DE3924454A1 - Die anwendung von dna und dna-technologie fuer die konstruktion von netzwerken zur verwendung in der chip-konstruktion und chip-produktion (dna chips) - Google Patents

Die anwendung von dna und dna-technologie fuer die konstruktion von netzwerken zur verwendung in der chip-konstruktion und chip-produktion (dna chips)

Info

Publication number
DE3924454A1
DE3924454A1 DE3924454A DE3924454A DE3924454A1 DE 3924454 A1 DE3924454 A1 DE 3924454A1 DE 3924454 A DE3924454 A DE 3924454A DE 3924454 A DE3924454 A DE 3924454A DE 3924454 A1 DE3924454 A1 DE 3924454A1
Authority
DE
Germany
Prior art keywords
dna
rna
construction
networks
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE3924454A
Other languages
English (en)
Other versions
DE3924454C2 (de
Inventor
Cornelis P Prof Dr Hollenberg
Ernesto Di Prof Dr Mauro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE3924454A priority Critical patent/DE3924454A1/de
Priority to JP2196050A priority patent/JPH03142882A/ja
Priority to EP90123745A priority patent/EP0491059A1/de
Publication of DE3924454A1 publication Critical patent/DE3924454A1/de
Application granted granted Critical
Publication of DE3924454C2 publication Critical patent/DE3924454C2/de
Priority to US08/532,542 priority patent/US5561071A/en
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/701Organic molecular electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/123DNA computing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/32Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/761Biomolecules or bio-macromolecules, e.g. proteins, chlorophyl, lipids or enzymes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/81Packaged device or kit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/942Masking
    • Y10S438/944Shadow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/942Masking
    • Y10S438/945Special, e.g. metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Artificial Intelligence (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

