DE19914680C2 - Polymer electrolyte membrane with integrated catalyst metal-doped porous graphite contact layer - Google Patents

Polymer electrolyte membrane with integrated catalyst metal-doped porous graphite contact layer

Info

Publication number
DE19914680C2
DE19914680C2 DE19914680A DE19914680A DE19914680C2 DE 19914680 C2 DE19914680 C2 DE 19914680C2 DE 19914680 A DE19914680 A DE 19914680A DE 19914680 A DE19914680 A DE 19914680A DE 19914680 C2 DE19914680 C2 DE 19914680C2
Authority
DE
Germany
Prior art keywords
membrane
integrated
catalyst
membrane according
porous graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19914680A
Other languages
German (de)
Other versions
DE19914680A1 (en
Inventor
Joerg Mueller
Thomas Guth
Laurent Mex
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19914680A priority Critical patent/DE19914680C2/en
Publication of DE19914680A1 publication Critical patent/DE19914680A1/en
Application granted granted Critical
Publication of DE19914680C2 publication Critical patent/DE19914680C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

Die Erfindung betrifft eine Anordnung, Brennstoffzellen, insbesondere solche, die auf Polymer-Elektrolyt- Membranen (PEM) beruhen, bezüglich ihrer Wechselwirkung mit den Katalysatoren der porösen Elektroden gegenüber dem Stand der Technik deutlich zu verbessern. Dazu ist in dieser Anordnung die Membran mit einer porösen Graphitschicht beschichtet, in die gezielt bezüglich Clustergröße (Konzentration) und Tiefenverteilung (Gradient) die Katalysatormetalle, vorzugsweise Pt und Pt-Ru, eingebracht sind. Deren Konzentration ist im unmittelbaren Kontakt zur Membran maximal und nimmt entsprechend der Protonenreichweite mit zunehmenden Abstand senkrecht zur Membran bis auf Null ab. Dadurch ist die notwendige Katalysatormenge minimal.The invention relates to an arrangement, fuel cells, in particular those based on polymer electrolyte Membranes (PEM) are based on their interaction with the catalysts of the porous electrodes to improve significantly compared to the prior art. For this purpose, the membrane with a porous graphite layer coated in the targeted with regard to cluster size (concentration) and depth distribution (Gradient) the catalyst metals, preferably Pt and Pt-Ru, are introduced. Their concentration is in the maximum direct contact to the membrane and increases with increasing proton range Distance perpendicular to the membrane down to zero. As a result, the amount of catalyst required is minimal.

Die daraus resultierenden integrierten Membransysteme zeichnen sich dann nicht nur durch verbesserte Betriebs­ eigenschaften aus, sondern sie ermöglichen auch vereinfachte und ggf. neuartige Zellenaufbauten.The resulting integrated membrane systems are not only characterized by improved operation properties, but also enable simplified and, if necessary, new cell structures.

PEM-Brennstoffzellen werden üblicherweise aus einer Schichtung von Folien oder folienähnlichen Strukturen zusammengesetzt, bestehend aus der ionenleitenden Polymerfolie, den mit Katalysatorschichten versehenen po­ rösen Graphitelektroden sowie metallischen Folien, die i. a. die Kanäle für die Zufuhr und gleichmäßige Vertei­ lung der Brennstoffe enthalten (z. B. US 5,858,569). Neben der relativ komplexen Montagetechnik liegt ein Nachteil dieser Konstruktion in dem wenig definierten Kontakt zwischen den für den Wirkungsgrad wesentlichen Katalysatorschichten und der Membran. Diese Begrenzungen führen außerdem zu einem erhöhten Spannungsab­ fall über der Membran sowie einem erhöhten Bedarf an dem die Zellkosten wesentlich bestimmenden Katalysa­ tormaterial. Weiterhin ist die Geometrie damit realisierbarer Zellen weitgehend auf Stapelstrukturen beschränkt, d. h. z. B. zylindrische Systeme, wie sie für eine direkte Kompatibilität mit Batterien und Akkumulatoren wün­ schenswert wären, sind damit nur mit hohem Aufwand herzustellen.PEM fuel cells are usually made from a layering of foils or foil-like structures composed of the ion-conducting polymer film, the po provided with catalyst layers red graphite electrodes and metallic foils that i. a. the channels for the feed and even distribution contain the fuels (e.g. US 5,858,569). In addition to the relatively complex assembly technology Disadvantage of this construction in the little defined contact between those essential for the efficiency Catalyst layers and the membrane. These limits also lead to an increased voltage drop fall over the membrane and an increased need for the catalyst which essentially determines the cell costs door material. Furthermore, the geometry of cells that can be realized is largely restricted to stack structures, d. H. z. B. cylindrical systems, as they would like for direct compatibility with batteries and accumulators would be worthwhile to produce with great effort.

