DE3733501A1 - Process for reducing emissions in the operation of stationary internal-combustion engines - Google Patents

Process for reducing emissions in the operation of stationary internal-combustion engines

Info

Publication number
DE3733501A1
DE3733501A1 DE19873733501 DE3733501A DE3733501A1 DE 3733501 A1 DE3733501 A1 DE 3733501A1 DE 19873733501 DE19873733501 DE 19873733501 DE 3733501 A DE3733501 A DE 3733501A DE 3733501 A1 DE3733501 A1 DE 3733501A1
Authority
DE
Germany
Prior art keywords
stage
ammonia
exhaust gas
carbon monoxide
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19873733501
Other languages
German (de)
Inventor
Michael Dr Rer Nat Ahlers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EON Ruhrgas AG
Original Assignee
Ruhrgas AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhrgas AG filed Critical Ruhrgas AG
Priority to DE19873733501 priority Critical patent/DE3733501A1/en
Publication of DE3733501A1 publication Critical patent/DE3733501A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

In order to reduce emissions of nitrogen oxides, hydrocarbons and carbon monoxide in the operation of stationary internal-combustion engines having excess air coefficients greater than 1, a two-stage process is provided in which a catalytic reduction stage (30) for the substantial removal of the nitrogen oxides, with the addition of ammonia (50), and a catalytic oxidation stage (40) in which the residual oxygen present in the prepurified waste gas is utilised for oxidation of hydrocarbons, carbon monoxide and excess ammonia, are connected in series. Any leakage of ammonia from the first catalytic stage is decreased by the following oxidation step. A reduction in the amount of the pollutant components comprising nitrogen oxides, hydrocarbons and carbon monoxide is achieved at virtually all excess air coefficients greater than 1. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Verfahren zur Verminderung der Stickoxid-, Kohlenwasserstoff- und Kohlenmonoxid-Emissio­ nen beim Betrieb von Verbrennungsmotoren, insbesondere statio­ nären Verbrennungsmotoren, mit Luftzahlen größer als 1.The invention relates to a method for reduction the nitrogen oxide, hydrocarbon and carbon monoxide emissions NEN when operating internal combustion engines, especially statio domestic combustion engines with air ratios greater than 1.

Infolge sich ständig verstärkender Bemühungen im Umweltschutz­ bereich ist es wünschenswert, die Schadstoffemissionen von Verbrennungsmotoren auf ein Minimum zu reduzieren. Insbesonde­ re wird es notwendig, die drei Schadstoffhauptgruppen: Stick­ oxide, Kohlenwasserstoffe und Kohlenmonoxid gleichzeitig so gering wie möglich halten zu können.As a result of ever increasing efforts in environmental protection area, it is desirable to reduce pollutant emissions from Reduce internal combustion engines to a minimum. In particular re it becomes necessary to stick to the three main pollutant groups: stick oxides, hydrocarbons and carbon monoxide at the same time to keep it as low as possible.

Aus Fig. 1 lassen sich die relativen Verhältnisse der Schad­ stoffrestemissionen im Abgas eines Verbrennungsmotors an NO x , CO und CH x in Abhängigkeit von der Luftzahl λ entneh­ men. Um alle drei in Fig. 1 repräsentierten Schadstoffgruppen weitgehend zu entfernen, werden häufig Drei-Wege-Katalysatoren eingesetzt. Diese Katalysatoren haben den entscheidenden Nach­ teil, daß sie nur in einem sehr engen Luftzahlbereich (in Fig. 1 Bereich 1) - einem sogenannten λ-Fenster - nahe der Luftzahl λ = 1 einsetzbar sind. Werden Motoren bei Luftzahlen größer als 1 betrieben, läßt sich ein Drei-Wege-Katalysator zur Ent­ fernung der Schadstoffkomponenten nicht sinnvoll einsetzen, da besonders ein höherer Sauerstoffgehalt die Katalysatorwirkung stark beeinträchtigt.From FIG. 1, the relative proportions of the harmful emissions in the exhaust gas can radical of an internal combustion engine of NO x, CO and CH x in a function of the air coefficient λ entneh men. In order to largely remove all three pollutant groups represented in FIG. 1, three-way catalysts are often used. These catalysts have the decisive after part that they can only be used in a very narrow air ratio range (in Fig. 1 area 1) - a so-called λ window - close to the air ratio λ = 1. If engines are operated with an air ratio greater than 1, a three-way catalytic converter cannot be used sensibly to remove the pollutant components, since a higher oxygen content in particular severely impairs the catalytic effect.