Einleitung
DNA ist eine polymere Verbindung, die durch verschiedene physikalische und enzymatische Techniken wie Denaturation/Renaturation, enzymatische Synthese, Modifizierungsreaktionen und Proteinbindung bearbeitet werden kann. DNA-Technologie (Maniatis et al. 1982) ermöglicht die hier beschriebene Konstruktion von selbst-assemblierenden Netzwerken auf ultramikroskopischer oder monomolekularer Ebene. Die Nukleinsäure-Netzwerke können als Masken in photolithographischen Verfahren eingesetzt werden, die heutzutage für die Konstruktion und Produktion von Computerchips in Gebrauch sind. Die Netzwerke können durch die Herstellung eines Abdruckes reproduziert werden, um Replikas herzustellen, die aus anderen Materialien bestehen, oder sie können als Matrize benutzt werden zur Ablagerung andere Materialien wie n-doped Gallium Arsenide oder Gallium Arsenide, die die Fähigkeit haben, elektrischen Strom zu leiten. Die so konstruierten leitfähigen Elemente können als Komponenten elektronischer Chips genutzt werden. Die selbst-assemblierenden Eigenschaften der Nukleinsäuren können auch verwendet werden, um die für elektronische Chips benötigten Schaltelemente zu konstruieren.
I Konstruktion von Nukleinsäure-Netzwerken 1. Konstruktion von Startpunkt (DWIP) und Endpunkt (DWEP) der DNA-Leitung a. DNA-Leitungsinitiierungspunkt
Ein DWIP, DNA wire-initation point wird konstruiert mit Hilfe eines DNA-Doppelstranges, der an einem Ende stumpf ist und am anderen Ende eine sequenzspezifische einzelsträngige Verlängerung hat, so daß nur ein Ende das Substrat für DNA-Verlängerung durch Synthese oder Hybridisierung ist. Der DWIP kann durch verschiedene Techniken auf einen festen Träger fixiert werden, wie z. B. durch örtlich fixiert geladene Moleküle oder durch Sequenz-spezifische DNA-bindende Proteine (wie Bakteriophagen-DNA-bindende Proteine, Adenovirus-bindendes Protein, lac-Repressor- oder synthetische DNA-bildende Proteine) oder durch kovalente chemische Bindung.
Um zwei Wachstumspunkte zu erhalten, hat der DWIP zwei sequenzspezifische Einzelstrang-Enden.
Die DNA in dem DWIP kann aus homopolymeren komplementären Strängen bestehen wie polydD-polydG oder polydA-polydT oder aus anderen geeigneten Sequenzen, die Proteine binden oder bessere Fixierungseigenschaften haben.
b. Verlängerung des DWIP
Der DWIP wird durch DNA-Synthese verlängert und/oder durch Hybridisierung eines präsynthetisierten oder natürlichen spezifischen DNA-Stranges einer bestimmten Länge.
c. Konstruktion einer Verbindung zwischen zwei fixierten Punkten. DNA-Leitungspunkt
Der DWEP wird ähnlich konstruiert wie der DWIP. Die beschriebenen Verlängerungsreaktionen des DWIP können auch für den DWEP benutzt werden und damit zu einer Verbindung zwischen DWIP und DWEP führen. Die Verbindung kann durch Sequenz-spezifische Nukleinsäurehybridisierung hergestellt werden. Die Verlängerung eines DWIP kann alternativ so ausgelegt werden, daß sie direkt mit dem DWEP durch spezifische Hybridisierung eines bestimmten DNA-Strangs verbunden wird.
2. Konstruktion von Verzweigungspunkten, Schaltern und mehrsträngigen Regionen zur Benutzung in DNA-Leitungen
Die Programmierung der Synthese definierter DNA-Sequenzen, die Verbindung derselben durch sequenzspezifische Hybridisierung und die Schließung der Einzelstrangunterbrechungen in den so erhaltenen Doppelsträngen bieten die Möglichkeit, ein Netzwerk nach Wunsch herzustellen.
Beispiel: Die folgenden Konstruktionen sind durchgeführt worden, 1) eines doppelsträngigen DNA-Moleküls, das mit einem einzelsträngig herausragenden poly-C an einem Strang und einem herausragenden polyA an dem anderen Strang endet; 2) eines einzelsträngigen DNA-Moleküls, bestehend aus polyG-polyT-Segmenten (gleichlang mit den herausragenden polyG- und polyA-Strängen der Synthese Nr. 1). Hybridisierung dieser Sequenzen führt zu einem Molekül, das aus zwei doppelsträngigen Enden besteht sowie einer aus zwei DNA-Doppelsträngen gebildeten Schleife (Fig. 1). Die Komplexität des Musters kann nach Wunsch variiert werden. Die sich ergebenden elektrischen Leitungseigenschaften können hiermit in vorprogrammierter Weise festgelegt werden.
3. Definierte DNA-Länge oder Menge
DNA steht in bestimmten Mengen, Größen und Zusammensetzungen zur Verfügung, z. B. in Form von Plasmiden, viraler Genome oder synthetischer DNA. Diese Einheiten können für die Konstruktion von DNA-Elementen, wofür eine definierte Menge an DNA in einer definierten Zusammensetzung benötigt wird, benutzt werden. Durch eine an einen spezifischen Punkt gebundene Einheit lassen sich durch die darin enthaltene DNA wünschenswerte Eigenschaften, wie z. B. ein Kontaktpunkt, herstellen.
4. DNA-Proteinkomplexe
Spezifische Kombinationen von DNA-Sequenzen und DNA-Bindeproteinen können zur Konstruktion funktioneller Teile eines Netzwerks verwendet werden. Z. B. trägt das Pockenvirus-Genom ein Protein, das spezifisch an das Ende gebunden ist. Dieses Protein kann benutzt werden, um das terminale DNA-Fragment an eine Matrize zu binden. Ferner sind viele spezifisch bindende Regulatorproteine, wie lac-Repressor, λ-Repressor etc., bekannt. Alternativ können Polypeptide synthetisiert werden, die an bestimmte DNA-Sequenzen binden. Auch können modifizierte Nukleotide, die mit spezifischen Antikörpern binden, am Ende eines DNA-Moleküls eingebaut werden.
Spezifische Polypeptid-DNA-Komplexe können benutzt werden, um DNA-Fragmente z. B. auf eine Matrize oder an andere DNA-Moleküle zu fixieren. Zusätzlich oder alternativ können Antikörper benutzt werden, um DNA-Proteinkomplexe mit anderen Komponenten oder Oberflächen zu verbinden. Auch können DNA-Proteinkomplexe eingesetzt werden, um lokal die Eigenschaften der elektrischen Leitfähigkeit zu verändern.
5. Anwendung der RNA
Sequenzspezifische RNA kann in vitro auf programmierten DNA-Matrizen synthetisiert werden. Die Eigenschaften von RNA sind unterschiedlich von jenen der DNA. Ferner kann RNA durch intra-Strang-Hybridisierung jede gewünschte Sekundärstruktur annehmen, z. B. haarnadelähnliche Strukturen, und bietet damit zusätzliche Möglichkeiten, die elektrische Leitfähigkeit zu modulieren. Gemischte RNA-DNA-Netzwerke können auf einfache Weise konstruiert werden durch Programmierung der Reihenfolge der Hybridisierungs- (oder Synthese-)reaktionen, die für die Verbindungskonstruktion zwischen DWEP und DWIP verwendet wurden.
6. Beispiele Beispiel A
Vereinfachtes Protokoll für die physische Orientierung eines DNA-Doppelstranges, der als Matrize, Träger oder Maske für die Konstruktion eines Chips benutzt wird:
Schritt 1: Stelle einen DWIP her mit einem Mikromanipulator auf einer hydrophoben Oberfläche. Bringe mit Hilfe eines Mikromanipulators einen Mikrotropfen einer Lösung des λ-Repressors auf eine hydrophobe Oberfläche wie Polyethylen und lasse ihn anschließend eintrocknen.
Schritt 2: Stelle auf gleiche Weise wie bei Schritt 1 unter Benutzung einer E. coli-lac-Repressorlösung einen DWEP 50 µm vom DWIP entfernt her.
Schritt 3: Präpariere ein Plasmid-DNA-Molekül (Maniatis et al. 1982), das an einer Stelle den lac-Operator trägt und in einer Richtung, 165 kb entfernt, den Lambda-Operator.
Dadurch, daß beide Operatoren in jedem gewünschten Abstand innerhalb eines Plasmids integriert werden können, können DNA-Moleküle der erwünschten Länge mit endständigen Operatoren durch Standard-Rekombinant-DNA-Techniken produziert werden. Plasmide geringerer Länge können in E. coli repliziert werden. Größere Plasmide können auch als Minichromosomen in der Hefe Saccharomyces cerevisiae vermehrt werden.
Schritt 4: Behandle die hydrophobe Oberfläche mit einer Lösung dieser DNA. Die DNA wird selektiv und gerichtet an DWIP und DWEP binden.
Beispiel B
Für die Konstruktion kürzerer Verbindungen können Cosmidvektoren benutzt werden. Die Prozedur in Kürze: Linealisiere die Cosmidvektor-DNA mit einem geeigneten Restriktionsenzym. Ligiere mit DNA von etwa 49 Kilobase (ungefähr 15 µm), die an einem Ende einen lac-Operator und am anderen Ende einen λ-Operator enthält. Die Konstruktion dieses DNA-Moleküls erfolgt durch Standard-Rekombinant-DNA-Techniken (Maniatis et al. 1982). Inkubiere die ligierte DNA in vitro mit einer λ-Packaging-Mixtur, transformiere E. coli, selektiere und amplifiziere die DNA mit den üblichen Techniken. Benutze diese DNA nach dem in Beispiel A beschriebenen Schema, beginnend mit Schritt 3. Der Abstand zwischen DWIP und DWEP beträgt 15 µm.
Beispiel C
Für längere Verbindungen zwischen DWIP und DWEP kann das E. coli-Genom mit spezifisch inserierter lysogener Phagen-DNA oder können durch homologe Rekombination im Chromosom inserierte spezifische DNA-Sequenzen benutzt werden. Längere definierte DNA-Abschnitte können auch in der Hefe Saccharomyces cerevisiae durch die Nutzung von Plasmiden (Sherman et al. 1986) oder artifiziellen Chromosomen konstruiert und produziert werden (Burke et al. 1987). Solche DNA-Moleküle tragen jeweils die λ-Operator- und die lac-Operator-DNA-Sequenz in jedem erwünschten Abstand innerhalb der genutzten DNA-Elemente. Die DNA-Moleküle können ein breites Spektrum an Abständen zwischen DWIP und DWEP überbrücken, von einigen wenigen Nukleotiden bis mehr als 1 mm (die Länge des linealisierten E. coli-Chromosoms) oder mehrere mm (die Länge von Hefechromosomen). Das einzige Limit wird durch die Zerbrechlichkeit der langen DNA-Moleküle gesetzt. Benutze die hergestellten DNA-Moleküle wie in Beispiel A, beginnend mit Schritt 3.
Literatur
Burke D. T., Carle G. F. and M. V. Olsen., Science, 236 (806-812), 1987.
Maniatis T., Fritsch E. F. und J. Sambrook. Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratories, USA, 1982.
Sherman F., Fink G. R. and J. B. Hicks. Laboratory Course Manual for Methods in Yeast Genetics, Cold Spring Harbor Laboratories, USA, 1986.
II Die Umsetzung des Nukleinsäure- oder Nukleinsäure-Proteinnetzwerks in ein elektrizität-leitendes Netzwerk
Die DNA Netzwerke können als Matrize oder Gerüst benutzt werden, um Replikas zu produzieren, die aus anderen Materialien bestehen. Die Replikas können in Form von MOSFETs ausgelegt werden (metal oxid semiconductor field effect transistors, Metalloxydhalbleiterfeldeffekttransistor), MESFETs (metal semiconductor FETs; Metallhalbleiter-FETs) und MODFETs (modulation FETs; Modulierungs-FETs) durch Ablagerung verschiedener Materialien in bestimmter Abfolge.
  • A) Anwendung der shadowing-Technik (Schattierungstechnik) zur Ablagerung des Leiters. Das Bauprinzip (siehe Fig. 2) basiert auf der Konstruktion eines molekularen Nukleinsäure-Protein-Netzwerks auf einem Träger A oder einem Substrat A mit definierten chemischen Eigenschaften, die die Durchführung folgender Schritte erlauben:
    • 1) Beschatte (unter niedrigem Winkel) das Netzwerk mit Substanz B unter Benutzung der Techniken, die heute für die Präparierung von DNA für Elektronenmikroskopie eingesetzt werden, die zu einem nicht abgedeckten Streifen entlang der DNA führen.
    • 2) a. Lagere dem Träger eine Schicht der Substanz C, z. B. doped Gallium Arsenide, doped Silicium oder einen ähnlichen Leiter, durch metalloorganische chemische Verdampfung (MOCVD, metallo organic chemical vapour deposition) auf.
    • b. Lagere Substanz C durch elektrische Ablagerung nur auf dem Streifen entlang des Nukleinsäure-Netzwerks.
    • 3) Entferne Substanz B und die DNA, so daß das Leiternetz frei bleibt.
    • 4) Lagere einen zweiten Leiter D, z. B. Gallium Arsenide, auf.
    • 5) Falls erwünscht, entferne Substanz A und ersetze sie durch einen anderen Träger, Material E.
      Dieses Verfahren führt zum Austausch des molekularen Nukleinsäureprotein-Netzwerks mit dem Leiter C, eingebettet in Leiter D.
  • B) Alternativ kann der Leiter C direkt auf dem Nukleinsäure-Netzwerk abgelagert werden. Fahre weiter fort mit Schritt 5.
III Photolithographische Reproduktionsmethode, wobei das DNA-Netzwerk als Maske benutzt wird
In der Standardprozedur der Produktion von mikroelektronischen Netzwerken werden die Netzwerke in vergrößerter Form angefertigt und dann photografisch verkleinert auf das Chip gebracht. In diesen Standardprozeduren wird ein Netzwerk entworfen und benutzt, um ein Set von Master-Masken in Endgröße herzustellen, die dann auf den Chips reproduziert werden. Die DNA-Netzwerke können direkt als Master-Maske für die Produktion der mikroelektronischen Netzwerke verwendet werden, wodurch Größe-reduzierende Zwischenschritte vermieden werden. Das heißt, die DNA- oder die DNA-Protein-Netzwerke können direkt beim Schritt der photolithographischen Prozedur als Fotomasken verwendet werden, wobei die oxidierte Wabe (Silicondioxid oder ähnliche Verbindungen), mit einer Schicht lichtempfindlichen Materials bedeckt, dem UV-Licht durch die Photomaske ausgesetzt wird (in diesem Fall durch die DNA). Auch hier kann das Netzwerk durch Ablagerung oder Umwandlung, wie unter II beschrieben, in einem Netzwerk aus einem anderen Material überführt werden.

