DE4422184A1 - Motor vehicle controller with engine cylinder air-mass flow computer - Google Patents

Motor vehicle controller with engine cylinder air-mass flow computer

Info

Publication number
DE4422184A1
DE4422184A1 DE4422184A DE4422184A DE4422184A1 DE 4422184 A1 DE4422184 A1 DE 4422184A1 DE 4422184 A DE4422184 A DE 4422184A DE 4422184 A DE4422184 A DE 4422184A DE 4422184 A1 DE4422184 A1 DE 4422184A1
Authority
DE
Germany
Prior art keywords
calculated
pressure
combustion engine
air mass
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE4422184A
Other languages
German (de)
Other versions
DE4422184C2 (en
Inventor
Ralf Cosfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6521448&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE4422184(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Priority to DE4422184A priority Critical patent/DE4422184C2/en
Publication of DE4422184A1 publication Critical patent/DE4422184A1/en
Application granted granted Critical
Publication of DE4422184C2 publication Critical patent/DE4422184C2/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1423Identification of model or controller parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The amount of air (mLSE) flowing past the throttle flap into the inlet manifold of the combustion engine is computed from a mathematical model involving the pressure (ps), vol. (vs) and temp. (Ts). The calculated pressure is subjected to adaptation (7) in accordance with the measured pressure so that a corrected value is input together with engine speed (n) into computation (6) of a characteristic factor (F2). The air flow (mLSA) into a cylinder is derived through division by the measured temp. Redundancy among the important parameters of the algorithm reduces the probability of system failure.

Description

Die Erfindung bezieht sich auf ein Steuergerät für Kraft­ fahrzeuge mit einer Recheneinheit zur Berechnung der in einen Zylinder der Brennkraftmaschine strömenden Luft­ masse nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a control unit for power vehicles with a computing unit for calculating the in a cylinder of the engine flowing air mass according to the preamble of claim 1.

Aus dem SAE Technical Paper 810494, 1981, geht hervor, daß in mikroprozessorgesteuerten elektronischen Steuerge­ räten für Kraftfahrzeuge zur exakten Zumessung des Kraft­ stoffes in Abhängigkeit von der in einen Zylinder der Brennkraftmaschine strömenden Luftmasse (Zylinderfüllung) eine Recheneinheit zur Berechnung dieser Zylinderfüllung vorgesehen ist. Diese Recheneinheit bildet ein mathemati­ sches Modell der Luftstromphysik, insbesondere im Ansaug­ trakt einer Brennkraftmaschine, rechnerisch nach (vgl. insbesondere Seite 10 bis 11, Kapitel "model description" des SAE-Papers). Der Algorithmus dieses rechnerischen Mo­ dells enthält teilweise ausschließlich gemessene Be­ triebsparameter der Brennkraftmaschine, wie z. B. die Drehzahl oder die Öffnungsfläche der Drosselklappe, und teilweise ausschließlich berechnete Betriebsparameter als Zwischenergebnisse, wie z. B. die durch die Drosselklappe strömende Luftmasse oder den im Ansaugrohr der Brenn­ kraftmaschine vorherrschenden Druck. Der Algorithmus bzw. das mathematische Modell enthält Gleichungen, die zur Vereinfachung des Algorithmus die realen Verhältnisse idealisieren und somit ein eventuell ungenaues Ergebnis bei der Berechnung der in einen Zylinder der Brennkraft­ maschine strömenden Luftmasse liefern.From SAE Technical Paper 810494, 1981, that in microprocessor controlled electronic Steuerge Advice for motor vehicles for the exact measurement of the force depending on the substance in a cylinder Air mass flowing from the internal combustion engine (cylinder filling) a computing unit for calculating this cylinder charge is provided. This computing unit forms a mathematical Model of airflow physics, especially in the intake tracts an internal combustion engine, arithmetically (cf. especially pages 10 to 11, chapter "model description" of the SAE paper). The algorithm of this computational Mo some of the dells only contain measured Be drive parameters of the internal combustion engine, such as. B. the Speed or the opening area of the throttle valve, and partly only calculated operating parameters as Interim results, such as B. by the throttle valve flowing air mass or that in the intake pipe of the burner engine prevailing pressure. The algorithm or the mathematical model contains equations that are used to Simplify the algorithm's real conditions idealize and thus a possibly inaccurate result  when calculating the in a cylinder of internal combustion deliver machine flowing air mass.

Es ist daher Aufgabe der Erfindung, ein Steuergerät zur Berechnung der in einen Zylinder der Brennkraftmaschine strömenden Luftmasse eingangs genannter Art derart zu verbessern, daß genauere Ergebnisse bei der Berechnung erzielt werden ohne Verzicht auf die Einfachheit des ver­ wendeten Algorithmus.It is therefore an object of the invention to provide a control device for Calculation of the cylinder in an internal combustion engine flowing air mass of the type mentioned above improve that more accurate results when calculating be achieved without sacrificing the simplicity of ver applied algorithm.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.This task is characterized by the characteristics of the Claim 1 solved.

