DE2605772A1 - Workpiece measuring probe system - uses point light sources with three degrees of freedom in controlled relation to sensing points - Google Patents

Workpiece measuring probe system - uses point light sources with three degrees of freedom in controlled relation to sensing points

Info

Publication number
DE2605772A1
DE2605772A1 DE19762605772 DE2605772A DE2605772A1 DE 2605772 A1 DE2605772 A1 DE 2605772A1 DE 19762605772 DE19762605772 DE 19762605772 DE 2605772 A DE2605772 A DE 2605772A DE 2605772 A1 DE2605772 A1 DE 2605772A1
Authority
DE
Germany
Prior art keywords
light sources
point
probe
probe system
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19762605772
Other languages
German (de)
Inventor
Fritz Ertl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOMEG KONTROLL TECHNIK INGENIE
Original Assignee
KOMEG KONTROLL TECHNIK INGENIE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOMEG KONTROLL TECHNIK INGENIE filed Critical KOMEG KONTROLL TECHNIK INGENIE
Priority to DE19762605772 priority Critical patent/DE2605772A1/en
Publication of DE2605772A1 publication Critical patent/DE2605772A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

The machine has two or more punctiform light sources (5) on a sensing system (4, 5, 10) with all three degrees of freedom of movement, and of any shape. The light sources (5) are in a certain relation to sensing points (10) of the sensing system. One or several position detectors (7) have photosensitive surfaces (9) and detect the position of the punctiform light sources in two directions. They determine position of sensing points (10) and the coordinates of the measured point at any instant, depending on the position of the punctiform light sources (5) at any sensing system position, by calculating them by a computer (12).

Description

Meßmaschine zur Kontrolle von Werkstücken beliebiger Abmessungen Die Erfindung betrifft eine Meßmaschine zur Kontrolle von Werkstücken beliebiger Abmessungen wie z B. Motorblöcke, Getriebe-und Pumpengehäuse sowie Karosserien oder Karosserieteile. Measuring machine for checking workpieces of any size The invention relates to a measuring machine for checking workpieces of any desired Dimensions such as engine blocks, gearboxes and pump housings as well as bodies or Body parts.

Bekannt sind Meßmaschinen mit mechanischer Führung des Tastsystems in den Raumrichtungen entsprechend.der Portal-, Horizontalausleger- und Vertikalauslegerbauform (Zeltscnrift Werkstatt und Betrieb 108, 1975, H 11, 5 713/7350) Diese Art der mechanischen Führung bringt jedoch einen sehr aufwendigen und bei hohen Genauigkeitsanforderungen auch massiven Aufbau mit sich, dessen Funktion kurz- oder langzeitig durch sehr viele Störeinflüsse wie veränderliche Temperatur der mechanischen Bauteile, unterschiedliche statische und dynamische Kräfte und Momente und wechselnde mechanische Spannungsverteilungen infolge voll Beschleunigungs- und Verzögerungsvorgängen und variierenden Feder-Masse-Verteilungen während des Meßvorgangs, Verschleißerscheinungen und dergleichen beeinträchtigt wird Ein massiver mechanischer Aufbau behindert auch den An- und Abtransport vor allem von schweren und sperrigen Werkstückeii, die nur ein Kran trägt, und er verursacht eine schlechte Zugänglichkeit zum Werkstück während des Meßvorgangs. Das Beschleunigen und Abbremsen großer Massen durch den Bedienungsmann während des Meßablaufs kostet Zeit Da die Tastsysteme fest mit dem Führungssystem verbunden sind, läßt sich ihre Raumorientierung ohne hohen technischen Aufwand nicht beliebig verändern Dadurch können verdeckt liegende Meßpunkte wie z Bo tief liegende Nuten in schräg angeordneten Bohrungen nur schwer erreicht werden.Measuring machines with mechanical guidance of the probe system are known in the spatial directions according to the portal, horizontal and vertical boom design (Zeltscnrift Werkstatt und Betrieb 108, 1975, H 11, 5 713/7350) This type of mechanical However, leadership brings a very complex and high accuracy requirements also massive structure with it, its function short or long term by very many interfering influences such as variable temperature of the mechanical components, different static and dynamic forces and moments and changing mechanical stress distributions as a result of full acceleration and deceleration processes and varying spring-mass distributions impaired during the measuring process, signs of wear and the like A massive mechanical structure also hinders the delivery and removal mainly heavy and bulky work pieces that only a crane can carry and cause poor accessibility to the workpiece during the measuring process. Accelerating and braking of large masses by the operator during the measuring process costs Time Since the touch probes are permanently connected to the guidance system, their Do not change the spatial orientation at will without high technical effort can conceal measuring points such as z Bo deep grooves in oblique grooves Bores are difficult to reach.