Claims (12)

1. Die Anwendung von polymeren doppel- oder einzelsträngigen Nukleinsäuren, um elektronische Netzwerke (DNA-chips) zu konstruieren und zu produzieren.
2. Die Anwendung von DNA- und/oder RNA-Doppel- oder Einzelsträngen zur Konstruktion und zur Produktion elektronischer Netzwerke.
3. Verfahren für Entwurf, Konstruktion und Produktion elektronischer Netzwerke unter Benutzung von doppel- oder einzelsträngiger DNA, doppel- oder einzelsträngiger RNA und spezifisch DSNA-bindender Proteine, jede Substanz einzeln oder in Kombination.
4. Verfahren, das DNA- und RNA-Synthese und Modifizierungsreaktionen für die Konstruktion und Produktion eines Netzwerks benutzt, das (1) eine definierte Orientierung (Anfangs- und Endpunkt) hat, (2) spezifische einzelsträngige Regionen, die durch Position, Länge und Sequenzzusammensetzung definiert werden, und (3) mehrfach verzweigte Stellen sowie (4) spezifische Verbindungsstellen.
5. Verfahren, das die Abfolge von DNA- oder RNA-Synthesereaktionen und die Abfolge der Einbauten von vorsynthetisierten Nukleinsäurekomponenten zur Konstruktion elektronischer Netzwerke benutzt.
6. Verfahren, das die in den Claims 3-5 beschriebenen Materialien für die Konstruktion und Produktion von Chips für die Mikroelektronik verwendet.
7. Verfahren, das DNA und/oder RNA, komplexiert mit Liganden wie Metall-Ionen, Interkalatoren oder Proteinen, als elektrischen Leiter benutzt.
8. Verfahren, das vorgefertigte Elemente benutzt zur Konstruktion spezifischer Teile des Netzwerkes und zum Einbau in das Netzwerk durch spezifische Hybridisierung.
9. Verfahren, das spezifische Hybridisierung zum Einbau von vorgefertigten Netzwerken in definierten Verbindungspunkten anwendet.
10. Verfahren, das eines der in den Claims 1-9 beschriebenen Netzwerke aus DNA, DNA/Protein, DNA/RNA oder DNA/RNA/Protein zur Konstruktion einer Matrize oder eines Gerüsts für die Produktion von Netzwerken benutzt, die aus anderen Materialien bestehen, vorzugsweise aus Gallium Arsenide oder n-doped Gallium Arsenide.
11. Verfahren, das eines der in den Claims 1-9 beschriebenen Netzwerke aus DNA, DNA-Protein, DNA/RNA oder DNA/RNA/Protein als Maske oder für die Konstruktion einer Maske zur Produktion von Computerchips durch photolithographische Prozeduren benutzt.
12. Verfahren, das spezifische Komplexe von DNA oder DNA/RNA oder DNA/RNA/Proteinen oder DNA/Proteinen oder RNA/Proteinen zur Konstruktion von Netzwerken benutzt, die als Masken für die Produktion von Computerchips durch photolithographische Prozeduren gebraucht werden.
DE3924454A 1989-07-24 1989-07-24 Die anwendung von dna und dna-technologie fuer die konstruktion von netzwerken zur verwendung in der chip-konstruktion und chip-produktion (dna chips) Granted DE3924454A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE3924454A DE3924454A1 (de) 1989-07-24 1989-07-24 Die anwendung von dna und dna-technologie fuer die konstruktion von netzwerken zur verwendung in der chip-konstruktion und chip-produktion (dna chips)
JP2196050A JPH03142882A (ja) 1989-07-24 1990-07-24 Dnaチップ
EP90123745A EP0491059A1 (de) 1989-07-24 1990-12-10 Chip-Herstellungsverfahren mit DNA-Technologie
US08/532,542 US5561071A (en) 1989-07-24 1995-09-25 DNA and DNA technology for the construction of networks to be used in chip construction and chip production (DNA-chips)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3924454A DE3924454A1 (de) 1989-07-24 1989-07-24 Die anwendung von dna und dna-technologie fuer die konstruktion von netzwerken zur verwendung in der chip-konstruktion und chip-produktion (dna chips)

Publications (2)

Publication Number Publication Date
DE3924454A1 true DE3924454A1 (de) 1991-02-07
DE3924454C2 DE3924454C2 (de) 1992-02-27

Family

ID=6385712

Family Applications (1)

Application Number Title Priority Date Filing Date
DE3924454A Granted DE3924454A1 (de) 1989-07-24 1989-07-24 Die anwendung von dna und dna-technologie fuer die konstruktion von netzwerken zur verwendung in der chip-konstruktion und chip-produktion (dna chips)

Country Status (4)

Country Link
US (1) US5561071A (de)
EP (1) EP0491059A1 (de)
JP (1) JPH03142882A (de)
DE (1) DE3924454A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491059A1 (de) * 1989-07-24 1992-06-24 Cornelis P. Prof. Dr. Hollenberg Chip-Herstellungsverfahren mit DNA-Technologie
EP0881228A2 (de) * 1997-05-30 1998-12-02 Roche Diagnostics GmbH 2- Oder 3-Dimensionale geometrische Struktur
DE19852543A1 (de) * 1998-11-11 2000-05-25 Inst Physikalische Hochtech Ev Verfahren zur Herstellung von Nanometer-Strukturen, insbesondere für Bauelemente der Nanoelektronik
WO2001094640A2 (en) * 2000-06-09 2001-12-13 Purdue Research Foundation Bio-mediated assembly of micrometer-scale and nanometer-scale structures
DE19758533B4 (de) * 1997-12-04 2005-09-29 Micronas Gmbh Verfahren zum Strukturieren einer Oberflächenschicht