Eine weitere bekannte Möglichkeit zur Verminderung der Schad­ stoffe im Abgas besteht darin, eine Schadstoffart durch geeig­ netes Einstellen der Betriebswerte, insbesondere der Luftzahl, von vornherein klein zu halten und sich bei der katalytischen Schadstoffverminderung auf die selektive Entfernung einzelner anderer Schadstoffarten zu beschränken. So ist es unter Um­ ständen möglich, die Luftzahl λ so einzustellen, daß die Koh­ lenmonoxid- und Kohlenwasserstoffkonzentrationen bereits im unbehandelten Abgas unter den Grenzwerten der TA-Luft liegen, so daß nur noch die Stickoxidemission durch Nachbehandeln beispielsweise mit selektiver katalytischer Reduktion (SCR) vermindert werden muß. Bei den in Fig. 1 wiedergegebenen Ver­ hältnissen ist dieses Verfahren etwa bei Luftzahlen um 1,2 (in Fig. 1 Bereich 2) sinnvoll anwendbar.Another known way of reducing the pollutants in the exhaust gas is to keep a type of pollutant small from the outset by appropriately setting the operating values, in particular the air ratio, and to limit the catalytic pollutant reduction to the selective removal of individual other types of pollutants. So it is possible to adjust the air ratio λ so that the carbon monoxide and hydrocarbon concentrations in the untreated exhaust gas are below the limit values of TA-Luft, so that only the nitrogen oxide emissions through aftertreatment, for example with selective catalytic reduction (SCR) must be reduced. In the ratios shown in Fig. 1, this method is usable approximately at air numbers around 1.2 (in Fig. 1 area 2).

Eine weitere bekannte Verfahrensweise besteht darin, die Stickoxidkonzentration im Abgas durch Einstellen des λ-Wertes bei entsprechenden Betriebsbedingungen so gering zu halten, daß nur noch Kohlenmonoxid und Kohlenwasserstoffe katalytisch oxidativ behandelt zu werden brauchen. Ein für dieses Verfah­ ren geeigneter Bereich 3 beginnt gemäß Darstellung in Fig. 1 an einem Punkt 8, bei dem die Stickoxidkonzentration unter dem zulässigen TA-Luft Grenzwert liegt.Another known procedure consists in keeping the nitrogen oxide concentration in the exhaust gas so low by adjusting the λ value under appropriate operating conditions that only carbon monoxide and hydrocarbons need to be treated catalytically and oxidatively. A region 3 suitable for this process begins, as shown in FIG. 1, at a point 8 at which the nitrogen oxide concentration is below the permissible TA air limit.

Die letztgenannten Verfahren lassen sich jedoch nur anwenden, wenn unter sinnvollen Betriebsbedingungen die erforderlichen λ-Werte eingestellt werden können und wenn der Gesetzgeber die Emissionsgrenzwerte in Zukunft nicht zu sehr senkt, da unver­ meidlich bestimmte Mengen der jeweils unbehandelten Schad­ stoffkomponenten durchgelassen werden.However, the latter methods can only be used if the necessary λ values can be set under sensible operating conditions and if the legislator does not lower the emission limit values too much in the future, since certain quantities of the untreated pollutant components are inevitably allowed to pass through.

Es ist daher Aufgabe der Erfindung, ein insbesondere für größere stationäre Motoren geeignetes Verfahren anzugeben, bei dem die Emissionen sowohl an Stickoxiden als auch an Kohlen­ wasserstoffen und an Kohlenmonoxid selbst bei Luftzahlen größer als 1 gering und zuverlässig unter den Grenzwerten der TA-Luft gehalten werden.It is therefore an object of the invention, in particular for larger stationary motors to specify a suitable process for emissions of both nitrogen oxides and coal Hydrogen and carbon monoxide even with air numbers greater than 1 low and reliably below the limits of the TA-Luft are kept.

Zur Lösung dieser Aufgabe sieht die Erfindung ein gattungsge­ mäßes Verfahren vor, das in zwei Stufen durchgeführt wird, wobei in der ersten Stufe Stickoxide mit Ammoniak so an einem Katalysator (Reduktionskontakt) reduziert werden, daß aus­ reichend Sauerstoff für die zweite Verfahrensstufe verbleibt, und in der zweiten Stufe Kohlenwasserstoffe, Kohlenmonoxid sowie überschüssiger Ammoniak an einem weiteren Katalysator (Oxidationskontakt) mit dem im Abgas vorhandenen Restsauer­ stoff oxidiert werden.To achieve this object, the invention provides a genus moderate procedure, which is carried out in two stages, whereby in the first stage nitrogen oxides with ammonia on one Catalyst (reduction contact) that are reduced from sufficient oxygen remains for the second process stage, and in the second stage hydrocarbons, carbon monoxide as well as excess ammonia on another catalyst (Oxidation contact) with the residual acid present in the exhaust gas be oxidized.

Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß es prinzipiell bei allen Luftzahlen größer als 1 anwendbar ist und dabei gleichzeitig alle drei Schad­ stoffarten, nämlich Stickoxide, Kohlenwasserstoffe und Kohlen­ monoxid weitgehend abbaut. Dadurch daß der Oxidationskatalysa­ tor dem Reduktionskatalysator nachgeschaltet ist, kann zusätz­ lich der Ammoniakschlupf aus der Reduktionsstufe kontrolliert werden.A major advantage of the method according to the invention is that it is basically larger for all air numbers is applicable as 1 and at the same time all three harm Types of substances, namely nitrogen oxides, hydrocarbons and coal largely breaks down monoxide. The fact that the oxidation catalytic converter Tor is connected downstream of the reduction catalyst, additional the ammonia slip from the reduction stage is checked will.

Vorzugsweise wird die Reduktion über einem Vanadinpentoxid- Kontakt durchgeführt, und der Ammoniak wird dem Abgas zudo­ siert, bevor dieses den Katalysator erreicht.The reduction is preferably carried out over a vanadium pentoxide Contact is carried out, and the ammonia is added to the exhaust gas before it reaches the catalyst.

In zweckmäßiger Weiterbildung der Erfindung werden beide Kata­ lysatoren hintereinander in einem Reaktor derart eingesetzt, daß das Abgas des Motors zuerst den Reduktionskontakt und danach den Oxidationskontakt passiert.In an expedient development of the invention, both kata analyzers used one after the other in a reactor, that the exhaust gas of the engine first the reduction contact and then the oxidation contact happens.

Im folgenden wird die Erfindung anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels beschrieben. Es zeigt.In the following the invention based on one in the drawing described schematically illustrated embodiment. It shows.

Fig. 1 ein Schadstoffdiagramm, das ein Beispiel für die Abhängigkeit des Gehalts an NO x , CO und CH x von der Luftzahl λ veranschaulicht; und Figure 1 is a pollutant diagram illustrating an example of the dependence of the content of NO x , CO and CH x on the air ratio λ . and

Fig. 2 eine Prinzipskizze einer Katalysatoranordnung und der zugehörigen Abgasströme bei dem be­ schriebenen Ausführungsbeispiel der Erfindung. Fig. 2 is a schematic diagram of a catalyst arrangement and the associated exhaust gas flows in the described embodiment of the invention be.