Erfindungsgemäß wird ein beim bekannten Algorithmus aus­ schließlich berechneter Betriebsparameter der Brennkraft­ maschine, der insbesondere in Form eines Zwischenergeb­ nisses vorliegt, zusätzlich gemessen. Der Wert des be­ rechneten und der Wert des zusätzlich gemessenen Be­ triebsparameters werden miteinander verglichen. Der Algo­ rithmus ist derart aufgebaut, daß eine automatische Adap­ tion bzw. eine Selbstkorrektur vorgenommen wird, wenn eine Differenz zwischen dem Wert des berechneten und dem Wert des zusätzlich gemessenen Betriebsparameters vor­ liegt.According to the invention, a known algorithm is turned off finally calculated operating parameters of the internal combustion engine machine, in particular in the form of an intermediate result nisse is present, additionally measured. The value of the be calculated and the value of the additional measured Be drive parameters are compared. The algo rithmus is constructed in such a way that an automatic adap tion or self-correction is made if a difference between the value of the calculated and the Value of the additionally measured operating parameter lies.

Durch dieses erfindungsgemäße Steuergerät werden durch einen nur wenig erhöhten Meßaufwand Ungenauigkeiten durch die Idealisierung der realen Verhältnisse beim angewand­ ten Algorithmus durch automatische Adaption des Algorith­ mus vermieden.Through this control device according to the invention a little increased effort due to inaccuracies the idealization of the real conditions in the application algorithm by automatic adaptation of the algorithm mus avoided.

Eine vorteilhafte Weiterbildung der Erfindung ist der Ge­ genstand des Patentanspruchs 2. Besonders vorteilhaft ist die Verwendung des im Ansaugrohr der Brennkraftmaschine entstehenden Druckes als Betriebsparameter der Brenn­ kraftmaschine, der sowohl berechnet als auch zusätzlich gemessen wird, da dieser Betriebsparameter einer beson­ ders starken Beeinflussung der realen Verhältnisse unter­ liegt.An advantageous development of the invention is the Ge subject of claim 2. Is particularly advantageous the use of the in the intake pipe of the internal combustion engine resulting pressure as the operating parameters of the burning engine that both calculates and additionally  is measured because this operating parameter is a particular strong influence on the real situation lies.

Eine weitere vorteilhafte Ausgestaltung der Erfindung ist der Gegenstand des Patentanspruchs 3. Alternativ oder zu­ sätzlich wird die durch die Drosselklappe der Brennkraft­ maschine strömende Luftmasse sowohl berechnet als auch gemessen, da auch ein Luftmassenstrom ebenso wie der Luftdruck besonders stark durch reale Störgrößen beein­ flußt wird.Another advantageous embodiment of the invention is the subject of claim 3. Alternative or to In addition, the throttle valve of the internal combustion engine machine flowing air mass both calculated and measured because an air mass flow as well as the Air pressure particularly affected by real disturbances is flowing.

Gemäß den Weiterbildungen nach Patentanspruch 2 und/oder 3 werden also Betriebsparameter zur Selbstkorrektur des Algorithmus verwendet, die besonders stark von den bei der Idealisierung vernachlässigten Verhältnissen beein­ flußt werden.According to the developments according to claim 2 and / or 3 are operating parameters for self-correction of the Algorithm used, which is particularly strong in the case of the idealization neglected conditions to be flowed.

In der Zeichnung ist ein Ausführungsbeispiel der Erfin­ dung dargestellt. Es zeigenIn the drawing is an embodiment of the Erfin shown. Show it

Fig. 1 einen Ansaugtrakt einer Brennkraftmaschine mit den wichtigsten in dem Algorithmus enthaltenen Betriebsparametern, Fig. 1 is an intake manifold of an internal combustion engine with the key contained in the algorithm operating parameters,

Fig. 2 ein Blockschaltbild des aus dem SAE-Paper 810 494 bekannten rechnerischen Modells bzw. Al­ gorithmus, Fig. 2 is a block diagram of from SAE paper 810494 known mathematical model or Al rithm,

Fig. 3 die dem Blockschaltbild des bekannten Algorith­ mus zugrundeliegenden mathematischen Formeln und Fig. 3 shows the block diagram of the known algorithmic mechanism underlying mathematical formulas and

Fig. 4 ein mögliches Ausführungsbeispiel für die Selbstkorrektur des Algorithmus am Beispiel ei­ nes zusätzlich gemessenen Drucks im Ansaugrohr der Brennkraftmaschine. Fig. 4 shows a possible embodiment for the self-correction of the algorithm using the example of an additionally measured pressure in the intake pipe of the internal combustion engine.