Families Citing this family (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US6309822B1 (en) 1989-06-07 2001-10-30 Affymetrix, Inc. Method for comparing copy number of nucleic acid sequences
US6406844B1 (en) 1989-06-07 2002-06-18 Affymetrix, Inc. Very large scale immobilized polymer synthesis
US6379895B1 (en) 1989-06-07 2002-04-30 Affymetrix, Inc. Photolithographic and other means for manufacturing arrays
US6346413B1 (en) 1989-06-07 2002-02-12 Affymetrix, Inc. Polymer arrays
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5800992A (en) 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5424186A (en) 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US6551784B2 (en) 1989-06-07 2003-04-22 Affymetrix Inc Method of comparing nucleic acid sequences
US6506558B1 (en) 1990-03-07 2003-01-14 Affymetrix Inc. Very large scale immobilized polymer synthesis
EP1231282A3 (de) 1990-12-06 2005-05-18 Affymetrix, Inc. Verfahren und Zussamensetzungen für den Nachweis von Polymeren
US6468740B1 (en) 1992-11-05 2002-10-22 Affymetrix, Inc. Cyclic and substituted immobilized molecular synthesis
US6430511B1 (en) * 1999-01-21 2002-08-06 University Of South Carolina Molecular computer
JPH09506629A (ja) * 1993-12-17 1997-06-30 キュビッチョッティ,ロジャー・エス ヌクレオチドに支配された生体分子および多分子薬物の集合並びに装置
US6060327A (en) * 1997-05-14 2000-05-09 Keensense, Inc. Molecular wire injection sensors
US7220550B2 (en) * 1997-05-14 2007-05-22 Keensense, Inc. Molecular wire injection sensors
US6699667B2 (en) 1997-05-14 2004-03-02 Keensense, Inc. Molecular wire injection sensors
IL121312A (en) * 1997-07-14 2001-09-13 Technion Res & Dev Foundation Microelectronic components, their manufacture and electronic networks containing them
DE19741715A1 (de) 1997-09-22 1999-03-25 Hoechst Ag Pentopyranosyl-Nucleosid, seine Herstellung und Verwendung
DE19741716A1 (de) * 1997-09-22 1999-03-25 Hoechst Ag Adressierbares modulares Erkennungssystem, seine Herstellung und Verwendung
JP2002508386A (ja) 1997-12-16 2002-03-19 ザ・ユニバーシティー・オブ・サスカチワン・テクノロジーズ・インコーポレーテッド 導電性金属含有核酸
US6087102A (en) * 1998-01-07 2000-07-11 Clontech Laboratories, Inc. Polymeric arrays and methods for their use in binding assays
US6893877B2 (en) 1998-01-12 2005-05-17 Massachusetts Institute Of Technology Methods for screening substances in a microwell array
US6150102A (en) * 1998-02-03 2000-11-21 Lucent Technologies Inc. Method of generating nucleic acid oligomers of known composition
US20030203394A1 (en) * 1998-05-04 2003-10-30 Yoav Eichen Detection of a target in a sample
EP1080229A4 (de) * 1998-05-20 2005-07-13 Nano-Technologies L Integrated Chemisch zusammengesetzte vorrichtung im nano-masstab
US6664103B2 (en) * 1998-05-20 2003-12-16 Integrated Nano-Technologies, Llc Chemically assembled nano-scale circuit elements
AU5677699A (en) * 1998-08-21 2000-03-14 Affymetrix, Inc. Expression monitoring for human cytomegalovirus (hcmv) infection
US6461812B2 (en) * 1998-09-09 2002-10-08 Agilent Technologies, Inc. Method and multiple reservoir apparatus for fabrication of biomolecular arrays
US6475440B1 (en) 1998-09-16 2002-11-05 Clontech Laboratories, Inc. Applicator for use in deposition of fluid samples onto a substrate surface
IL126776A (en) 1998-10-27 2001-04-30 Technion Res & Dev Foundation A method of investing gold
US6545264B1 (en) 1998-10-30 2003-04-08 Affymetrix, Inc. Systems and methods for high performance scanning
JP2002528118A (ja) * 1998-11-04 2002-09-03 ジェンセット ヒト脂肪細胞に特異的なAPM1のゲノム配列および全cDNA配列ならびにそのバイアレリックマーカー
US6187540B1 (en) 1998-11-09 2001-02-13 Identigene, Inc. Method of newborn identification and tracking
US7160869B2 (en) * 1998-12-16 2007-01-09 University Of Saskatchewan Biologically active metal-containing nucleic acids
US20030180789A1 (en) * 1998-12-30 2003-09-25 Dale Roderic M.K. Arrays with modified oligonucleotide and polynucleotide compositions
US6087112A (en) * 1998-12-30 2000-07-11 Oligos Etc. Inc. Arrays with modified oligonucleotide and polynucleotide compositions
US20040111219A1 (en) * 1999-02-22 2004-06-10 Sandeep Gulati Active interferometric signal analysis in software
US6245511B1 (en) 1999-02-22 2001-06-12 Vialogy Corp Method and apparatus for exponentially convergent therapy effectiveness monitoring using DNA microarray based viral load measurements
US6136541A (en) * 1999-02-22 2000-10-24 Vialogy Corporation Method and apparatus for analyzing hybridized biochip patterns using resonance interactions employing quantum expressor functions
BR0009164A (pt) 1999-03-19 2001-12-26 Genencor Int Placa de teste de múltiplos furos vazados paraseparação de alto desempenho
US20030096321A1 (en) * 1999-05-19 2003-05-22 Jose Remacle Method for the identification and/or the quantification of a target compound obtained from a biological sample upon chips
US6346423B1 (en) 1999-07-16 2002-02-12 Agilent Technologies, Inc. Methods and compositions for producing biopolymeric arrays
US6171797B1 (en) 1999-10-20 2001-01-09 Agilent Technologies Inc. Methods of making polymeric arrays
US7364920B2 (en) * 1999-10-27 2008-04-29 Technion Research And Development Foundation Ltd. Method for gold deposition
US20020151040A1 (en) 2000-02-18 2002-10-17 Matthew O' Keefe Apparatus and methods for parallel processing of microvolume liquid reactions
US6596490B2 (en) 2000-07-14 2003-07-22 Applied Gene Technologies, Inc. Nucleic acid hairpin probes and uses thereof
US6380377B1 (en) 2000-07-14 2002-04-30 Applied Gene Technologies, Inc. Nucleic acid hairpin probes and uses thereof
EP1323190A2 (de) * 2000-07-20 2003-07-02 President And Fellows of Harvard College Selbstmontierende elektrische netzwerke
AU2001285219A1 (en) * 2000-08-24 2002-03-04 Aviva Biosciences Corporation Methods and compositions for identifying nucleic acid molecules using nucleolytic activities and hybridization
US6900013B1 (en) 2000-08-25 2005-05-31 Aviva Biosciences Corporation Methods and compositions for identifying nucleic acid molecules using nucleolytic activities and hybridization
US6849409B2 (en) * 2000-10-16 2005-02-01 Axxima Pharmaceuticals Ag Cellular kinases involved in Cytomegalovirus infection and their inhibition
JPWO2002073485A1 (ja) * 2001-02-28 2004-07-02 ハタインターナショナル株式会社 医療サービス提供システム
US6596489B2 (en) 2001-03-30 2003-07-22 Applied Gene Technologies Methods and compositions for analyzing nucleotide sequence mismatches using RNase H
AU2008203035B2 (en) * 2001-05-17 2010-11-04 Integrated Nano-Technologies, Llc Chemically assembled nano-scale circuit elements
CA2447089A1 (en) * 2001-05-24 2002-11-28 University Of Saskatchewan Technologies Inc. Nucleic acid circuit elements and methods
DE10134891A1 (de) * 2001-07-18 2003-02-06 Daimler Chrysler Ag Elektrische Leitung
US20030044798A1 (en) * 2001-08-31 2003-03-06 Lefkowitz Steven M. Methods for generating ligand arrays via deposition of ligands onto olefin displaying substrates, and arrays produced thereby
US6974671B1 (en) 2001-09-12 2005-12-13 Salk Institute For Biological Studies Methods for indentifying compounds that modulate gluconeogenesis through the binding of CREB to the PGC-1 promoter