Aus Fig. 1 entnimmt man die relativen Verhältnisse der Schad­ stoffrestemissionen an NO x , CO und CH x in Abhängigkeit von der Luftzahl λ. Die von gestrichelten Linien eingegrenzten Bereiche 1-3 geben die bislang vom Stande der Technik abge­ deckten Arbeitsgebiete für die Abgasreinigung an. Das enge λ-Fenster um λ = 1 (in Fig. 1 Bereich 1) gibt den Arbeitsbe­ reich eines Dreiwegekatalysators an, der nur in diesem engen Luftzahlbereich in effektiver Weise bewirkt, daß alle drei Hauptschadstoffgruppen abgebaut werden. Bei höheren Sauer­ stoffkonzentrationen werden die Stickoxide meist selektiv katalytisch reduziert, beispielsweise über einen Vanadinpent­ oxidkontakt, da dabei der Sauerstoff nicht stört. Diese selek­ tiven Reduktionskatalysatoren können jedoch weder Kohlenwas­ serstoffe noch Kohlenmonoxid abbauen. Die selektive katalyti­ sche Reduktion (SCR) allein eignet sich daher in einem Bereich 2 zur Abgasreinigung, in dem die CO-Werte (Kohlenmonoxidwerte) zwischen 5 und 6 und die CH x -Werte (Kohlenwasserstoffwerte) zwischen 4 und 7 die zulässigen Emissionshöchstwerte nicht überschreiten. Werden Motoren bei noch höheren Luftzahlen betrieben, steigen die Kohlenwasserstoff- und Kohlenmonoxid­ werte im Abgas wieder beträchtlich an, während die Stickoxid­ werte zurückgehen. In einem Bereich 3, in dem der Stickoxidge­ halt im Abgas unter den Grenzwert der TA-Luft abgesunken ist - d. h. in dem die NO x -Konzentration kleiner oder gleich der­ jenigen in Punkt 8 des Diagramms ist - kann sich die Abgas­ reinigung auf die Entfernung von Kohlenwasserstoffen und Koh­ lenmonoxid beschränken. Hierzu können verschiedene Oxidations­ katalysatoren eingesetzt werden. Das erfindungsgemäße Verfah­ ren erlaubt es nun, die Abgasreinigung sowohl in den Bereichen 1, 2 und 3 als auch zwischen diesen Bereichen durchzuführen. Dabei werden stets alle drei Schadstoffkomponenten abgebaut. Die durch die Kurven CO und CH x in Bereich 2 und die Kurve NO x in Bereich 3 bestimmten und durch die zuvor genannten Verfahren unbeeinflußbaren Restemissionen können mit dem erfindungsgemäßen Verfahren weiter unterschritten werden.From Fig. 1 it extracts the relative proportions of harmful material residual emissions of NO x, CO and CH x λ depending on the air ratio. The areas 1-3 delimited by dashed lines indicate the areas of work for exhaust gas purification previously covered by the prior art. The narrow λ window around λ = 1 (in Fig. 1 area 1) indicates the working area of a three-way catalyst, which only in this narrow air ratio range effectively causes all three main pollutant groups to be broken down. At higher oxygen concentrations, the nitrogen oxides are usually selectively reduced catalytically, for example via a vanadium pent oxide contact, since the oxygen does not interfere. However, these selective reduction catalysts cannot degrade hydrocarbons or carbon monoxide. Selective catalytic reduction (SCR) alone is therefore suitable for area 2 for exhaust gas purification, in which the CO values (carbon monoxide values) between 5 and 6 and the CH x values (hydrocarbon values) between 4 and 7 do not exceed the permissible maximum emissions . If engines are operated with even higher air ratios, the hydrocarbon and carbon monoxide values in the exhaust gas rise again considerably, while the nitrogen oxide values decrease. In a region 3 in which the nitrogen oxide in the exhaust gas has dropped below the limit value of the TA-Luft - ie in which the NO x concentration is less than or equal to that in point 8 of the diagram - the exhaust gas cleaning can be at a distance restrict hydrocarbons and carbon monoxide. Various oxidation catalysts can be used for this. The process according to the invention now allows exhaust gas purification to be carried out both in areas 1, 2 and 3 and between these areas. All three pollutant components are always broken down. The residual emissions determined by the curves CO and CH x in area 2 and the curve NO x in area 3 and which cannot be influenced by the aforementioned methods can be further reduced with the method according to the invention.

Fig. 2 zeigt ein Ausführungsbeispiel mit einem Reaktor 10, in dem zwei unterschiedliche Katalysatoren 30 und 40 hintereinan­ der eingesetzt sind. Das ungereinigte Abgas wird über den Weg 20 von einem in der Zeichnung nicht gezeigten Verbrennungsmo­ tor aus dem Reaktor 10 zugeführt und passiert nacheinander den als Reduktionskontakt ausgebildeten Katalysator 30 und der als Oxidationskontakt ausgebildeten Katalysator 40. Das gereinigte Abgas wird über Weg 60 vom Reaktor abgeführt. Der zur NO x - Reduktion in der ersten Katalysatorstufe benötigte Ammoniak wird dem ungereinigten Abgas über Weg 50 zudosiert, bevor das Abgas den Reduktionskontakt 30 erreicht. Entlang des Redukti­ onskontaktes 30 werden die Stickoxide weitgehend durch Ammoniak unter zusätzlichem Verbrauch von Sauerstoff zu Stickstoff und Wasser reduziert. Das von Stickoxiden weitgehend befreite Abgas passiert daraufhin den Oxidationskontakt 40, über dem mit Hilfe des im Abgas vorhandenen Restsauerstoffs Kohlenmon­ oxid, Kohlenwasserstoffe sowie überschüssiger Ammoniak oxi­ diert werden. Als Reaktionsprodukte entstehen in der zweiten katalytischen Stufe über Oxidationskontakt 40 Wasser, Kohlen­ dioxid, Stickstoff und geringe Mengen rückgebildeter Stickoxi­ de. Ein Ammoniakschlupf aus der ersten katalytischen Stufe über Reduktionskontakt 30 wird durch die nachgeschaltete Oxi­ dationsstufe vermindert, wobei auf unerwünschte Nebenreaktio­ nen zu Stickoxiden geachtet werden sollte. Fig. 2 shows an embodiment with a reactor 10 , in which two different catalysts 30 and 40 are used one behind the other. The unpurified exhaust gas is fed via the path 20 from a combustion engine (not shown in the drawing) from the reactor 10 and successively passes through the catalyst 30 designed as a reduction contact and the catalyst 40 designed as an oxidation contact. The cleaned exhaust gas is removed from the reactor via path 60 . The ammonia required for NO x reduction in the first catalyst stage is metered into the unpurified exhaust gas via path 50 before the exhaust gas reaches the reduction contact 30 . Along the reduction contact 30 , the nitrogen oxides are largely reduced by ammonia with additional consumption of oxygen to nitrogen and water. The exhaust gas largely freed from nitrogen oxides then passes through the oxidation contact 40 , via which carbon monoxide, hydrocarbons and excess ammonia are oxidized with the aid of the residual oxygen present in the exhaust gas. As reaction products, 40 water, carbon dioxide, nitrogen and small amounts of re-formed nitrogen oxides are formed in the second catalytic stage via oxidation contact. An ammonia slip from the first catalytic stage via reduction contact 30 is reduced by the downstream oxidation stage, attention being paid to undesirable side reactions to nitrogen oxides.

