DE4304577A1 - New design of the wind-driven power generator - Google Patents

New design of the wind-driven power generator

Info

Publication number
DE4304577A1
DE4304577A1 DE4304577A DE4304577A DE4304577A1 DE 4304577 A1 DE4304577 A1 DE 4304577A1 DE 4304577 A DE4304577 A DE 4304577A DE 4304577 A DE4304577 A DE 4304577A DE 4304577 A1 DE4304577 A1 DE 4304577A1
Authority
DE
Germany
Prior art keywords
wind
rotor
stator
construction
wings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4304577A
Other languages
German (de)
Inventor
Wsewolod Wasiljew
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE4304577A priority Critical patent/DE4304577A1/en
Publication of DE4304577A1 publication Critical patent/DE4304577A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • F03D7/0252Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking with aerodynamic drag devices on the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

The introduction of the unified design of the wind-driven modular power generator has the effect of reducing its cost. The high output (power) can be effectively used in the case of heating water in boilers and of heating houses. In the case of strong wind, it becomes warmer and more comfortable at home. As a consequence, there will be substantial savings in fuel, and the costs of installation of the cost effective, wind-driven power generator will be recovered very quickly. The use of wind-driven power generators furthermore improves the ecological situation.

Description

In der angebotenen Konstruktion werden die Flügel auf die Rotorwelle und Generatorgehäuse gesetzt, wobei sie den Rotor und den Stator des Generators in entgegengesetzten Richtungen drehen. Solche Anbringung der Flügel erlaubt, zwei Mal mehr Elektroenergie zu erzeugen. Auf der Zeichnung Nr. 1 wird das Modul dargestellt, bei dem die Flügel auf die Generatorwelle und dessen Gehäuse angebracht sind. Die Enden der Welle drehen sich frei in den Lagern Π-artiger Konstruktion.In the design offered, the wings are on the Rotor shaft and generator housing set, the rotor and the stator of the generator in opposite directions rotate. Such attachment of the wings allowed two times more To generate electrical energy. In drawing no. 1 that is Shown module in which the wings on the generator shaft and whose housing is attached. The ends of the shaft rotate free in the bearings of Π-like construction.

Die Energieabnahme erfolgt durch Ringe und am Gehäuse angebrachte Bürsten. Auf der Zeichnung Nr. 2 wird das Modul in einer anderen Ebene dargestellt. Auf der Zeichnung sind je ein Paar Flügel auf dem Rotor und auf dem Gehäuse des Generators dargestellt. Die Flügel drehen den Rotor und den Stator in entgegengesetzte Richtungen. Auf der Zeichnung Nr. 3 wird der Flügel des Generators gesondert dargestellt. Auf dem Flügel des Generators ist unter einem Winkel ein Querruder angebracht, das mittels der Windwirkung den Flügel um die Achse in der Hülse auf dem Gehäuse des Generators dreht. In der Hülse ist eine Feder angebracht, die bei Abschwächung der Windstärke den Flügel fast perpendikular zum Windstrom dreht. Bei Zunahme der Windstärke dreht das Querruder den Flügel spitzwinklig zum Windstrom. Bei sehr starkem Wind werden die Flügel fast parallel zum Windstrom aufgestellt. Dies ermöglicht die Stabilisierung der Drehzahl des Generators und den Schutz der Flügel vor Bruch. Bei Ab­ schwächung der Windstärke werden die Flügel in die vorherige Stellung gebracht. Auf der Zeichnung Nr. 4 wird die Aufstellungs­ möglichkeit von drei Modulen auf einer Stütze dargestellt. Eine derartige Aufstellung von Modulen ermöglicht es der Konstruktion, sich immer entgegen dem Wind zu stellen, ohne zusätzliche Korrekturen. Es wird empfohlen, auf der ersten Stufe der Einführung die Konstruktion hauptsächlich für die Wassererwärmung in den Kesseln und Beheizung der Häuser zu verwenden. Dabei bietet sich die Möglichkeit, Kraftstoff zu sparen, was sehr schnell die Kosten für den windangetriebenen Stromgenerator decken wird und die ökologische Situation, besonders in windreichen Ländern, verbessert.The energy consumption takes place through rings and on the housing attached brushes. On the drawing no. 2 the module in shown on another level. There are one each on the drawing Pair of blades on the rotor and on the housing of the generator shown. The blades turn the rotor and stator in opposite directions. In drawing no. 3 the Wing of the generator shown separately. On the wing of the An aileron is attached at an angle to the generator by means of the wind effect on the wing around the axis in the sleeve the housing of the generator rotates. There is a spring in the sleeve attached, the wing almost with weakening wind strength perpendicular to the wind power. When the wind strength increases the aileron turns the wing at an acute angle to the wind current. At very strong wind, the wings become almost parallel to the wind current set up. This enables the speed of the engine to be stabilized Generator and protecting the wing from breakage. At Ab weakening the wind force, the wings are in the previous Positioned. On drawing No. 4 is the lineup Possibility of three modules shown on one support. A such a set of modules enables Construction to always face the wind without additional corrections. It is recommended at the first level introducing the construction mainly for the Water heating in the boilers and heating the houses too use. This offers the opportunity to add fuel save what the cost of the wind powered very quickly Power generator will cover and the ecological situation, especially in windy countries, improved.