WO2003024923A1 (en) * 2001-09-14 2003-03-27 Axys Pharmaceuticals, Inc. Sulfonamide compounds as protease inhibitors
EP1300892A1 (de) * 2001-10-04 2003-04-09 CHEN Boris Integrierte Schaltung auf DNA-Basis
WO2003042395A2 (en) * 2001-11-14 2003-05-22 Yeda Research And Development Co.Ltd. Programmable and autonomous computing machine made of biomolecules
WO2003060995A2 (de) * 2002-01-18 2003-07-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verbundvorrichtung und verfahren zur herstellung derselben
US20040070426A1 (en) * 2002-02-21 2004-04-15 Stojanovic Milan N. Oligonucleotide - based logic gates and molecular networks
AU2003213250A1 (en) * 2002-02-21 2003-09-09 The Trustees Of Columbia University In The City Of New York Oligonucleotide-based logic gates and molecular networks
US20030186302A1 (en) * 2002-03-29 2003-10-02 Yixin Wang Colorectal cancer diagnostics
US20030198966A1 (en) * 2002-04-19 2003-10-23 Stojanovic Milan N. Displacement assay for detection of small molecules
CA2484743A1 (en) 2002-05-08 2003-11-20 Northwest Biotherapeutics, Inc. Quality assays for antigen presenting cells
US20030219755A1 (en) * 2002-05-24 2003-11-27 Nanibhushan Dattagupta Compositions and methods for performing hybridization assays using target enhanced signal amplification (TESA)
US20040009574A1 (en) * 2002-07-09 2004-01-15 Nanibhushan Dattagupta Compositions and methods for detecting streptococcus agalactiae capsular polysaccharide synthesis genes
US20040009482A1 (en) * 2002-07-09 2004-01-15 Nanibhushan Dattagupta Compositions and methods for detecting streptococcus agalactiae surface immunogenic protein genes
US8277753B2 (en) 2002-08-23 2012-10-02 Life Technologies Corporation Microfluidic transfer pin
CA2521999A1 (en) 2002-12-20 2004-09-02 Biotrove, Inc. Assay apparatus and method using microfluidic arrays
US20040157220A1 (en) 2003-02-10 2004-08-12 Purnima Kurnool Methods and apparatus for sample tracking
US20040203007A1 (en) * 2003-04-14 2004-10-14 Stojanovic Milan N. Cross reactive arrays of three-way junction sensors for steroid determination
US7470516B2 (en) * 2003-04-14 2008-12-30 The Trustees Of Columbia University In The City Of New York Cross reactive arrays of three-way junction sensors for steroid determination
AU2004235298A1 (en) * 2003-04-25 2004-11-11 Janssen Pharmaceutica N.V. Preservation of RNA in a biological sample
CN100480397C (zh) * 2003-05-09 2009-04-22 博奥生物有限公司 用于检测sars病毒的生物芯片
US20040259100A1 (en) 2003-06-20 2004-12-23 Illumina, Inc. Methods and compositions for whole genome amplification and genotyping
CN100494399C (zh) * 2003-06-30 2009-06-03 清华大学 一种基于dna芯片的基因分型方法及其应用
US20050186577A1 (en) 2004-02-20 2005-08-25 Yixin Wang Breast cancer prognostics
WO2005082110A2 (en) * 2004-02-26 2005-09-09 Illumina Inc. Haplotype markers for diagnosing susceptibility to immunological conditions
AU2005222618A1 (en) 2004-03-12 2005-09-29 Biotrove, Inc. Nanoliter array loading
US20050244984A1 (en) * 2004-04-28 2005-11-03 Parker Russell A Methods and compositions for calibrating chemical array readers
EP2290071B1 (de) 2004-05-28 2014-12-31 Asuragen, Inc. Verfahren und Zusammensetzungen mit MicroRNA
US7702466B1 (en) 2004-06-29 2010-04-20 Illumina, Inc. Systems and methods for selection of nucleic acid sequence probes
US20090087848A1 (en) * 2004-08-18 2009-04-02 Abbott Molecular, Inc. Determining segmental aneusomy in large target arrays using a computer system
EP1789786A4 (de) * 2004-08-18 2008-02-13 Abbott Molecular Inc Bestimmung der qualität von daten und/oder der segmentalen aneusomie unter verwendung eines computersystems
EP1792263A2 (de) * 2004-09-02 2007-06-06 Vialogy Corporation Erkennung von interessensereignissen unter verwendung von quantenresonanzinterferometrie
EP2281888B1 (de) 2004-11-12 2015-01-07 Asuragen, Inc. Verfahren und Zusammensetzungen, die miRNA und miRNA-inhibitorischen Molekülen verbunden sind
BRPI0518734A2 (pt) * 2004-11-30 2008-12-02 Veridex Llc prognàstico de cÂncer de pulmço
WO2006138284A2 (en) 2005-06-15 2006-12-28 Callida Genomics, Inc. Nucleic acid analysis by random mixtures of non-overlapping fragments
US7745594B2 (en) * 2005-07-21 2010-06-29 California Institute Of Technology Nucleic acid-based logic circuits
DK2402758T3 (da) 2005-09-19 2014-11-03 Janssen Diagnostics Llc Fremgangsmåder og anvendelser til identificering af oprindelsen af et karcinom med ukendt primær oprindelse
US20070202515A1 (en) * 2005-10-12 2007-08-30 Pathologica, Llc. Promac signature application
US7329860B2 (en) 2005-11-23 2008-02-12 Illumina, Inc. Confocal imaging methods and apparatus
TW200745551A (en) * 2006-02-07 2007-12-16 Antara Biosciences Inc Device and methods for detecting and quantifying one or more target agents
JP2009529878A (ja) * 2006-03-13 2009-08-27 ベリデックス・エルエルシー 原発細胞の増殖
US7914988B1 (en) * 2006-03-31 2011-03-29 Illumina, Inc. Gene expression profiles to predict relapse of prostate cancer
EP2145001A2 (de) 2006-09-19 2010-01-20 Asuragen, Inc. Von mir-15, mir-26, mir -31,mir -145, mir-147, mir-188, mir-215, mir-216 mir-331, mmu-mir-292-3p regulierte gene und stoffwechselwege als ziele für einen therapeutischen eingriff
AU2007299828C1 (en) 2006-09-19 2014-07-17 Interpace Diagnostics, Llc MicroRNAs differentially expressed in pancreatic diseases and uses thereof
EP1912067A1 (de) * 2006-10-12 2008-04-16 Eppendorf Array Technologies S.A. Verfahren zur Quantifizierung eines Analyten in einer biologischen Probe durch Microarray-Chips
DE102006035388A1 (de) * 2006-11-02 2008-05-15 Signature Diagnostics Ag Prognostische Marker für die Klassifizierung von Kolonkarzinomen basierend auf Expressionsprofilen von biologischen Proben
DE102006035393A1 (de) 2006-11-02 2008-05-15 Signature Diagnostics Ag Prognostische Marker für die Klassifizierung des dreijährigen progessionsfreien Überlebens von Patienten mit Kolonkarzinomen basierend auf Expressionsprofilen von biologischen Proben
DE102006035392A1 (de) 2006-11-02 2008-10-16 Signature Diagnostics Ag Prognostische Marker für die Vorhersage des fünfjährigen progressionsfreien Überlebens von Patienten mit Kolonkarzinomen basierend auf Expressionsprofilen von biologischen Proben
US7888069B2 (en) * 2006-12-22 2011-02-15 Dow Agrosciences Llc Plant-made west nile virus (WNV) vaccines, vectors and plant codon optimized sequences
EP2195451A4 (de) * 2007-08-28 2011-01-19 Merck Sharp & Dohme Expressionsprofile von biomarkergenen bei notch-vermittelten krebserkrankungen
US20100266558A1 (en) * 2007-12-18 2010-10-21 Dov Zipori Method and assay for glycosylation pattern detection related to cell state of stem cells
US20090192045A1 (en) * 2008-01-22 2009-07-30 Yuqiu Jiang Molecular staging of stage ii and iii colon cancer and prognosis
US8258111B2 (en) 2008-05-08 2012-09-04 The Johns Hopkins University Compositions and methods related to miRNA modulation of neovascularization or angiogenesis
US20110111417A1 (en) 2008-05-14 2011-05-12 Millennium Pharmaceuticals, Inc. Methods and kits for monitoring the effects of immunomodulators on adaptive immunity