Claims (4)

1. Verfahren zur Verminderung der Stickoxid-, Kohlenwasser­ stoff- und Kohlenmonoxid-Emissionen beim Betrieb von Verbren­ nungsmotoren, insbesondere stationären Verbrennungsmotoren, mit Luftzahlen größer als 1, dadurch gekennzeichnet, daß das Verfahren in zwei Stufen durchgeführt wird, wobei in der ersten Stufe Stickoxide mit Ammoniak so an einem Katalysa­ tor (Reduktionskontakt (30)) reduziert werden, daß ausreichend Sauerstoff für die zweite Verfahrensstufe verbleibt, und in der zweiten Stufe Kohlenwasserstoffe, Kohlenmonoxid sowie überschüssiger Ammoniak an einem weiteren Katalysator (Oxida­ tionskontakt (40)) mit dem im Abgas vorhandenen Restsauerstoff oxidiert werden.1. A method for reducing nitrogen oxide, hydrocarbon and carbon monoxide emissions when operating combustion engines, in particular stationary internal combustion engines, with air numbers greater than 1, characterized in that the method is carried out in two stages, with nitrogen oxides in the first stage be reduced with ammonia on a catalyst (reduction contact ( 30 )) so that sufficient oxygen remains for the second process stage, and in the second stage hydrocarbons, carbon monoxide and excess ammonia on another catalyst (oxidation contact ( 40 )) with the im Existing residual oxygen are oxidized. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Ammoniak zum Abgas zudosiert wird, bevor das Abgas den Kataly­ sator erreicht (50).2. The method according to claim 1, characterized in that ammonia is metered into the exhaust gas before the exhaust gas reaches the catalyst ( 50 ). 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Reduktions-Katalysator (30) ein Vanadinpentoxid-Kon­ takt eingesetzt wird.3. The method according to claim 1 or 2, characterized in that a vanadium pentoxide contact is used as a reduction catalyst ( 30 ). 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch ge­ kennzeichnet, da beide Katalysatoren hintereinander in einem Reaktor (10) derart eingesetzt werden, daß das Abgas des Mo­ tors zuerst den Reduktionskontakt und danach den Oxidations­ kontakt passiert.4. The method according to any one of claims 1 to 3, characterized in that the two catalysts are used in succession in a reactor ( 10 ) such that the exhaust gas of the engine first passes through the reduction contact and then the oxidation contact.
DE19873733501 1987-10-03 1987-10-03 Process for reducing emissions in the operation of stationary internal-combustion engines Withdrawn DE3733501A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19873733501 DE3733501A1 (en) 1987-10-03 1987-10-03 Process for reducing emissions in the operation of stationary internal-combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873733501 DE3733501A1 (en) 1987-10-03 1987-10-03 Process for reducing emissions in the operation of stationary internal-combustion engines

Publications (1)

Publication Number Publication Date
DE3733501A1 true DE3733501A1 (en) 1989-04-13

Family

ID=6337574

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19873733501 Withdrawn DE3733501A1 (en) 1987-10-03 1987-10-03 Process for reducing emissions in the operation of stationary internal-combustion engines

Country Status (1)

