DE202004010057U1 - Electrical helicopter has four inclined co-rotating lifting rotors with individual drives providing control over all axes, varies drive speeds selectively - Google Patents

Electrical helicopter has four inclined co-rotating lifting rotors with individual drives providing control over all axes, varies drive speeds selectively Download PDF

Info

Publication number
DE202004010057U1
DE202004010057U1 DE202004010057U DE202004010057U DE202004010057U1 DE 202004010057 U1 DE202004010057 U1 DE 202004010057U1 DE 202004010057 U DE202004010057 U DE 202004010057U DE 202004010057 U DE202004010057 U DE 202004010057U DE 202004010057 U1 DE202004010057 U1 DE 202004010057U1
Authority
DE
Germany
Prior art keywords
rotors
angle
axes
helicopter
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE202004010057U
Other languages
German (de)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE202004010057U priority Critical patent/DE202004010057U1/en
Publication of DE202004010057U1 publication Critical patent/DE202004010057U1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)

Abstract

All four rotors turn in the same direction. Their axes are inclined with respect to the vertical by a mean angle (beta m). Torques applied to the rotors in hovering flight without yaw, are compensated by torque resulting from components of thrust perpendicular to the vertical axis. Yaw control in one direction, is achieved by speed increase in opposite rotors having an angle of inclination greater than the mean (beta m), simultaneously reducing speeds of the other two rotors having an angle of inclination less than the mean. To turn the helicopter in the other direction, this procedure is reversed.

Description

Stand der TechnikState of the art

Elektrohubschrauber mit 4 Hubrotoren konventioneller Bauart sind mit 2 rechts- und 2 linksdrehenden Rotoren ausgestattet.Electric helicopter with 4 lifting rotors conventional design are equipped with 2 right and 2 left rotating rotors.

Problemproblem

Der im Anspruch 1 angegebenen Erfindung lag das Problem zugrunde, einen 4– rotorigen, drehzahlgesteuerten Elektrohubschrauber zu schaffen, der mit handelsüblichen, rechtsdrehenden Propellern und Antriebsmotoren ausgestattet ist und über alle Achsen gesteuert wird. Hintergrund: Linksdrehende Propeller sind unüblich; die Auswahl ist klein. Viele Motoren haben eine Vorzugsdrehrichtung, nämlich Rechtslauf.The invention specified in claim 1 was based on the problem, a 4-rotor, speed-controlled To create electric helicopters, with commercial, right-handed propellers and drive motors and is controlled via all axes. Background: left-handed propellers are unusual; the selection is small. Many motors have a preferred direction of rotation, namely clockwise rotation.

Erfindunginvention

Dieses Problem wird mit den Maßnahmen des Anspruchs 1 gelöst.This problem comes with the measures of claim 1 solved.

Vorteilhafte Wirkung und Darstellung der Erfindungadvantageous Effect and presentation of the invention

Dargestellt und beschrieben wird ein Ausführungsbeispiel der Erfindung. 1 zeigt die Draufsicht eines 4-Rotoren-Elektrohubschraubers mit 4 gleichen Hubrotoren in schematischer Darstellung sowie 4 Ansichten A – D auf die 4 Rotoren 14. In den Ansichten sind die Winkel β1 und β2 zwischen den Rotorachsen und der Hochachse des Fluggeräts eingezeichnet. βm ist der Mittelwert von β1 und β2.An exemplary embodiment of the invention is shown and described. 1 shows the top view of a 4-rotor electric helicopter with 4 identical lifting rotors in a schematic representation and 4 views A - D of the 4 rotors 1 - 4 , The angles β 1 and β 2 between the rotor axes and the vertical axis of the aircraft are shown in the views. β m is the mean of β 1 and β 2 .

Schwebeflug ohne Gierbewegung wird wie folgt erreicht: Der Winkel βm ist konstruktiv so festgelegt, dass r · F · sin(βm) = MRotor. In dieser Gleichung ist MRotor das Drehmoment eines Rotors, F die Schubkraft je Rotor und r der Abstand der Rotorachse vom Zentrum des Fluggeräts. Die Differenz von β1 und β2 ist konstruktiv so festgelegt, dass das Fluggerät die gewünschte Agilität um die Hochachse zeigt.Hover without yaw is achieved as follows: The angle β m is structurally determined so that r · F · sin (β m ) = M rotor . In this equation, M rotor is the torque of a rotor, F is the thrust per rotor and r is the distance of the rotor axis from the center of the aircraft. The difference between β 1 and β 2 is structurally determined so that the aircraft shows the desired agility around the vertical axis.