Andere Anordnungen (z. B. DE 196 24 887 oder DE 195 13 292 C1), welche sich besser eignen, z. B. planare oder zylindrische Brennstoffzellen aufzubauen, benötigen gegenüber der vorliegenden Erfindung z. B. poröse Trägermaterialien für die Membran-Elektroden Einheit oder herkömmliches Graphitpapier bzw. Kohlenstoffge­ webe. Zudem verwenden diese keine Katalysatoren, welche wie in der vorliegenden Erfindung beschriebenen Weise in die Elektroden als Gradientenschichten integriert sind, womit ihre Menge minimiert sind.Other arrangements (e.g. DE 196 24 887 or DE 195 13 292 C1) which are more suitable, e.g. B. planar or build up cylindrical fuel cells need z. B. porous Carrier materials for the membrane-electrode unit or conventional graphite paper or carbon tissue. In addition, they do not use catalysts as described in the present invention Are integrated into the electrodes as gradient layers, thus minimizing their amount.

In der vorliegenden Erfindung werden diese Probleme gemäß Abb. 1 dadurch gelöst, daß auf die ionenleitende Polymermembran 1 in direktem Kontakt zur Membran in einem vorzugsweise plasmaaktivierten Abscheidepro­ zeß beidseitig jeweils eine mit Katalysatormetallen geimpfte poröse Graphitschicht 2 aufgebracht wird.In the present invention, these problems according to Fig. 1 are solved by applying a porous graphite layer 2 inoculated with catalyst metals to both sides of the ion-conducting polymer membrane 1 in direct contact with the membrane in a preferably plasma-activated separation process.

Diese poröse Graphit-Schicht wird z. B. in einem Parallelplatten-Plasma-Reaktor mit Elektroden aus den Kataly­ satormaterialien (z. B. Pt, bzw. Pt-Ru) vorzugsweise in einer Azethylen-Atmosphäre bei hohem Prozeßdruck und hoher Leistung im Regime von Gasphasenreaktionen abgeschieden. Die Konzentration bzw. die Größe und Ver­ teilung der Cluster des Katalysators wird vorzugsweise durch Variation der Leistung und des Drucks im Prozeß eingestellt. Zur Minimierung des Katalysatormetallbedarfs bei gleichzeitiger Maximierung der Wirksamkeit des Katalysators wird die Konzentration von hoher Konzentration an der Grenzfläche zu verschwindender außerhalb des aktiven Bereiches der Schicht, also der Protonenreichweite in der Schicht, variiert.This porous graphite layer is z. B. in a parallel plate plasma reactor with electrodes from the Kataly sator materials (e.g. Pt, or Pt-Ru) preferably in an ethylene atmosphere at high process pressure and high performance in the regime separated from gas phase reactions. The concentration or the size and ver Division of the clusters of the catalyst is preferably achieved by varying the performance and pressure in the process set. To minimize the catalyst metal requirement while maximizing the effectiveness of the Catalyst becomes the concentration from high concentration at the interface to vanishing outside of the active area of the layer, ie the proton range in the layer, varies.