CA2742324A1 (en) 2008-10-30 2010-06-03 Caris Life Sciences Luxembourg Holdings, S.A.R.L. Methods for assessing rna patterns
EP2350320A4 (de) 2008-11-12 2012-11-14 Caris Life Sciences Luxembourg Holdings Verfahren und systeme zur verwendung von exosomen zur bestimmung von phänotypen
WO2010125566A2 (en) 2009-04-27 2010-11-04 Technion Research And Development Foundation Ltd. Markers for cancer detection
US9771618B2 (en) * 2009-08-19 2017-09-26 Bioarray Genetics, Inc. Methods for treating breast cancer
CA2782284A1 (en) 2009-11-30 2011-06-03 Caris Life Sciences Luxembourg Holdings, S.A.R.L. Methods and systems for isolating, storing, and analyzing vesicles
US20140148348A1 (en) 2010-01-13 2014-05-29 Christine Kuslich Dectection of gastrointestinal disorders
CA2791905A1 (en) 2010-03-01 2011-09-09 Caris Life Sciences Luxembourg Holdings, S.A.R.L. Biomarkers for theranostics
EP3214174B1 (de) 2010-03-04 2019-10-16 InteRNA Technologies B.V. Mirna-molekül, das über seine quelle definiert ist, und seine diagnostischen und therapeutischen verwendungen bei mit emt assoziierten krankheiten
JP2013526852A (ja) 2010-04-06 2013-06-27 カリス ライフ サイエンシズ ルクセンブルク ホールディングス 疾患に対する循環バイオマーカー
EP2388336A1 (de) 2010-05-19 2011-11-23 Signature Diagnostics AG Verfahren und Kits zur Diagnostizierung eines kolorektalen Karzinoms
WO2011146725A1 (en) 2010-05-19 2011-11-24 Bayer Healthcare Llc Biomarkers for a multikinase inhibitor
US9353412B2 (en) 2010-06-18 2016-05-31 Illumina, Inc. Conformational probes and methods for sequencing nucleic acids
AU2011274619B2 (en) 2010-07-06 2016-11-10 Interna Technologies Bv miRNA and its diagnostic and therapeutic uses in diseases or conditions associated with melanoma, or in diseases or conditions associated with activated BRAF pathway
EP2640851A2 (de) 2010-11-17 2013-09-25 Asuragen, Inc. Mirna als biomarker zur unterscheidung zwischen benignen und malignen neoplasien der schilddrüse
EP2474617A1 (de) 2011-01-11 2012-07-11 InteRNA Technologies BV MIR zur Behandlung von Neoangiogenese
CA2828532A1 (en) 2011-02-28 2012-11-22 University Of Iowa Research Foundation Anti-mullerian hormone changes in pregnancy and prediction of adverse pregnancy outcomes and gender
EP2527459A1 (de) 2011-05-02 2012-11-28 Rheinische Friedrich-Wilhelms-Universität Bonn Blutbasierte Gendetektion von nichtkleinzelligem Lungenkrebs
EP2520661A1 (de) 2011-05-02 2012-11-07 Rheinische Friedrich-Wilhelms-Universität Bonn Blutbasierte Genexpressionssignaturen bei Lungenkrebs
EP2710147A1 (de) 2011-05-18 2014-03-26 Rheinische Friedrich-Wilhelms-Universität Bonn Molekulare analyse von akuter myeloischer leukämie
EP2524967A1 (de) 2011-05-19 2012-11-21 Signature Diagnostics AG Verfahren und Kits zur Diagnostizierung eines kolorektalen Karzinoms
EP2524968A1 (de) 2011-05-19 2012-11-21 Signature Diagnostics AG Verfahren und Kits zur Diagnostizierung eines kolorektalen Karzinoms
US8778848B2 (en) 2011-06-09 2014-07-15 Illumina, Inc. Patterned flow-cells useful for nucleic acid analysis
US9644241B2 (en) 2011-09-13 2017-05-09 Interpace Diagnostics, Llc Methods and compositions involving miR-135B for distinguishing pancreatic cancer from benign pancreatic disease
US20130157884A1 (en) 2011-10-26 2013-06-20 Asuragen, Inc. Methods and compositions involving mirna expression levels for distinguishing pancreatic cysts
EP2771487A1 (de) 2011-10-27 2014-09-03 Asuragen, INC. Mirnas als diagnostische biomarker zur unterscheidung gutartiger von bösartigen tumoren in der schilddrüse
US8778849B2 (en) 2011-10-28 2014-07-15 Illumina, Inc. Microarray fabrication system and method
CN104302180B (zh) 2011-10-28 2017-05-17 米伦纽姆医药公司 对nedd8活化酶(nae)抑制剂的反应的生物标记
EP2776043B1 (de) 2011-11-11 2018-02-21 Millennium Pharmaceuticals, Inc. Biomarker der reaktion auf proteasomenhemmer
US20150184246A1 (en) 2011-11-11 2015-07-02 Millennium Pharmaceuticals, Inc. Biomarkers of response to proteasome inhibitors
CA2856107C (en) 2011-11-18 2022-10-18 Memorial Sloan-Kettering Cancer Center 2-hydroxyglutarate as a biomarker for chronic hypoxia
US8748097B1 (en) 2011-12-02 2014-06-10 President And Fellows Of Harvard College Identification of agents for treating calcium disorders and uses thereof
WO2013087789A1 (en) 2011-12-13 2013-06-20 Glykos Finland Ltd. Antibody isoform arrays and methods thereof
AU2013222414B2 (en) 2012-02-21 2018-02-15 Cytonics Corporation Systems, compositions, and methods for transplantation
US9012022B2 (en) 2012-06-08 2015-04-21 Illumina, Inc. Polymer coatings
WO2014007623A1 (en) 2012-07-03 2014-01-09 Interna Technologies B.V. Diagnostic portfolio and its uses
WO2014055543A2 (en) 2012-10-01 2014-04-10 Millennium Pharmaceuticals, Inc. Biomarkers and methods to predict response to inhibitors and uses thereof
US20140100124A1 (en) 2012-10-04 2014-04-10 Asuragen, Inc. Diagnostic mirnas for differential diagnosis of incidental pancreatic cystic lesions
AU2013352568B2 (en) 2012-11-28 2019-09-19 Merck Sharp & Dohme Llc Compositions and methods for treating cancer
EP2971149B1 (de) 2013-03-15 2018-05-09 Baylor Research Institute Marker für mit colitis ulcerosa (uc) assoziierten kolorektalen neoplasien
JP6333297B2 (ja) 2013-03-15 2018-05-30 イルミナ ケンブリッジ リミテッド 修飾ヌクレオシドまたは修飾ヌクレオチド
WO2014144666A2 (en) 2013-03-15 2014-09-18 The University Of Chicago Methods and compositions related to t-cell activity
CA2907377A1 (en) 2013-03-15 2014-09-18 Baylor Research Institute Tissue and blood-based mirna biomarkers for the diagnosis, prognosis and metastasis-predictive potential in colorectal cancer
EP3919624A3 (de) 2013-07-01 2021-12-29 Illumina, Inc. Katalysatorfreie oberflächenfunktionalisierung und polymerimmobilisierung
WO2015031654A2 (en) 2013-08-28 2015-03-05 Cytonics Corporation Systems, compositions, and methods for transplantation and treating conditions
WO2015051110A1 (en) 2013-10-03 2015-04-09 Oklahoma Medical Research Foundation Biomarkers for systemic lupus erythematosus disease activity, and intensity and flare
US20160304969A1 (en) 2013-12-17 2016-10-20 Merck Sharp & Dohme Corp. Ifn-gamma gene signature biomarkers of tumor response to pd-1 antagonists
CN114089597A (zh) 2013-12-19 2022-02-25 Illumina公司 包括纳米图案化表面的基底及其制备方法
WO2015109234A1 (en) 2014-01-16 2015-07-23 Illumina, Inc. Gene expression panel for prognosis of prostate cancer recurrence
GB201414098D0 (en) 2014-08-08 2014-09-24 Illumina Cambridge Ltd Modified nucleotide linkers
EP3183577B1 (de) 2014-08-21 2020-08-19 Illumina Cambridge Limited Reversible oberflächenfunktionalisierung
CN114805710B (zh) 2014-10-31 2023-11-17 伊鲁米纳剑桥有限公司 聚合物以及dna共聚物涂层
SG11201704660YA (en) 2014-12-08 2017-07-28 Berg Llc Use of markers including filamin a in the diagnosis and treatment of prostate cancer
JP2018505658A (ja) 2014-12-09 2018-03-01 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. Pd−1アンタゴニストに対する応答の遺伝子シグネチャーバイオマーカーを得るための系および方法
US11326211B2 (en) 2015-04-17 2022-05-10 Merck Sharp & Dohme Corp. Blood-based biomarkers of tumor sensitivity to PD-1 antagonists