Der Erfindung liegt die Aufgabe zugrunde, eine Meßmaschine mit lichtempfindlichen Positionsdetektoren zu schaffen, die die Kontrolle von Werkstücken beliebiger Abmessungen ermöglicht Die Meßmaschine soll unabhängig von Fehlern und Verschleiß mechanischer Führungen die geometrische Überprüfung, insbesondere von Werkstücken mit komplizierter räumlicher Geometrie zulassen Mechanische Bauelemente sollen die Zugänglichkeit zum Werkstück und die Handhabung des Tastsystems nicht stören. Die während des Meßablaufs durch den Bedienungsmann zu bewegenden Massen des Meßsystems sollen dabei möglichst klein sein Diese Aufgabe wird erfindungsgemäß durch eine Meßmaschine gelöst, bei dem an dem vorzugsweise in allen Freiheitsgraden beweglich angeordneten oder auch mechanisch in den Raumrichtungen geführten beliebig gestalteten Tastsystem zwei oder mehr punktförmige Lichtquellen mit einer zu den Tastspitzen des Tastsystems bestimmten Lage angebracht sind, die es bei Anwendung eines oder mehrerer Positionsdetektoren mit lichtempfindlichen Detektorflächen, welche die Lage der auf ihnen abgebildeten punktförmigen Lichtquellen digital oder analog in zwei Richtungen erfassen, ermöglichen, die räumliche Position der Tastspitzen des Tastsystems und damit die Koordinaten des jeweiligen Meßpunktes zu jedem Zeitpunkt in Abhängigkeit von der Position der punktförmigen Lichtquellen am Tastsystem bei beliebiger Position und Lage des Tastsystems über eine geometrische Umrechnung selbst zu bestimmen Da die Lage der punktförmigen Lichtquellen relativ zu den Tastspitzen des Tastsystems für die geometrische Umrechnung bekannt sein muß, aber nur schlecht direkt gemessen werden kann, wird sie über ein Bestimmungsprogramm bestimmt, mit dem in erstem Schritt die geometrische Zuordnung der punktförmigen Lichtquellen untereinander bestimmt wird, wobei unter Anwendung eines Positionsdetektors mindestens vier punktförmige Lichtquellen, unter Anwendung von zwei Positionsdetektoren mindestens drei punktförmige Lichtquellen eingesetzt werden, und im zweiten Schritt durch mindestens viermaliges,aus möglichst unterschiedlichen Richtungen erfolgendes Antasten zweier in ihrem Abstand bekannter Punkte die Abstände der punktförmigen Lichtquellen bezogen auf die Tastspitzen bestimmbar sind Die mit der Erfindung erzielbaren Vorteile bestehen insbesondere darin, daß sowohl Werkstücke kleiner und mittlerer als auch großer Abmessungen kontrolliert werden können, ohne daß ein aufwendiger und bei hohen Genauigkeitsanforderungen auch massiver mechanischer Aufbau zur Führung des Tastsystems in den Raumrichtungen erforderlich ist, der kurz- oder langfristig die Meßunsicherheit vergrößert infolge von Störeinflüssen wie veränderliche Temperatur der mechanischen Bauteile, unterschiedliche statische und dynamische Kräfte und Momente und wechselnde mechanische Spannungsverteilungen aufgrund von Beschleunigungs- und Verzögerungsvorgängen und variierenden Feder-Masse-Verteilungen während des Meßvorgangs, Verschleißerscheinungen und dergleichen Der An- und Abtransport vor allem von schweren und sperrigen Werkstücken, die nur ein Kran trägt, und die Zugänglichkeit an das Werkstück während des Meßvorgangs werden nicht behindert. Ein Zeit- und Energieverlust durch Beschleunigen und Abbremsen großer Massen während des Meßablaufs wird vermieden Auch verdeckt liegende Meßpunkte an komplizierten mehrdimensionalen Werkstücken können einfach erreicht werden, da das beliebig gestaltete Tastsystem in allen Freiheitsgraden beweglich angeordnet ist Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben Eine stabile Basis 1 trägt das zu kontrollierende Werkstück 2 sowie das an einer Halterung 3 beweglich angebrachte Tastsystem 4 mit den drei punktförmigen Lichtquellen 5 und die auf Ständern 6 befestigten Positionsdetektoren 7 mit der Optik 8 und den lichtempfindlichen Detektorflächen 9 Mit der Tastspitze 10 des Tastsystems 4 wird das Werkstück 2 im Meßpunkt 11, dessen Koordinaten bestimmt werden sollen, angetastet Die Optik 8 bildet die punktförmigen Lichtquellen 5, die eine definierte Lage zur Tastspitze 10 einnehmen, auf die lichtempfindlichen Detektorflächen 9 ab, welche die Lage der auf ihnen abgebildeten punktförmigen Lichtquellen 5 in zwei Richtungen digital oder analog erfassen und an den Kleinrechner 12 weitergeben, der durch geometrische Umrechnung die Position der Tastspitze 10 und damit die Koordinaten des Meßpunktes 