Zur vereinfachten Trennung z. B. im Durchlaufverfahren, aber auch bei großflächiger stationärer Abscheidung kann gemäß Abb. 2 auf der Membran 1 die Katalysator-beladene poröse Graphitschicht 2 auch strukturiert aus­ gelegt sein, welches in dem beispielhaft aufgeführten Herstellungsverfahren vorzugsweise mit einer Schatten­ maske 3 realisiert werden kann. Auf diese Weise ist eine einfache laterale Verschaltung solcher Zellen auf einer Membranebene möglich, wenn zusätzliche Verbindungen 5 durch entsprechende Aussparungen 4 in der Mem­ bran 1 die Graphitschichten unmittelbar miteinander verbinden.For simplified separation z. B. in a continuous process, but also in large-area stationary deposition may be as shown in Fig. 2 on the membrane 1, the catalyst-loaded porous graphite layer 2 and structure of its set, which preferably mask in the exemplified manufacturing method of a shadow can be realized. 3 In this way, a simple lateral connection of such cells on a membrane level is possible if additional connections 5 connect the graphite layers directly to one another by corresponding cutouts 4 in the membrane 1 .

Die auf diese Weise entstehende integrierte Membranstruktur, bestehend aus Membran und integrierten Kataly­ sator-beladenen porösen Graphitelektroden, läßt sich, um eine komplette Zelle zu erzeugen, mit mit geeigneten Reliefstrukturen versehenen Metallfolien kombinieren, um daraus Stapelzellen oder aber auch anders geformte z. B. bei ausreichend geringer Dicke der Graphitschicht zylinderförmige Brennstoffzellen aufzubauen.The resulting integrated membrane structure, consisting of membrane and integrated catalyst sator-loaded porous graphite electrodes, can be used to create a complete cell with suitable Metal foils with relief structures combine to create stacked cells or other shapes z. B. with a sufficiently small thickness of the graphite layer cylindrical fuel cells.

Claims (8)

1. Integrierte PEM-Brennstoffzellen-Membran, dadurch gekennzeichnet, daß
sie beiderseits mit jeweils einer mit Katalysatormetallen geimpften porösen Graphitschicht versehen ist und dadurch eine innige Verbindung von elektronenleitendem porösem Graphit, ionenleitender Membran und Katalysatorclustern mit größtmöglicher Wechselwirkung besitzt,
die Katalysator-Konzentration im unmittelbaren Kontakt zur Membran maximal ist und entsprechend der Protonenreichweite mit zunehmenden Abstand senkrecht zur Membran bis auf Null abnimmt und dadurch die notwendige Katalysatormenge minimal ist.
1. Integrated PEM fuel cell membrane, characterized in that
it is provided on both sides with a porous graphite layer inoculated with catalyst metals and thus has an intimate connection of electron-conducting porous graphite, ion-conducting membrane and catalyst clusters with the greatest possible interaction,
the catalyst concentration in direct contact with the membrane is maximum and, depending on the proton range, decreases to zero with increasing distance perpendicular to the membrane, and the required amount of catalyst is therefore minimal.
2. Integrierte Membran nach Anspruch 1 dadurch gekennzeichnet, daß die Schichtdicke des porösen Graphit bei einigen µm liegt.2. Integrated membrane according to claim 1, characterized in that the layer thickness of the porous graphite a few µm. 3. Integrierte Membran nach Anspruch 1 dadurch gekennzeichnet, daß sie als Katalysatormetalle vorzugsweise Pt und/oder Pt/Ru nutzt.3. Integrated membrane according to claim 1, characterized in that it is preferably used as catalyst metals Pt and / or Pt / Ru uses. 4. Integrierte Membran nach Anspruch 1 bis 3 dadurch gekennzeichnet, daß die Graphit- und Katalysator­ schichten durch geeignete Schattenmasken strukturiert aufgebracht sind und dadurch eine integrierte Ver­ schaltung auf der Membran oder eine einfache Trennung ohne mechanische Belastung der integrierten Struktur möglich ist.4. Integrated membrane according to claim 1 to 3, characterized in that the graphite and catalyst layers are applied in a structured manner using suitable shadow masks and thus an integrated ver circuit on the membrane or a simple separation without mechanical stress on the integrated Structure is possible. 5. Integrierte Membran nach Anspruch 1 bis 4 dadurch gekennzeichnet, daß die Verschaltung durch durchkon­ taktierende, strukturierte Graphitschichten erfolgt.5. Integrated membrane according to claim 1 to 4, characterized in that the interconnection by durchkon tactical, structured graphite layers. 6. Integrierte Membran nach Anspruch 1 bis 5 dadurch gekennzeichnet, daß sich die Membran ergänzt durch mit Kanalreliefs versehene Metallfolien zu Mehrfach-Stapelzellen erweitern läßt.6. Integrated membrane according to claim 1 to 5, characterized in that the membrane complements can be expanded to multiple stacking cells by means of metal foils provided with channel reliefs. 7. Integrierte Membran nach Anspruch 1 bis 5 dadurch gekennzeichnet, daß sich die Membran ergänzt durch mit Kanalreliefs versehene Metallfolien zu planaren Mehrfach-Zellen erweitern läßt.7. Integrated membrane according to claim 1 to 5, characterized in that the membrane complements can be expanded to planar multiple cells by means of metal foils provided with channel reliefs. 8. Integrierte Membran nach Anspruch 1 bis 5 dadurch gekennzeichnet, daß sich die Membran ergänzt durch mit Kanalreliefs versehene Metallfolien zu zylinderförmigen Mehrfachzellen aufrollen läßt.8. Integrated membrane according to claim 1 to 5, characterized in that the membrane complements roll up into cylindrical multiple cells using metal foils provided with channel reliefs leaves.
DE19914680A 1999-03-31 1999-03-31 Polymer electrolyte membrane with integrated catalyst metal-doped porous graphite contact layer Expired - Fee Related DE19914680C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19914680A DE19914680C2 (en) 1999-03-31 1999-03-31 Polymer electrolyte membrane with integrated catalyst metal-doped porous graphite contact layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19914680A DE19914680C2 (en) 1999-03-31 1999-03-31 Polymer electrolyte membrane with integrated catalyst metal-doped porous graphite contact layer

