DE19740914A1 - Device for determining the air entering the cylinders of an internal combustion engine with a supercharger - Google Patents

Device for determining the air entering the cylinders of an internal combustion engine with a supercharger

Info

Publication number
DE19740914A1
DE19740914A1 DE19740914A DE19740914A DE19740914A1 DE 19740914 A1 DE19740914 A1 DE 19740914A1 DE 19740914 A DE19740914 A DE 19740914A DE 19740914 A DE19740914 A DE 19740914A DE 19740914 A1 DE19740914 A1 DE 19740914A1
Authority
DE
Germany
Prior art keywords
throttle valve
equation
punkt
volume
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19740914A
Other languages
German (de)
Inventor
Ernst Wild
Lutz Reuschenbach
Nikolaus Dr Benninger
Werner Hess
Hong Dr Zhang
Georg Mallebrein
Harald Von Dr Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE19740914A priority Critical patent/DE19740914A1/en
Priority to DE59809586T priority patent/DE59809586D1/en
Priority to EP98925436A priority patent/EP1015746B1/en
Priority to US09/402,321 priority patent/US6588261B1/en
Priority to JP54106198A priority patent/JP2001516421A/en
Priority to PCT/DE1998/000862 priority patent/WO1998044250A1/en
Publication of DE19740914A1 publication Critical patent/DE19740914A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/042Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
    • G01M15/048Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12 by monitoring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control
    • F02D31/005Electric control of rotation speed controlling air supply for idle speed control by controlling a throttle by-pass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • F02D41/0062Estimating, calculating or determining the internal EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

The invention relates to a device for determining the volume of air entering the cylinder of an internal combustion engine with a supercharger, according to values such as speed, air flow rate in the induction pipe, throttle valve control values and temperature. The invention is characterized in that at least the following physical influences are taken into account in determining the volume of air entering the cylinder: the extraction equation of the engine, the balance equation of filling in the induction pipe, the flow equation of the throttle valve and the balance equation in volume between the throttle valve and the supercharger.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von der DE 32 38 190 C2. Diese be­ trifft ein "Elektronisches System zum Steuern bzw. Regeln von Betriebskenngrößen einer Brennkraftmaschine". Im einzel­ nen geht es darum, auf der Basis von Drehzahl und Luftdurch­ satz im Ansaugrohr den Druck im Ansaugrohr zu bestimmen bzw. umgekehrt auf der Basis von Drehzahl und Druck den Luft­ durchsatz. Die dort angegebene Lehre macht gezielt Gebrauch von physikalischen Zusammenhängen, die im Luftansaugrohr ab­ laufen, mit dem Ziel einer optimalen Steuerung der Brenn­ kraftmaschine.The invention is based on DE 32 38 190 C2. These be meets an "electronic control system of operating parameters of an internal combustion engine ". In detail It is all about speed and air flow set in the intake pipe to determine the pressure in the intake pipe or vice versa the air based on speed and pressure throughput. The teaching specified there makes targeted use from physical relationships that depend in the air intake pipe run with the aim of optimal control of the burning engine.

Das bekannte System ist bei aufgeladenen Brennkraftmaschinen nicht anwendbar, weil dort aufgrund der Ladungsvorgänge zu­ sätzliche physikalische Gegebenheiten zu berücksichtigen sind.The known system is for supercharged internal combustion engines not applicable because there too due to the charging processes additional physical conditions to be taken into account are.

Aufgabe der Erfindung ist es deshalb, eine Einrichtung zum Bestimmen der in die Zylinder einer Brennkraftmaschine mit Lader gelangenden Luft abhängig von Größen wie Drehzahl, Luftdurchsatz im Ansaugrohr, Drosselklappenstellungswerten und Temperatur zu schaffen, welche die physikalischen Vor­ gänge bei mit Lader betriebenen Brennkraftmaschinen umfas­ send berücksichtigt.The object of the invention is therefore a device for Determine the in the cylinders of an internal combustion engine Loader entering air depending on sizes like speed,  Air flow in the intake pipe, throttle valve position values and create temperature, which is the physical pre gears in internal combustion engines operated with superchargers send is taken into account.

Gelöst wird diese Aufgabe mit einer Einrichtung nach dem Hauptanspruch.This task is solved with a facility after Main claim.

Mit dieser erfindungsgemäßen Einrichtung ist es möglich, die physikalisch richtigen oder zumindest angenäherten Verhält­ nisse, die im Saugrohr einer Brennkraftmaschine mit Lader ablaufen, zu erfassen, und nachfolgend die Kraftstoffmengen­ bestimmung darauf abzustellen.With this device according to the invention it is possible to physically correct or at least approximate ratio nisse in the intake manifold of an internal combustion engine with a charger expire, record, and subsequently the fuel quantities determination based on this.

Weitere Vorteile der Erfindung ergeben sich in Verbindung mit den Unteransprüchen sowie dem im folgenden näher be­ schriebenen und erläuterten Ausführungsbeispiel der Erfin­ dung.Further advantages of the invention result in connection with the subclaims and the following in more detail wrote and explained embodiment of the Erfin dung.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im nachfolgenden näher beschrieben und erläutert.An embodiment of the invention is in the drawing shown and is described in more detail below and explained.

Es zeigen Fig. 1 ein Übersichtsschaubild einer Brennkraft­ maschine mit Lader, Fig. 2 ein Blockdiagramm zur Bestimmung der relativen Füllung pro Hub (rl) ausgehend von normierten Größen für Drosselklappenwinkel, Temperatur der Ansaugluft vor Drosselklappe, Massestrom über den Heißfilmluftmassen­ messer (HFM) sowie der Drehzahl, Fig. 3 eine Blockdarstel­ lung bezüglich der Berechnung des Massenstromes über die Drosselklappe. In the drawings Fig. 1 is an overview diagram of an internal combustion engine having a supercharger, Fig. 2 is a block diagram for determining the relative fill per stroke (rl) on the basis of standardized sizes for the throttle valve angle, temperature of the intake air upstream the throttle valve, mass flow through the hot-film air mass meter (HFM) and the speed, Fig. 3 is a block representation regarding the calculation of the mass flow through the throttle valve.