BezugszeichenlisteReference list

1.1 Generator
1.2 Rotorwelle
1.3 Statorflügel
1.4 Rotorflügel
1.5 Mechanismus für Stromabnahme
1.6 Querruder
1.7 Π-förmige Lager
2.1 Statorflügel
2.2 Rotorflügel
3.1 Generatorgehäuse
3.2 Hülse
3.3 Flügel
3.4 Querruder
4.1 Modul des windangetriebenen Stromgenerators.
1.1 generator
1.2 rotor shaft
1.3 stator blades
1.4 rotor blades
1.5 Mechanism for power consumption
1.6 ailerons
1.7 Π-shaped bearings
2.1 stator blades
2.2 rotor blades
3.1 Generator housing
3.2 sleeve
3.3 wing
3.4 Ailerons
4.1 Module of the wind powered electricity generator.

Claims (6)

Die dargestellte Konstruktion ist dadurch gekennzeichnet, daß sie aus drei standardisierten, leicht abbaubaren Modulen, die bei Reparatur und Betrieb austauschbar sind, besteht. Jedes Modul besteht aus einer Π-förmigen Metallkonstruktion mit einem windangetriebenen Stromgenerator (Fig. 1).The construction shown is characterized in that it consists of three standardized, easily removable modules that can be replaced during repair and operation. Each module consists of a Π-shaped metal construction with a wind-powered electricity generator ( Fig. 1). Ferner ist sie dadurch gekennzeichnet, daß sich die Enden der Rotorwelle in Lagern der Π-förmigen Konstruktion befinden und der Rotor sich frei in den Π-förmigen Lagern der Stütze dreht, sowie der Stator um den Rotor. Dies ermöglicht es, den Stator und den Rotor in die entgegengesetzten Richtungen zu drehen.It is also characterized in that the ends of the Rotor shaft are located in bearings of the Π-shaped construction and the rotor rotates freely in the Π-shaped bearings of the support, as well as the stator around the rotor. This enables the stator and turn the rotor in the opposite directions. Dies ist dadurch gekennzeichnet, daß sich die Leistung des windangetriebenen Stromgenerators bei jeder Windströmung um das doppelte erhöht.This is characterized in that the performance of the wind powered electricity generator with every wind flow around it double increases. Fig. 2′′ zeigt das entgegengesetzte Drehen der Stator- und Rotorflügel. Fig. 2 '' shows the opposite rotation of the stator and rotor blades. Die Flügel sind in den Hülsen auf den Gehäusen des Rotors und Stators montiert, wo sie sich bei plötzlicher Zunahme der Windstärke drehen (Fig. 3). Auf den Flügeln sind Querruder unter einem bestimmten Winkel angebracht, die den Hebel für das Drehen von Flügeln unter der Windwirkung bilden. Dies schützt die Flügel vor dem Bruch und stabilisiert die Drehgeschwindigkeit. In der Hülse befindet sich eine Dämpfungsfeder, die den Flügel in die Ausgansposition bringt.The blades are mounted in the sleeves on the housings of the rotor and stator, where they rotate when the wind force increases suddenly ( Fig. 3). Ailerons are attached to the wings at a certain angle, which are the levers for turning wings under the wind. This protects the wings from breakage and stabilizes the speed of rotation. There is a damping spring in the sleeve which brings the wing into the starting position. Fig. 4 zeigt die Aufstellung von Modulen auf der Stütze. Die Konstruktion ist dadurch gekennzeichnet, daß sie das Drehen gegen den Wind ohne zusätzliche Korrektur ermöglicht. Fig. 4 shows the installation of modules on the support. The construction is characterized in that it enables turning against the wind without additional correction.
DE4304577A 1993-02-16 1993-02-16 New design of the wind-driven power generator Withdrawn DE4304577A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4304577A DE4304577A1 (en) 1993-02-16 1993-02-16 New design of the wind-driven power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4304577A DE4304577A1 (en) 1993-02-16 1993-02-16 New design of the wind-driven power generator