Publications (2)

Publication Number Publication Date
DE19914680A1 DE19914680A1 (en) 2000-12-07
DE19914680C2 true DE19914680C2 (en) 2003-02-20

Family

ID=7903131

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19914680A Expired - Fee Related DE19914680C2 (en) 1999-03-31 1999-03-31 Polymer electrolyte membrane with integrated catalyst metal-doped porous graphite contact layer

Country Status (1)

Country Link
DE (1) DE19914680C2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528020B1 (en) 2003-03-31 2005-11-15 세이코 엡슨 가부시키가이샤 Method for forming functional porous layer, method for manufacturing fuel cell, electronic device, and automobile
DE10317976B4 (en) * 2003-04-17 2013-05-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solid electrolyte fuel cell and method for its production and use of the solid electrolyte fuel cell as an electrolyzer
WO2007048612A2 (en) * 2005-10-27 2007-05-03 Ird Fuel Cells A/S Membrane electrode assemblies for dmfc having catalyst concentration gradient
FR2894076B1 (en) * 2005-11-30 2014-07-11 Centre Nat Rech Scient PROCESS FOR PRODUCING, BY DEPOSITION ON A SUPPORT, ELECTRODE FOR A FUEL CELL

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19513292C1 (en) * 1995-04-07 1996-08-22 Siemens Ag Polymer electrolyte membrane fuel cell
DE19624887A1 (en) * 1995-06-21 1997-01-02 Fraunhofer Ges Forschung Electrochemical cell including solid electrolyte system formed by thin film technologies
DE19644628A1 (en) * 1996-10-17 1998-04-23 Hahn Meitner Inst Berlin Gmbh Inert cathode for selective oxygen reduction and process for its production
US5750013A (en) * 1996-08-07 1998-05-12 Industrial Technology Research Institute Electrode membrane assembly and method for manufacturing the same
DE19718687A1 (en) * 1997-05-02 1998-11-05 Forschungszentrum Juelich Gmbh Fuel cell stack
DE19833064A1 (en) * 1998-07-22 2000-02-03 Fraunhofer Ges Forschung Fuel cell for high output voltages