In Fig. 1 ist eine Drosselklappe (Abschnitt 1) im Luft- Ansaugrohr der Brennkraftmaschine angeordnet, die mit dem Eingang eines Sammlers (Abschnitt 2) verbunden ist, dessen Ausgang unmittelbar zum Einlaßkanal (Abschnitt 3) eines Zylinders Z führt. Die durch das Ansaugrohr an der Stelle der Drosselklappe strömende Luftmasse LSE wird insbeson­ dere, wie dargestellt, durch den Drosselklappenöffnungs­ winkel αDKI, den Umgebungsdruck p₀, die Umgebungstempera­ tur T₀ und den Druck im Sammler p₅ bestimmt. Diese durch die Drosselklappe strömende Luftmasse LSE kann entweder rechnerisch oder z. B. mittels eines Luftmassenmessers bestimmt werden. Die in den Zylinder Z einströmende Luft­ masse LSA soll erfindungsgemäß ausschließlich berechnet werden. Der im Sammler vorherrschende Druck pS ist entwe­ der durch den Algorithmus berechenbar und/oder durch einen hier nicht dargestellten Drucksensor meßbar.In Fig. 1, a throttle valve (section 1 ) is arranged in the air intake pipe of the internal combustion engine, which is connected to the inlet of a collector (section 2 ), the output of which leads directly to the inlet channel (section 3 ) of a cylinder Z. The air mass LSE flowing through the intake pipe at the location of the throttle valve is determined, in particular, as shown by the throttle valve opening angle α DKI , the ambient pressure p₀, the ambient temperature T₀ and the pressure in the collector p₅. This air mass flowing through the throttle valve LSE can either arithmetically or z. B. be determined by means of an air mass meter. The air mass LSA flowing into the cylinder Z is to be calculated according to the invention exclusively. The pressure p S prevailing in the collector can either be calculated by the algorithm and / or measured by a pressure sensor (not shown here).

Die physikalischen Verhältnisse in den Abschnitten 1, 2 und 3 der Fig. 1 werden in Fig. 2 ebenfalls mit den Be­ zugszeichen 1, 2 und 3 angedeutet. Im Block 1 der Fig. 2 wird die durch die Drosselklappe strömende Luftmasse LSE berechnet. Dazu wird die aus dem Stand der Technik be­ kannte Formel (1a) in Verbindung mit den Formeln (1b) und (1c) der Fig. 3 angewendet. Im Block 4 der Fig. 2 sind die Formeln (1a) bis (1c) der Fig. 3 als Teil des Algo­ rithmus zur Berechnung der durch die Drosselklappe strö­ menden Luftmasse LSE in Form eines sich aus dem Algo­ rithmus mit den Parametern αDK (= αDKI), dem Öffnungswin­ kel der Drosselklappe, und pS, dem im Sammler vorliegen­ den Druck, ergebenden Kennfeldes dargestellt. Die Kenn­ feldwerte F₁ des Blocks bzw. Kennfeldes 4 müssen jedoch an der Multiplizierstelle des Blocks 1 mit dem Faktor p₀/(R*T₀) multipliziert werden, damit sich die durch die Drosselklappe einströmende Luftmasse LSE ergibt. Dabei ist p₀ der Umgebungsdruck, T₀ die Umgebungstemperatur und R die Gaskonstante für Luft.The physical relationships in sections 1 , 2 and 3 of FIG. 1 are also indicated in FIG. 2 with the reference numerals 1 , 2 and 3 . In block 1 of FIG. 2, the air mass LSE flowing through the throttle valve is calculated. For this purpose, known from the prior art formula (1a) is used in conjunction with formulas (1b) and (1c) of FIG. 3. In block 4 of FIG. 2, formulas (1a) to (1c) of FIG. 3 are part of the algorithm for calculating the air mass LSE flowing through the throttle valve in the form of an algorithm derived from the algorithm with the parameters α DK ( = α DKI ), the opening angle of the throttle valve, and p S , the pressure present in the collector, resulting map is shown. The map field values F₁ of the block or map 4 must, however, be multiplied at the multiplication point of the block 1 by the factor p₀ / (R * T₀) so that the air mass LSE flowing in through the throttle valve results. Here p₀ is the ambient pressure, T₀ the ambient temperature and R the gas constant for air.

Die so berechnete durch die Drosselklappe strömende Luft­ masse LSE wird an eine Addierstelle des Blocks 2 ge­ führt. Der Block 1 erhält als Druck pS im Sammler des An­ saugtrakts den in Block 2 berechneten Wert. In Block 1 werden also die aus dem Stand der Technik bekannten Glei­ chungen (1a) bis (1c) realisiert, die die Gleichungen für eine sog. isentrope Strömung durch eine Blende - aus der Physik bekannt - beschreiben. Die Gleichung (4) in Fig. 3 stellt eine Schreibweise für das aus den Gleichungen (1a) bis (1c) gebildete Kennfeld nachdem Block 4 des Blocks 1 in Fig. 2 dar.The air mass LSE thus calculated flowing through the throttle valve is passed to an addition point of block 2 . Block 1 receives the pressure calculated in block 2 as pressure p S in the collector of the suction tract. In block 1 , the equations (1a) to (1c) known from the prior art are thus implemented, which describe the equations for a so-called isentropic flow through an orifice - known from physics. Equation (4) in FIG. 3 represents a notation for the map formed from equations (1a) to (1c) after block 4 of block 1 in FIG. 2.

Der Block 2 in Fig. 2 stellt die Berechnung des Drucks pS im Ansaugtrakt, insbesondere im Sammler, nach der Glei­ chung (2) der Fig. 3 dar. Zunächst wird an der Addier­ stelle des Blocks 2 die zuvor berechnete bzw. als An­ fangswert geschätzte oder vorgegebene in einen Zylinder der Brennkraftmaschine strömende Luftmasse LSA von der in Block 1 ermittelten durch die Drosselklappe strömenden Luftmasse LSE subtrahiert. Die Differenz dieser beiden Luftmassen wird mit der Temperatur im Ansaugtrakt TS und der Gaskonstante für Luft multipliziert und durch das Vo­ lumen des Ansaugtrakts, insbesondere des Sammlers, VS ge­ teilt. Durch diesen Teil des Algorithmus wird entspre­ chend der Gleichung (2) der Fig. 3 die Änderung des Drucks pS im Ansaugtrakt durch die Bilanz der Luftmassen und durch das aus der Physik allgemein bekannte ideale Gasgesetz beschrieben. Der jeweils momentan vorliegende Druck pS im Ansaugtrakt wird durch ein Integrierglied 5 aus der Änderung des Drucks dpS über der Zeit dt berech­ net. Der so berechnete Druck pS wird nicht nur dem Block 1 sondern auch dem Block 3 der Fig. 2 zugeführt. Block 2 in FIG. 2 represents the calculation of the pressure p S in the intake tract, in particular in the collector, according to equation ( 2 ) of FIG. 3. First, at the addition point of block 2, the previously calculated or as An The air mass LSA flowing into a cylinder of the internal combustion engine is estimated from the initial value or subtracted from the air mass LSE determined in block 1 and flowing through the throttle valve. The difference between these two air masses is multiplied by the temperature in the intake tract T S and the gas constant for air and divided by the volume of the intake tract, in particular the collector, V S. By this part of the algorithm according to equation (2) of FIG. 3, the change in pressure p S in the intake tract is described by the balance of the air masses and by the ideal gas law known from physics. The currently present pressure p S in the intake tract is calculated by an integrating element 5 from the change in pressure dp S over time dt. The pressure p S thus calculated is supplied not only to block 1 but also to block 3 in FIG. 2.

In Block 3 der Fig. 2 wird aus dem Druck pS und der eben­ falls im Steuergerät ermittelten Drehzahl der Brennkraft­ maschine n im Block 6 ein Kennfeldfaktor F₂ ermittelt, der anschließend durch die Temperatur T₅ im Ansaugtrakt bzw. Sammler geteilt wird, um die zu ermittelnde in den Zylinder strömende Luftmasse mLSA zu erhalten. Block 3 der Fig. 2 stellt somit in Form eines Flußdiagramms die Realisierung der Gleichung (3) bzw. der in Kennfeldform dargestellten Gleichung (5) der Fig. 3 dar.In block 3 of FIG. 2, a map factor F₂ is determined from the pressure p S and the speed determined in the control unit of the internal combustion engine n in block 6 , which is then divided by the temperature T₅ in the intake tract or collector in order to to determine the air mass m LSA flowing into the cylinder. Block 3 of FIG. 2 thus represents, in the form of a flow chart, the implementation of equation (3) or equation (5) of FIG. 3 shown in the form of a map.

Fig. 4 zeigt ein erfindungsgemäßes Ausführungsbeispiel der Erweiterung der Fig. 2, bei der eine Selbstkorrektur des Algorithmus (Adaption) durch zusätzliche Berücksich­ tigung des gemessenen Drucks pS vorgenommen wird. Block 2 und 3 der Fig. 4 sind identisch mit Block 2 und 3 der Fig. 2. Erfindungsgemäß wird der in Block 2 berechnete Druck im Ansaugtrakt bzw. Sammler PS,cal zunächst zum Adaptionsblock 7 geführt. Ebenso erhält der Adaptions­ block 7 den mit einem Drucksensor gemessenen Druck PS,meß. Liegt eine Differenz zwischen dem berechneten Druck PS,cal und dem gemessenen Druck PS,meß vor, wird entsprechend dieser Differenz ein korrigierter dem tatsächlich vorliegenden Wert angepaßter Druck pS er­ mittelt und dem Block 3 der Fig. 4 zugeführt. Somit kor­ rigiert sich über den gemessenen Druck PS,meß und den Ad­ aptionsblock 7 der durch Block 2 und 3 gebildete Gesamt­ algorithmus von selbst. Fig. 4 shows an embodiment of the extension of FIG. 2 according to the invention, in which the algorithm (adaptation) is self-corrected by additionally taking into account the measured pressure p S. Blocks 2 and 3 of FIG. 4 are identical to blocks 2 and 3 of FIG. 2. According to the invention, the pressure in the intake tract or collector P S, cal calculated in block 2 is first led to the adaptation block 7 . Likewise, the adaptation block 7 receives the pressure P S, measured with a pressure sensor. If there is a difference between the calculated pressure P S, cal and the measured pressure P S, measure , a corrected pressure p S adapted to the actually present value is determined in accordance with this difference and supplied to block 3 of FIG. 4. Thus, the overall algorithm formed by blocks 2 and 3 is corrected automatically via the measured pressure P S, measurement and the adaptation block 7 .

Fig. 4 kann beispielsweise durch Block 1 der Fig. 2 er­ gänzt werden, so daß die durch die Drosselklappe strö­ mende Luftmasse mLSE wie in Fig. 2 dargestellt berechnet wird. Es ist jedoch auch möglich, die durch die Drossel­ klappe strömende Luftmasse mLSE ausschließlich durch einen Sensor, z. B. einen Luftmassenmesser, zu ermitteln. Weiterhin ist erfindungsgemäß möglich, Fig. 4 sowohl durch den rechnerischen Block 1 der Fig. 2 zu ergänzen als auch einen weiteren Adaptionsblock einzuführen, über den die durch die Drosselklappe strömende Luftmasse durch Vergleich des berechneten Luftmassenwertes mit einem ge­ messenen Wert ebenfalls korrigiert wird. Fig. 4 can be added, for example, by block 1 of Fig. 2, so that the air mass flowing through the throttle valve m LSE is calculated as shown in Fig. 2. However, it is also possible that the air mass flowing through the throttle flap m LSE exclusively by a sensor, for. B. to determine an air mass meter. Furthermore, it is possible according to the invention to supplement FIG. 4 both with the arithmetic block 1 of FIG. 2 and to introduce a further adaptation block, via which the air mass flowing through the throttle valve is also corrected by comparing the calculated air mass value with a measured value.

Durch ein derartiges erfindungsgemäßes Steuergerät wird nicht nur die Genauigkeit der Berechnung der in einen Zy­ linder strömenden Luftmasse verbessert, sondern auch Mit­ tel geschaffen, durch die eine Redundanz wichtiger Para­ meter des Algorithmus erreicht wird, durch die die Ausfallwahrscheinlichkeit eines derartigen Systems ver­ mindert wird.By such a control device according to the invention not only the accuracy of the calculation of a zy lighter flowing air mass improved, but also with tel created by the redundancy important Para of the algorithm by which the Failure probability of such a system ver is reduced.

Claims (3)

1. Steuergerät für Kraftfahrzeuge mit einer Rechen­ einheit zur Berechnung der in einen Zylinder der Brennkraftmaschine strömenden Luftmasse, bei dem die Recheneinheit einen Algorithmus ausführt, des­ sen Parameter teils gemessene und teils berechnete Betriebsparameter der Brennkraftmaschine enthal­ ten, dadurch gekennzeichnet, daß mindestens ein berechneter Betriebsparameter zusätzlich gemessen wird und der Algorithmus derart aufgebaut ist, daß er sich entsprechend einer Differenz zwischen dem Wert des berechneten und dem Wert des zusätzlich gemessenen Betriebsparameters selbst korrigiert.1. Control unit for motor vehicles with a computing unit for calculating the air mass flowing into a cylinder of the internal combustion engine, in which the computing unit executes an algorithm, the parameters of which are partly measured and partly calculated operating parameters of the internal combustion engine, characterized in that at least one calculated operating parameter is additionally measured and the algorithm is structured such that it corrects itself according to a difference between the value of the calculated and the value of the additionally measured operating parameter. 2. Steuergerät nach Patentanspruch 1, dadurch gekenn­ zeichnet, daß ein berechneter und zusätzlich ge­ messener Betriebsparameter der im Ansaugtrakt der Brennkraftmaschine entstehende Druck (pS) ist.2. Control device according to claim 1, characterized in that a calculated and additionally measured ge operating parameters is the pressure generated in the intake tract of the internal combustion engine (p S ). 3. Steuergerät nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, daß ein berechneter und zusätzlich gemessener Betriebsparameter die durch die Dros­ selklappe der Brennkraftmaschine strömende Luft­ masse (mLSE) ist.3. Control device according to claim 1 or 2, characterized in that a calculated and additionally measured operating parameter is the air mass flowing through the throttle selector valve of the internal combustion engine (m LSE ).
DE4422184A 1994-06-24 1994-06-24 Control unit for motor vehicles with a computing unit for calculating the air mass flowing into a cylinder of the internal combustion engine Revoked DE4422184C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4422184A DE4422184C2 (en) 1994-06-24 1994-06-24 Control unit for motor vehicles with a computing unit for calculating the air mass flowing into a cylinder of the internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4422184A DE4422184C2 (en) 1994-06-24 1994-06-24 Control unit for motor vehicles with a computing unit for calculating the air mass flowing into a cylinder of the internal combustion engine

Publications (2)

Publication Number Publication Date
DE4422184A1 true DE4422184A1 (en) 1996-01-04
DE4422184C2 DE4422184C2 (en) 2003-01-30

Family

ID=6521448

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4422184A Revoked DE4422184C2 (en) 1994-06-24 1994-06-24 Control unit for motor vehicles with a computing unit for calculating the air mass flowing into a cylinder of the internal combustion engine

Country Status (1)

Country Link
DE (1) DE4422184C2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19547496A1 (en) * 1995-12-19 1997-07-03 Schroeder Dierk Prof Dr Ing Dr System for determining exact air induction of IC engine
DE19615542A1 (en) * 1996-04-19 1997-10-23 Daimler Benz Ag Device for determining the engine load for an internal combustion engine
DE19939973A1 (en) * 1999-08-24 2001-03-01 Volkswagen Ag Regulation of a gasoline engine
EP1180591A2 (en) * 2000-08-19 2002-02-20 Robert Bosch Gmbh Method and control apparatus for operating an internal combustion engine
FR2840362A1 (en) * 2002-05-31 2003-12-05 Siemens Ag METHOD FOR CONTROLLING THE FILLING OF AN INTERNAL COMBUSTION ENGINE
EP1416145A2 (en) * 2002-10-30 2004-05-06 Toyota Jidosha Kabushiki Kaisha Device for estimating the intake air amount of an internal combustion engine
EP1426594A2 (en) * 2002-12-05 2004-06-09 HONDA MOTOR CO., Ltd. Control system and method
EP1645743A1 (en) * 2003-07-10 2006-04-12 Toyota Jidosha Kabushiki Kaisha Suction air amount predicting device of internal combustion engine
WO2006069853A1 (en) * 2004-12-23 2006-07-06 Robert Bosch Gmbh Method for the operation of an internal combustion engine
DE19740916B4 (en) * 1997-04-01 2007-05-10 Robert Bosch Gmbh Method for operating an internal combustion engine
DE19753969B4 (en) * 1997-12-05 2008-04-10 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE19753873B4 (en) * 1997-12-05 2008-05-29 Robert Bosch Gmbh Method and device for operating an internal combustion engine
FR2992025A1 (en) * 2012-06-19 2013-12-20 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING AN AIR SUPPLY OF AN INTERNAL COMBUSTION ENGINE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260322A1 (en) 2002-12-20 2004-07-08 Volkswagen Ag Method and device for determining the exhaust gas recirculation mass flow of an internal combustion engine
DE102010007865B4 (en) 2010-02-13 2021-09-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for calculating the air mass flow supplied to an internal combustion engine
DE102013213310B4 (en) 2013-07-08 2020-08-06 Bayerische Motoren Werke Aktiengesellschaft Process for controlling internal combustion engines with variable valve control