Publications (1)

Publication Number Publication Date
DE4304577A1 true DE4304577A1 (en) 1994-08-25

Family

ID=6480533

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4304577A Withdrawn DE4304577A1 (en) 1993-02-16 1993-02-16 New design of the wind-driven power generator

Country Status (1)

Country Link
DE (1) DE4304577A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205678B2 (en) 2001-09-13 2007-04-17 Matteo Casazza Wind power generator
GB2459453A (en) * 2008-04-21 2009-10-28 Barry Robert Marshall Aerodynamic overspeed limitation for wind turbine rotor(s)
US7936102B2 (en) 2005-11-29 2011-05-03 Wilic S.Ar.L Magnet holder for permanent magnet rotors of rotating machines
US7946591B2 (en) 2005-09-21 2011-05-24 Wilic S.Ar.L. Combined labyrinth seal and screw-type gasket bearing sealing arrangement
US8120198B2 (en) 2008-07-23 2012-02-21 Wilic S.Ar.L. Wind power turbine
US8274170B2 (en) 2009-04-09 2012-09-25 Willic S.A.R.L. Wind power turbine including a cable bundle guide device
US8310122B2 (en) 2005-11-29 2012-11-13 Wilic S.A.R.L. Core plate stack assembly for permanent magnet rotor or rotating machines
US8319362B2 (en) 2008-11-12 2012-11-27 Wilic S.Ar.L. Wind power turbine with a cooling system
US8358189B2 (en) 2009-08-07 2013-01-22 Willic S.Ar.L. Method and apparatus for activating an electric machine, and electric machine
US8410623B2 (en) 2009-06-10 2013-04-02 Wilic S. AR. L. Wind power electricity generating system and relative control method
US8492919B2 (en) 2008-06-19 2013-07-23 Wilic S.Ar.L. Wind power generator equipped with a cooling system
US8541902B2 (en) 2010-02-04 2013-09-24 Wilic S.Ar.L. Wind power turbine electric generator cooling system and method and wind power turbine comprising such a cooling system
US8618689B2 (en) 2009-11-23 2013-12-31 Wilic S.Ar.L. Wind power turbine for generating electric energy
US8659867B2 (en) 2009-04-29 2014-02-25 Wilic S.A.R.L. Wind power system for generating electric energy
US8669685B2 (en) 2008-11-13 2014-03-11 Wilic S.Ar.L. Wind power turbine for producing electric energy
US8937398B2 (en) 2011-03-10 2015-01-20 Wilic S.Ar.L. Wind turbine rotary electric machine
US8937397B2 (en) 2010-03-30 2015-01-20 Wilic S.A.R.L. Wind power turbine and method of removing a bearing from a wind power turbine
US8957555B2 (en) 2011-03-10 2015-02-17 Wilic S.Ar.L. Wind turbine rotary electric machine
US8975770B2 (en) 2010-04-22 2015-03-10 Wilic S.Ar.L. Wind power turbine electric generator and wind power turbine equipped with an electric generator
US9006918B2 (en) 2011-03-10 2015-04-14 Wilic S.A.R.L. Wind turbine