Country Link
DE (1) DE3733501A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410440A1 (en) * 1989-07-28 1991-01-30 Degussa Aktiengesellschaft Catalyst for purification of gases from overstoichiometric process in combustion motors and gas turbines
WO1991012878A1 (en) * 1990-02-23 1991-09-05 Laboratorium Katalizy Stosowanej 'swingtherm', Sp.Z O.O. Method for catalytic gas cleaning
ES2036473A1 (en) * 1990-10-10 1993-05-16 Didier Werke Ag Catalytic appts. for reducing nitrogen oxide(s) in I.C. engine exhaust - has catalyst bed of different materials active in different temp. ranges of exhaust gas
EP0558452A1 (en) * 1992-02-24 1993-09-01 Hans Thomas Hug Purification of combustion gases
EP1095692A1 (en) * 1999-10-29 2001-05-02 Travaux Du Sud-Ouest Process and installation for purification of exhaust gases from internal combustion engines
EP1226862A2 (en) * 2001-01-30 2002-07-31 Ruhrgas Aktiengesellschaft Process and device for the production of a gas mixture containing CO2 to fertilize hothouse plants
DE19924215C2 (en) * 1998-05-28 2003-02-06 Toyota Motor Co Ltd Emission control device for an internal combustion engine
EP1876331A2 (en) 2006-07-08 2008-01-09 MAN Nutzfahrzeuge AG Assembly for reducing nitrogen oxides in exhaust gases
DE102006031650B4 (en) * 2006-07-08 2014-11-20 Man Truck & Bus Ag Arrangement for reducing nitrogen oxides in exhaust gases
EP1784258B1 (en) 2004-08-23 2015-05-13 BASF Corporation ZONE COATED CATALYST, CATALYST SYSTEM AND METHOD TO SIMULTANEOUSLY REDUCE NOx AND UNREACTED AMMONIA
WO2015130213A1 (en) * 2014-02-28 2015-09-03 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust stream
US10344647B2 (en) 2015-08-27 2019-07-09 Scania Cv Ab Method and system for a first and a second supply of additive to an exhaust gas stream from an internal combustion engine
US10495569B2 (en) 2015-06-05 2019-12-03 Scania Cv Ab Method and a system for determining a composition of a gas mix in a vehicle
US10724460B2 (en) 2015-08-27 2020-07-28 Scania Cv Ab Method and system for treatment of an exhaust gas stream
US10807041B2 (en) 2015-08-27 2020-10-20 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust gas stream
US10837338B2 (en) 2015-08-27 2020-11-17 Scania Cv Ab Method and exhaust treatment system for treatment of an exhaust gas stream
US10920632B2 (en) 2015-08-27 2021-02-16 Scania Cv Ab Method and exhaust treatment system for treatment of an exhaust gas stream
US11007481B2 (en) 2015-08-27 2021-05-18 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust gas stream

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2046180A1 (en) * 1969-09-22 1971-06-09 Ford Werke AG, 5000KoIn Process for cleaning exhaust gases
DE2242183A1 (en) * 1971-08-27 1973-03-01 Standard Oil Co CATALYST AND PROCESS FOR THE REDUCTION OF NITROGEN OXYDE
DE2264039A1 (en) * 1971-12-29 1973-07-26 Nissan Motor PROCEDURE FOR CLEANING UP THE EXHAUST OF THE ENGINE OF A MOTOR VEHICLE
DE2362255A1 (en) * 1972-12-25 1974-06-27 Mitsubishi Chem Ind METHOD FOR CATALYTIC REDUCTION OF NITROGEN OXYDE
GB2082085A (en) * 1980-08-20 1982-03-03 Westinghouse Electric Corp Apparatus for removing nox and for providing better plant efficiency in simple cycle combustion turbine plants
EP0082141B1 (en) * 1981-06-22 1985-08-28 Caterpillar Tractor Co. Ammonia/fuel ratio control system for reducing nitrogen oxide emissions
DE3407289A1 (en) * 1984-02-29 1985-09-05 Basf Ag, 6700 Ludwigshafen Process for the catalytic purification of car exhausts
DE3430870A1 (en) * 1984-08-22 1986-02-27 Didier Engineering Gmbh, 4300 Essen METHOD FOR EXHAUST GAS PURIFICATION

