædvanligvis anvendes til UF, er sâkaldte anisotrope membraner, der oprindeligt er udviklet af S. Loeb og S. Sourirajan 5 ved University of California, Los Angeles, i slutningen af 1950'erne.Membranes commonly used for UF are so-called anisotropic membranes, originally developed by S. Loeb and S. Sourirajan 5 at the University of California, Los Angeles, in the late 1950s.

Disse membraner er fremstillet eller "stobt" af en oplosning af en polymer i et oplosningsmiddel (f.eks. celluloseacetat oplost i et acetonisk medium). Et tyndt lag af oplosningen spredes pâ en passende overflade, f.eks. en glasplade, og oplosningsmidlet lades afdampe i 10 en sâdan udstrækning, at der.dannes en halvfast matrix med en overflade-"hud", som skyldes, at overfladelaget torrer hurtigere end lagene derunder. Membranen neddyppes derefter i et andet oplosningsmiddel, sædvanligvis et pâ vand baseret, for hurtigt at udfælde den tilbageværende polymer; den hurtige udfældning eller koagulering af 15 polymeren danner en svampelignende bagside pâ membranen.These membranes are made or "stumped" by a solution of a polymer in a solvent (e.g., cellulose acetate dissolved in an acetonic medium). A thin layer of the solution is spread on a suitable surface, e.g. a glass plate, and the solvent is allowed to evaporate to such an extent that a semi-solid matrix is formed with a surface "skin" which results from the surface layer drying faster than the layers below. The membrane is then immersed in another solvent, usually a water-based one, to precipitate the remaining polymer rapidly; the rapid precipitation or coagulation of the polymer forms a sponge-like backing on the membrane.

Den resulterende membran er et yderst tyndt lag eller en yderst tynd film af polymer med meget finporet struktur (tykkelse pâ under 5 μ), der er understottet af et meget tykkere lag stærkt porost materiale (tykkelse pâ over 100 μ). I sâdanne membraner er kun overfladelaget 20 eller filmen virksom ved UF. Da gennemstromningshastigheden gennem sâdanne membraner er lav, forbruges der ved ultrafiltreringspro-cesser, hvor der anvendes sâdanne membraner, relativt store energi-mængder, og de er tidsrovende og kræver relativt hoj kapitalin-vestering i anlæg eller udstyr for at sikre, at anvendelsen af 25 membranen er okonomisk eller praktisk, udtrykt i de gennemstrom-ningshastigheder, der kan opnâs med sâdanne membraner.The resulting membrane is an extremely thin layer or extremely thin film of polymer with a very fine pore structure (thickness of less than 5 µ), which is supported by a much thicker layer of strong porous material (thickness of over 100 µ). In such membranes, only the surface layer 20 or the film is active at UF. Because the flow rate through such membranes is low, in ultrafiltration processes using such membranes, relatively large amounts of energy are consumed and are time consuming and require relatively high capital investment in plants or equipment to ensure that the use of the membrane is economical or practical, expressed in the flow rates obtainable with such membranes.

For nylig er der blevet udviklet forskellige typer membraner under anvendelse af polyelektrolyt, polysulfon og polycarbonat, især af sâdanne selskaber som Amicon Corporation og Dorr-Oliver (U.S.A.), 30 Satorius og Gelman (Vesttyskland) og DDS (Danmark). Disse membraner har enten et hudlag, som ovenfor beskrevet, eller en regulær svampestruktur. Yderligere har General Electric Company udviklet en teknik til fremstilling af ekstremt tynde membraner med huiler,Recently, different types of membranes have been developed using polyelectrolyte, polysulfone and polycarbonate, especially by such companies as Amicon Corporation and Dorr-Oliver (U.S.A.), 30 Satorius and Gelman (West Germany) and DDS (Denmark). These membranes have either a skin layer as described above or a regular fungal structure. Further, General Electric Company has developed a technique for producing extremely thin membranes with howls,

DK 156813 BDK 156813 B

3 der er dannet ved kernebombardement, og i dette tilfælde har mem-braneme en struktur, som svarer til en monosigtes struktur. Mellem 1965 og 1970 har Du Pont (U.S.A.) og OPI (Frankrig) udviklet poly-amidmembraner, enten i flad form eller i "hollow filter"-form. Pâ 5 grund af begrænset permeabilitet og "hudagtige" ("skinned") egen-skaber kan disse membraner ikke anses for at være forskellige fra klassiske membraner med hensyn til praktisk anvendelse.3 formed by nuclear bombardment, in which case the membranes have a structure similar to that of a mono-sieve. Between 1965 and 1970, Du Pont (U.S.A.) and OPI (France) developed polyamide membranes, either in flat or hollow filter form. Due to limited permeability and "skinned" properties, these membranes cannot be considered to be different from classical membranes in terms of practical application.

I aile tidligere kendte membraner er kun membranens overflade aktiv, og det er alene egenskaberne hos den aktive side, der er i kontakt 10 med væsken, som giver membranen sin udelukkelsesegenskab.In all previously known membranes, only the surface of the membrane is active, and it is only the properties of the active side that are in contact with the liquid that give the membrane its exclusion property.

Pâ grund af strukturen i de tidligere kendte membraner begrænses ultrafiltreringsgennemstromningen i de fleste tilfælde ved dannelsen af et gellag uden pâ membranen, hvilket gellag dannes af de stoffer, der standses af membranen. Gellagets permeabilitet og udelukkelses-15 karakteristika bestemmer membranens ydeevne.Due to the structure of the prior art membranes, ultrafiltration throughput is in most cases limited by the formation of a gel layer without the membrane, which gel layer is formed by the substances which are stopped by the membrane. The permeability and exclusion characteristics of the gel layer determine the performance of the membrane.

Af denne grund bliver gennemstromningen af permeat gennem membranen selv ved et lavt tryk uafhængig af trykfaldet gennem membranen.For this reason, the flow of permeate through the membrane even at a low pressure becomes independent of the pressure drop through the membrane.

Gennemstramningen af permeat er desuden meget afhængig af væggens overgangshastighed, og hoj gennemstramningshastighed kan kun opnâs 20 ved hjælp af et kostbart pumpeudstyr, der kan etablere tilstrækkelig hastighed for væske i kontakt med membranen til at minimere virk-ningen af gellaget. Gennemstromningshastigheden falder desuden hurtigt, nâr koncentrationen bygges op. Pâ grund af denne virkning er UF hverken attraktiv eller praktisk til fjernelse af oplosnings-25 middel fra meget koncentrede oplasninger.In addition, the permeation permeation is highly dependent on the wall transition velocity, and high throughput can only be achieved by an expensive pumping equipment capable of establishing sufficient velocity of fluid in contact with the membrane to minimize the effect of the gel layer. Furthermore, the flow rate decreases rapidly as the concentration builds up. Because of this effect, UF is neither attractive nor practical for removing solvent from highly concentrated solutions.

En anden konsekvens af strukturen i de klassiske, hidtil kendte membraner er den ekstremt lave gennemstromningshastighed i membraner med lav molekylvægtsudelukkelsesgrænse, Denne faktor, vandpermeabili-tet, er meget ofte det generelt begrænsende for anvendelse af 30 membraner.Another consequence of the structure of the classical, previously known membranes is the extremely low flow rate in low molecular weight limit membranes. This factor, the water permeability, is very often the limiting general use of 30 membranes.

Ydermere er der ved fremstillingen af kendte typer membraner et behov for meget streng kvalitetskontrol med hensyn til membranoverfladens struktur, hvilket medforer hoje fremstillingsomkostninger.Furthermore, in the manufacture of known types of membranes, there is a need for very strict quality control with regard to the structure of the membrane surface, which entails high manufacturing costs.

DK 156813 BDK 156813 B

44

Den foreliggende opfindelse angâr en anisotrop syntetisk membran med flerlagsstruktur, hvilken membran er ejendommelig ved, at hvert lag er aktivt i separationsprocessen og virker som molekylsi med en noj-agtig molekylvægtsudelukkelsesgrænse.The present invention relates to an anisotropic multilayer synthetic membrane, which membrane is characterized in that each layer is active in the separation process and acts as a molecular sieve having an accurate molecular weight exclusion limit.