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7385306B2 (en) 2001-09-13 2008-06-10 Matteo Casazza wind power generator including blade arrangement
US7385305B2 (en) 2001-09-13 2008-06-10 Matteo Casazza Wind power generator and bearing structure therefor
US7205678B2 (en) 2001-09-13 2007-04-17 Matteo Casazza Wind power generator
US7687932B2 (en) 2001-09-13 2010-03-30 High Technology Investments B.V. Wind power generator and bearing structure therefor
US7893555B2 (en) 2001-09-13 2011-02-22 Wilic S.Ar.L. Wind power current generator
US7946591B2 (en) 2005-09-21 2011-05-24 Wilic S.Ar.L. Combined labyrinth seal and screw-type gasket bearing sealing arrangement
US8310122B2 (en) 2005-11-29 2012-11-13 Wilic S.A.R.L. Core plate stack assembly for permanent magnet rotor or rotating machines
US7936102B2 (en) 2005-11-29 2011-05-03 Wilic S.Ar.L Magnet holder for permanent magnet rotors of rotating machines
GB2459453A (en) * 2008-04-21 2009-10-28 Barry Robert Marshall Aerodynamic overspeed limitation for wind turbine rotor(s)
GB2459453B (en) * 2008-04-21 2011-06-08 Barry Robert Marshall Energy output limiter for wind turbine rotor(s)
US9312741B2 (en) 2008-06-19 2016-04-12 Windfin B.V. Wind power generator equipped with a cooling system
US8492919B2 (en) 2008-06-19 2013-07-23 Wilic S.Ar.L. Wind power generator equipped with a cooling system
US8120198B2 (en) 2008-07-23 2012-02-21 Wilic S.Ar.L. Wind power turbine
US8319362B2 (en) 2008-11-12 2012-11-27 Wilic S.Ar.L. Wind power turbine with a cooling system
US8669685B2 (en) 2008-11-13 2014-03-11 Wilic S.Ar.L. Wind power turbine for producing electric energy
US8274170B2 (en) 2009-04-09 2012-09-25 Willic S.A.R.L. Wind power turbine including a cable bundle guide device
US8659867B2 (en) 2009-04-29 2014-02-25 Wilic S.A.R.L. Wind power system for generating electric energy
US8410623B2 (en) 2009-06-10 2013-04-02 Wilic S. AR. L. Wind power electricity generating system and relative control method
US8810347B2 (en) 2009-08-07 2014-08-19 Wilic S.Ar.L Method and apparatus for activating an electric machine, and electric machine
US8358189B2 (en) 2009-08-07 2013-01-22 Willic S.Ar.L. Method and apparatus for activating an electric machine, and electric machine
US8618689B2 (en) 2009-11-23 2013-12-31 Wilic S.Ar.L. Wind power turbine for generating electric energy
US8541902B2 (en) 2010-02-04 2013-09-24 Wilic S.Ar.L. Wind power turbine electric generator cooling system and method and wind power turbine comprising such a cooling system
US8937397B2 (en) 2010-03-30 2015-01-20 Wilic S.A.R.L. Wind power turbine and method of removing a bearing from a wind power turbine
US8975770B2 (en) 2010-04-22 2015-03-10 Wilic S.Ar.L. Wind power turbine electric generator and wind power turbine equipped with an electric generator
US8937398B2 (en) 2011-03-10 2015-01-20 Wilic S.Ar.L. Wind turbine rotary electric machine
US8957555B2 (en) 2011-03-10 2015-02-17 Wilic S.Ar.L. Wind turbine rotary electric machine
US9006918B2 (en) 2011-03-10 2015-04-14 Wilic S.A.R.L. Wind turbine

Similar Documents

Publication Publication Date Title
DE4304577A1 (en) New design of the wind-driven power generator
ITRM20110517A1 (en) SHOVEL FOR WIND GENERATOR AND ASSEMBLY METHOD OF THAT SHAFT
DE3629872A1 (en) Wind-power installation for generating electrical energy
DE3903399A1 (en) Wind power installation
CN104454299A (en) Direct driving vertical axis current power generation devices for underwater vehicle
DE2734938A1 (en) Wind turbine generator with horizontal axis - uses solar radiation and anemometer-type blades to turn rotors on army to use Magnus effect
DE3312977A1 (en) Device for using the energy of the air movement produced in a wind tunnel
DE3126749A1 (en) Wind rotor with air flow guide stator
EP1312800A1 (en) Pump-turbine energy source
WO2006050711A1 (en) Rotor for transforming free flows in flow devices
CN109441711A (en) A kind of suitable inverse double rotary wind power generators
DE202015000588U1 (en) Blade structure for wind power generation
DE3031455A1 (en) WIND MOTORCYCLE GENERATOR
CN104481782A (en) Gear transmission based underwater vehicle vertical shaft current power generation device
CN205936966U (en) Blade autogyration vertical axis aerogenerator
WO2008131726A2 (en) Wind power plant and method for the use thereof
DE102010032223A1 (en) Power production plant i.e. wind-power plant, for generating electrical power, has generator whose rotor assembly is arranged in conical inlet portion of housing, where outer side of housing is provided with flexible sheath
DE102014119257A1 (en) A fluid powered power generation device
DE19708636A1 (en) Generator to recover regenerative energy potential in flowing water
DE3006612C2 (en) Wind power plant for the energy supply of flat roof buildings
Clayton Observations of the flow in and around Savonius and Darrieus rotors
CN108799004A (en) Composite type wind power generation device
DE102010007157A1 (en) Hydroelectric power plant for use in barrage for generation of electrical power, has generator designed in torque-construction, propelled by worm body, arranged in region of central tube of worm body and coupled with worm body
Sivapalan et al. Power augmentation in a Savonius-type wind-turbine by using a single air-deflecting vane
Braasch The design, construction, testing and manufacturing of vertical axis wind turbines

Legal Events

Date Code Title Description
8122 Nonbinding interest in granting licences declared
8141 Disposal/no request for examination