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2046180A1 (en) * 1969-09-22 1971-06-09 Ford Werke AG, 5000KoIn Process for cleaning exhaust gases
DE2242183A1 (en) * 1971-08-27 1973-03-01 Standard Oil Co CATALYST AND PROCESS FOR THE REDUCTION OF NITROGEN OXYDE
DE2264039A1 (en) * 1971-12-29 1973-07-26 Nissan Motor PROCEDURE FOR CLEANING UP THE EXHAUST OF THE ENGINE OF A MOTOR VEHICLE
DE2362255A1 (en) * 1972-12-25 1974-06-27 Mitsubishi Chem Ind METHOD FOR CATALYTIC REDUCTION OF NITROGEN OXYDE
GB2082085A (en) * 1980-08-20 1982-03-03 Westinghouse Electric Corp Apparatus for removing nox and for providing better plant efficiency in simple cycle combustion turbine plants
EP0082141B1 (en) * 1981-06-22 1985-08-28 Caterpillar Tractor Co. Ammonia/fuel ratio control system for reducing nitrogen oxide emissions
DE3407289A1 (en) * 1984-02-29 1985-09-05 Basf Ag, 6700 Ludwigshafen Process for the catalytic purification of car exhausts
DE3430870A1 (en) * 1984-08-22 1986-02-27 Didier Engineering Gmbh, 4300 Essen METHOD FOR EXHAUST GAS PURIFICATION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US-Z: Platinum Metals Rev., 1985, 29, 2, S.53 - 54 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410440A1 (en) * 1989-07-28 1991-01-30 Degussa Aktiengesellschaft Catalyst for purification of gases from overstoichiometric process in combustion motors and gas turbines
WO1991012878A1 (en) * 1990-02-23 1991-09-05 Laboratorium Katalizy Stosowanej 'swingtherm', Sp.Z O.O. Method for catalytic gas cleaning
ES2036473A1 (en) * 1990-10-10 1993-05-16 Didier Werke Ag Catalytic appts. for reducing nitrogen oxide(s) in I.C. engine exhaust - has catalyst bed of different materials active in different temp. ranges of exhaust gas
BE1006164A3 (en) * 1990-10-10 1994-05-31 Didier Werke Ag Catalyst device for reducing oxides of nitrogen.
EP0558452A1 (en) * 1992-02-24 1993-09-01 Hans Thomas Hug Purification of combustion gases
US5431893A (en) * 1992-02-24 1995-07-11 Hug; Hans T. Cleaning exhaust gases from combustion installations
DE19924215C2 (en) * 1998-05-28 2003-02-06 Toyota Motor Co Ltd Emission control device for an internal combustion engine
EP1095692A1 (en) * 1999-10-29 2001-05-02 Travaux Du Sud-Ouest Process and installation for purification of exhaust gases from internal combustion engines
FR2800298A1 (en) * 1999-10-29 2001-05-04 Sud Ouest Travaux PROCESS FOR THE PURIFICATION OF EXHAUST GASES FROM HEAT ENGINES
EP1226862A2 (en) * 2001-01-30 2002-07-31 Ruhrgas Aktiengesellschaft Process and device for the production of a gas mixture containing CO2 to fertilize hothouse plants
DE10103206A1 (en) * 2001-01-30 2002-08-01 Ruhrgas Ag Method and device for producing a CO¶2¶-containing gas mixture for fertilizing plants in a greenhouse
EP1226862A3 (en) * 2001-01-30 2003-06-04 Ruhrgas Aktiengesellschaft Process and device for the production of a gas mixture containing CO2 to fertilize hothouse plants
EP1784258B1 (en) 2004-08-23 2015-05-13 BASF Corporation ZONE COATED CATALYST, CATALYST SYSTEM AND METHOD TO SIMULTANEOUSLY REDUCE NOx AND UNREACTED AMMONIA
EP1876331A2 (en) 2006-07-08 2008-01-09 MAN Nutzfahrzeuge AG Assembly for reducing nitrogen oxides in exhaust gases
DE102006031650B4 (en) * 2006-07-08 2014-11-20 Man Truck & Bus Ag Arrangement for reducing nitrogen oxides in exhaust gases
US10054023B2 (en) 2014-02-28 2018-08-21 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust stream
US10626769B2 (en) 2014-02-28 2020-04-21 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust stream
US10260392B2 (en) 2014-02-28 2019-04-16 Scania Cv Ab Method and system for controlling nitrogen oxide emissions from a combustion engine
US10260391B2 (en) 2014-02-28 2019-04-16 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust stream
US10267198B2 (en) 2014-02-28 2019-04-23 Scania Cv Ab Device and method for impacting the amount of nitrogen oxides in exhaust gases from an internal combustion engine
US10267197B2 (en) 2014-02-28 2019-04-23 Scania Cv Ab System and method for purification of an exhaust stream by use of two reduction catalysts
US10273852B2 (en) 2014-02-28 2019-04-30 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust stream
US10273851B2 (en) 2014-02-28 2019-04-30 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust stream
US10273850B2 (en) 2014-02-28 2019-04-30 Scania Cv Ab Method and system for controlling nitrogen oxide emissions from a combustion engine
WO2015130213A1 (en) * 2014-02-28 2015-09-03 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust stream
US10364724B2 (en) 2014-02-28 2019-07-30 Scania Cv Ab Device and method comprising double reducing devices and a catalytically coated particle filter for treatment of an exhaust stream
US10495569B2 (en) 2015-06-05 2019-12-03 Scania Cv Ab Method and a system for determining a composition of a gas mix in a vehicle
US10344647B2 (en) 2015-08-27 2019-07-09 Scania Cv Ab Method and system for a first and a second supply of additive to an exhaust gas stream from an internal combustion engine
US10724460B2 (en) 2015-08-27 2020-07-28 Scania Cv Ab Method and system for treatment of an exhaust gas stream
US10807041B2 (en) 2015-08-27 2020-10-20 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust gas stream
US10837338B2 (en) 2015-08-27 2020-11-17 Scania Cv Ab Method and exhaust treatment system for treatment of an exhaust gas stream
US10920632B2 (en) 2015-08-27 2021-02-16 Scania Cv Ab Method and exhaust treatment system for treatment of an exhaust gas stream
US11007481B2 (en) 2015-08-27 2021-05-18 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust gas stream