11 bestimmt und diese zur Anzeige 13 bringt oder auch weiterverarbeitetThe invention is based on the object of a measuring machine with light-sensitive To create position detectors that control workpieces of any dimensions The measuring machine should be independent of errors and mechanical wear Guides the geometric review, especially of workpieces with complicated Allow spatial geometry Mechanical components should ensure accessibility to the workpiece and do not interfere with the handling of the touch probe. The during the measurement process Masses of the measuring system to be moved by the operator should thereby as far as possible be small This object is achieved according to the invention by a measuring machine at that on which is preferably arranged to be movable in all degrees of freedom or else Any designed probe system two mechanically guided in the spatial directions or more point light sources with one to the probe tips of the probe system specific location are attached, which is when using one or more position detectors with light-sensitive detector surfaces that show the position of the image on them Detect point-like light sources digitally or analogously in two directions, enable the spatial position of the probe tips of the probe system and thus the coordinates of the respective measuring point at any point in time depending on the position of the Point light sources on the touch probe at any position and location of the touch probe determine the position of the point-shaped Light sources relative to the probe tips of the probe system for the geometric conversion must be known, but can only be measured directly with difficulty, it will be via a Determination program determines the geometric assignment in the first step of the point light sources is determined with each other, using of a position detector at least four point light sources, at least three point light sources using two position detectors are used, and in the second step by at least four times, if possible different directions taking place probing two known in their distance Points the distances between the point-like light sources can be determined in relation to the probe tips The advantages that can be achieved with the invention are in particular that controls both workpieces of small and medium-sized as well as large dimensions can be without a complex and with high accuracy requirements also massive mechanical structure for guiding the probe system in the spatial directions is required, which increases the measurement uncertainty in the short or long term as a result of interfering influences such as variable temperature of the mechanical components, different static and dynamic forces and moments and changing mechanical stress distributions due to acceleration and deceleration processes and varying spring-mass distributions during the measuring process, signs of wear and the like. Transport to and from the site especially heavy and bulky workpieces that only a crane can carry and which Accessibility to the workpiece during the measuring process are not hindered. A loss of time and energy by accelerating and decelerating large masses during of the measuring process is avoided. Even hidden measuring points at complicated ones Multi-dimensional workpieces can be easily achieved as the arbitrarily designed The probe system is arranged to be movable in all degrees of freedom the invention is illustrated in the drawing and will be described in more detail below A stable base 1 carries the workpiece 2 to be checked as well as that on one Bracket 3 movably attached Touch probe 4 with the three punctiform Light sources 5 and the position detectors 7 mounted on stands 6 with the Optics 8 and the light-sensitive detector surfaces 9 with the probe tip 10 of the probe system 4 the workpiece 2 is at measuring point 11, the coordinates of which are to be determined, touched The optics 8 form the point-shaped light sources 5, which are a defined Assume position to the probe tip 10, on the light-sensitive detector surfaces 9, which the position of the point-shaped light sources 5 shown on them in two Capture directions digitally or analogue and pass them on to the small computer 12, the geometric conversion of the position of the probe tip 10 and thus the coordinates of the measuring point 11 is determined and this brings it to the display 13 or processes it further