5 Ifolge den foreliggende opfindelse tilvejebringes en hidtil ukendt type anisotrope syntetiske membraner med flerlagsstruktur, fortrins-vis med 4-12 lag, hvor hvert lag tjener som molekylsi med en nojagtig molekylvægtsudelukkelsesgrænse. Den vedlagte tegning viser skematisk en membran med 7 lag, betegnet fra I til VII. Mellem to vilkàrlige 10 lag i membranen, som er parallelle med membranens overflade, er indesluttet en alveolær struktur af alveoler med nojagtige dimensio-ner. Fra overst til nederst i membranen varierer hver alvéolé i dimension i forhold til den umiddelbart foregâende og/eller efter-folgende alvéolé udtrykt som en geometrisk progression, det vil sige, 15 at det gennemsnitlige volumen af alveolerne mellem det forste og det andet membranlag er i et fast forhold til det gennemsnitlige rumfang af alveolerne mellem det andet og det tredje membranlag, osv., udtrykt som en geometrisk progression med graden rx (se nedenfor).According to the present invention, there is provided a novel type of multi-layered anisotropic synthetic membranes, preferably of 4-12 layers, each layer serving as a molecular sieve having an accurate molecular weight exclusion limit. The accompanying drawing schematically shows a 7-layer membrane, denoted from I to VII. Between two arbitrary layers of the membrane, parallel to the surface of the membrane, is enclosed an alveolar structure of alveoli with exact dimensions. From top to bottom of the membrane, each alveolar oil varies in dimension with respect to the immediately preceding and / or subsequent alveoli expressed as a geometric progression, i.e., the average volume of the alveoli between the first and second membrane layers is a fixed ratio of the average volume of the alveoli between the second and third membrane layers, etc., expressed as a geometric progression of degree rx (see below).

Nâr graden af den geometriske progression er over 1 (dvs. rx > 1), 20 kaldes membranen en divergent membran, og nâr graden er under 1 (dvs. rx < 1), kaldes membranen en konvergent membran. Den geometriske progressionsgrad kan udtrykkes ved folgende ligning:When the degree of geometric progression is above 1 (i.e., rx> 1), the membrane is called a divergent membrane, and when the degree is below 1 (i.e., rx <1), the membrane is called a convergent membrane. The geometric progression can be expressed by the following equation:

Vol [n,n+l] rx = - 25 Vol [n-l,n] hvor n-1, n og n+1 er de pâ hinanden folgende numre af nabostillede lag i membranen i retning fra overst til nederst i membranen, og Vol [n,n+l] er det gennemsnitlige rumfang af alveolerne, der er mellem lag n og lag n+1; pâ lignende mâde er Vol [n-l,n] det gennemsnitlige 30 rumfang af de alveoler, der er mellem lag n-1 og lag n.Vol [n, n + l] rx = - 25 Vol [nl, n] where n-1, n and n + 1 are the consecutive numbers of adjacent layers of the membrane in the direction from top to bottom of the membrane, and Vol [n, n + l] is the average volume of the alveoli between layers n and layers n + 1; Similarly, Vol [n-l, n] is the average volume of alveoli between layers n-1 and layer n.

Storrelsen af dette gennemsnitlige rumfang kan mâles ved mâling af vandindholdet i hvert lag. Vandindholdet (WC) i laget n udtrykkes som:The size of this average volume can be measured by measuring the water content of each layer. The water content (WC) in layer n is expressed as:

DK 156813 BDK 156813 B

5 vægten af vâdt lag - vægten af tort lag wcn = _ vægten af vâdt lag . wcn+l 5 rx __ _ WCn konvergens i membran C = _ rx 10 wcn WCn+l5 weight of wet layer - weight of tort layer wcn = _ weight of wet layer. wcn + l 5 rx __ _ WCn convergence in membrane C = _ rx 10 wcn WCn + l

Hvis C er mindre end 1, kaldes membranen divergent, og hvis C er storre end 1, kaldes membranen konvergent.If C is less than 1, the membrane is called divergent and if C is greater than 1, the membrane is called convergent.

15 For membraner ifolge den foreliggende opfindelse varierer logaritmen af molekylvægtsudelukkelsesgrænsen i de forskellige lag med geo-metrisk progressionsgrad: log af molekylvægtsudelukkelsesgrænsenn+i Ρχ “ _ 20 log af molekylvægtsgrænsennFor membranes of the present invention, the logarithm of the molecular weight exclusion boundary in the various layers varies with geometrical progression: log of molecular weight exclusion boundary + in ΡχΡχ 20 log of molecular weight boundary end

Den molekylære konvergens i membranen defineres som 7 = _ Ρχ 25 Hvis y er storre end 1, kaldes membranen molekylært konvergent.The molecular convergence of the membrane is defined as 7 = _ Ρχ 25 If y is greater than 1, the membrane is called molecular convergence.

Hvis 7 er mindre end 1, kaldes membranen molekylært divergent.If 7 is less than 1, the membrane is called molecularly divergent.

Dette giver 4 membrantyper, nemlig:This gives 4 types of membrane, namely:

DK 156813 BDK 156813 B

6 konvergent-konvergent C > 1 7 > 1 konvergent-divergent C > 1 7 < 1 divergent-konvergent C < 1 7 > 1 divergent-divergent C < 1 7 < 1 5 Membranerne ifelge den foreliggende opfindelse er stærkt permeable i forhold til tidligere kendte anisotrope membraner, hvilket hoved-sageligt skyldes den intercellulære eller interalveolære struktur.6 Convergent-Convergent C> 1 7> 1 Convergent-Divergent C> 1 7 <1 Divergent-Convergent C <1 7> 1 Divergent-Divergent C <1 7 <1 5 The membranes of the present invention are highly permeable to prior art. known anisotropic membranes, which is mainly due to the intercellular or interalveolar structure.

Strukturen udg0res af makromolekyler af polymer, som danner et amorft polymemet med "huiler" eller "kanaler". Disse kanaler er stærkt 10 snoede og er lidt og elastisk deformerbare under tryk; eller de er darmet under koaguleringen ved samling af makromolekylerne og udludning af de kemiske biprodukter fra koaguleringen. Stromningsare-alet af "hulleme" eller "kanalerne" er s tort, og membranernes til-bageholdelseskarakteristika stammer primært snarere fra hindringen af 15 end den totale udelukkelse af strommen af tilbageholdte stoffer.The structure is made up of polymer macromolecules which form an amorphous "huiler" or "channel" polymer. These ducts are strongly twisted and are slightly and elastically deformable under pressure; or they are intact during coagulation by assembling the macromolecules and leaching the chemical by-products from the coagulation. The flow areas of the "holes" or "ducts" are s tort, and the retention characteristics of the membranes stem primarily from the obstruction of 15 than the total exclusion of the stream of retained substances.

Sâledes er teorien for og ydeevnen af membranerne ifolge den foreliggende opfindelse helt forskellig fra de tidligere kendte anisotrope membraner. Ved hensigtsmæssig udformning af storrelsen af "kanalerne" eller "hullerne" kan der fremstilles membraner med for-20 skellig gennemstromnings- og udelukkelseskarakteristika.Thus, the theory and performance of the membranes of the present invention is quite different from the prior art anisotropic membranes. By appropriately designing the size of the "channels" or "holes", membranes having different flow and exclusion characteristics can be produced.

De anisotrope syntetiske membraner ifelge opfindelsen med gradueret porositet og bestâende af en blanding dannet ved depolymerisation af et polymermateriale er ejendommelige ved, at den er dannet ved op-losning af et polymermateriale i syreoplosning, modning af oplosnin-25 gen af polymermaterialet i et fastsat tidsrum til opnâelse af den onskede depolymerisationsgrad, udstrygning af et tyndt lag af oplas-ningen pà en inert bærer, koagulering af det tynde lag ved neddypning i et bad indeholdende en forbindelse, der kan fortynde syrens koncen-tration, og hærdning og fjernelse af den sâledes dannede membran fra 30 bæreren.The anisotropic synthetic membranes of the invention with graduated porosity and consisting of a mixture formed by depolymerization of a polymeric material are characterized in that it is formed by dissolving a polymeric material in acid solution, maturing the solution of the polymeric material for a fixed period of time. for obtaining the desired degree of depolymerization, stripping a thin layer of the solution onto an inert carrier, coagulating the thin layer by immersing in a bath containing a compound capable of diluting the acid concentration, and curing and removing it formed membrane from the carrier.

Kendte membraner er fremstillet ud fra en specifik polymer til frem-stilling af en membran med kendte, i forvejen bestemte karakteri-stika. Ifalge den foreliggende opfindelse er det muligt at variere molekylvægtsudelukkelsesgrænsepunktet og oplasningsmiddelgennem-Known membranes are prepared from a specific polymer to produce a membrane with known, predetermined characteristics. According to the present invention, it is possible to vary the molecular weight exclusion limit point and the solvent agent.

DK 156813 BDK 156813 B

7 stromningen i polymermembranerne ved at regulere depolymerisationen eller repolymerisationen af polymermaterialet ved at variere mod-ningstiden for en given polymers "dope".7, regulating the depolymerization or repolymerization of the polymeric material by varying the maturation time of a given polymer's "dope".

Med en hvilken som helst type polymermateriale er det muligt at danne 5 membraner med et i forvejen bestemt molekylvægtsudelukkelsesgrænse-punkt (MWCO) og at fremstille en hel række membraner mellem 2 udelukkelsesyderpunkter, dvs. fra det tilfælde, hvor den overtrukne materialefilm for koaguleringen (dope) overhovedet ikke er modnet, til det andet yderpunkt med flere dages modning og maksimal depoly-10 merisation, der er forenelig med membranens strækning eller styrke.With any type of polymeric material it is possible to form 5 membranes with a predetermined molecular weight exclusion limit point (MWCO) and to produce a whole series of membranes between 2 exclusion viewpoints, ie. from the case where the coated film for the coagulation (dope) is not at all matured, to the second extreme with multiple days of maturation and maximum depolymerization compatible with the stretch or strength of the membrane.

Jo mere den blanding, som skal overtrækkes, modnes, jo storre er membranens permeabilitet. Jo lavere polymerkoncentrationen er, jo hojere er membranens permeabilitet. For en given polymer gælder folgende: 15 Jo mere "dopen" modnes, jo storre er MWCO-værdien. Jo lavere polymerkoncentrationen er, jo hojere er MWCO-værdien. Stigning i poly-merisationsniveauet for udgangspolymeren eller stigning i krystal-linitetsgraden i polymeren forer til lavere MWCO-værdi.The more the mixture to be coated matures, the greater the permeability of the membrane. The lower the polymer concentration, the higher the membrane permeability. For a given polymer, the following applies: 15 The more "doping" matures, the greater the MWCO value. The lower the polymer concentration, the higher the MWCO value. Increase in the polymerization level of the starting polymer or increase in the degree of crystallinity of the polymer leads to a lower MWCO value.

Flerlagsstrukturen i membranerne ifolge den foreliggende opfindelse 20 er fordelagtig derved, at den tilvejebringer en flerlagsvirkning udtrykt som adskillelse, hvor en defekt i ét lag korrigeres af det folgende lag. Af denne grund er det med denne type membraner ikke nodvendigt med streng kvalitetskontrol under fremstillingen. Fremstillingsomkostningerne for membraner ifolge den foreliggende 25 opfindelse er derfor blevet stærkt reduceret i forhold til om-kostningerne ved fremstilling af de tidligere kendte membraner.The multilayer structure of the membranes of the present invention 20 is advantageous in that it provides a multilayer effect expressed as separation wherein a single layer defect is corrected by the following layer. For this reason, with this type of membrane, strict quality control is not necessary during manufacture. The cost of manufacturing membranes according to the present invention has therefore been greatly reduced in relation to the cost of manufacturing the prior art membranes.

En anden fordel ved membranerne ifolge den foreliggende opfindelse er det ekstremt ho je vandindhold, der kan være sa hojt som 98 vægt-procent, hvilket forer til meget hoj vandpermeabilitet i membranen.Another advantage of the membranes of the present invention is the extremely high water content which can be as high as 98% by weight, which leads to very high water permeability in the membrane.

30 En anden fordel ved membranerne ifolge den foreliggende opfindelse er det faktum, at en konvergent-konvergent membran omdannes til en divergent-divergent membran, nâr dens anvendelsesretning vendes. Pà samme mâde kan en konvergent-divergent membran omdannes til enAnother advantage of the membranes of the present invention is the fact that a convergent-convergent membrane is converted into a divergent-divergent membrane when its direction of application is reversed. Similarly, a convergent-divergent membrane can be transformed into one

DK 156813BDK 156813B

8 divergent-konvergent membran. Dette betyder, at det kun er nodven-digt at fremstille to typer membraner, en konvergent-konvergent membran og en divergent-konvergent membran, hvor membranens orien-tering bestemmes af den tilsigtede anvendelse.8 divergent-convergent membrane. This means that it is only necessary to prepare two types of membranes, a convergent-convergent membrane and a divergent-convergent membrane, where the orientation of the membrane is determined by its intended use.

5 Aile konvergent-divergente membraner og divergent-divergente membraner virker soin "hud"-membraner med hensyn til dannelse af et gellag, hvilket betyder, at gellaget dannes pâ ydersiden af mem-branen. I dette tilfælde gælder de klassiske teorier for membraner udtrykt som de forskellige ligninger, som giver stremningshastigheden 10 i forhold til tryk, temperatur, overgangshastighed og koncentration.5 All convergent-divergent membranes and divergent-divergent membranes act as "skin" membranes for forming a gel layer, which means that the gel layer is formed on the outside of the membrane. In this case, the classical theories apply to membranes expressed as the various equations which give the flow rate 10 in relation to pressure, temperature, transition rate and concentration.

I dette tilfælde er fordelen ved membranerne ifolge opfindelsen den hoje vandpermeabilitet og den lave udgift.In this case, the advantage of the membranes according to the invention is the high water permeability and the low cost.

I tilfælde af bâde konvergent-konvergente og divergent-konvergente membraner ved ultrafiltrering opbygges et gellag af stoffer med 15 molekylvægt mellem det forste lags molekylvægtsudelukkelsesgrænse og det sidste lags molekylvægtsudelukkelsesgrænse. I dette tilfælde virker membranen som en mekanisk understotning for gellaget, og den tilsyneladende molekylvægtsudelukkelsesgrænse for membranen er det indre gellags molekylvægtsudelukkelsesgrænse. Dette betyder, at der 20 er mulighed for i en given oplosning at vælge en af komponenterne eller en blanding af komponenter til dannelse af dette gellag. Det er endvidere muligt med fordel at vælge de komponenter, som vil medfore den maksimale permeabilitet for den minimale molekylvægtsudelukkelsesgrænse. Et ydre gellag opbygget pâ ydersiden af membranen 25 adhærerer ikke til dette indre gellag og fjernes mere effektivt, f.eks. ved laminar eller turbulent stromning. Permeabiliteten i systemet starter for det meste uafhængigt af koncentrationen. Dette kan udtrykkes som en indre dynamisk membraneffekt med den fordel, at kompressionen af den dynamiske membran undgàs pâ grund af den indre 30 understotning, som membranen giver, især i tilfælde af pulserende strom.In the case of both convergent-convergent and divergent-convergent membranes by ultrafiltration, a gel layer of 15 molecular weight substances is built between the first-layer molecular weight exclusion limit and the last-layer molecular weight exclusion limit. In this case, the membrane acts as a mechanical support for the gel layer and the apparent molecular weight exclusion limit for the membrane is the molecular gel exclusion limit of the inner layer. This means that in a given solution there is the possibility of selecting one of the components or a mixture of components to form this gel layer. Furthermore, it is advantageously possible to select the components which will cause the maximum permeability of the minimum molecular weight exclusion limit. An outer gel layer built on the outside of the membrane 25 does not adhere to this inner gel layer and is removed more effectively, e.g. by laminar or turbulent flow. The permeability of the system starts mostly independent of concentration. This can be expressed as an internal dynamic membrane effect with the advantage that the compression of the dynamic membrane is avoided due to the internal support provided by the membrane, especially in the case of pulsating current.

Membraner ifolge den foreliggende opfindelse fâs ved reguleret, ensrettet koagulering af polymermaterialet fra oplosning ved over-trækning pâ en egnet inert overflade.Membranes according to the present invention are obtained by controlled, unidirectional coagulation of the polymeric material from solution by coating on a suitable inert surface.

DK 156813 BDK 156813 B

99

Til fremstilling af membranen er det nedvendigt at fremstille en "dope" ved oplasning af polder. Denne sàkaldte oplosningseffekt fâs ved at overskære de hydrogenbindinger, som binder molekylkæden i polymeren sammen. Det til denne virkning anvendte oplosningsmiddel 5 kan selv hâve en depolymerîserende virkning pâ polymeren for at udfore depolymerisationen til et til dette formâl reguleret niveau; hvis ikke, mâ der anvendes et kemisk additiv for at fâ det anskede résultat. For at regulere oplesningshastigheden og depolymerisations-hastigheden tilsættes en begrænset mængde tensio-virksomt middel, og 10 temperaturen reguleres. Reaktionens ensartethed reguleres ved omraring. Depolymerisationsniveauet fàs efter et tidsrum, som kaldes modningstiden. Det passende depolymerisationsniveau bestemmes ved viskositetsmâling i "dopen". "Dopen" stabes derefter ud pâ en glasplade eller en anden egnet inert, ikke-poras bærer, ved den 15 klassiske teknik med en kniv til dannelse af et lag med reguleret tykkelse. "Dopen" koaguleres derefter ved ajeblikkelig neddypning i et koagulationsbad, som indeholder et vilkàrligt kemisk produkt, som er i stand til at fortynde oplasningsmidlet og hærde den anvendte depolymerisationsforbindelse. De antal lag, som membranen bestâr af, 20 afhænger af filmens tykkelse fer koagulering og kan let variere fra 4 til 40, selv om det er usædvanligt at fremstille mere end 10-12 lag.For the preparation of the membrane, it is necessary to make a "dope" by opening the poles. This so-called dissolution effect is obtained by cutting off the hydrogen bonds that bind the molecular chain in the polymer together. The solvent 5 used for this effect may itself exert a depolymerizing effect on the polymer to effect the depolymerization to a level controlled for this purpose; if not, a chemical additive must be used to obtain the desired result. To control the rate of dissolution and depolymerization rate, a limited amount of tensioactive agent is added and the temperature is adjusted. The uniformity of the reaction is controlled by stirring. The level of depolymerization is obtained after a period of time called the maturation time. The appropriate level of depolymerization is determined by viscosity measurement in the "dope". The "dope" is then stacked out on a glass plate or other suitable inert, non-porous support, by the conventional technique with a knife to form a layer of controlled thickness. The "dope" is then coagulated by immediate immersion in a coagulation bath containing any chemical product capable of diluting the solvent and curing the depolymerization compound used. The number of layers that the membrane consists of 20 depends on the film thickness, coagulation and can easily range from 4 to 40, although it is unusual to produce more than 10-12 layers.

For en given koncentration af polymer i "dopen" eksisterer der en ligevægt mellem "dopens" rumfang og rumfanget af det farste lag.For a given concentration of polymer in the "dope", an equilibrium exists between the "dope" volume and the volume of the farthest layer.

Denne koncentration kaldes den neutrale koncentration, og alveolerne 25 i membranen er af konstant starrelse. Membranen kaldes derefter en parallel membran med konvergens C = 1. For en vilkârlig koncentration af polymer i "dopen" over den neutrale koncentration er den vundne membran en divergent membran, hvilket kan ses ved, at membranens ovre overflade er klar, og den nedre overflade er mat. For en hvilken som 30 helst koncentration af polymer under den neutrale koncentration er den vundne membran en konvergent membran, hvor den avre overflade er mat, og den nedre overflade er klar. Ved denne normale procedure ligger udelukkelsespunktet for det farste lag almindeligvis over udelukkelsespunktet for bundlaget. Ved denne fremgangsmâde er det 35 muligt at fâ konvergent-konvergente membraner eller divergent-konvergente membraner, der ogsâ kan anvendes som heriholdsvisThis concentration is called the neutral concentration and the alveoli 25 in the membrane are of constant starch. The membrane is then called a parallel membrane with convergence C = 1. For any concentration of polymer in the "dope" above the neutral concentration, the membrane obtained is a divergent membrane, which can be seen by the upper surface of the membrane being clear and the lower surface. is food. For any concentration of polymer below the neutral concentration, the membrane obtained is a convergent membrane where the outer surface is matte and the lower surface is clear. In this normal procedure, the exclusion point of the farthest layer is generally above the exclusion point of the bottom layer. By this method, it is possible to obtain convergent-convergent membranes or divergent-convergent membranes, which may also be used as herein, respectively.

DK 156813BDK 156813B

10 divergent-divergente og konvergent-divergente membraner ved at vende membranens anvendelsesorientering.10 divergent-divergent and convergent-divergent membranes by reversing the application orientation of the membrane.

Man kan f.eks. tænke sig en polyamid-"dope" bestâende af polyamid-6,6 i en blanding af 50 ml ION HCl, 25 ml H2O og 5 ml CH3CH2OH.One can, for example. for example, a polyamide "dope" consisting of polyamide-6.6 in a mixture of 50 ml of ION HCl, 25 ml of H 2 O and 5 ml of CH 3 CH 2 OH.

5 I denne blanding fâs en neutral koncentration (C = 1) ved tilsætning af 27,5 g polyamid-6,6, og en sâdan "dope"-blanding vil give en parallelmembran. En divergent membran kan fâs ved tilsætning af 40 g polyamid-6,6, eller der kan fâs en konvergent membran ved tilsætning af 17,5 g polyamid-6,6.In this mixture, a neutral concentration (C = 1) is obtained by the addition of 27.5 g of polyamide-6.6, and such a "dope" mixture will give a parallel membrane. A divergent membrane can be obtained by the addition of 40 g of polyamide-6.6, or a convergent membrane can be obtained by the addition of 17.5 g of polyamide-6.6.

10 Som anfort ovenfor gares koaguleringen af den overtrukne film af polymermateriale pâ den inerte overflade til genstand for styret, ensrettet koagulering fra den averste overflade i den overtrukne film og igennem til den inerte overflade. Det farste lag koaguleres direkte, men det andet og de falgende lag koaguleres via koagulering 15 af det umiddelbart foregâende lag. Dette medfarer forskellige koaguleringsbetingelser, udtrykt som koncentration, som forârsager dannelse af forskellige lag af alveoleceller, hvor alveolerne i hvert lag har andre dimensioner end det nabostillede alveolelag pà hver side.10 As noted above, the coagulation of the coated film of polymeric material on the inert surface is subjected to controlled, unidirectional coagulation from the averaged surface of the coated film and through to the inert surface. The farthest layer is directly coagulated, but the second and descending layers are coagulated via coagulation 15 of the immediately preceding layer. This results in different coagulation conditions, expressed as concentration, which cause the formation of different layers of alveolar cells, the alveoli of each layer having dimensions other than the adjacent alveolar layer on each side.

20 Nogle af de faktorer, som pâvirker koaguleringen i materialefilmen er: pH-værdi, temperatur og redox-potential.20 Some of the factors affecting coagulation in the material film are: pH, temperature and redox potential.

Som eksempel kan nævnes en membran, der er baseret pâ et polyamid-6, som har en polymerisationsgrad pâ ca. 120. Polymeren oplases i en syre (HCl, HNO3 eller myresyre) og eventuelt en alkohol (f.eks. me-25 thyl- eller ethylalkohol eller glycol), en blodgorer og et inert 9 sait. Variationen i molekylvægten eller molekylvægtsudelukkelses-punktet i polymermaterialet i den resulterende membran bestemmes af den anvendte type syre. Til molekylvægte mellem ca. 300 og 2000 kan » anvendes myresyre; til molekylvægte mellem ca. 2000 og 80.000 kan 30 anvendes salpetersyre; og til molekylvægte mellem ca. 80.000 og 800.000 kan anvendes saltsyre. Til dannelse af membranen pâferes oplosningen en egnet jævn inert overflade, f.eks. en glasplade, i en tykkelse pâ ca. 100 μ, hvorefter den koaguleres ved indstilling afAn example is a membrane based on a polyamide-6 which has a degree of polymerization of approx. 120. The polymer is dissolved in an acid (HCl, HNO3 or formic acid) and optionally an alcohol (e.g., methyl or ethyl alcohol or glycol), a blood gore and an inert 9 site. The variation in the molecular weight or molecular weight exclusion point of the polymeric material in the resulting membrane is determined by the type of acid used. For molecular weights between approx. 300 and 2000 can be 'used formic acid; for molecular weights between approx. 2000 and 80,000 can be used nitric acid; and for molecular weights between ca. 80,000 and 800,000 can be used hydrochloric acid. To form the membrane, the solution is applied to a suitable even inert surface, e.g. a glass plate, in a thickness of approx. 100 μ, after which it is coagulated by setting

DK 156813 BDK 156813 B

u pH-værdien ved en procès, soin omfatter grænsefladekontakt med en basisk oplosning sâsom ammoniak. Koaguleringen i den oplosning, som dækker den jævne overflade, finder sted i trin. De forskellige koagulationshastigheder forer til en flerlagsmembran, der omfatter 5 mellem ca. 3 og ca. 15 lag. Med hensyn til mikrostrukturen i den koagulerede polymer ligger diameteren af hver kanal i storrel-sesordenen 100Â, men den kan variere mellem ca. 20Â og ca. 1000Â, ait afhængig af koagulationshastigheden og saltkoncentrationen. Storrel-sen eller diameteren af kanalerne kan justeres eller bestemmes i 10 forvejen ved en række uafhængige paramétré, herunder arten af den anvendte syre i begyndelsesoplosningen af polymermaterialet, koncentrationen af polymermaterialet i oplosningen, den pH-værdi, der bestemmes ved basekoncentrationen, temperaturen og mængden af tilsatte salte. Hvîs bverken oplosningen af polymermateriale eller 15 koagulationsbasen indeholder tilsat sait, er der en middelkoagu- leringshastighed, som resulterer i kanaler af middelstorrelse i den resulterende membran. Hvis der kun er sat inert sait til oplosningen af polymermaterialet og ikke til koaguleringsbasen, fâs en hojere strom af saltdesorption, hvilket medforer kanaler med storre 20 diameter. Hvis der pâ den anden side kun er sat sait til koagu- leringsbadet, fâs der en meget lav koaguleringshastighed, hvilket medfarer mindre kanaldiameter i membranen. Koaguleringsgraden eller -hastigheden kan reguleres eller modificeres ved til koaguleringsbasen at sætte et inert sait af samme ionsystem som (eller som har 25 fælles ioner med) den syre, der anvendes til oplosning af polymermaterialet. Hvis f.eks. den anvendte syre er saltsyre, kan det inerte tilsatte sait være natriumchlorid. Erstatning af natriumionen med en storre ion har ogsâ indvirkning pâ koaguleringshastigheden.u The pH value of a process soin includes interface contact with a basic solution such as ammonia. The coagulation in the solution covering the smooth surface takes place in steps. The different coagulation rates lead to a multilayer membrane comprising between 3 and approx. 15 layers. With respect to the microstructure of the coagulated polymer, the diameter of each channel is in the order of 100 °, but it may vary between approx. 20Â and approx. 1000Â, depending on the rate of coagulation and the salt concentration. The size or diameter of the channels can be adjusted or determined in advance by a number of independent parameters, including the nature of the acid used in the initial solution of the polymeric material, the concentration of the polymeric material in the solution, the pH value determined by the base concentration, temperature and amount. of added salts. If neither the solution of polymeric material nor the coagulation base contains added site, there is an average coagulation rate which results in channels of medium size in the resulting membrane. If only the inert site is added to the solution of the polymeric material and not to the coagulation base, a higher current of salt desorption is obtained, which leads to larger diameter 20 channels. On the other hand, if only a seat is added to the coagulation bath, a very low coagulation rate is obtained, which results in less duct diameter in the membrane. The degree of coagulation or rate can be controlled or modified by adding to the coagulation base an inert site of the same ion system as (or having 25 common ions with) the acid used to dissolve the polymeric material. For example, the acid used is hydrochloric acid, the inert added site may be sodium chloride. Substitution of the sodium ion with a larger ion also affects the coagulation rate.

Nedenfor er anfort et eksempel pâ dannelse af en flerlagsmembran 30 ifolge den foreliggende opfindelse.Below is an example of forming a multilayer membrane 30 in accordance with the present invention.

Eksempel.Example.

100 ml 10N HCl blandes med 50 ml vand. Til blandingen sættes der-efter 10 ml ethylalkohol. Imedens vaskes 80 g polyamid-6 i findelt form (20 denier, hajt strækforhold, 3 filamenter, lyst gam) for at 35 fjerne overfladeolie, terres og vejes. Det vaskede garn oplosesMix 100 ml of 10N HCl with 50 ml of water. Then add 10 ml of ethyl alcohol to the mixture. Meanwhile, 80 g of polyamide-6 is washed in finely divided form (20 denier, shark stretching ratio, 3 filaments, light yarn) to remove surface oil, terres and weighed. The washed yarn dissolves

DK 156813 BDK 156813 B

12 derefter i den i forvejen fremstillede blanding af HCl, vand og alkohol i l0bet af ca. 20 minutter, medens temperaturen holdes under 25°C. Dette er en exo terni reaktion, og overophedning kan forârsage en stigning i polymerens depolymerisationsniveau. Oplasningen afgasses 5 derefter og lades modne ved 20°G i 1 dag. Den modnede oplosning lægges derefter ud som en film i ca. 100 μ's tykkelse pâ en ren glasplade. Den overtrukne plade anbringes derefter forsigtigt i et vandbad for at koagulere polymermaterialefilmen pâ glasset. Koagu-leringsreaktionen er færdïg pâ ca. 2 minutter, og membranen flyder 10 fri af glaspladen. Membranen tages op fra koaguleringsbadet, vaskes i varmt vand (90°C i 30 sekunder) for at fjerne monomer og salte, f.eks. Cl”-ioner, og for at hærde membranen, og den tages derefter op Λ og terres. Denne membran har en vandpermeabilitet pâ 200 liter/nry-time.12 then into the pre-prepared mixture of HCl, water and alcohol over approx. 20 minutes while maintaining the temperature below 25 ° C. This is an exothermic reaction and overheating can cause an increase in the polymer's depolymerization level. The solution is then degassed and allowed to mature at 20 ° G for 1 day. The matured solution is then laid out as a film for approx. 100 µ in thickness on a clean glass plate. The coated plate is then gently placed in a water bath to coagulate the polymeric material film onto the glass. The coagulation reaction is completed in approx. 2 minutes and the membrane flows 10 free of the glass plate. The membrane is removed from the coagulation bath, washed in warm water (90 ° C for 30 seconds) to remove monomer and salts, e.g. C1 ions, and to cure the membrane, and then absorb Λ and terres. This membrane has a water permeability of 200 liters / nry hour.

15 Ved anvendelse af forskellige polymère, forskellige koagulerings- teknikker og forskellige indsatte ioner er det muligt at fâ membraner med forskellige egenskaber.15 Using different polymers, different coagulation techniques and different inserted ions, it is possible to obtain membranes with different properties.

Et tværsnit af membranstrukturen ifalge den foreliggende opfindelse er illustreret skematisk pâ figuren. Denne struktur er blevet be-20 kræftet bâde ved transmission og ved scanningelektronmikroskop. Celle- eller alveolevægge er af sterrelsesordenen 1-2 μ's tykkelse, hvorhos formen af cellerne eller alveolerne varierer i retning bort fra den ledende overflade, dvs. at sterrelsen af cellerne i hvert lag stiger fra toppen eller den ledende overflade til bunden eller den 25 nederste overflade i membranen. Elektronmikrografier viser, at forholdet mellem den mindste og den storste halvakse i cellerne (regnet som langstrakte sfæroider) varierer i en tilnærmelsesvis geo-metrisk progression afhængig af afstanden fra membranoverfladen. De forbindende kânaler mellem cellerne i nabostillede lag er ikke vist.A cross-section of the membrane structure of the present invention is schematically illustrated in the figure. This structure has been confirmed both by transmission and by scanning electron microscope. Cell or alveolar walls are of the order of 1-2 µ in thickness, the shape of the cells or alveoli varying in direction away from the conductive surface, ie. that the size of the cells in each layer rises from the top or the conductive surface to the bottom or the bottom surface of the membrane. Electron micrographs show that the ratio of the smallest to the largest half-axis in the cells (counted as elongated spheroids) varies in an approximate geometric progression depending on the distance from the membrane surface. The connecting channels between the cells in adjacent layers are not shown.

30 Disse kanaler stâr vinkelret pâ membranoverf laden, og for at passere fra en celle til den næste og derefter gennem membranen folger et molekyle eller en ion en vej fra en celle i det ledende overfladelag til nabostillede celler i det næste lag med ubetydelig latéral overgang mellem cellerne.These channels are perpendicular to the membrane surface, and to pass from one cell to the next and then through the membrane, a molecule or ion follows a path from a cell in the conductive surface layer to neighboring cells in the next layer with negligible lateral transition between cells.

DK 156813 BDK 156813 B

1313

Adskillelsen af forbindelser ved hjælp af membranerne ifolge den foreliggende opfindelse er resultatet af enkeltfænomener, der af-hænger af, hvilken adskillelse der udfores, dvs. dialyse, ultra-filtrering eller omvendt osmose.The separation of compounds by the membranes of the present invention results from single phenomena which depend on which separation is carried out, i.e. dialysis, ultra-filtration or reverse osmosis.

5 Ved dialyse kan membranerne ifolge den foreliggende opfindelse anvendes som en sigte, selv for meget smâ molekyler, som pâ grund af deres randomiserede zig-zag-bevægelse i deres oplosningsmiddel har en middelvejlængde, hvis amplitude er sterre end diameteren af molekyl-kanalerne mellem cellerne i membranen.In dialysis, the membranes of the present invention can be used as a sieve, even for very small molecules which, due to their random zig-zag movement in their solvent, have a mean path length whose amplitude is greater than the diameter of the molecular channels between the cells. in the membrane.