ES2945607T3 (es) 2015-07-17 2023-07-04 Illumina Inc Láminas de polímero para aplicaciones de secuenciación
US10900076B2 (en) 2016-05-18 2021-01-26 Illumina, Inc. Self assembled patterning using patterned hydrophobic surfaces
US20200185063A1 (en) 2016-06-05 2020-06-11 Berg Llc Systems and methods for patient stratification and identification of potential biomarkers
US20190390278A1 (en) 2017-01-26 2019-12-26 Oklahoma Medical Research Foundation Biomarkers for systemic lupus erythematosus disease activity, and intensity and flare
CA3057157A1 (en) 2017-04-28 2018-11-01 Merck Sharp & Dohme Corp. Biomarkers for cancer therapeutics
WO2018213803A1 (en) 2017-05-19 2018-11-22 Neon Therapeutics, Inc. Immunogenic neoantigen identification
CN111566212A (zh) 2017-11-03 2020-08-21 因特尔纳技术有限公司 miRNA分子,等同物,安塔够妙或其来源用于治疗和/或诊断与神经元缺陷相关的病症和/或疾病或用于神经元生成和/或再生
US20200377958A1 (en) 2017-12-01 2020-12-03 Millennium Pharmaceuticals, Inc. Biomarkers and methods for treatment with nae inhibitors
CA3116539C (en) 2018-10-18 2023-10-03 Oklahoma Medical Research Foundation Biomarkers for a systemic lupus erythematosus (sle) disease activity immune index that characterizes disease activity
US11293061B2 (en) 2018-12-26 2022-04-05 Illumina Cambridge Limited Sequencing methods using nucleotides with 3′ AOM blocking group
US11421271B2 (en) 2019-03-28 2022-08-23 Illumina Cambridge Limited Methods and compositions for nucleic acid sequencing using photoswitchable labels
CN113924085A (zh) 2019-04-12 2022-01-11 加利福尼亚大学董事会 用于增加肌肉量和氧化代谢的组合物和方法
SG11202111824UA (en) 2019-04-30 2021-11-29 Larimar Therapeutics Inc Frataxin-sensitive markers for determining effectiveness of frataxin replacement therapy
JP2023531009A (ja) 2020-06-22 2023-07-20 イルミナ ケンブリッジ リミテッド 3’アセタールブロッキング基を有するヌクレオシド及びヌクレオチド
US11981964B2 (en) 2020-07-28 2024-05-14 Illumina Cambridge Limited Substituted coumarin dyes and uses as fluorescent labels
WO2022047359A1 (en) 2020-08-31 2022-03-03 Berg Llc Protein biomarkers for pancreatic cancer
US20220195517A1 (en) 2020-12-17 2022-06-23 Illumina Cambridge Limited Long stokes shift chromenoquinoline dyes and uses in sequencing applications
US20220195516A1 (en) 2020-12-17 2022-06-23 Illumina Cambridge Limited Methods, systems and compositions for nucleic acid sequencing
US20220195196A1 (en) 2020-12-17 2022-06-23 Illumina Cambridge Limited Alkylpyridinium coumarin dyes and uses in sequencing applications
US20220195518A1 (en) 2020-12-22 2022-06-23 Illumina Cambridge Limited Methods and compositions for nucleic acid sequencing
WO2022216846A1 (en) 2021-04-06 2022-10-13 Berg Llc Protein markers for estrogen receptor (er)-positive-like and estrogen receptor (er)-negative-like breast cancer
WO2022216841A1 (en) 2021-04-06 2022-10-13 Berg Llc Protein markers for estrogen receptor (er)-positive luminal a(la)-like and luminal b1 (lb1)-like breast cancer
EP4320443A1 (de) 2021-04-06 2024-02-14 BPGbio, Inc. Proteinmarker zur prognose der brustkrebsprogression
CN117295751A (zh) 2021-05-05 2023-12-26 伊鲁米纳剑桥有限公司 含有双硼稠合杂环的荧光染料及其在测序中的用途
WO2022243480A1 (en) 2021-05-20 2022-11-24 Illumina, Inc. Compositions and methods for sequencing by synthesis
WO2022265994A1 (en) 2021-06-15 2022-12-22 Illumina, Inc. Hydrogel-free surface functionalization for sequencing
US20230116852A1 (en) 2021-07-23 2023-04-13 Illumina, Inc. Methods for preparing substrate surface for dna sequencing
CA3234961A1 (en) 2021-10-20 2023-04-27 Illumina, Inc. Methods for capturing library dna for sequencing
CA3222807A1 (en) 2022-03-22 2023-09-28 Alexandra SZEMJONOV Substrate with orthogonally functional nanodomains
CA3223115A1 (en) 2022-03-28 2023-10-05 Xiaolin Wu Labeled avidin and methods for sequencing
AU2023246772A1 (en) 2022-03-29 2024-01-18 Illumina Inc. Chromenoquinoline dyes and uses in sequencing
WO2023196937A1 (en) 2022-04-06 2023-10-12 Larimar Therapeutics, Inc. Frataxin-sensitive markers for monitoring frataxin replacement therapy
US20230383342A1 (en) 2022-05-31 2023-11-30 Illumina Cambridge Limited Compositions and methods for nucleic acid sequencing
WO2023240201A1 (en) 2022-06-08 2023-12-14 Larimar Therapeutics, Inc. Frataxin-sensitive markers for monitoring progression and treatment of leigh syndrome
WO2024003087A1 (en) 2022-06-28 2024-01-04 Illumina, Inc. Fluorescent dyes containing fused tetracyclic bis-boron heterocycle and uses in sequencing
WO2024028794A1 (en) 2022-08-02 2024-02-08 Temple Therapeutics BV Methods for treating endometrial and ovarian hyperproliferative disorders
WO2024039516A1 (en) 2022-08-19 2024-02-22 Illumina, Inc. Third dna base pair site-specific dna detection
WO2024068889A2 (en) 2022-09-30 2024-04-04 Illumina, Inc. Compositions and methods for reducing photo damage during sequencing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1472191A (en) * 1973-04-20 1977-05-04 Matsushita Electric Ind Co Ltd Organic semiconductor material
US4103073A (en) * 1976-01-09 1978-07-25 Dios, Inc. Microsubstrates and method for making micropattern devices
US4103064A (en) * 1976-01-09 1978-07-25 Dios, Inc. Microdevice substrate and method for making micropattern devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3924454A1 (de) * 1989-07-24 1991-02-07 Cornelis P Prof Dr Hollenberg Die anwendung von dna und dna-technologie fuer die konstruktion von netzwerken zur verwendung in der chip-konstruktion und chip-produktion (dna chips)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1472191A (en) * 1973-04-20 1977-05-04 Matsushita Electric Ind Co Ltd Organic semiconductor material
US4103073A (en) * 1976-01-09 1978-07-25 Dios, Inc. Microsubstrates and method for making micropattern devices
US4103064A (en) * 1976-01-09 1978-07-25 Dios, Inc. Microdevice substrate and method for making micropattern devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491059A1 (de) * 1989-07-24 1992-06-24 Cornelis P. Prof. Dr. Hollenberg Chip-Herstellungsverfahren mit DNA-Technologie
US5561071A (en) * 1989-07-24 1996-10-01 Hollenberg; Cornelis P. DNA and DNA technology for the construction of networks to be used in chip construction and chip production (DNA-chips)
EP0881228A2 (de) * 1997-05-30 1998-12-02 Roche Diagnostics GmbH 2- Oder 3-Dimensionale geometrische Struktur
EP0881228A3 (de) * 1997-05-30 2000-08-16 Roche Diagnostics GmbH 2- oder 3-dimensionale geometrische struktur
DE19758533B4 (de) * 1997-12-04 2005-09-29 Micronas Gmbh Verfahren zum Strukturieren einer Oberflächenschicht
DE19852543A1 (de) * 1998-11-11 2000-05-25 Inst Physikalische Hochtech Ev Verfahren zur Herstellung von Nanometer-Strukturen, insbesondere für Bauelemente der Nanoelektronik
DE19852543B4 (de) * 1998-11-11 2005-06-09 Institut für Physikalische Hochtechnologie e.V. Verfahren zur Herstellung von Nanometer-Strukturen, insbesondere für Bauelemente der Nanoelektronik
WO2001094640A2 (en) * 2000-06-09 2001-12-13 Purdue Research Foundation Bio-mediated assembly of micrometer-scale and nanometer-scale structures
WO2001094640A3 (en) * 2000-06-09 2003-01-30 Purdue Research Foundation Bio-mediated assembly of micrometer-scale and nanometer-scale structures