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0271774A1 (en) * 1986-12-19 1988-06-22 Siemens Aktiengesellschaft System for detecting the mass flow rate of air admitted to the cylinders of an internal-combustion engine
US4785785A (en) * 1986-12-08 1988-11-22 Toyota Jidosha Kabushiki Kaisha Fuel injection control device for an internal combustion engine with throttle opening detection means
DE3919448A1 (en) * 1988-06-15 1989-12-21 Toyota Motor Co Ltd DEVICE FOR CONTROLLING AND PRE-DETERMINING THE INTAKE AIR AMOUNT OF AN INTERNAL COMBUSTION ENGINE
DE3917908A1 (en) * 1989-06-01 1990-12-06 Siemens Ag METHOD FOR DETERMINING THE AIR FILLING OF THE WORKING VOLUME OF A COMBINED PISTON INTERNAL COMBUSTION ENGINE AND FOR DETERMINING THE FUEL INJECTION LEVEL
DE4018776A1 (en) * 1990-06-12 1991-12-19 Vdo Schindling IC engine air intake flow determn. and correction - comparing ideal reference mass flow with operation-dependent flow in normal condition of engine
DE4126900A1 (en) * 1990-08-22 1992-03-05 Honda Motor Co Ltd DEVICE FOR CALCULATING A MACHINE LOAD PARAMETER FOR AN INTERNAL COMBUSTION ENGINE
DE4225198A1 (en) * 1991-07-31 1993-02-04 Hitachi Ltd FUEL QUANTITY CONTROL DEVICE AND METHOD FOR COMBUSTION ENGINES
EP0589517A1 (en) * 1992-09-23 1994-03-30 General Motors Corporation Method of predicting air flow into a cylinder
EP0594114A2 (en) * 1992-10-19 1994-04-27 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system in internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2750648B2 (en) * 1992-11-16 1998-05-13 本田技研工業株式会社 Adaptive controller with recursive form of parameter adjustment rule.
JP3162521B2 (en) * 1992-12-02 2001-05-08 本田技研工業株式会社 Air-fuel ratio estimator for each cylinder of internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785785A (en) * 1986-12-08 1988-11-22 Toyota Jidosha Kabushiki Kaisha Fuel injection control device for an internal combustion engine with throttle opening detection means
EP0271774A1 (en) * 1986-12-19 1988-06-22 Siemens Aktiengesellschaft System for detecting the mass flow rate of air admitted to the cylinders of an internal-combustion engine
DE3919448A1 (en) * 1988-06-15 1989-12-21 Toyota Motor Co Ltd DEVICE FOR CONTROLLING AND PRE-DETERMINING THE INTAKE AIR AMOUNT OF AN INTERNAL COMBUSTION ENGINE
DE3917908A1 (en) * 1989-06-01 1990-12-06 Siemens Ag METHOD FOR DETERMINING THE AIR FILLING OF THE WORKING VOLUME OF A COMBINED PISTON INTERNAL COMBUSTION ENGINE AND FOR DETERMINING THE FUEL INJECTION LEVEL
DE4018776A1 (en) * 1990-06-12 1991-12-19 Vdo Schindling IC engine air intake flow determn. and correction - comparing ideal reference mass flow with operation-dependent flow in normal condition of engine
DE4126900A1 (en) * 1990-08-22 1992-03-05 Honda Motor Co Ltd DEVICE FOR CALCULATING A MACHINE LOAD PARAMETER FOR AN INTERNAL COMBUSTION ENGINE
DE4225198A1 (en) * 1991-07-31 1993-02-04 Hitachi Ltd FUEL QUANTITY CONTROL DEVICE AND METHOD FOR COMBUSTION ENGINES
EP0589517A1 (en) * 1992-09-23 1994-03-30 General Motors Corporation Method of predicting air flow into a cylinder
EP0594114A2 (en) * 1992-10-19 1994-04-27 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system in internal combustion engine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1- 96440 A., M- 849,July 13,1989,Vol.13,No.305 *
JP Patents Abstracts of Japan: 3-294638 A., M-1230,April 6,1992,Vol.16,No.135 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19547496A1 (en) * 1995-12-19 1997-07-03 Schroeder Dierk Prof Dr Ing Dr System for determining exact air induction of IC engine
DE19547496C2 (en) * 1995-12-19 2003-04-17 Dierk Schroeder Process for regulating internal combustion engines
DE19615542A1 (en) * 1996-04-19 1997-10-23 Daimler Benz Ag Device for determining the engine load for an internal combustion engine
DE19615542C2 (en) * 1996-04-19 1998-05-07 Daimler Benz Ag Device for determining the engine load for an internal combustion engine
US5889204A (en) * 1996-04-19 1999-03-30 Daimler-Benz Ag Device for determining the engine load for an internal combustion engine
DE19740916B4 (en) * 1997-04-01 2007-05-10 Robert Bosch Gmbh Method for operating an internal combustion engine
DE19753873B4 (en) * 1997-12-05 2008-05-29 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE19753969B4 (en) * 1997-12-05 2008-04-10 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE19939973A1 (en) * 1999-08-24 2001-03-01 Volkswagen Ag Regulation of a gasoline engine
EP1180591A3 (en) * 2000-08-19 2003-02-05 Robert Bosch Gmbh Method and control apparatus for operating an internal combustion engine
EP1180591A2 (en) * 2000-08-19 2002-02-20 Robert Bosch Gmbh Method and control apparatus for operating an internal combustion engine
FR2840362A1 (en) * 2002-05-31 2003-12-05 Siemens Ag METHOD FOR CONTROLLING THE FILLING OF AN INTERNAL COMBUSTION ENGINE
EP1416145A2 (en) * 2002-10-30 2004-05-06 Toyota Jidosha Kabushiki Kaisha Device for estimating the intake air amount of an internal combustion engine
EP1416145A3 (en) * 2002-10-30 2005-03-30 Toyota Jidosha Kabushiki Kaisha Device for estimating the intake air amount of an internal combustion engine
EP1426594A2 (en) * 2002-12-05 2004-06-09 HONDA MOTOR CO., Ltd. Control system and method
EP1426594A3 (en) * 2002-12-05 2009-11-11 HONDA MOTOR CO., Ltd. Control system and method
EP1645743A1 (en) * 2003-07-10 2006-04-12 Toyota Jidosha Kabushiki Kaisha Suction air amount predicting device of internal combustion engine
EP1645743A4 (en) * 2003-07-10 2011-12-28 Toyota Motor Co Ltd Suction air amount predicting device of internal combustion engine
JP2008525696A (en) * 2004-12-23 2008-07-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for operating an internal combustion engine
US7415345B2 (en) 2004-12-23 2008-08-19 Robert Bosch Gmbh Method for operating an internal combustion engine
WO2006069853A1 (en) * 2004-12-23 2006-07-06 Robert Bosch Gmbh Method for the operation of an internal combustion engine
JP4683573B2 (en) * 2004-12-23 2011-05-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for operating an internal combustion engine
FR2992025A1 (en) * 2012-06-19 2013-12-20 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING AN AIR SUPPLY OF AN INTERNAL COMBUSTION ENGINE
WO2013190213A1 (en) * 2012-06-19 2013-12-27 Peugeot Citroen Automobiles Sa Method for controlling a supply of air to an internal combustion engine