10 F.eks. kan en UF-membran ifelge den foreliggende opfindelse med en molekylvægtsudelukkelsesgrænse pâ 500.000 hâve molekylkanaler med en diameter pâ 100Â. Et lille molekyle med molekylvægt 200 og en middeldiameter pâ 7Â kan hâve en middelvejlængde med en amplitude pâ 300Â og er derfor alvorligt forhindret i at passere gennem molekylka-15 nalerne, Sâledes kan den samme membran, som anvendes til ved ultrafiltrering at adskille eller koncentrere molekyler med molekylvægt 500.000 ogsâ anvendes ved dialyse til at rense molekyler med molekylvægt 100-200.For example, For example, a UF membrane according to the present invention with a molecular weight exclusion limit of 500,000 can have molecular channels having a diameter of 100Â. A small molecule of molecular weight 200 and an average diameter of 7Â can have an average path length of 300Â and is therefore severely prevented from passing through the molecular channels. Thus, the same membrane used for ultrafiltration can separate or concentrate molecules. of molecular weight 500,000 is also used in dialysis to purify molecules of molecular weight 100-200.

Som angivet ovenfor er membranerne ifelge den foreliggende opfindelse 20 nyttige til membranadskillelse af forbindelser ved sâdanne processer som dialyse, elektrodialyse, gaspermeation, gasdiffusion, ultrafiltrering og omvendt osmose. En diskussion af disse forskellige processer og bestemte anvendelser af membranerne er angivet nedenfor.As indicated above, the membranes of the present invention are useful for membrane separation of compounds by such processes as dialysis, electrodialysis, gas permeation, gas diffusion, ultrafiltration and reverse osmosis. A discussion of these various processes and specific applications of the membranes is given below.

Dialyse.Dialysis.

25 Ved dialyseprocesser anvendes membranen som skillevæg mellem to kamre, hvor det ene kammer er fyldt med oplosningsmiddel og oplast stof, og det andet kammer er fyldt med kun oplosningsmiddel. Ud-vekslingen mellem de to kamre gennem membranen drives af den kon-centrationsgradient, som er mellem de to membransider. Adskillelsen 30 af forskellige opleste stoffer gennem membranen bestemmes af storrelsen af molekylet og middelvejlængden.In dialysis processes, the membrane is used as a partition between two chambers where one chamber is filled with solvent and solute and the other chamber is filled with solvent only. The exchange between the two chambers through the membrane is driven by the concentration gradient which is between the two membrane sides. The separation 30 of various reads through the membrane is determined by the size of the molecule and the mean path length.

1414

DK 156813 BDK 156813 B

Anvendt soin dialysemembran og til at adskille Cu*-1"- og Co^-ioner fra en blanding af CuCl2 og C0CI2 er det muligt at foroge Co^-kon-centrationen med 130% i ét trin. At en sâdan koncentrationsforogelse kan opnâs med en membran ifolge den foreliggende opfindelse er et 5 stærkt tegn pâ, at hvert lag i membranen er aktiv i koncentrerings-processen, hvorved der fâs en flertrinskoncentreringsvirkning ved én passage gennem membranen.Used soin dialysis membrane and to separate Cu * -1 "and Co2 ions from a mixture of CuCl2 and COCl2, it is possible to increase the Co2 concentration by 130% in one step. Such a concentration increase can be achieved by a membrane according to the present invention is a strong indication that each layer of the membrane is active in the concentration process, thereby providing a multi-stage concentration effect at one passage through the membrane.

Hvis membranen anvendes som en divergent membran, er fortyndings-niveauet fra siden med smâ alveoler til siden med store alveoler 10 konstant trin for trin, sâ at der foregàr en flerlagsséparering, hvor hvert lag bevirker en maksimal separeringsgrad.If the membrane is used as a divergent membrane, the dilution level from the side with small alveoli to the side with large alveoli 10 is constant step by step, so that there is a multi-layer separation, with each layer effecting a maximum degree of separation.

Immobiliseret enzym-teknologi.Immobilized enzyme technology.

En intéressant mulighed, der gives med polyamidmembraner, er mu-ligheden for fiksering af enzymer pâ to forskellige mâder.An interesting option given with polyamide membranes is the possibility of fixing enzymes in two different ways.

15 1. Fiksering ved adsorption af enzym bundet til en blodgarer i membranen. Vand som blodgorer i membranerne medvirker ved adsorp-tionen af et hvilket som helst hydratiseret enzym pâ membranen.15 1. Fixation by adsorption of enzyme bound to a membrane of blood in the membrane. Water as blood gores in the membranes contributes to the adsorption of any hydrated enzyme on the membrane.

2. Fiksering ved hydrogenbinding til oxygenet i -C-N-gruppen i2. Fixation by hydrogen bonding to the oxygen of the -C-N group i

0 H0 H

20 polyamidet. Aminogruppen i enzymet danner basis for en enzym- polyamid-hydrogenbinding. Dette forer til muligheden for fiksering af en stor enzymmængde, f.eks. er det muligt at fiksere 35 vægtprocent a-amylase pâ polyamid-6,6-membranen. Anvendelsen af denne membran ved ultrafiltrering muliggor en enzymatisk omdannelse af en forbindelse 25 under dens passage gennem membranen, f.eks. fjernelse af lactose og galactose fra mælk under ultrafiltrering.The polyamide. The amino group in the enzyme forms the basis for an enzyme-polyamide-hydrogen bond. This leads to the possibility of fixing a large amount of enzyme, e.g. it is possible to fix 35% by weight of α-amylase on the polyamide 6,6 membrane. The use of this membrane in ultrafiltration allows for enzymatic conversion of a compound 25 during its passage through the membrane, e.g. removal of lactose and galactose from milk during ultrafiltration.

Elektrodialyse.Electrodialysis.

Det er muligt at modificere membranens polaritet og opnâ anioniske, neutrale eller kationiske membraner. F.eks. har en membran, der er 30 dannet ud fra en "dope" indeholdende HCl, en kraftig elektrovalent fiksering af chlorid inde i polymeren og har samme egenskaber som en 15It is possible to modify the polarity of the membrane and obtain anionic, neutral or cationic membranes. Eg. a membrane formed from a "dope" containing HCl has a strong electrovalent fixation of chloride within the polymer and has the same properties as a 15 dope.

DK 156 813 BDK 156 813 B

stærkt elektronegativ membran. Ved kemisk hærdning af denne membran, f.eks. ved behandling med 5N CH3COOH i 1 minut og vask med vand, er det muligt at erstatte chlorpositionen med oplost vand under polymerens hydrolysereaktion. I dette tilfælde omdannes membranen til 5 en neutral membran. Pâ samme màde er det muligt at fâ elektropositivt ladede membraner ved kemisk hærdning af membranen med stærke hydroxider.highly electronegative membrane. By chemically curing this membrane, e.g. by treatment with 5N CH 3 COOH for 1 minute and washing with water, it is possible to replace the chlorine position with dissolved water during the polymer hydrolysis reaction. In this case, the membrane is converted into a neutral membrane. In the same way, it is possible to obtain electropositive charged membranes by chemically curing the membrane with strong hydroxides.

Fordelen ved membranen ifelge den foreliggende opfindelse til elektrodialyse skyldes hovedsageligt det ekstremt ho je vandindhold i 10 membranen, som medferer hoj permeabilitet og lavt potentialetab.The advantage of the membrane according to the present invention for electrodialysis is mainly due to the extremely high water content of the membrane, which results in high permeability and low potential loss.

Gaspermeation.Gaspermeation.

Til denne anvendelse bruges membranen til at fremkalde separering mellem forskellige flydende komponenter eller separering mellem et væske-gas-tofasesystem, 15 Eks. 1) Membranen kan anvendes til separering af n-propan og isopropan. Den flydende blanding under tryk forgasses gennem membranen ved konstant tilforsel af varme pâ den anden side af membranen. Overforingshastigheden for isopropanet gennem membranen er sterre end for n-propanet, og den flydende fase beriges med n-propan.For this use, the membrane is used to induce separation between various liquid components or separation between a liquid-gas two-phase system. 1) The membrane can be used for separating n-propane and isopropane. The liquid mixture under pressure is gasified through the membrane by constant supply of heat on the other side of the membrane. The rate of transfer of the isopropane through the membrane is higher than that of the n-propane and the liquid phase is enriched with n-propane.

20 Eks. 2) Til genvinding af flydende brændstof fra vâd naturgas gor nogle membrantyper (f.eks. stærkt hydratiseret polymer) det muligt for gasfraktionen at gâ igennem membranen, hvorimod væskefraktionen tilbageholdes i form af smâdrâber, som ikke kan gâ ind i membranen pâ grund af dennes vandskyende egenskab.Ex. 2) For the recovery of liquid fuel from wet natural gas, some membrane types (e.g. highly hydrated polymer) allow the gas fraction to pass through the membrane, whereas the liquid fraction is retained in the form of droplets which cannot enter the membrane due to its water repellent property.

25 Gasdiffusion.25 Gas diffusion.

Membranen i ter form kan kalandreres til dannelse af en diffusions-barrière med ekstremt tynd porestruktur pâ f.eks. over 15Â, hvilket bevirker god selektivitet for gas med lav molekylvægt.The membrane in ter form can be calendered to form a diffusion barrier with extremely thin pore structure on e.g. above 15Â which gives good selectivity for low molecular weight gas.

DK 156813 BDK 156813 B

1616

Isotopseparering.Isotopseparering.

Membraner if0lge den foreliggende opfindelse kan anvendes til sepa-rering eller opkoncentrering af forbindelser med forskellig mole-kylvægt, herunder forbindelser af tungmetalisotoper, f.eks. isotoper 5 af actînidgrundstoffer og især isotoper af uran.Membranes of the present invention can be used to separate or concentrate compounds of different molecular weights, including compounds of heavy metal isotopes, e.g. isotopes 5 of actinide elements and in particular isotopes of uranium.

Ved isotopsepareringsmetoder afhænger driften af enten smâ fysiske (dvs. masse-) forskelle eller af de smâ kemiske forskelle, der eksisterer mellem isotoper. Adskillelsesprocesserne afhænger sædvanligvis af et meget stort antal trin, sont hver kun giver en 10 lille isotopberigelse.In isotope separation methods, the operation depends on either small physical (ie mass) differences or on the small chemical differences that exist between isotopes. The separation processes usually depend on a very large number of steps, each providing only a small 10 isotope enrichment.

Membraner af den her beskrevne type danner grundlag for en ny be-rigelsesteknik til separering og berigelse af isotoper af tung-metaller, især uranisotoper. Til forskel fra eksisterende processer udfores den i flydende fase frem for i dampfase. En oplasning 15 indeholdende isotoper af uran udsættes for et mildt centrifugalkraft-felt, medens den samtidig fâs til at flyde radiært indad gennem en membran af den her beskrevne type, hvis kanaler tjener til delvis at separere og immobilisere den tungere isotop. Ved i stor udstrækning at forhindre den molekylære tilbagediffusion, soin begrænser effek-20 tiviteten af sædvanlîge centrifuger, kan der opnâs en signifikant separering i hvert kontakttrin. Da membranen er relativt permeabel i sammenligning med den porose membran, der anvendes ved gasdiffu-sionsprocessen, er gennemstremningen af beriget materiale, som for-lader kontakttrinnet, desuden ganske hoj pâ trods af, at det er en 25 væske, der behandles.Membranes of the type described herein provide the basis for a new enrichment technique for separating and enriching heavy metal isotopes, especially uranium isotopes. Unlike existing processes, it is carried out in liquid phase rather than in vapor phase. A solution 15 containing isotopes of uranium is subjected to a mild centrifugal force field, while at the same time being found to flow radially inward through a membrane of the type described herein, whose channels serve to partially separate and immobilize the heavier isotope. By largely preventing the molecular back diffusion, which limits the efficiency of conventional centrifuges, a significant separation can be achieved at each contact step. Furthermore, since the membrane is relatively permeable in comparison to the porous membrane used in the gas diffusion process, the throughput of enriched material leaving the contact step is quite high despite being a liquid being treated.

Ultrafiltrering.Ultrafiltration.

Nogle specifikke anvendelser af membraner ifelge den foreliggende opfindelse omfatter: 1) Behandling af spildevand eller effluent.Some specific uses of membranes according to the present invention include: 1) Treatment of effluent or effluent.

30 Behandling af spildevand eller effluent for at reducere effluent-volumenet, sâledes at vand, der er fri for storstedelen af konta-Treatment of wastewater or effluent to reduce effluent volume so that water free of most of the contaminant

DK 156813 BDK 156813 B

17 minanterne, kan recirkuleres og produkter fra retentatet kan gen-vindes. Ved sædvanlig spildevandsbehandling anvendes en kombination af store udfældningstanke, bakteriekulturer og slamtyknere til at fjerne ureriheder fra spildevand og koncentrere den faste remanens.The 17 minants can be recycled and products from the retentate can be recovered. In conventional wastewater treatment, a combination of large precipitation tanks, bacterial cultures and sludge thickeners is used to remove impurities from wastewater and concentrate the solid residue.

5 Medens den primære behandling til genvinding af udfældelige faste stoffer stadig er nedvendig, kan den nuværende sekundære behandling erstattes med ultrafiltrering under anvendelse af membraner ifolge den foreliggende opfindelse. Sàledes kan filtrerede faste stoffer fra effluentstrommen koncentreres, hvilket letter recirkulation eller 10 fjernelse deraf.While the primary treatment for the recovery of precipitated solids is still required, the present secondary treatment can be replaced by ultrafiltration using membranes according to the present invention. Thus, filtered solids from the effluent stream can be concentrated, facilitating recirculation or removal thereof.

2) Behandling af garverieffluent.2) Tanning fluff treatment.

Behandling af garverieffluent for at minimere garverilugten og effluentgenen ved bortledning af sâdan effluent i de offentlige kloaksys temer.Treatment of tannery effluent to minimize tanning odor and effluent gene by dissipating such effluent in public sewage systems.

15 3) Genvinding af overfladeaktive stoffer.15 3) Recycling of surfactants.

Genvinding af overfladeaktive stoffer og andre lignende makromole-kylære agglomerater fra vandig effluent, sàledes at de overfladeaktive stoffer kan genvindes, og vandet kan recirkuleres.Recovery of surfactants and other similar macromolecular agglomerates from aqueous effluent, so that the surfactants can be recovered and the water recycled.

4) Genvinding af spild fra fodevareindustri.4) Recycling of waste from food industry.

20 Genvinding af spild fra fodevareindustri ved fremstillingen og raf- fineringen af spildevæsker fra f adevareindustrien og biprodukter, som indeholder store mængder næringsmidler, men i koncentrationer, der er for lave til at gore genvinding ekonomisk praktisk. Hvis væskerne simpelt hen kasseres, kan de imidlertid foràrsage alvorlige foru-25 reningsproblemer. Eksempler herpâ omfatter mejerivalle og spilde- vandseffluenter fra ekstraktionen af protein fra soj abonnemel og fra vâd formaling af korn. Ved anvendelse af membraner ifolge den foreliggende opfindelse er det muligt at koncentrere og genvinde værdifulde produkter fra sâdanne effluenter.20 Recovery of waste from the food industry in the manufacture and refinement of waste liquids from the food industry and by-products containing large amounts of food, but at concentrations too low to make recycling economically practical. However, if the liquids are simply discarded, they can cause serious pollution problems. Examples here include dairy whey and wastewater effluents from the extraction of protein from soybean meal and from wet milling of cereals. By using membranes according to the present invention, it is possible to concentrate and recover valuable products from such effluents.

30 Andre anvendelser omfatter brug af membraner ifolge den foreliggendeOther uses include the use of membranes according to the present invention

DK 156813BDK 156813B

18 opfindelse til biofiltrering og sterilisering af drikkevarer, herunder 0I, vin og ikke-alkoholiske drikkevarer.The invention relates to biofiltration and sterilization of beverages, including OI, wine and non-alcoholic beverages.

5) Fremstilling eller genvinding af protein fra dyreblod.5) Production or recovery of animal blood protein.

Fremstilling eller genvinding af protein fra dyreblod fra slagterier.Production or recovery of animal blood protein from slaughterhouses.

5 Helblodet kan let fraktioneres under anvendelse af membraner ifolge den foreliggende opfindelse til isolering af plasmaet. Plasmaet kan igen koncentreres fer torring ved yderligere ultrafiltreringsteknik under anvendelse af en anden type membran ifelge den foreliggende opfindelse.The whole blood can be readily fractionated using membranes of the present invention to isolate the plasma. The plasma can again be concentrated for drying by further ultrafiltration technique using a different type of membrane according to the present invention.

10 6) Rensning og sterilisering af vand.10 6) Purification and sterilization of water.

Til denne anvendelse bruges membraner med relativt stor kanaldia-meter, og dimensionerne af den valgte kanal varierer fra den ene mem-brantype til en anden (fra 0,2 til 1,5 μ). Bakterier og vira standses pâ grund af deres storrelse eller sterrelsen af de faststofpartikler, 15 hvortil de kan være knyttet. Membranen virker som biologisk sigte og kan give en gennemstremning, der er flere gange s terre end den, der kan fâs med hidtil kendte membraner.For this application, membranes with relatively large channel diameters are used, and the dimensions of the selected channel vary from one membrane type to another (from 0.2 to 1.5 µ). Bacteria and viruses are stopped because of their size or the size of the solid particles to which they may be attached. The membrane acts as a biological screen and can produce a throughput several times worse than that available with known membranes.

I realiteten kan der ved en hvilken som helst kemisk procès, som omfatter det nedenfor anferte, effektivt anvendes membraner ifolge 20 den foreliggende opfindelse: a) fjernelse og genvinding af smà mængder oplost eller kolloidt dispergeret stof fra oplesning; b) koncentrering af oplasninger eller dispersioner af værdifulde produkter, som er termisk eller kemisk ustabile eller flygtige; og 25 c) separering og rensning af makromolekylære eller kolloide oploste stoffer fra oplosninger, som indeholder mikromolekylære urenheder.In fact, in any chemical process comprising the following, membranes of the present invention can be effectively used: a) removing and recovering small amounts of dissolved or colloid dispersed substance from solution; b) concentration of solutions or dispersions of valuable products which are thermally or chemically unstable or volatile; and c) separating and purifying macromolecular or colloidal solutes from solutions containing micromolecular impurities.

Selv om den foreliggende opfindelse er beskrevet ovenfor under hen-visning til foretrukne udferelsesformer, specifikke eksempler og tegning, er det klart, at forskellige variationer, modifikationerAlthough the present invention is described above with reference to preferred embodiments, specific examples and drawings, it is to be understood that various variations, modifications

Claims (2)

1. Anisotrop syntetisk membran med flerlagsstruktur, 5 kendetegnet v e d, at hvert lag er aktivt i séparations-processen og virker som molekylsi med en nojagtig molekylvægtsudeluk-kelsesgrænse.An anisotropic multilayer synthetic membrane, characterized in that each layer is active in the separation process and acts as a molecular sieve with an accurate molecular weight exclusion limit. 2. Anisotrop syntetisk membran med gradueret porositet og bestâende af en blanding dannet ved depolymerisation af et polymermateriale, 10 kendetegnet ved, at den er dannet ved oplosning af et polymermateriale i syreoplosning, modning af oplasningen af polymer-materialet i et fastsat tidsrum til opnâelse af den onskede depoly-merisationsgrad, udstrygning af et tyndt lag af oplosningen pâ en inert bærer, koagulering af det tynde lag ved neddypning i et bad . 15 indeholdende en forbindelse, der kan fortynde syrens koncentration, og hærdning og fjernelse af den sâledes dannede membran fra bæreren.An anisotropic graduated porosity synthetic membrane consisting of a mixture formed by depolymerization of a polymeric material, characterized in that it is formed by dissolving a polymeric material in acid solution, maturing the dissolution of the polymeric material for a fixed period of time to obtain the desired degree of depolymerization, irradiation of a thin layer of the solution on an inert carrier, coagulation of the thin layer by immersion in a bath. 15 containing a compound which can dilute the concentration of the acid, and curing and removing the membrane thus formed from the support.
DK463478A 1977-10-21 1978-10-17 A NISOTROP SYNTHETIC MEMBRANE WITH MULTILAYER STRUCTURE DK156813C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AUPD215577 1977-10-21
AUPD215577 1977-10-21
AUPD413478 1978-04-20
AUPD413478 1978-04-20

Publications (3)

Publication Number Publication Date
DK463478A DK463478A (en) 1979-04-22
DK156813B true DK156813B (en) 1989-10-09
DK156813C DK156813C (en) 1990-03-05

Family

ID=25642186

Family Applications (1)

Application Number Title Priority Date Filing Date
DK463478A DK156813C (en) 1977-10-21 1978-10-17 A NISOTROP SYNTHETIC MEMBRANE WITH MULTILAYER STRUCTURE

Country Status (9)

Country Link
JP (1) JPS5477289A (en)
BR (1) BR7806967A (en)
CH (1) CH633453A5 (en)
DE (1) DE2845797A1 (en)
DK (1) DK156813C (en)
GB (1) GB2006643B (en)
MY (1) MY8400317A (en)
NZ (1) NZ188666A (en)
SG (1) SG45283G (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3028213C2 (en) * 1980-07-25 1990-12-06 Akzo Gmbh, 5600 Wuppertal Process for the production of an ultrafiltration membrane made of polyamide and a membrane produced therefrom
JPS6028826A (en) * 1983-07-26 1985-02-14 Hiroshi Suzuki Compound film having surface layer of thin film of cage zeolite and preparation thereof
AU590281B2 (en) * 1985-05-16 1989-11-02 Memtec Limited Removing colourants with polyamides
US5700844A (en) * 1996-04-09 1997-12-23 International Business Machines Corporation Process for making a foamed polymer
US5895263A (en) * 1996-12-19 1999-04-20 International Business Machines Corporation Process for manufacture of integrated circuit device
US5883219A (en) * 1997-05-29 1999-03-16 International Business Machines Corporation Integrated circuit device and process for its manufacture
US6093636A (en) * 1998-07-08 2000-07-25 International Business Machines Corporation Process for manufacture of integrated circuit device using a matrix comprising porous high temperature thermosets
US6333141B1 (en) 1998-07-08 2001-12-25 International Business Machines Corporation Process for manufacture of integrated circuit device using inorganic/organic matrix comprising polymers of three dimensional architecture
US6399666B1 (en) 1999-01-27 2002-06-04 International Business Machines Corporation Insulative matrix material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE33526C (en) * N. BLUM in Paris Thread cutting machine
US3709774A (en) * 1970-05-13 1973-01-09 Gen Electric Preparation of asymmetric polymer membranes
JPS523343B2 (en) * 1972-04-28 1977-01-27
DE2420846C2 (en) * 1973-05-02 1985-10-24 General Electric Co., Schenectady, N.Y. Process for casting a polymer film and apparatus for carrying out the process
JPS5193786A (en) * 1975-02-15 1976-08-17 Makurokagatano chukuseni
DE2615954C3 (en) * 1975-04-22 1981-04-23 Kuraray Co., Ltd., Kurashiki, Okayama Polyvinyl alcohol based membrane
JPS5226380A (en) * 1975-08-25 1977-02-26 Sumitomo Chem Co Ltd Method of making semipermeable membranes
JPS6029282B2 (en) * 1976-09-03 1985-07-10 旭化成株式会社 Semipermeable membrane and its manufacturing method

Also Published As

Publication number Publication date
JPS5477289A (en) 1979-06-20
JPS5630042B2 (en) 1981-07-13
CH633453A5 (en) 1982-12-15
GB2006643B (en) 1982-08-04
DE2845797C2 (en) 1988-12-29
BR7806967A (en) 1979-05-08
NZ188666A (en) 1980-12-19
DE2845797A1 (en) 1979-05-03
MY8400317A (en) 1984-12-31
DK463478A (en) 1979-04-22
SG45283G (en) 1984-02-17
GB2006643A (en) 1979-05-10
DK156813C (en) 1990-03-05

Similar Documents

Publication Publication Date Title
US5130025A (en) Membrane separation and purification of compounds
Nath Membrane separation processes
Pusch et al. Synthetic membranes—preparation, structure, and application
Uragami Science and technology of separation membranes
Strathmann Introduction to membrane science and technology
Purkait et al. Membrane technology in separation science
Böddeker et al. Liquid separations with membranes
Abdullah et al. Membranes and membrane processes: fundamentals
Jose et al. Polymeric membranes: Classification, preparation, structure physiochemical, and transport mechanisms
Kammakakam et al. Next-generation ultrafiltration membranes: A review of material design, properties, recent progress, and challenges
DK156813B (en) A NISOTROP SYNTHETIC MEMBRANE WITH MULTILAYER STRUCTURE
Baker et al. Membrane separation
CN108636142B (en) Preparation method of composite nanofiltration membrane
KR101317643B1 (en) Polyamide nanofiltration composite membrane and manufacturing method thereof
CN115055061B (en) Preparation method of polyamide composite nanofiltration membrane with high permeability selectivity
Suresh et al. Recent advancements and research perspectives in emerging and advanced wastewater membrane technologies
Olaru et al. Polymers in membrane science
CN107486029A (en) A kind of preparation method of pole low-pressure reverse osmosis membrane
Liu et al. Membranes: technology and applications
JPH0347521A (en) Separation membrane and usage thereof
Khulbe et al. Synthetic membranes for membrane processes
JPH0211263B2 (en)
Kraus et al. Urea-rejecting membranes and their application in the development of a miniature artificial kidney
Scott et al. Introduction to industrial membrane processes
Wu et al. Selective Permeable Thin Films and Membranes

Legal Events

Date Code Title Description
AHS Application shelved for other reasons than non-payment
PUP Patent expired