Die Steuerung erfolgt wie beim konventionellen, drehzahlgesteuerten 4-Rotoren-Hubschrauber

Figure 00020001
The control is carried out as with the conventional, speed-controlled 4-rotor helicopter
Figure 00020001

Claims (1)

Über alle Achsen (Längs-, Hoch- und Querachse) gesteuerter Elektrohubschrauber mit 4 Hubrotoren (14), wobei jeder Rotor mit einem eigenen Antrieb ausgestattet ist, die 4 Rotoren in der Draufsicht des Fluggeräts an den Ecken eines Vierecks angeordnet sind und die Steuerung durch Verstellung der Drehzahlen der Antriebe realisiert ist, dadurch gekennzeichnet, dass die 4 Rotoren die gleiche Drehrichtung vorweisen und die Achsen der Rotoren gegenüber der Hochachse derart um einen mittleren Winkel (βm) geneigt sind, dass die Antriebsdrehmomente der Rotoren im Schwebeflug ohne Gierbewegung durch Drehmomente infolge Schubkraftkomponenten senkrecht zur Hochachse kompensiert werden, dass die Giersteuerung in die eine Drehrichtung erfolgt durch Drehzahlerhöhung von 2 gegenüberliegenden Rotoren, deren Neigungswinkel größer ist als der mittlere Winkel (βm), bei gleichzeitiger Drehzahlreduzierung von den beiden anderen gegenüberliegenden Rotoren, deren Neigungswinkel kleiner ist als der mittlere Winkel (βm), dass die Giersteuerung für die andere Drehrichtung erfolgt durch Drehzahlreduzierung von 2 gegenüberliegenden Rotoren, deren Neigungswinkel größer ist als der mittlere Winkel (βm), bei gleichzeitiger Drehzahlerhöhung von den beiden anderen gegenüberliegenden Rotoren, deren Neigungswinkel kleiner ist als der mittlere Winkel (βm).Electric helicopter with 4 lifting rotors (all longitudinal, vertical and transverse axes) controlled ( 1 - 4 ), each rotor is equipped with its own drive, the 4 rotors are arranged in the top view of the aircraft at the corners of a square and the control is realized by adjusting the speeds of the drives, characterized in that the 4 rotors have the same direction of rotation and the axes of the rotors are inclined by an average angle (β m ) with respect to the vertical axis in such a way that the drive torques of the rotors in hover flight without yawing movement are compensated by torques due to thrust force components perpendicular to the vertical axis, so that yaw control takes place in one direction of rotation by increasing the speed of 2 opposite rotors, whose angle of inclination is greater than the mean angle (β m ), with simultaneous speed reduction of the other two opposite rotors, whose angle of inclination is smaller than the mean angle (β m ), that the yaw control for the other direction of rotation takes place by reducing the speed of 2 opposite rotors, whose angle of inclination is greater than the mean angle (β m ), while simultaneously Speed increase from the other two opposite rotors, whose angle of inclination is smaller than the mean angle (β m ).
DE202004010057U 2004-06-26 2004-06-26 Electrical helicopter has four inclined co-rotating lifting rotors with individual drives providing control over all axes, varies drive speeds selectively Expired - Lifetime DE202004010057U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE202004010057U DE202004010057U1 (en) 2004-06-26 2004-06-26 Electrical helicopter has four inclined co-rotating lifting rotors with individual drives providing control over all axes, varies drive speeds selectively

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202004010057U DE202004010057U1 (en) 2004-06-26 2004-06-26 Electrical helicopter has four inclined co-rotating lifting rotors with individual drives providing control over all axes, varies drive speeds selectively

Publications (1)

Publication Number Publication Date
DE202004010057U1 true DE202004010057U1 (en) 2004-08-26

Family

ID=32921466

Family Applications (1)

Application Number Title Priority Date Filing Date
DE202004010057U Expired - Lifetime DE202004010057U1 (en) 2004-06-26 2004-06-26 Electrical helicopter has four inclined co-rotating lifting rotors with individual drives providing control over all axes, varies drive speeds selectively

Country Status (1)

Country Link
DE (1) DE202004010057U1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005010336A1 (en) * 2004-11-06 2006-05-11 Dolch, Stefan, Dipl.-Ing. (FH) Speed controlled helicopter
CN100391790C (en) * 2006-05-18 2008-06-04 战强 Multi-rotor aerocraft
DE102007054126A1 (en) * 2007-11-11 2009-05-20 Stefan Reich Unmanned gyroplane for advertising or other display purposes, e.g. sports events or demonstrations, has rigid connecting body formed in elongated manner, where two lift generating rotor devices are provided and spaced at connecting body
DE102008018901A1 (en) * 2008-04-14 2009-12-31 Gerhard, Gregor, Dr. Remote controlled aircraft e.g. helicopter, has outlet area including middle axis, which is inclined on main plane of support construction against plumb line for stabilizing of flight characteristics of aircraft
DE102012104783A1 (en) * 2012-06-01 2013-12-24 Logo-Team Ug (Haftungsbeschränkt) Aircraft, preferably UAV, drone and / or UAS
DE102013000168A1 (en) * 2013-01-09 2014-07-10 microdrones GmbH Aerodynamic Multicopter / Quadrocopter
US9145205B2 (en) 2009-08-07 2015-09-29 Guy Jonathan James Rackham Rotor assembly for a rotorcraft
CN105539834A (en) * 2016-01-12 2016-05-04 成都纵横自动化技术有限公司 Composite-wing vertical take-off and landing unmanned aerial vehicle
WO2016179667A1 (en) * 2015-05-14 2016-11-17 Seppo Saario An internal combustion engine powered multi-rotor aircraft and methods of control thereof
DE102015006511A1 (en) * 2015-05-26 2016-12-01 Airbus Defence and Space GmbH Vertical launching aircraft
FR3043337A1 (en) * 2015-11-10 2017-05-12 Parrot DRONE HAVING A TORQUE PROPULSION SUPPORT.
DE102016010873A1 (en) 2016-09-02 2018-03-08 Mario Hintze Multicopter lightweight construction
CN108089593A (en) * 2017-12-03 2018-05-29 中国直升机设计研究所 A kind of method of unmanned helicopter course compensation course line transition
CN108248855A (en) * 2018-01-15 2018-07-06 上海交通大学 A kind of fuselage unmanned plane that verts with the design of driving part inclination angle
CN109562825A (en) * 2016-08-26 2019-04-02 小鹰公司 Multi-rotor aerocraft with the configuration of wide span rotor
EP3366585A4 (en) * 2016-02-26 2019-07-31 IHI Corporation Vertical take-off and landing aircraft
DE102020000138A1 (en) * 2020-01-11 2021-07-15 Thomas Wünsche Method and system for driving floating devices and subsystems of devices for use in agriculture and forestry
US11465736B2 (en) 2017-07-13 2022-10-11 Kitty Hawk Corporation Multicopter with wide span rotor configuration and protective fuselage

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006048205A1 (en) 2004-11-06 2006-05-11 Stefan Dolch Rotational speed controlled helicopter
DE102005010336B4 (en) * 2004-11-06 2007-09-06 Dolch, Stefan, Dipl.-Ing. (FH) Speed controlled helicopter
DE102005010336A1 (en) * 2004-11-06 2006-05-11 Dolch, Stefan, Dipl.-Ing. (FH) Speed controlled helicopter
CN100391790C (en) * 2006-05-18 2008-06-04 战强 Multi-rotor aerocraft
DE102007054126A1 (en) * 2007-11-11 2009-05-20 Stefan Reich Unmanned gyroplane for advertising or other display purposes, e.g. sports events or demonstrations, has rigid connecting body formed in elongated manner, where two lift generating rotor devices are provided and spaced at connecting body
DE102008018901A1 (en) * 2008-04-14 2009-12-31 Gerhard, Gregor, Dr. Remote controlled aircraft e.g. helicopter, has outlet area including middle axis, which is inclined on main plane of support construction against plumb line for stabilizing of flight characteristics of aircraft
US9145205B2 (en) 2009-08-07 2015-09-29 Guy Jonathan James Rackham Rotor assembly for a rotorcraft
DE102012104783A1 (en) * 2012-06-01 2013-12-24 Logo-Team Ug (Haftungsbeschränkt) Aircraft, preferably UAV, drone and / or UAS
DE102012104783B4 (en) * 2012-06-01 2019-12-24 Quantum-Systems Gmbh Aircraft, preferably UAV, drone and / or UAS
DE102013000168A1 (en) * 2013-01-09 2014-07-10 microdrones GmbH Aerodynamic Multicopter / Quadrocopter
DE102013000168B4 (en) * 2013-01-09 2021-06-17 Mdgroup Germany Gmbh Aerodynamic multicopter / quadrocopter
WO2016179667A1 (en) * 2015-05-14 2016-11-17 Seppo Saario An internal combustion engine powered multi-rotor aircraft and methods of control thereof
DE102015006511A1 (en) * 2015-05-26 2016-12-01 Airbus Defence and Space GmbH Vertical launching aircraft
US10518875B2 (en) 2015-05-26 2019-12-31 Airbus Defence and Space GmbH Vertical take-off aircraft
FR3043337A1 (en) * 2015-11-10 2017-05-12 Parrot DRONE HAVING A TORQUE PROPULSION SUPPORT.
CN106986008A (en) * 2015-11-10 2017-07-28 鹦鹉无人机股份有限公司 The unmanned plane of supporting member is promoted with connection
EP3168149A1 (en) * 2015-11-10 2017-05-17 Parrot Drones Drone having a coupled thruster bracket
CN105539834B (en) * 2016-01-12 2018-08-21 成都纵横自动化技术有限公司 A kind of composite wing vertical take-off and landing drone
CN105539834A (en) * 2016-01-12 2016-05-04 成都纵横自动化技术有限公司 Composite-wing vertical take-off and landing unmanned aerial vehicle
EP3366585A4 (en) * 2016-02-26 2019-07-31 IHI Corporation Vertical take-off and landing aircraft
CN109562825A (en) * 2016-08-26 2019-04-02 小鹰公司 Multi-rotor aerocraft with the configuration of wide span rotor
DE102016010873A1 (en) 2016-09-02 2018-03-08 Mario Hintze Multicopter lightweight construction
US11465736B2 (en) 2017-07-13 2022-10-11 Kitty Hawk Corporation Multicopter with wide span rotor configuration and protective fuselage
US11794885B2 (en) 2017-07-13 2023-10-24 Kitty Hawk Corporation Multicopter with wide span rotor configuration and protective fuselage
CN108089593A (en) * 2017-12-03 2018-05-29 中国直升机设计研究所 A kind of method of unmanned helicopter course compensation course line transition
CN108248855A (en) * 2018-01-15 2018-07-06 上海交通大学 A kind of fuselage unmanned plane that verts with the design of driving part inclination angle
DE102020000138A1 (en) * 2020-01-11 2021-07-15 Thomas Wünsche Method and system for driving floating devices and subsystems of devices for use in agriculture and forestry

Similar Documents

Publication Publication Date Title
DE202004010057U1 (en) Electrical helicopter has four inclined co-rotating lifting rotors with individual drives providing control over all axes, varies drive speeds selectively
EP3038913B1 (en) Vertical take-off and landing aircraft
DE69821006T2 (en) AIRCRAFT WITH DRIVER GENERATORS
EP3409589B1 (en) Drive system for a vehicle
WO2007122245A2 (en) Aircraft
WO2017021391A1 (en) Vtol aircraft having a movable mass for control
DE202017106992U1 (en) gyrocopter
DE102017117174A1 (en) Propeller arrangement for an aircraft
DE102010025718B4 (en) Helicopter rotor control device
DE10256916B4 (en) helicopter
DE102013001852A1 (en) Aircraft e.g. octocopter has rotors which are arranged by wings extending axis covering portions of wing, and opposite rotation directions of rotors are chosen such that buoyancy of wing in forward flight is supported by rotors
DE19850954C1 (en) Cycloidal propeller for marine vessel
DE10053134B4 (en) New buoyancy system for thrust-generating rotors
DE202006005862U1 (en) Double rotor helicopter has contra rotating rotors driven by a differential and with a single swashplate control and without a tail rotor
DE860030C (en) Controllable pitch propeller
DE10316093B4 (en) Rotor for a rotary wing aircraft and method for blade angle adjustment of a rotor
DE2241160A1 (en) METHOD AND DEVICE FOR THE GENERATION OF ELEVATION OR PROTECTION IN AIRCRAFT OR WATER VEHICLES
DE202004016509U1 (en) Rotorcraft with four rotors, has distances between rotation axes of rotors so small that rotor circle areas overlap with each other
DE3343187A1 (en) Rotary-wing aircraft having an ornithopter drive
DE102020201579B4 (en) aircraft
DE10203504B4 (en) helicopter
DE202016005897U1 (en) Coaxial rotor gearbox without hollow shaft
DE405956C (en) plane
CN212605855U (en) Integrated propeller helicopter
DE944102C (en) Autorotation capable helicopter and airplane

Legal Events

Date Code Title Description
R086 Non-binding declaration of licensing interest
R207 Utility model specification

Effective date: 20040930

R156 Lapse of ip right after 3 years

Effective date: 20080101