Also Published As

Publication number Publication date
DE4422184C2 (en) 2003-01-30

Similar Documents

Publication Publication Date Title
DE4422184C2 (en) Control unit for motor vehicles with a computing unit for calculating the air mass flowing into a cylinder of the internal combustion engine
DE102007025432B4 (en) Control device for an internal combustion engine
EP0084037B2 (en) Control device for the supply pressure of a supercharged combustion engine
DE19740916A1 (en) Operating IC engine for motor vechile with air led to engine across throttle valve
DE4007557C2 (en) Fuel regulator for internal combustion engines
DE3238190A1 (en) ELECTRONIC SYSTEM FOR CONTROLLING OR CONTROL OF OPERATING CHARACTERISTICS OF AN INTERNAL COMBUSTION ENGINE
EP3308007B1 (en) Air charge determination, engine control unit and internal combustion engine
WO2006069853A1 (en) Method for the operation of an internal combustion engine
DE10234492B4 (en) Method for determining an air mass flow
EP0886725A2 (en) Process for model-assisted determination of fresh air mass flowing into the cylinder of an internal combustion engine with external exhaust-gas recycling
DE4015914C2 (en)
EP1715163A1 (en) Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with exhaust gas recirculation
DE3932888A1 (en) CONTROL SYSTEM FOR FUEL INJECTION OF AN INTERNAL COMBUSTION ENGINE
DE4214648A1 (en) SYSTEM FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
DE3925377A1 (en) METHOD FOR CORRECTING THE MEASURING ERRORS OF A HOT FILM AIRMETER
DE102014217591A1 (en) Method and device for controlling an exhaust gas recirculation valve of a supercharged internal combustion engine with exhaust gas recirculation
EP1264227A1 (en) Method and device for mass flow determination via a control valve and for determining a modeled induction pipe pressure
DE102004026006B4 (en) Control device and control method for an internal combustion engine
DE19625688A1 (en) Load signal calculation method e.g. for motor vehicle IC engine with exhaust gas return (EGR)
DE10227466A1 (en) Determining cylinder charge in internal combustion engine, involves computing first and second cylinder charge values with first and second models, adapting first model according to comparison of results
EP1398490A2 (en) Method for operating an internal combustion engine
DE3624351C2 (en) Device for controlling the fuel supply for an internal combustion engine
EP0082107B1 (en) Air mass flow meter for an internal-combustion engine
DE19753969A1 (en) Operating IC engine so that signal reload is determined to compute cylinder filling
DE102008043965A1 (en) Method for determining e.g. supercharging pressure, in suction tube in air supply system of internal combustion engine in engine system, involves forming difference equation for discretization of differential equation based on Euler-process

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
8304 Grant after examination procedure
8363 Opposition against the patent
8369 Partition in:

Ref document number: 4447981

Country of ref document: DE

Kind code of ref document: P

Q171 Divided out to:

Ref document number: 4447981

Country of ref document: DE

Kind code of ref document: P

8331 Complete revocation