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19513292C1 (en) * 1995-04-07 1996-08-22 Siemens Ag Polymer electrolyte membrane fuel cell
DE19624887A1 (en) * 1995-06-21 1997-01-02 Fraunhofer Ges Forschung Electrochemical cell including solid electrolyte system formed by thin film technologies
US5750013A (en) * 1996-08-07 1998-05-12 Industrial Technology Research Institute Electrode membrane assembly and method for manufacturing the same
DE19644628A1 (en) * 1996-10-17 1998-04-23 Hahn Meitner Inst Berlin Gmbh Inert cathode for selective oxygen reduction and process for its production
DE19718687A1 (en) * 1997-05-02 1998-11-05 Forschungszentrum Juelich Gmbh Fuel cell stack
DE19833064A1 (en) * 1998-07-22 2000-02-03 Fraunhofer Ges Forschung Fuel cell for high output voltages

Also Published As

Publication number Publication date
DE19914680A1 (en) 2000-12-07

Similar Documents

Publication Publication Date Title
DE10393075B4 (en) Bipolar plate for fuel cells with a conductive foam as a coolant layer, process for their preparation and fuel cell
DE60203169T2 (en) SOLID OXIDE FUEL CELL IN HYBRID THIN-LAYER THIN FILM TECHNOLOGY AND METHOD FOR THE PRODUCTION THEREOF
DE69433591T2 (en) ELECTROCHEMICAL FUEL CELL WITH INTEGRAL SELECTIVE OXIDIZER
EP0934606B1 (en) Fuel cell electrode-electrolyte unit
DE112005001131B4 (en) A fuel cell assembly
DE102010004054B4 (en) Method for forming a membrane electrode arrangement
WO2017186770A1 (en) Bipolar plate which has reactant gas channels with variable cross-sectional areas, fuel cell stack, and vehicle comprising such a fuel cell stack
WO2002025765A2 (en) Fuel cell stack
DE60214950T2 (en) Miniaturized solid oxide fuel cell
WO1997001194A1 (en) Electrochemical solid electrolyte cell system
DE102008051534A1 (en) Fuel cell stack with asymmetric diffusion media at anode and cathode
DE102009003947A1 (en) Membrane with optimized dimensions for a fuel cell
DE60221281T2 (en) FUEL CELL AND METHOD FOR PRODUCING SUCH A LARGE ACTIVE SURFACE AND REDUCED VOLUME
EP1051768B1 (en) Fuel cell with a proton conducting electrolyte
DE112004000511T5 (en) MEA with catalyst for the oxidation of carbon monoxide
DE102016121506A1 (en) Bipolar plate and fuel cell with such a
WO2019048156A1 (en) Membrane electrode assembly, fuel cell stack, and vehicle comprising such a fuel cell stack
DE112004001685B4 (en) Device with a membrane electrode assembly and method for producing a membrane electrode assembly
DE102007039467B4 (en) Fuel cell with electrically conductive webs adhered to a gas diffusion medium and method for the production thereof
DE19914680C2 (en) Polymer electrolyte membrane with integrated catalyst metal-doped porous graphite contact layer
EP3329535B1 (en) Membrane-elektrode unit of a fuel cell and a method for the manufacture thereof
DE19914661C2 (en) Process for the production of an integrated interconnected polymer electrolyte membrane fuel cell
DE112005002273T5 (en) Graphite / metal foils / polymer substrate laminate for a low resistance bipolar plate application
WO2017025557A1 (en) Membrane electrode assembly for a fuel cell, and fuel cell
WO2018166733A1 (en) Bipolar plate for a fuel cell, and fuel cell, and method for producing a bipolar plate

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8304 Grant after examination procedure
8364 No opposition during term of opposition
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20111001