Beschreibung des AusführungsbeispielesDescription of the embodiment

Fig. 1 zeigt in grober Übersichtsdarstellung die Eingangs­ seite einer Brennkraftmaschine mit Lader. In Stromrichtung gesehen umfaßt das Luftansaugrohr einen Heißfilmluftmassen­ messer 10 (HFM), einen Lader bzw. Verdichter 11, eine Dros­ selklappe 12 sowie ein Einlaßventil 13 der Brennkraftmaschi­ ne 14. Für das Verständnis der Erfindung ist noch ein Volu­ men 16 zwischen dem Lader 11 sowie der Drosselklappe sowie ein weiteres Volumen 17 zwischen Drosselklappe und Einlaß­ ventil 13 wichtig. Die Brennkraftmaschine selbst besitzt pro Zylinder einen Kolben 18, dessen Tief-Stellung das Hubvolu­ men 19 charakterisiert. Fig. 1 shows a rough overview of the input side of an internal combustion engine with a charger. Viewed in the flow direction, the air intake pipe comprises a hot film air mass meter 10 (HFM), a charger or compressor 11 , a throttle valve 12 and an inlet valve 13 of the internal combustion engine 14 . For the understanding of the invention, a volume 16 between the loader 11 and the throttle valve and a further volume 17 between the throttle valve and the inlet valve 13 is important. The internal combustion engine itself has a piston 18 per cylinder, the low position of which characterizes the stroke volume 19 .

Eine Betrachtung von Fig. 1 verdeutlicht, daß die Verhält­ nisse im Ansaugrohr sich kennzeichnen lassen über
A consideration of Fig. 1 clarifies that the ratios in the intake pipe can be identified

  • - eine Absauggleichung der Brennkraftmaschine (Luftfluß) durch das Einlaßventil 13,a suction equation of the internal combustion engine (air flow) through the inlet valve 13 ,
  • - eine Bilanzgleichung der Füllung im Saugrohr zwischen Drosselklappe und Einlaßventil (Volumen 17),- a balance equation for the filling in the intake manifold between the throttle valve and the inlet valve (volume 17 ),
  • - eine Durchflußgleichung an der Drosselklappe 12, sowie- A flow equation at the throttle valve 12 , and
  • - eine Bilanzgleichung im Volumen 16 zwischen Lader 11 und Drosselklappe 12.a balance equation in volume 16 between charger 11 and throttle valve 12 .

Dabei liegt den Gleichungen ein Zwei-Massen-Speicher-Modell zugrunde, wobei die zwei Massen-Speicher die Volumina vor und hinter der Drosselklappe (16, 17) angeben.The equations are based on a two-mass storage model, the two mass storage units specifying the volumes in front of and behind the throttle valve ( 16 , 17 ).

Als zweckmäßig hat sich erwiesen, daß für die Gleichungen normierte Werte Verwendung finden.It has proven to be expedient for the equations normalized values are used.

Im einzelnen geht es nun darum, Masseninhalte ml im Volumen 16 vor der Drosselklappe 12 sowie ms im Volumen vs 17 nach der Drosselklappe anzunehmen, die Masseninhalte in Drücke vor und nach der Drosselklappe umzurechnen, und auf der Ba­ sis dieser beiden Drücke Massenströme zu bestimmen, die ih­ rerseits wieder eine Aktualisierung der Masseninhalte erlau­ ben. Dabei haben die einzelnen Berechnungen in Iterations­ prozessen mit Annahmen für die Ausgangsdaten zu erfolgen.In detail, it is now a question of assuming mass contents ml in volume 16 before throttle valve 12 and ms in volume vs 17 after throttle valve, converting the mass contents into pressures before and after the throttle valve, and determining mass flows on the basis of these two pressures, which in turn allow the mass content to be updated. The individual calculations have to be made in iteration processes with assumptions for the initial data.

Einzelheiten bei den Berechnungsschritten zeigen die Fig. 2 und 3.Details of the calculation steps are shown in FIGS. 2 and 3.

In Fig. 2 ist ein Blockdiagramm zur Bestimmung der relati­ ven Füllung pro Hub (rl) dargestellt, ausgehend von normier­ ten Größen für Drosselklappenwinkel, Temperatur der Ansaug­ luft vor Drosselklappe, Massesstrom über den Heißfilmluft­ massenmesser (HFM) sowie der Drehzahl. Mit 20 ist ein Block für die Berechnung des Drosselklappen-Durchflusses darge­ stellt, der die Durchflußgleichung über die Drosselklappe symbolisiert. Seine Eingangsgrößen sind die modellierte Grö­ ße des Saugrohdruckes ps, des gemessenen Winkels der Dros­ selklappe bezogen auf ihren Anschlag (wdkba), einem normier­ ten Faktor ftvdk, der sich auf die gemessene Temperatur der Ansaugluft vor der Drosselklappe bezieht, einem modellierten Druck (pvdk) vor der Drosselklappe sowie der Drehzahl (n). Ausgangsseitig ergibt sich die relative Luftmasse pro Hub über die Drosselklappe (rlroh). Es folgt eine Differenzbil­ dungsstelle 21 und danach ein Integrator 22, wobei beide die Bilanzgleichung für den Druck im Saugrohr repräsentieren. Ausgangsseitig des Integrators 22 steht das Signal ps zur Verfügung, das sowohl Block 20 als auch einer Kennlinie 23 als Eingangsgröße dient. Die Kennlinie 23 stellt mit ihrem Zusammenhang zwischen ps und der relativen Füllung pro Hub rl die Absauggleichung des Brennraumes dar. Das Ausgangs­ signal rl wird ergänzend auf die Differenzbildungsstelle 21 zurückgeführt. In Fig. 2, a block diagram for determining the relati ven filling per stroke (rl) is shown, starting from standardized values for throttle valve angle, temperature of the intake air before the throttle valve, mass flow via the hot film air mass meter (HFM) and the speed. With 20 is a block for the calculation of the throttle valve flow represents Darge, which symbolizes the flow equation via the throttle valve. Its input variables are the modeled size of the intake manifold pressure ps, the measured angle of the throttle valve in relation to its stop (wdkba), a standardized factor ftvdk, which relates to the measured temperature of the intake air in front of the throttle valve, and a modeled pressure (pvdk) in front of the throttle valve and the speed (s). On the output side, the relative air mass per stroke results from the throttle valve (rlroh). There follows a difference forming station 21 and then an integrator 22 , both of which represent the balance equation for the pressure in the intake manifold. The signal ps is available on the output side of the integrator 22 and serves both block 20 and a characteristic curve 23 as an input variable. The characteristic curve 23 , with its relationship between ps and the relative charge per stroke rl, represents the suction equation of the combustion chamber. The output signal rl is additionally fed back to the difference formation point 21 .

Die Bilanzgleichung im Volumen vor der Drosselklappe wird mittels einer Differenzbildungsstelle 25 zusammen mit einem nachfolgenden Integrator 26 realisiert. Die additive Ein­ gangsgröße der Differenzbildungsstelle 25 ist ein Signal rlhfm der relativen Füllung über dem HFM, wobei dieses Si­ gnal einem Divisionsblock 27 entstammt, dessen Eingangsgrö­ ßen das HFM-Signal (Massenstrom HFM, mshfm) sowie ein mit einem Faktor KUMSRL (Kostante für Umrechnung von Massestrom in relative Luftfüllung im Brennraum) multipliziertes Dreh­ zahlsignal n bilden. Die Ausgangsgröße des Integrators 26 stellt das Signal pvdk (Druck vor Drosselklappe) dar und bildet die entsprechende Eingangsgröße des Blockes 20.The balance equation in the volume in front of the throttle valve is realized by means of a difference formation point 25 together with a subsequent integrator 26 . The additive input variable of the difference formation point 25 is a signal rlhfm of the relative filling above the HFM, this signal originating from a division block 27 , the input variables of which are the HFM signal (mass flow HFM, mshfm) and one with a factor KUMSRL (costant for conversion speed signal n multiplied by mass flow in relative air filling in the combustion chamber). The output variable of the integrator 26 represents the signal pvdk (pressure upstream of the throttle valve) and forms the corresponding input variable of the block 20 .

Eine Realisierung des Blockes 20 von Fig. 2 ist in Fig. 3 dargestellt.A realization of block 20 of FIG. 2 is shown in FIG. 3.

Einem Eingang 30 für die Größe wdkba folgt eine Ventilkenn­ linie 31, die ausgehend vom normierten Winkelsignal wdkba ein Signal bezüglich eines normierten Massenstromes msndk über die Drosselklappe bildet. Diese Normierung gilt u. a. für eine Lufttemperatur von 273° Kelvin sowie einem Druck vor Drosselklappe von 1013 hPa. Es folgen Multiplikations­ stellen 32 mit dem weiteren Eingangssignal ftvdk, 33 mit dem Signal fpvdk sowie 34 mit dem Ausgangssignal einer Kennlinie 35, deren Eingangsgröße das Divisionsergebnis zwischen dem modellierten Druck ps sowie dem modelierten Druck pvdk ist (Block 36). Zweites Eingangssignal der Multiplikationsstelle 33 ist fpvdk als dem Ergebnis einer Division der Eingangs­ größe pvdk dividiert durch einen Normdruck von 1013 hPa (Block 37). Das Ausgangssignal msdk (Massestrom über die Drosselklappe) der Multiplikationsstelle 34 erfährt nachfol­ gend in einem Block 38 eine Division mit dem Produkt aus der Drehzahl n sowie dem Faktor KUMSRL. Das Divisionsergebnis stellt das Signal rlroh als dem relativen Füllungswert über die Drosselklappe dar. An input 30 for the size wdkba is followed by a valve characteristic line 31 which, starting from the standardized angle signal wdkba, forms a signal relating to a standardized mass flow msndk via the throttle valve. This standardization applies, among other things, to an air temperature of 273 ° Kelvin and a pressure in front of the throttle valve of 1013 hPa. This is followed by multiplication points 32 with the further input signal ftvdk, 33 with the signal fpvdk and 34 with the output signal of a characteristic curve 35 , the input variable of which is the division result between the modeled pressure ps and the modeled pressure pvdk (block 36 ). The second input signal of the multiplication point 33 is fpvdk as the result of a division of the input variable pvdk divided by a standard pressure of 1013 hPa (block 37 ). The output signal msdk (mass flow via the throttle valve) of the multiplication point 34 subsequently experiences a division in a block 38 with the product of the speed n and the factor KUMSRL. The division result represents the signal rlroh as the relative filling value via the throttle valve.

Aufgrund der physikalischen Gegebenheiten gilt im Stationär­ betrieb rlhfm = rlroh = rl, d. h. der vom HFM gemessene Luft­ massenstrom entspricht dem Massenstrom über die Drosselklap­ pe und dem Massestrom in den Brennraum. Im Instationärfall kommen die Integratoren zum Tragen, die die einzelnen Luft­ massenspeicher nachbilden.Due to the physical conditions, stationary applies operation rlhfm = rlroh = rl, d. H. the air measured by the HFM mass flow corresponds to the mass flow through the throttle valve pe and the mass flow into the combustion chamber. In the transient case the integrators come into play, which the individual air Recreate mass storage.

Im einzelnen kommen folgende Gleichungen zur Anwendung:The following equations are used:

Absauggleichung der BrennkraftmaschineExtraction equation of the internal combustion engine

allgemein:
general:

ma_Punkt = (ps-pirg).n.(VH/2)/(R.Ts)
ma_Punkt = (ps-pirg) .n. (VH / 2) / (R.Ts)

mit
With

ma_Punkt = vom Brennraum abgesaugter Luftmassenstrom
Ps = Saugrohrdruck
pirg = durch Restgas im Brennraum verursachter Partialdruck
n = Drehzahl
VH = Motorhubvolumen
Ts = Gastemperatur im Saugrohr.
ma_Punkt = mass air flow extracted from the combustion chamber
Ps = intake manifold pressure
pirg = partial pressure caused by residual gas in the combustion chamber
n = speed
VH = engine stroke volume
Ts = gas temperature in the intake manifold.

Umrechnung von Massenstrom ma_Punkt auf Luftmasse ma im Brennraum mit Division durch die Drehzahl n:
Conversion of mass flow ma_Punkt to air mass ma in the combustion chamber with division by the speed n:

ma = Luftmasse im Brennraum
= ma_Punkt/n
= (ps-pirg).(VH/2)/(R.Ts.
ma = air mass in the combustion chamber
= ma_Punkt / n
= (ps-pirg). (VH / 2) / (R.Ts.

Für das Steuergerät wird mit normierten Größen gearbeitet:
Normluftmasse im Brennraum
Standardized sizes are used for the control unit:
Standard air mass in the combustion chamber

m_n norm = (Pn.VH/2)/(R.Tn).m_n norm = (Pn.VH / 2) / (R.Tn).

Definition von rl als der relativen Luftfüllung im Brenn­ raum:
Definition of rl as the relative air filling in the combustion chamber:

rl = ma/m_norm
= (ps-pirg).Tn/(Pn.Ts)
rl = ma / m_norm
= (ps-pirg) .Tn / (Pn.Ts)

unter den Normbedingungen: Tn = 273K, Pn = 1013hPa
mit
under the standard conditions: Tn = 273K, Pn = 1013hPa
With

fupsrl = Faktor für Umrechnung von Druck im Saugrohr in relative Luftfüllung im Brennraum
= Tn/(pn.Ts)
fupsrl = factor for converting pressure in the intake manifold to relative air filling in the combustion chamber
= Tn / (pn.Ts)

ergibt sich die Absauggleichung in Steuergeräte-Größen zu:
rl = (ps-pirg).fupsrl
the suction equation results in control unit sizes for:
rl = (ps-pirg) .fupsrl

Bilanzgleichung für die Füllung im SaugrohrBalance equation for the filling in the intake manifold

(Volumen (Volume

1717th

)
allgemein (realisiert durch die Additionsstelle
)
general (realized by the addition point

2121

mit nach­ folgendem Integrator with after following integrator

2222

):
):

d(ms)/dt = mdk_Punkt-ma_Punkt.d (ms) / dt = mdk_Punkt-ma_Punkt.