Claims (1)

Ansprüche {3 ) Meßmaschine zur Kontrolle von Werkstücken beliebiger Abmessungen wie z B. Motorblöcke, Getriebe- und Pumpengehäuse sowie Karosserien oder Karosserieteile, dadurch gekennzeichnet, daß an dem vorzugsweise in allen Freiheitsgraden beweglich angeordneten oder auch mechanisch in den Raumrichtungen geführten, beliebig gestalteten Tastsystem (4; 5; 10) zwei oder mehr punktförmige Lichtquellen (5) mit einer zu den Tastspitzen (10) des Tastsystems bestimmten Lage angebracht sind, die es bei Anwendung eines oder mehrerer Positionsdetektoren (7) mit lichtempfindlichen Detektorflächen (9), welche die Lage der auf ihnen abgebildeten punktförmigen Lichtquellen digital oder analog in zwei Richtungen erfassen, ermöglichen, die räumliche Position der Tastspitzen (10) des Tastsystems (4; 5; 10) und damit die Koordinaten des jeweiligen Meßpunktes zu jedem Zeitpunkt in Abhängigkeit von der Position der punktförmigen Lichtquellen (5) am Tastsystem bei beliebiger Position und Lage des Tastsystems über eine geometrische Umrechnung, vorzugsweise unter Verwendung eines Rechners (12) selbst zu bestimmen 20) Meßmaschine nach Anspruch ,), dadurch gekennzeichnet, daß die für die geometrische Umrechnung erforderliche Bestim-(5) mung der Lage der punktförmigen Lichtquellen relativ zu den Tastspitzen (10) des Tastsystems (4; 5; 10) über ein Bestimmungsprogramm erfolgt, mit dem im ersten Schritt die geometrische Zuordnung der punktförmigen Lichtquellen untereinander bestimmt wird, wobei unter Anwendung eines lichtempfindlichen Positionsdetektors mindestens vier punktförmige Lichtquellen, unter Anwendung von zwei lichtempfindlichen Positionsdetektoren mindestens drei punktförmige Lichtquellen eingesetzt werden, und im zweiten Schritt durch mindestens viermaliges,aus möglichst unterschiedlichen Richtungen erfolgendes Antasten zweier in ihrem Abstand bekannter Punkte die Abstände der punktförmigen Lichtquellen (5) bezogen auf die Tastspitzen bestimmt werden Claims {3) measuring machine for the control of any workpieces Dimensions such as engine blocks, gear and pump housings and bodies or body parts, characterized in that on the preferably in all degrees of freedom movably arranged or mechanically guided in the spatial directions, any designed probe system (4; 5; 10) with two or more point light sources (5) a position specific to the probe tips (10) of the probe system, which it when using one or more position detectors (7) with light-sensitive Detector surfaces (9) showing the position of the point-like light sources imaged on them Capture digital or analog in two directions, enable the spatial position the probe tips (10) of the probe system (4; 5; 10) and thus the coordinates of the respective Measuring point at any point in time depending on the position of the punctiform Light sources (5) on the touch probe at any position and location of the touch probe via a geometric conversion, preferably using a computer (12) to be determined by yourself 20) measuring machine according to claim,), characterized in, that the determination of the position of the point-shaped light sources relative to the probe tips (10) of the probe system (4; 5; 10) is carried out via a determination program with which the geometrical Assignment of the point light sources to one another is determined, with under Use of a light-sensitive position detector at least four punctiform Light sources, using at least two light-sensitive position detectors three punctiform Light sources are used, and in the second Step by at least four times, from as different directions as possible subsequent probing of two points known in terms of their distance, the distances between the point-shaped Light sources (5) are determined based on the probe tips
DE19762605772 1976-02-13 1976-02-13 Workpiece measuring probe system - uses point light sources with three degrees of freedom in controlled relation to sensing points Withdrawn DE2605772A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19762605772 DE2605772A1 (en) 1976-02-13 1976-02-13 Workpiece measuring probe system - uses point light sources with three degrees of freedom in controlled relation to sensing points

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19762605772 DE2605772A1 (en) 1976-02-13 1976-02-13 Workpiece measuring probe system - uses point light sources with three degrees of freedom in controlled relation to sensing points

Publications (1)

Publication Number Publication Date
DE2605772A1 true DE2605772A1 (en) 1977-08-18

Family

ID=5969819

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19762605772 Withdrawn DE2605772A1 (en) 1976-02-13 1976-02-13 Workpiece measuring probe system - uses point light sources with three degrees of freedom in controlled relation to sensing points

Country Status (1)

Country Link
DE (1) DE2605772A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2551860A1 (en) * 1983-09-08 1985-03-15 Sciaky Sa INSTALLATION FOR DETERMINING SPACE COORDINATES OF A POINT OF A WORKPIECE, IN PARTICULAR FOR CONTROLLING A TOOLING SUCH AS A BODY WELDING TOOL FOR A MOTOR VEHICLE
DE3629689A1 (en) * 1985-09-05 1987-03-12 Ferranti Plc POSITION MEASURING DEVICE
DE3636671A1 (en) * 1986-09-11 1988-03-17 Neumeyer Stefan METHOD FOR THE THREE-DIMENSIONAL DETERMINATION OF THE RELATIVE MOVEMENT BETWEEN TWO BODIES AND MEASURING ARRANGEMENT FOR CARRYING OUT THIS METHOD
DE3807578A1 (en) * 1988-03-08 1989-09-28 Neumeyer Stefan Method for the three-dimensional detection and/or determination of a body, in particular a human skull (cranium)
DE4002043A1 (en) * 1990-01-24 1991-07-25 Paul Hans Ulrich Prof Dipl Ing Transducer determining geometrical processing data of prismatic shapes - has pin with illuminated glass fibre extension and optical receiver with evaluation computer
DE4002293A1 (en) * 1990-01-26 1991-08-01 Schenck Ag Carl Measuring deformations or specimens in test machines - by detecting changes in positions of incidence of light beam from elements mounted on specimen
DE4115846A1 (en) * 1991-05-15 1992-11-19 Ameling Walter Contactless spatial position measurement in robot processing chamber - acquiring images of robotic actuator with defined marking enabling calibration of imaging units in coordinate system
DE19654318A1 (en) * 1996-12-24 1998-07-16 Kuka Schweissanlagen Gmbh Method and device for measuring and testing workpieces
DE19724739A1 (en) * 1997-06-12 1998-12-17 Werth Messtechnik Gmbh Sensor for measuring geometric structures
DE19805892A1 (en) * 1997-06-12 1998-12-24 Werth Messtechnik Gmbh Method and arrangement for measuring structures of an object
US6651351B1 (en) 1997-06-12 2003-11-25 Werth Messtechnik Gmbh Coordinate measuring instrument with feeler element and optic sensor for measuring the position of the feeler
DE10258579B4 (en) * 2002-12-16 2007-12-13 Carl Mahr Holding Gmbh measuring device
DE102016118620A1 (en) * 2016-09-30 2018-04-05 Carl Zeiss Industrielle Messtechnik Gmbh Measuring system and measuring method
CH715610A1 (en) * 2018-12-04 2020-06-15 Watch Out S A System and methods for measuring the profile of a part.

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2551860A1 (en) * 1983-09-08 1985-03-15 Sciaky Sa INSTALLATION FOR DETERMINING SPACE COORDINATES OF A POINT OF A WORKPIECE, IN PARTICULAR FOR CONTROLLING A TOOLING SUCH AS A BODY WELDING TOOL FOR A MOTOR VEHICLE
EP0143012A1 (en) * 1983-09-08 1985-05-29 SCIAKY S.A. Société dite: Installation to determine the spatial coordonates of points of a work piece
DE3629689A1 (en) * 1985-09-05 1987-03-12 Ferranti Plc POSITION MEASURING DEVICE
DE3636671A1 (en) * 1986-09-11 1988-03-17 Neumeyer Stefan METHOD FOR THE THREE-DIMENSIONAL DETERMINATION OF THE RELATIVE MOVEMENT BETWEEN TWO BODIES AND MEASURING ARRANGEMENT FOR CARRYING OUT THIS METHOD
DE3807578A1 (en) * 1988-03-08 1989-09-28 Neumeyer Stefan Method for the three-dimensional detection and/or determination of a body, in particular a human skull (cranium)
DE4002043A1 (en) * 1990-01-24 1991-07-25 Paul Hans Ulrich Prof Dipl Ing Transducer determining geometrical processing data of prismatic shapes - has pin with illuminated glass fibre extension and optical receiver with evaluation computer
DE4002293A1 (en) * 1990-01-26 1991-08-01 Schenck Ag Carl Measuring deformations or specimens in test machines - by detecting changes in positions of incidence of light beam from elements mounted on specimen
DE4115846A1 (en) * 1991-05-15 1992-11-19 Ameling Walter Contactless spatial position measurement in robot processing chamber - acquiring images of robotic actuator with defined marking enabling calibration of imaging units in coordinate system
DE19654318A1 (en) * 1996-12-24 1998-07-16 Kuka Schweissanlagen Gmbh Method and device for measuring and testing workpieces
DE19724739A1 (en) * 1997-06-12 1998-12-17 Werth Messtechnik Gmbh Sensor for measuring geometric structures
DE19805892A1 (en) * 1997-06-12 1998-12-24 Werth Messtechnik Gmbh Method and arrangement for measuring structures of an object
US6651351B1 (en) 1997-06-12 2003-11-25 Werth Messtechnik Gmbh Coordinate measuring instrument with feeler element and optic sensor for measuring the position of the feeler
DE10258579B4 (en) * 2002-12-16 2007-12-13 Carl Mahr Holding Gmbh measuring device
DE102016118620A1 (en) * 2016-09-30 2018-04-05 Carl Zeiss Industrielle Messtechnik Gmbh Measuring system and measuring method
US10648792B2 (en) 2016-09-30 2020-05-12 Carl Zeiss Industrielle Messtechnik Gmbh Measuring system and measuring method
CH715610A1 (en) * 2018-12-04 2020-06-15 Watch Out S A System and methods for measuring the profile of a part.
US11854220B2 (en) 2018-12-04 2023-12-26 Watchoutcorp Sa System and method for measuring the profile of a workpiece

Similar Documents

Publication Publication Date Title
EP0019075B1 (en) Process and apparatus for examining the tooth flank profiles of large-diameter gear wheels
DE2605772A1 (en) Workpiece measuring probe system - uses point light sources with three degrees of freedom in controlled relation to sensing points
EP0426095B1 (en) Coordinate measuring machine
DE3714862A1 (en) FLEXIBLE CNC MULTIPLE-POINT MEASURING DEVICE
DE102007004934A1 (en) Geometrical error checking method for positioning machine i.e. coordinate measuring machine, involves comparing distance difference measured by length measuring system with distance difference calculated from coordinates of end effector
DE102017126198B4 (en) Method and system for gaugeless measurement of a thread
DE19639780A1 (en) Combined optical and mechanical measuring instrument for workpieces
EP2053345A1 (en) Measuring device for heavy workpieces and receiver for such a measuring device
DE1962877C3 (en) Device for centering a body of revolution
WO1999059038A1 (en) Coordinate measurement device and method for controlling same
DE102014110801B4 (en) Method for aligning a roughness sensor arranged on a coordinate measuring machine and coordinate measuring machine for carrying out the method
DE3640287A1 (en) Method of producing a common system of coordinates in the case of multi-armed coordinate measuring instruments
EP0264717B1 (en) Method and device for measuring gearing by the use of a coordinate measuring machine
DE10319711B4 (en) Method for high-precision dimensional measurement of measurement objects
DE3630702A1 (en) Device for measuring a workpiece
EP2378239A2 (en) Device for measuring objects
EP0131537A1 (en) Device for checking an involute gear tooth profile
DE102019134940A1 (en) Reference arrangement for a coordinate measuring machine, coordinate measuring machine and method for calibrating a coordinate measuring machine
DE10017394A1 (en) Method and device for gauging and adjusting the A and C axes of a five-axis milling machine includes path adjusters for fastening a barrel gauge in a milling spindle tool holding fixture and moving it axially.
DE102005031796A1 (en) Workpiece shape sampling procedure determines vertical position of probe tip by addition of vertical heigh of measurement unit support, base, constant and calculated probe arm tip height
DE2034635A1 (en) Measuring and centering device for determining position and dimensional deviations
DE19945717A1 (en) Method for non-contact measurement of position or geometry of large components or assemblies or to position manipulation units or tool machines; involves using moving and fixed laser distance sensors
DE4419909A1 (en) Device for controlling the geometrical and dynamic accuracy of a numerically controlled working head
DE3608696A1 (en) Measuring device for testing deviations from roundness, linear size and prescribed non-circular contours
DE19827364A1 (en) Determining selected characteristic values of tapered thread, especially tapered internal threads of specimen

Legal Events

Date Code Title Description
8141 Disposal/no request for examination