Similar Documents

Publication Publication Date Title
DE3733501A1 (en) Process for reducing emissions in the operation of stationary internal-combustion engines
DE10131588B4 (en) An operating method for an exhaust aftertreatment device comprising a nitrogen oxide storage catalyst downstream of an SCR catalyst and use of the SCR catalyst to remove hydrogen sulfide
DE4007965C2 (en) Copper oxides or a mixture containing copper oxides and manganese oxides and its use
DE60313236T2 (en) NOx reduction system for diesel engines using a hydrogen selective catalytic reduction
EP0879633B1 (en) Process for cleaning a lean exhaust gas and catalyst system therefor
DE19923781C2 (en) Method and device for removing soot from the exhaust gas of a diesel engine
EP0362483A1 (en) Process for catalytic removal of nitrogen oxides from waste gases by a reducing agent
DE2613417C3 (en) Process for removing nitrogen oxides from exhaust gases
DE3232543C2 (en) Process for removing sulfur and nitrogen oxides from an exhaust gas
DE2700264A1 (en) PROCESS FOR IMPROVING THE OPERATING CAPACITY OF THREE TYPES OF EFFECTIVE CATALYSTS
EP0515857B1 (en) Process for selective catalytic reduction of exhaust gases from Diesel engines
DE10104160A1 (en) Exhaust gas cleaning system for a combustion engine and method for operating the system
EP2597279B1 (en) Method and device for cleaning diesel engine exhaust gases
DE3642018A1 (en) Process and apparatus for the reduction of nitrogen oxides
DE4214183A1 (en) Exhaust gas treatment for IC (diesel) engine - has reducing catalyst for nitrogen oxide with ammonia addition, and downstream oxidative catalyst
DE2852800C2 (en) Device for removing nitrogen oxides from a combustion exhaust gas
DE4204603C2 (en) Device for the multi-stage, catalytic combustion of nitrogenous gases
DE10361791A1 (en) Exhaust gas cleaning device regenerating method for e.g. Otto engine, involves exhibiting catalyst by device, and pressuring filter with secondary air, when catalyst is desulphurized with hypostoichiometric exhaust gas
DE102014202491A1 (en) Diagnosis of a lean NOx trap catalyst by measuring a hydrogen concentration
DE2717528C2 (en) Process for cleaning exhaust gases
DE2411888B2 (en) METHOD OF ELIMINATION OF NITROGEN OXIDES IN EXHAUST GASES
DE2649825C3 (en) Device for the catalytic cleaning of combustion engine exhaust gases
DE19949046B4 (en) Emission control system with internal generation and intermediate storage of ammonia and operating method for this purpose
DE2705434A1 (en) PROCESS FOR THE SIMULTANEOUS SEPARATION OF NITROGEN OXIDES AND SULFUR OXIDES FROM A GAS FLOW
WO2007006655A1 (en) Method and device for the desulphation of an nox storage catalyst

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8141 Disposal/no request for examination