Mit normierten Steuergrößen
d(ms/m_norm)/dt = (mdk_Punkt-ma_Punkt)/m_norm
With standardized control variables
d (ms / m_norm) / dt = (mdk_Punkt-ma_Punkt) / m_norm

und
rl_Punkt = ma_Punkt/m_norm und
rlroh_Punkt = mdk_Punkt/m_norm
and
rl_Punkt = ma_Punkt / m_norm and
rlroh_Punkt = mdk_Punkt / m_norm

gilt:
applies:

d(ms/m_norm)/dt = rlroh_Punkt-rl_Punkt.d (ms / m_norm) / dt = rlroh_Punkt-rl_Punkt.

Den Zusammenhang zwischen Luftmasse ms im Saugrohr und dem Saugrohrdruck ps liefert die Gasgleichung
The relationship between air mass ms in the intake manifold and intake manifold pressure ps is provided by the gas equation

ps.Vs = ms.R.Ts.ps.Vs = ms.R.Ts.

Aufgelöst nach ms folgt
Resolved after ms follows

ms = (ps.Vs)/(R.Ts).ms = (ps.Vs) / (R.Ts).

Bezogen auf Normmasse ergibt sich
In relation to standard mass, this results

ms/m_norm = ((ps.Vs)/(R.Ts)).((R.Tn)/(Pn.VH/2)) = (ps.Vs.Tn)/(Pn.VH/2.Ts).ms / m_norm = ((ps.Vs) / (R.Ts)). ((R.Tn) / (Pn.VH / 2)) = (ps.Vs.Tn) / (Pn.VH / 2.Ts).

Eingesetzt in die normierte Bilanzgleichung gilt
Applied in the standardized balance equation applies

d.((ps.Vs.Tn)/(Pn.VH/2.Ts))/dt = (rlroh_Punkt-rl_Punkt)
d. ((ps.Vs.Tn) / (Pn.VH / 2.Ts)) / dt = (rlroh_Punkt-rl_Punkt)

daraus folgt:
d.ps/dt = (rlroh_Punkt-rl_Punkt).((VH/2.Ts.Pn)/(Vs.Tn)).
it follows:
d.ps/dt = (rlroh_Punkt-rl_Punkt). ((VH / 2.Ts.Pn) / (Vs.Tn)).

Mit
With

rl_Punkt = rl.n
rl_Punkt = rl.n

und
and

rlroh_Punkt = rlroh.n
rlroh_Punkt = rlroh.n

ergibt sich
surrendered

d.ps/dt = ((VH/2.Ts.Pn.n)/(Vs.Tn)).(rlroh-rl).d.ps/dt = ((VH / 2.Ts.Pn.n) / (Vs.Tn)). (rlroh-rl).

Schließlich erhält man mit der Substitution
Finally you get with the substitution

KIS = Integrationskonstante für Saugrohrmodell
= (VH/2.Ts.Pn.n)/(Vs.Tn)
KIS = integration constant for intake manifold model
= (VH / 2.Ts.Pn.n) / (Vs.Tn)

die Steuergeräte-Gleichung in Differentialform
the control unit equation in differential form

d.s/dt = KIS.(rlroh-rl)
ds / dt = HIS. (rlroh-rl)

und in Integralform
and in integral form

ps = KIS.Integral ((rlroh-rl).dtps = KIS.Integral ((rlroh-rl) .dt

Durchflußgleichung für die DrosselklappeFlow equation for the throttle valve

(Block (Block

2020th

, Einzelelemente der , Individual elements of the

Fig.Fig.

3) allgemein:
3) general:

msdk(wdkba) = pvdk.(1/(R.Tvdk))..(1/2).Adk(wdkba).my.Xi (Ps/pvdk).k
msdk (wdkba) = pvdk. (1 / (R.Tvdk)) .. (1/2) .Adk (wdkba) .my.Xi (Ps / pvdk) .k

mit
With

msdk: Massenstrom über die Drosselklappe
wdkba: Drosselklappenwinkel bezogen auf Anschlag
pvdk: Druck vor Drosselklappe
Tvdk: Temperatur vor Drosselklappe
Adk: Öffnungsquerschnitt der Drosselklappe
my: Reibungsbeiwert
Xi: Ausflußkennlinie.
msdk: mass flow via the throttle valve
wdkba: throttle valve angle related to the stop
pvdk: pressure in front of throttle valve
Tvdk: temperature before throttle valve
Adk: opening cross section of the throttle valve
my: coefficient of friction
Xi: outflow characteristic.

Die Drosselklappe wird abhängig vom Drosselklappenwinkel un­ ter Normbedingungen vermessen:
msndk(wdkba) = pn.(1/(R.Tn))..(1/2).Adk(wdk).my.Xi(psn/pvdk).k.
The throttle valve is measured depending on the throttle valve angle under standard conditions:
msndk (wdkba) = pn. (1 / (R.Tn)) .. (1/2) .Adk (wdk) .my.Xi (psn / pvdk) .k.

Der Quotient msdk(wdkba)/msndk(wdkba) aus beiden Gleichungen ergibt mit den Substitutionen
The quotient msdk (wdkba) / msndk (wdkba) from both equations results with the substitutions

fpvdk = pvdk/Pn
ftvdk = (Tn/Tvdk)..(1/2)
KLAF = Xi(ps/pl)/Xi(psn/pl)
psn = Normdruck hinter der Drosselklappe
fpvdk = pvdk / Pn
ftvdk = (Tn / Tvdk) .. (1/2)
KLAF = Xi (ps / pl) / Xi (psn / pl)
psn = standard pressure behind the throttle valve

die Abhängigkeit:
the dependence:

msdk(wdkba) = msndk(wdkba).ftvdk.fpvdk.KLAF.msdk (wdkba) = msndk (wdkba) .ftvdk.fpvdk.KLAF.

Damit ergibt sich der Wert für rlroh am Ausgang der Divisionsstelle 38 von Fig. 3 zu
The value for rlroh at the output of the division point 38 in FIG. 3 thus results

rlroh = msdk/(n.KUMSRL)
rlroh = msdk / (n.KUMSRL)

mit
With

KUMSRL = UmrechnungskonstanteKUMSRL = conversion constant

Bilanzgleichung im Volumen 16 zwischen Drosselklappe und LaderBalance equation in volume 16 between throttle and Loader

(Additionsstelle (Addition point

2525th

und Integrator and integrator

2626

von from

Fig.Fig.

3 allgemein:
d(ml)/dt = mhfm_Punkt - mdk_Punkt
3 general:
d (ml) / dt = mhfm_Punkt - mdk_Punkt

Mit normierten Steuergrößen gilt
d(ml/m_norm)/dt = (mhfm_Punkt-mdk_Punkt)/m_norm.
The following applies with standardized control variables
d (ml / m_norm) / dt = (mhfm_Punkt-mdk_Punkt) / m_norm.

Wird
rlhfm_Punkt = mhfm_Punkt/mnorm
Becomes
rlhfm_Punkt = mhfm_Punkt / mnorm

und
and

rlroh_Punkt = mdk_Punkt/m_norm
rlroh_Punkt = mdk_Punkt / m_norm

gesetzt, folgt:
set, follows:

d(ml/m_norm)/dt = rlhfm_Punkt-rlroh_Punkt.d (ml / m_norm) / dt = rlhfm_Punkt-rlroh_Punkt.

Den Zusammenhang zwischen Luftmasse ml im Ladevolumen und dem Ladedruck pl liefert die Gasgleichung
The relationship between air mass ml in the charge volume and the charge pressure pl is provided by the gas equation

pl.Vl = ml.R.Tl.pl.Vl = ml.R.Tl.

Aufgelöst nach ml folgt
Dissolved after ml follows

ml = (pl.Vl)/(R.Tl).ml = (pl.Vl) / (R.Tl).

Bezogen auf Normmasse ergibt sich
ml/m_norm = ((pl.Vl)/(R.Tl)).((R.Tn)/(Pn.VH/2))
= (pl.Vl.Tn)/(Pn.VH/2.Tl).
In relation to standard mass, this results
ml / m_norm = ((pl.Vl) / (R.Tl)). ((R.Tn) / (Pn.VH / 2))
= (pl.Vl.Tn) / (Pn.VH / 2.Tl).

Eingesetzt in die normierte Bilanzgleichung
d(ml/m_norm)/dt = rlroh_Punkt-rl_Punkt
Used in the standardized balance equation
d (ml / m_norm) / dt = rlroh_Punkt-rl_Punkt

und aufgelöst nach d(pl)/dt folgt
and resolved after d (pl) / dt follows

d(pl)/dt = (rlroh_Punkt-rl_Punkt)/(VH/2.Tl.Pn)/(Vl.Tn).d (pl) / dt = (rlroh_Punkt-rl_Punkt) / (VH / 2.Tl.Pn) / (Vl.Tn).

Mit rlhfm_Punkt = rlhfm.n
und rlroh_Punkt = rlroh.n
sowie der Substitution
KIL = Integrationskonstante für Ladevolumen
= (VH/2.Tl.Pn.n)/(Vl.Tn)
With rlhfm_Punkt = rlhfm.n
and rlroh_Punkt = rlroh.n
as well as the substitution
KIL = integration constant for loading volume
= (VH / 2.Tl.Pn.n) / (Vl.Tn)

erhält man die Steuergeräte-Gleichung in Differentialform
d(pl)/dt-KIL.(rlhfm-rlroh)
you get the control unit equation in differential form
d (pl) / dt-KIL. (rlhfm-rlroh)

und in Integralform
and in integral form

pl = KIL.Integral (rlhfm-rlroh ).dtpl = KIL.Integral (rlhfm-rlroh) .dt

Claims (5)

1. Einrichtung zum Bestimmen der in die Zylinder einer Brennkraftmaschine mit Lader gelangenden Luft abhängig von Größen wie Drehzahl, Luftdurchsatz im Ansaugrohr, Drossel­ klappenstellungswerten und Temperatur, dadurch gekennzeich­ net, daß wenigstens die folgenden physikalischen Zusammenhänge in die Bestimmung mit einbezogen werden:
  • - Absauggleichung der Brennkraftmaschine
  • - Bilanzgleichung der Füllung im Saugrohr
  • - Durchflußgleichung an der Drosselklappe
  • - Bilanzgleichung im Volumen zwischen Drosselklappe und Lader.
1.Device for determining the air entering the cylinders of an internal combustion engine with a charger depending on variables such as speed, air flow rate in the intake pipe, throttle valve position values and temperature, characterized in that at least the following physical relationships are included in the determination:
  • - Extraction equation of the internal combustion engine
  • - Balance equation of the filling in the intake manifold
  • - Flow equation at the throttle valve
  • - Balance equation in volume between the throttle valve and the supercharger.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß den Gleichungen ein Zwei-Massen-Speicher-Modell zugrunde liegt (Massen in den Volumen vor und nach der Drosselklappe 12).2. Device according to claim 1, characterized in that the equations are based on a two-mass storage model (masses in the volumes before and after the throttle valve 12 ). 3. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß für die Gleichungen normierte Werte Verwendung finden.3. Device according to claim 1, characterized in that normalized values are used for the equations. 4. Einrichtung nach einem der Ansprüche 1-3, dadurch ge­ kennzeichnet, daß die einzelnen Berechnungen in Iterations­ prozessen mit Annahmen für die Ausgangsdaten erfolgen. 4. Device according to one of claims 1-3, characterized ge indicates that the individual calculations in iterations processes with assumptions for the output data.   5. Einrichtung nach einem der Ansprüche 1 bis 4, dadurch ge­ kennzeichnet, daß im Rahmen der Berechnung des Drosselklappendurchflusses (Durchflußgleichung Drosselklappe, 20) zwei modellierte Druckwerte Verwendung finden, die sich aus der Bilanzglei­ chung im Volumen vor der Drosselklappe (25, 26) und aus der Bilanzgleichung im Saugrohrvolumen (17, 21, 22) ergeben.5. Device according to one of claims 1 to 4, characterized in that two modeled pressure values are used as part of the calculation of the throttle valve flow (flow equation throttle valve, 20 ), which result from the balance equation in volume in front of the throttle valve ( 25 , 26 ) and result from the balance equation in the intake manifold volume ( 17 , 21 , 22 ).
DE19740914A 1997-04-01 1997-09-17 Device for determining the air entering the cylinders of an internal combustion engine with a supercharger Withdrawn DE19740914A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE19740914A DE19740914A1 (en) 1997-04-01 1997-09-17 Device for determining the air entering the cylinders of an internal combustion engine with a supercharger
DE59809586T DE59809586D1 (en) 1997-04-01 1998-03-24 DEVICE FOR DETERMINING AIR INTO THE CYLINDER OF AN INTERNAL COMBUSTION ENGINE WITH A LOADER
EP98925436A EP1015746B1 (en) 1997-04-01 1998-03-24 Device for determining the volume of air entering the cylinder of an internal combustion engine with a supercharger
US09/402,321 US6588261B1 (en) 1997-04-01 1998-03-24 Method for determining the air entering the cylinders of an internal combustion engine having a supercharger
JP54106198A JP2001516421A (en) 1997-04-01 1998-03-24 Device for determining the amount of air supplied by means of a supercharger into a cylinder of an internal combustion engine
PCT/DE1998/000862 WO1998044250A1 (en) 1997-04-01 1998-03-24 Device for determining the volume of air entering the cylinder of an internal combustion engine with a supercharger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19713379 1997-04-01
DE19740914A DE19740914A1 (en) 1997-04-01 1997-09-17 Device for determining the air entering the cylinders of an internal combustion engine with a supercharger

Publications (1)

Publication Number Publication Date
DE19740914A1 true DE19740914A1 (en) 1998-10-08

Family

ID=7825108

Family Applications (8)

Application Number Title Priority Date Filing Date
DE19740916A Expired - Lifetime DE19740916B4 (en) 1997-04-01 1997-09-17 Method for operating an internal combustion engine
DE19740915A Expired - Lifetime DE19740915B4 (en) 1997-04-01 1997-09-17 Method for operating an internal combustion engine
DE19740918A Withdrawn DE19740918A1 (en) 1997-04-01 1997-09-17 Internal combustion engine gas flow control
DE19740969A Expired - Fee Related DE19740969B4 (en) 1997-04-01 1997-09-17 Method for operating an internal combustion engine and internal combustion engine
DE19740970A Ceased DE19740970A1 (en) 1997-04-01 1997-09-17 Operation of internal combustion engine
DE19740917A Expired - Fee Related DE19740917B4 (en) 1997-04-01 1997-09-17 Method and device for determining the gas temperature in an internal combustion engine
DE19740914A Withdrawn DE19740914A1 (en) 1997-04-01 1997-09-17 Device for determining the air entering the cylinders of an internal combustion engine with a supercharger
DE59809586T Expired - Lifetime DE59809586D1 (en) 1997-04-01 1998-03-24 DEVICE FOR DETERMINING AIR INTO THE CYLINDER OF AN INTERNAL COMBUSTION ENGINE WITH A LOADER

Family Applications Before (6)

Application Number Title Priority Date Filing Date
DE19740916A Expired - Lifetime DE19740916B4 (en) 1997-04-01 1997-09-17 Method for operating an internal combustion engine
DE19740915A Expired - Lifetime DE19740915B4 (en) 1997-04-01 1997-09-17 Method for operating an internal combustion engine
DE19740918A Withdrawn DE19740918A1 (en) 1997-04-01 1997-09-17 Internal combustion engine gas flow control
DE19740969A Expired - Fee Related DE19740969B4 (en) 1997-04-01 1997-09-17 Method for operating an internal combustion engine and internal combustion engine
DE19740970A Ceased DE19740970A1 (en) 1997-04-01 1997-09-17 Operation of internal combustion engine
DE19740917A Expired - Fee Related DE19740917B4 (en) 1997-04-01 1997-09-17 Method and device for determining the gas temperature in an internal combustion engine

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59809586T Expired - Lifetime DE59809586D1 (en) 1997-04-01 1998-03-24 DEVICE FOR DETERMINING AIR INTO THE CYLINDER OF AN INTERNAL COMBUSTION ENGINE WITH A LOADER

Country Status (1)

Country Link
DE (8) DE19740916B4 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853817A1 (en) * 1998-11-21 2000-05-25 Porsche Ag Controlling combustion engine involves determining gas mass flow in combustion chamber depending on flow determined at standard temp., induction pipe pressure, temp. correction factor
DE19906707A1 (en) * 1999-02-18 2000-08-24 Bayerische Motoren Werke Ag Method for determining cylinder filling in unthrottled internal combustion engines
FR2790282A1 (en) * 1999-02-26 2000-09-01 Bosch Gmbh Robert METHOD AND APPARATUS FOR IMPLEMENTING AN INTERNAL COMBUSTION ENGINE, IN PARTICULAR A VEHICLE WITH A POOR FUEL / AIR MIXTURE
US6352065B1 (en) 1997-09-17 2002-03-05 Robert Bosch Gmbh Method and device for determining the gas intake in an internal combustion engine
EP1247967A2 (en) 2001-04-05 2002-10-09 Bayerische Motoren Werke Aktiengesellschaft Method to determine the intake air mass flow in an internal combustion engine
WO2002092983A1 (en) * 2001-05-11 2002-11-21 Robert Bosch Gmbh Method and device for determining the pressure in a mass flow line upstream from a throttle point
EP1076166A3 (en) * 1999-08-12 2003-05-07 Volkswagen Aktiengesellschaft Method and apparatus for the determination of the intake air in an internal combustion engine
WO2003046356A2 (en) * 2001-11-28 2003-06-05 Volkswagen Aktiengesellschaft Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with re-circulation of exhaust gas and a correspondingly embodied control system for an internal combustion engine
EP1229233A3 (en) * 2001-02-05 2004-04-14 Nissan Motor Company, Limited Apparatus and method for engine cylinder intake air quantity calculation
DE102004003607B4 (en) * 2004-01-23 2009-01-29 Continental Automotive Gmbh Method and device for controlling an electrically driven compressor of an internal combustion engine
DE102005047565B4 (en) * 2005-09-30 2011-12-29 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method and device for determining the filling of an internal combustion engine
DE102004062018B4 (en) 2004-12-23 2018-10-11 Robert Bosch Gmbh Method for operating an internal combustion engine
US10774757B2 (en) 2016-03-18 2020-09-15 Volkswagen Aktiengesellschaft Method and controller for determining the quantity of filling components in a cylinder of an internal combustion engine

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19753969B4 (en) * 1997-12-05 2008-04-10 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE19753873B4 (en) * 1997-12-05 2008-05-29 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE19828774A1 (en) * 1998-06-27 1999-12-30 Bosch Gmbh Robert Procedure for operating IC engine using direct injection and a regenerating gas
JP3445500B2 (en) * 1998-08-28 2003-09-08 株式会社日立ユニシアオートモティブ Idle rotation learning control device for electronically controlled throttle internal combustion engine
US6098602A (en) * 1999-01-15 2000-08-08 Ford Global Technologies, Inc. Exhaust gas recirculation system
US6279551B1 (en) * 1999-04-05 2001-08-28 Nissan Motor Co., Ltd. Apparatus for controlling internal combustion engine with supercharging device
DE19938899B4 (en) * 1999-08-17 2004-07-08 Siemens Ag Method and device for determining the ambient pressure in an internal combustion engine
DE19964193B4 (en) 1999-08-17 2009-04-23 Continental Automotive Gmbh Air mass meter for determining the ambient pressure in an internal combustion engine
DE19944178C2 (en) * 1999-09-15 2003-03-20 Daimler Chrysler Ag Method for controlling the throttle valve in the intake manifold of an internal combustion engine as a function of a predefinable desired air mass flow
DE19958499C1 (en) * 1999-12-04 2001-08-23 Bosch Gmbh Robert Method for operating an internal combustion engine, in particular a motor vehicle
DE19959660C1 (en) * 1999-12-10 2001-07-05 Bayerische Motoren Werke Ag Method for determining the mass flow of a gas mixture
DE10037511C1 (en) * 2000-08-01 2002-01-03 Siemens Ag Diagnosing twisting flap displacement device involves actuating twisting flap by defined distance under defined conditions, diagnosing defect if no defined step pressure change
DE10039785B4 (en) * 2000-08-16 2014-02-13 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE10045421A1 (en) * 2000-09-14 2002-03-28 Bosch Gmbh Robert Method, computer program and control and regulating device for operating an internal combustion engine
DE10048926B4 (en) * 2000-10-04 2009-04-09 Robert Bosch Gmbh Method, computer program and control and / or regulating device for operating an internal combustion engine
DE10063752A1 (en) * 2000-12-21 2002-06-27 Bosch Gmbh Robert Method and device for determining the throughput of a flowing medium
DE10065474C1 (en) * 2000-12-28 2002-06-06 Bosch Gmbh Robert Fuel metering control method for turbocharged IC engine, fuel injection has replacement main control value provided when leak is detected in engine air intake
DE10111271A1 (en) 2001-03-09 2002-09-12 Bosch Gmbh Robert Diagnosis of internal combustion engine charger's thrust return air valve, involves identifying fault if negative engine load change is detected with pulsations in load parameter
DE10124596B4 (en) * 2001-05-21 2013-06-20 Volkswagen Ag Method and devices for determining the gas outlet temperature or gas inlet temperature of an internal combustion engine
DE10129037A1 (en) * 2001-06-15 2002-12-19 Bosch Gmbh Robert Process and device for controlling supercharged combustion engine compares target and actual air flows through throttle valve
DE10132833A1 (en) 2001-07-06 2003-01-16 Bosch Gmbh Robert Method and device for monitoring a pressure sensor
US6738707B2 (en) 2001-11-15 2004-05-18 Ford Global Technologies, Llc Cylinder air charge estimation system and method for internal combustion engine including exhaust gas recirculation
DE10215672A1 (en) * 2002-04-10 2003-10-30 Bosch Gmbh Robert Method for operating an internal combustion engine, internal combustion engine and control element
DE10227064A1 (en) * 2002-06-18 2004-01-08 Robert Bosch Gmbh Method for determining the cylinder charge of an internal combustion engine with variable valve lift adjustment, control element and internal combustion engine
JP4161690B2 (en) * 2002-11-20 2008-10-08 株式会社デンソー Accumulated fuel injection system
DE10300592B4 (en) * 2003-01-10 2015-12-10 Robert Bosch Gmbh Method for operating an internal combustion engine
DE10331581A1 (en) 2003-07-11 2005-01-27 Robert Bosch Gmbh Device for determining mass flow via tank venting valve for combustion engine has mass flow normalizing device that receives, sums, normalizes measurement signals, computation and conversion units
JP3956137B2 (en) * 2003-09-18 2007-08-08 トヨタ自動車株式会社 Method for estimating the temperature of an air-fuel mixture in an internal combustion engine
DE102008027763B4 (en) * 2008-06-11 2010-07-01 Continental Automotive Gmbh Method and device for determining at least one model temperature in an intake tract of an internal combustion engine
DE102008057500B4 (en) 2008-11-15 2019-07-18 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for operating an internal combustion engine
DE102009017622B4 (en) 2009-04-16 2021-10-28 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for adjusting the cylinder charge in an internal combustion engine
JP5089791B1 (en) 2011-05-27 2012-12-05 三菱電機株式会社 Fuel control device for internal combustion engine
US9476372B2 (en) 2013-11-26 2016-10-25 GM Global Technology Operations LLC System and method for diagnosing a fault in a throttle area correction that compensates for intake airflow restrictions
DE102018201680A1 (en) * 2018-02-05 2019-08-08 Bayerische Motoren Werke Aktiengesellschaft Method for determining a leakage in an intake air duct of an internal combustion engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3238190C2 (en) * 1982-10-15 1996-02-22 Bosch Gmbh Robert Electronic system for controlling or regulating operating parameters of an internal combustion engine
JPS63143348A (en) * 1986-12-08 1988-06-15 Toyota Motor Corp Fuel injection controller
DE3925377A1 (en) * 1989-08-01 1991-02-07 Bosch Gmbh Robert METHOD FOR CORRECTING THE MEASURING ERRORS OF A HOT FILM AIRMETER
JP2843872B2 (en) * 1990-08-22 1999-01-06 本田技研工業株式会社 Engine load parameter calculation device and engine control device
DE4325902C2 (en) * 1993-08-02 1999-12-02 Bosch Gmbh Robert Air charge calculation method for an internal combustion engine with variable gas exchange control
DE4344633B4 (en) * 1993-12-24 2007-07-26 Robert Bosch Gmbh Load detection with diagnosis in an internal combustion engine
US5419301A (en) * 1994-04-14 1995-05-30 Ford Motor Company Adaptive control of camless valvetrain
DE4422184C2 (en) * 1994-06-24 2003-01-30 Bayerische Motoren Werke Ag Control unit for motor vehicles with a computing unit for calculating the air mass flowing into a cylinder of the internal combustion engine
DE4434265A1 (en) * 1994-09-24 1996-03-28 Bosch Gmbh Robert Load sensing device with height adaptation
CZ319497A3 (en) * 1995-04-10 1999-01-13 Siemens Aktiengesellschaft Method of determining amount of air flowing into cylinder, respectively cylinders of internal combustion engine

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352065B1 (en) 1997-09-17 2002-03-05 Robert Bosch Gmbh Method and device for determining the gas intake in an internal combustion engine
DE19853817C2 (en) * 1998-11-21 2002-01-10 Porsche Ag Method for controlling an internal combustion engine
DE19853817A1 (en) * 1998-11-21 2000-05-25 Porsche Ag Controlling combustion engine involves determining gas mass flow in combustion chamber depending on flow determined at standard temp., induction pipe pressure, temp. correction factor
DE19906707A1 (en) * 1999-02-18 2000-08-24 Bayerische Motoren Werke Ag Method for determining cylinder filling in unthrottled internal combustion engines
US6321156B1 (en) 1999-02-18 2001-11-20 Bayerische Motoren Werke Aktiengesellschaft Method and apparatus for determining the cylinder charge in the case of unthrottled internal-combustion engines
FR2790282A1 (en) * 1999-02-26 2000-09-01 Bosch Gmbh Robert METHOD AND APPARATUS FOR IMPLEMENTING AN INTERNAL COMBUSTION ENGINE, IN PARTICULAR A VEHICLE WITH A POOR FUEL / AIR MIXTURE
EP1076166A3 (en) * 1999-08-12 2003-05-07 Volkswagen Aktiengesellschaft Method and apparatus for the determination of the intake air in an internal combustion engine
EP1229233A3 (en) * 2001-02-05 2004-04-14 Nissan Motor Company, Limited Apparatus and method for engine cylinder intake air quantity calculation
EP1247967A2 (en) 2001-04-05 2002-10-09 Bayerische Motoren Werke Aktiengesellschaft Method to determine the intake air mass flow in an internal combustion engine
DE10116932A1 (en) * 2001-04-05 2002-10-10 Bayerische Motoren Werke Ag Method for determining the air mass flow from the intake manifold into the cylinder of an internal combustion engine
KR100842476B1 (en) * 2001-05-11 2008-07-01 로베르트 보쉬 게엠베하 Method and device for determining the pressure in a mass flow line upstream from a throttle point
WO2002092983A1 (en) * 2001-05-11 2002-11-21 Robert Bosch Gmbh Method and device for determining the pressure in a mass flow line upstream from a throttle point
WO2003046356A2 (en) * 2001-11-28 2003-06-05 Volkswagen Aktiengesellschaft Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with re-circulation of exhaust gas and a correspondingly embodied control system for an internal combustion engine
WO2003046356A3 (en) * 2001-11-28 2004-12-23 Volkswagen Ag Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with re-circulation of exhaust gas and a correspondingly embodied control system for an internal combustion engine
EP1715163A1 (en) * 2001-11-28 2006-10-25 Volkswagen Aktiengesellschaft Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with exhaust gas recirculation
US7174713B2 (en) 2001-11-28 2007-02-13 Volkswagen Aktiengesellschaft Method for determination of composition of the gas mixture in a combustion chamber of an internal combustion engine with exhaust gas recirculation and correspondingly configured control system for an internal combustion engine
DE102004003607B4 (en) * 2004-01-23 2009-01-29 Continental Automotive Gmbh Method and device for controlling an electrically driven compressor of an internal combustion engine
DE102004062018B4 (en) 2004-12-23 2018-10-11 Robert Bosch Gmbh Method for operating an internal combustion engine
DE102005047565B4 (en) * 2005-09-30 2011-12-29 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method and device for determining the filling of an internal combustion engine
US10774757B2 (en) 2016-03-18 2020-09-15 Volkswagen Aktiengesellschaft Method and controller for determining the quantity of filling components in a cylinder of an internal combustion engine

Also Published As

Publication number Publication date
DE19740916B4 (en) 2007-05-10
DE19740915A1 (en) 1998-10-08
DE19740915B4 (en) 2007-05-03
DE19740917B4 (en) 2008-11-27
DE19740918A1 (en) 1998-10-08
DE19740969B4 (en) 2010-05-20
DE59809586D1 (en) 2003-10-16
DE19740969A1 (en) 1998-10-08
DE19740917A1 (en) 1998-10-15
DE19740916A1 (en) 1998-10-08
DE19740970A1 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
DE19740914A1 (en) Device for determining the air entering the cylinders of an internal combustion engine with a supercharger
EP1015746B1 (en) Device for determining the volume of air entering the cylinder of an internal combustion engine with a supercharger
DE102007043440B3 (en) Method for determining an air mass trapped in a cylinder of an internal combustion engine
DE102014217591B4 (en) Method and device for controlling an exhaust gas recirculation valve of a supercharged internal combustion engine with exhaust gas recirculation
DE10242234B4 (en) Method for determining an exhaust gas recirculation quantity for an internal combustion engine with exhaust gas recirculation
EP3308007B1 (en) Air charge determination, engine control unit and internal combustion engine
DE102015211808A1 (en) Control device for internal combustion engine
DE102013113157A1 (en) Method and device for regulating a charge in a cylinder of an internal combustion engine
DE102019209028A1 (en) Control device for internal combustion engines
DE102005032067A1 (en) Control apparatus for supercharger of internal combustion engine has simple substance model of intercooler which calculates pressure loss and cooling effect of intercooler
DE10356713B4 (en) Method for controlling or controlling an internal combustion engine operating in a cyclic process
EP1398490A2 (en) Method for operating an internal combustion engine
DE102007012340B3 (en) Air-mass flow rate determining and adjusting method for e.g. petrol engine, involves transforming adaptation target value of generalized adaptation into physical parameter of suction tube by using successive adaptation value transformation
EP3034851B1 (en) Combustion engine
EP1614881B1 (en) Method and device for operating an internal combustion engine with turbocharger
DE10162970B4 (en) Method and device for determining the exhaust gas recirculation mass flow of an internal combustion engine
DE102007012506B4 (en) Method for determining and adjusting the air mass flow in the intake manifold of an internal combustion engine and associated control unit
DE10225306B4 (en) Method and device for controlling the drive unit of a vehicle operated with a gaseous fuel
DE102005062681A1 (en) Gas pressure`s upper limit value determining method for internal combustion engine, involves determining limit value based on state variables of gases upstream of flow units and determining state variations of gases
EP1398470A1 (en) Method for detection of reverse flow at a compression throttle valve of a multiple supercharged internal combustion engine
DE10123034A1 (en) Pressure determining method for the upstream of a choke in the inlet to a combustion engine whereby the pressure is determined based on a physical model the inputs to which are the downstream pressure and the choke's cross section
DE102013209815B3 (en) Method and system for controlling an internal combustion engine
DE102005038159B4 (en) Method for operating an internal combustion engine
DE102018112731A1 (en) Method for controlling a control valve
DE102007046146A1 (en) Method for estimating an external exhaust gas recirculation rate

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8139 Disposal/non-payment of the annual fee