Also Published As

Publication number Publication date
DE3924454C2 (de) 1992-02-27
US5561071A (en) 1996-10-01
EP0491059A1 (de) 1992-06-24
JPH03142882A (ja) 1991-06-18

Similar Documents

Publication Publication Date Title
DE3924454A1 (de) Die anwendung von dna und dna-technologie fuer die konstruktion von netzwerken zur verwendung in der chip-konstruktion und chip-produktion (dna chips)
DE69928230T2 (de) Elektrophoretisches nukleinsäure-aufreinigungsverfahren
DE3721799C2 (de) Integrierte Redox-Bauelementschaltung und Verfahren zum Herstellen
JP2001510922A (ja) マイクロエレクトロニック構成要素およびdnaを含む電子的ネットワーク
DE60212118T2 (de) Verfahren zur Herstellung einer Kreuzschienenstruktur von Nanodrähten
JP4460158B2 (ja) 化学的にアセンブリされたナノ−スケールデバイス
DE69825939T2 (de) Anordnung mit Quanten-Schachteln
DE2659604A1 (de) Substrat fuer miniaturisierte schaltungsvorrichtungen und verfahren zur herstellung solcher vorrichtungen
Eichen et al. Self‐assembly of nanoelectronic components and circuits using biological templates
DE1298633B (de) Halbleiterkoerper fuer integrierte Halbleiterschaltungen
JP2004533116A (ja) 化学的に組み立てられたナノスケール回路素子
EP1402533B1 (de) Molekularelektronik-anordnung und verfahren zum herstellen einer molekularelektronik-anordnung
DE2513945A1 (de) Verfahren zum passivieren der oberflaechen von halbleiterbauteilen
DE4231610A1 (de) Organisches material fuer elektronische elemente
DE1514038B2 (de) Verfahren zum herstellen eines feldeffekt-transistors mit isolierter steuerelektrode
DE102014107105A1 (de) Verfahren zur verarbeitung eines trägers und eine elektronische komponente
DE1817354A1 (de) Halbleitervorrichtung
DE1521336A1 (de) Verfahren zum Herstellen von staebchenfoermigen,auf beiden Stirnflaechen mit gleichfoermigen niederohmigen Kontakten versehenen Koerpern aus Galliumarsenid
DE112021000348T5 (de) Einheit mit doppeltem magnetischen tunnelübergang mit invertierter breiter basis
EP0831520B1 (de) Verfahren zur Herstellung einer MIS-Struktur auf Siliziumkarbid (SiC)
WO2005001952A1 (de) Verbindung zur bildung einer selbstorganisierenden monolage, eine schichtstruktur, ein halbleiterbauelement und ein verfahren zur herstellung einer schichtstruktur
DE69632543T2 (de) Verfahren zur reaktivitätserniedrigung der oberfläche von copolymeren, erhalten durch elektropolymerisation
EP1183723A1 (de) Vertikal integrierbare schaltung und verfahren zu ihrer herstellung
WO2016037610A1 (de) Verfahren zur herstellung von flächenableitelektroden und halbzeug zur durchführung des verfahrens
DE69826233T2 (de) Verfahren zur Herstellung eines SOI-Substrates

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee