DE10260862A1 - Correction of angle or distance measurements of a sensor system by derivation of one or more correction constants for angle, amplitude and or phase errors of sinusoidal and cosinusoidal measurement signals - Google Patents

Correction of angle or distance measurements of a sensor system by derivation of one or more correction constants for angle, amplitude and or phase errors of sinusoidal and cosinusoidal measurement signals Download PDF

Info

Publication number
DE10260862A1
DE10260862A1 DE2002160862 DE10260862A DE10260862A1 DE 10260862 A1 DE10260862 A1 DE 10260862A1 DE 2002160862 DE2002160862 DE 2002160862 DE 10260862 A DE10260862 A DE 10260862A DE 10260862 A1 DE10260862 A1 DE 10260862A1
Authority
DE
Germany
Prior art keywords
measurement signals
angle
constants
correction
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2002160862
Other languages
German (de)
Inventor
Siegbert Steinlechner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE2002160862 priority Critical patent/DE10260862A1/en
Publication of DE10260862A1 publication Critical patent/DE10260862A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2448Correction of gain, threshold, offset or phase control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Method for correcting an angle and or distance measuring sensor arrangement in which the sine and cosine output signals (S1,i, S2,i) of sensors, which are obtained by sampling a measurement object, are evaluated. The angle, amplitude or phase errors of the measurement signal are corrected in that correction constants are estimated from a multiplicity of measurements. The invention also relates to a corresponding circuit arrangement for method implementation.

Description

Stand der TechnikState of technology

Die Erfindung betrifft ein Verfahren und eine Schaltungsanordnung zur Korrektur eines winkel- und/oder abstandsmessenden Sensorsystems nach dem Oberbegriff des Hauptanspruchs.The invention relates to a method and a circuit arrangement for correcting an angle and / or distance measuring sensor system according to the preamble of the main claim.

Es sind an sich bereits Sensorsysteme für einen zu messenden Winkel bei einem rotierenden Messobjekt oder einem zu messenden Abstand bei einem sich linear bewegenden Messobjekt bekannt, bei denen die zu gewinnende Information durch ein Paar von sinus- und kosinusförmigen Messsignalen repräsentiert wird. Die Information liegt dabei in der Regel in der Amplitude und/oder in der Phase dieser Messsignale. Hierbei treten in den Messsignalen oft Winkel- oder Phasenfehler auf, die durch Fertigungstoleranzen oder sonstige schaltungstechnischen Besonderheiten in der Sensoranordnung bedingt sind.They are sensor systems in themselves for one angle to be measured with a rotating measuring object or a distance to be measured for a linearly moving measurement object known in which the information to be obtained by a couple of sine and cosine Measurement signals is represented. The information is usually in the amplitude and / or in the phase of these measurement signals. Here occur in the measurement signals often angular or phase errors due to manufacturing tolerances or other circuit-specific features in the sensor arrangement are conditional.

Beispielsweise ist aus der DE 41 02 655 A1 ein induktiver Abstandssensor bekannt, bei dem zur Korrektur schaltungstechnisch bedingter Messfehler ein Referenzsensor ange ordnet ist, dessen Referenzsignal zur Fehlerkompensation, insbesondere aufgrund einer nicht ausreichend konstanten Spannungsversorgung der Messschaltungsanordnung, herangezogen wird.For example, from the DE 41 02 655 A1 an inductive distance sensor is known in which a reference sensor is arranged for the correction of measurement errors caused by circuit technology, the reference signal of which is used for error compensation, in particular due to an insufficiently constant voltage supply to the measurement circuit arrangement.

Vorteile der ErfindungAdvantages of invention

Mit dem eingangs erwähnten gattungsgemäßen Verfahren zur Korrektur eines winkel- und/oder abstandsmessenden Sensorsystems, bei dem sinus- und kosinusförmige Messsignale ausgewertet werden, die durch Abtasten eines bewegten Messobjekts gewonnen worden sind und dabei Winkel- oder Phasenfehler der Messsignale korrigiert werden, wird in vorteilhafter Weise dadurch weitergebildet, dass aus einer Mehrzahl von Messsignalen mindestens eine Konstante zur Abschätzung des Winkel- oder des Phasenfehlers und/oder der Amplitude der Messsignale hergeleitet wird.With the generic method mentioned at the beginning for correcting an angle and / or distance measuring sensor system, with the sine and cosine Measurement signals are evaluated by scanning a moving Measurement object and thereby angle or phase errors the measurement signals are corrected in an advantageous manner further developed that from a plurality of measurement signals at least a constant for estimation the angle or phase error and / or the amplitude of the measurement signals is derived.

Herkömmliche berührungslos winkelmessende Sensoren sind beispielsweise auf einer sogen. AMR- oder GMR-Basis (AMR = Anisotrope Magneto Resistance oder GMR = Giant Magneto Resistance aufgebaut; Abstandsmessende Systeme sind vorzugsweise auf einer Lidar- oder Radarbasis konstruiert. Bei den AMR- und GMR-Sensoren wird der Winkel eines Magnetfelds relativ zur Sensoroberfläche gemessen. Dadurch lassen sich auf einfache Weise berührungslose Winkelsensoren realisieren. Wenn der Magnetfeldwinkel mit Φ bezeichnet wird, so erhält man am Sensorausgang im Idealfall folgende Signale:
beim AMR-Sensor S1=A*cos (2*Φ) und S2=A*sin (2*Φ) bzw.
beim GMR Sensor S1=A*cos (Φ) und S2=A*sin (Φ), wobei A die Signalamplitude darstellt.
Conventional non-contact angle measuring sensors are for example on a so-called. AMR or GMR basis (AMR = Anisotrope Magneto Resistance or GMR = Giant Magneto Resistance constructed; distance measuring systems are preferably constructed on a lidar or radar basis. With the AMR and GMR sensors the angle of a magnetic field is measured relative to the sensor surface. This makes it easy to implement non-contact angle sensors If the magnetic field angle is denoted by Φ, ideally the following signals are obtained at the sensor output:
for the AMR sensor S 1 = A * cos (2 * Φ) and S 2 = A * sin (2 * Φ) or
for the GMR sensor S 1 = A * cos (Φ) and S 2 = A * sin (Φ), where A represents the signal amplitude.

Bei Radar- oder Lidarsensoren (Laser-Radar) wird dabei ein Signal mit einer Frequenz fo ausgesendet und an einem Ziel im Abstand d reflektiert. Am Empfänger lässt sich dann das um die Zeit dt=2*d/c (c Lichtgeschwindigkeit) verzögerte Sendesignal beobachten. Dies wirkt sich in einer Phasenverschiebung Φ = -2π*fo*2*d/c aus. Wird das Sendesignal mit dem Empfangssignal multipliziert und werden dann hochfrequente Anteile entfernt, so erhält man ein erstes Signal S1 (S1=A*cos(Φ)). Wird das Sendesignal um 90° durch einen Phasenschieber gedreht und wiederum das Empfangssignal damit multipliziert und die hochfrequenten Anteile vom Ergebnis entfernt, so erhält man ein zweites Signal S2 (S2=A*sin(Φ)) analog zu den Signalen beim zuvor beschriebenen GMR-Sensor.With radar or lidar sensors (laser radar), a signal with a frequency f o is emitted and reflected at a target at a distance d. The transmission signal delayed by the time dt = 2 * d / c (c speed of light) can then be observed at the receiver. This results in a phase shift Φ = -2π * f o * 2 * d / c. If the transmit signal is multiplied by the receive signal and then high-frequency components are removed, a first signal S 1 is obtained (S 1 = A * cos (Φ)). If the transmission signal is rotated through 90 ° by a phase shifter and the received signal is multiplied again and the high-frequency components are removed from the result, a second signal S 2 (S 2 = A * sin (Φ)) is obtained analogous to the signals in the previously described GMR sensor.

Hierbei sind jedoch häufig sind die beiden Signale S1 und S2 nicht genau um 90° zueinander phasenverschoben, nämlich S2=A*sin(Φ+δΦ). Der Winkelfehler ist somit δΦ und kann bei den GMR- und AMR-Sensoren durch Fertigungs-Toleranzen verursacht sein. Bei Radar- und Lidarsystemen ist häufig der erwähnte 90°-Phasenschieber toleranzbehaftet. Wird der Phasenfehler nicht korrigiert, so sind Messungen des Winkels bzw. der Entfernung ungenau. Gemäß der Erfindung wird nun in vorteilhafter Weise aus einer Anzahl N von Messsignalen S1,i und S2,i, mit i = 1...N, eines der zuvor erwähnten Messsysteme (z.B. AMR, GMR, Radar, Lidar) der Phasenfehler δΦ und optional die Amplitude A mit den in den Ansprüchen 2 bis 5 einzelnen angegebenen Rechenschritten näherungsweise ermittelt. Ist der Phasenfehler δΦ nunmehr bekannt, so lassen sich seine Auswirkungen auf die Messgröße rechnerisch beseitigen.Here, however, the two signals S 1 and S 2 are often not exactly 90 ° out of phase with one another, namely S 2 = A * sin (Φ + δΦ). The angular error is thus δΦ and can be caused by manufacturing tolerances in the GMR and AMR sensors. In the case of radar and lidar systems, the aforementioned 90 ° phase shifter is often subject to tolerance. If the phase error is not corrected, measurements of the angle or the distance are inaccurate. According to the invention, the phase error is now advantageously converted from a number N of measurement signals S 1, i and S 2, i , with i = 1 ... N, into one of the measurement systems mentioned above (for example AMR, GMR, radar, lidar) δΦ and optionally the amplitude A are approximately determined using the calculation steps specified in claims 2 to 5. If the phase error δΦ is now known, its effects on the measured variable can be eliminated by calculation.

Der Hintergrund des erfindungsgemäßen Verfahrens ist, dass für ideale Messsignale S1,i=A*cos(Φi) und S2,i=A*sin(Φi+δΦ), mit den im Anspruch 2 angegebenen Defi nitionen für die Größen Mi und Ti, die folgende Beziehung für einen Fehler e gilt: ei = Mi + r*Ti – k = 0 The background of the method according to the invention is that for ideal measurement signals S 1, i = A * cos (Φ i ) and S 2, i = A * sin (Φ i + δΦ), with the definitions for the sizes specified in claim 2 M i and T i , the following relationship holds for an error e: e i = M i + r * T i - k = 0

Sind die Messwerte S1,i und S2,i von einem Rauschen und sonstigen Störungen überlagert, so gilt das rechte Gleichheitszeichen hier nur näherungsweise. Die Konstanten r und k hängen folgendermaßen von A und δΦ ab: r = –2 * sin(δΦ) k = A2 * cos (δΦ)2 If the measured values S 1, i and S 2, i are overlaid by noise and other disturbances, the right-hand equals sign applies only approximately. The constants r and k depend on A and δΦ as follows: r = -2 * sin (δΦ) k = A 2 * cos (δΦ) 2

Bildet man dann die Summe E der Fehlerquadrate ei

Figure 00040001
und berechnet das Minimum von E bezüglich der Konstanten r und k, so ergeben sich die in den zuvor erwähnten Patentansprüchen angegebenen Lösungen für die Konstanten r und k.If one then forms the sum E of the error squares e i
Figure 00040001
and calculating the minimum of E with respect to the constants r and k, the solutions for the constants r and k given in the aforementioned patent claims result.

Eine erfindungsgemäße Schaltungsanordnung zur Durchführung eines zuvor beschriebenen Verfahrens weist in vorteilhafter zum Beispiel am Ausgang des Sensorsystems an denen die analogen Messsignale anliegen, jeweils Analog/Digital-Wandler zur Erzeugung digitaler Messsignale auf. Weiterhin ist eine Korrektureinrichtung zur Korrektur der digitalen Messsignale und ein Berechnungsbaustein zur Berechnung der Konstanten r und k aus den Messsignalen vorhanden, wobei die erste Konstante r auf einen Eingang der Korrektureinrichtung zur Berechnung des korrigierten Messsignals geführt ist.A circuit arrangement according to the invention to carry out of a method described above advantageously assigns to Example at the output of the sensor system to which the analog measurement signals are applied each analog / digital converter for generating digital measurement signals on. Furthermore, a correction device for correcting the digital Measurement signals and a calculation block for calculating the constants r and k from the measurement signals are present, the first constant r to an input of the correction device for calculating the corrected measurement signal is.

Weiterhin kann an einem weiteren Ausgang des Berechnungsbausteins die Konstante k zur Berechnung der Amplitude der Messsignale anliegen.Furthermore, another Output of the calculation block, the constant k for the calculation the amplitude of the measurement signals.

Zeichnungdrawing

Ein Ausführungsbeispiel einer Schaltungsanordnung zur Durchführung des erfindungsgemäßen Verfahrens wird anhand der Zeichnung erläutert. Es zeigen:An embodiment of a circuit arrangement to carry out of the method according to the invention is explained using the drawing. Show it:

1 ein Blockschaltbild einer solchen Schaltungsanordnung zur Korrektur der Ausgangssignale eines erfindungsgemäßen Sensorsystems, 1 2 shows a block diagram of such a circuit arrangement for correcting the output signals of a sensor system according to the invention,

2 ein Diagramm der unkorrigierten Sinus- und Cosinus-Ausgangssignale des Sensorsystems nach der 1 und 2 a diagram of the uncorrected sine and cosine output signals of the sensor system according to the 1 and

3 ein Diagramm der korrigierten Sinus- und Cosinus-Ausgangssignale des Sensorsystems nach der 1. 3 a diagram of the corrected sine and cosine output signals of the sensor system according to the 1 ,

Beschreibung des Ausführungsbeispielsdescription of the embodiment

In 1 ist in ein Blockschaltbild einer Schaltungsanordnung dargestellt, mit der die von einem Sensorsystem 1 zur Winkel- oder Abstandsmessung gelieferten Sinus- und Cosinus-Signale, z.B. mit einem in der Beschreibungseinleitung erwähnten AMR- oder GMR-Sensor bzw. mit einem Radar- oder Lidar-System, zur Fehlerkorrektur in Analog-Digital-Wandlern 2 und 3 digitalisiert und weiterverarbeitet werden. Falls die Messsignale einen Offset bein halten, so sollte dieser in an sich bekannter Weise vorher entfernt werden.In 1 is shown in a block diagram of a circuit arrangement with which the sensor system 1 Sine and cosine signals supplied for angle or distance measurement, for example with an AMR or GMR sensor mentioned in the introduction to the description or with a radar or lidar system, for error correction in analog-digital converters 2 and 3 digitized and further processed. If the measurement signals contain an offset, this should be removed beforehand in a manner known per se.

In 2 sind die digitalisierten Messwerte S1 und S2, beispielsweise bei einem AMR-Sensor als S1=A*cos(2*Φ) und S2=A*sin(2*Φ+δΦ) für eine Anzahl N Messungen, z.B. N=400, mit den jeweiligen Messsignalen S1,i und S2,i (i = 1....N) in einer S1/S2-Ebene dargestellt, wobei hieraus ersichtlich ist, dass sich aufgrund eines Winkelfehlers eine ovale Kontur der Messsignale einstellt.In 2 are the digitized measured values S 1 and S 2 , for example in the case of an AMR sensor as S 1 = A * cos (2 * Φ) and S 2 = A * sin (2 * Φ + δΦ) for a number of N measurements, for example N = 400, with the respective measurement signals S 1, i and S 2, i (i = 1 .... N) in an S 1 / S 2 plane, from which it can be seen that an oval contour occurs due to an angular error which sets measurement signals.

Die Messsignale S1 und S2 werden nun anhand der in der 1 gezeigten Schaltungsanordnung jeweils einer Korrektureinrichtung 4 und einem Berechnungsbaustein 5 zugeführt. Am Ausgang des Berechnungsbausteins 5 steht eine Konstante r als Korrekturgröße für die Korrektureinrichtung 4, zur Berechnung korrigierter Messsignale S1,i und Sk2,i, und eine Konstante k zur Korrektur der Amplitude A der Messsignale an. Der Wert für r kann dabei z.B. auch als Konstante einmalig offline aus einem Eichdatensatz gewonnen werden. Im Folgenden wird jedoch beschrieben, wie der Wert für r laufend online aus den letzten N aktuellen Messsignalen als Datensatz neu berechnet wird.The measurement signals S 1 and S 2 are now based on the in 1 Circuit arrangement shown a correction device 4 and a calculation block 5 fed. At the output of the calculation block 5 is a constant r as a correction quantity for the correction device 4 , for calculating corrected measurement signals S 1, i and Sk 2, i , and a constant k for correcting the amplitude A of the measurement signals. The value for r can also be obtained, for example, once as a constant offline from a calibration data set. However, the following describes how the value for r is continuously recalculated online from the last N current measurement signals as a data record.

Die Konstanten r und k werden gemäß des Ausführungsbeispiels so ermittelt, dass zunächst die Quadratsumme Mi der Messsignale Mi = S2 1,i + S2 2,i (1)und das Produkt Ti = S1,i*S2,i (2)ermittelt wird.The constants r and k are determined in accordance with the exemplary embodiment in such a way that first the square sum M i of the measurement signals M i = S 2 1, i + S 2 2, i (1) and the product T i = S 1, i * S 2, i (2) is determined.

Aus diesen Größen Mi und Ti werden nun Summenwerte Sm, St, Smt und Stq sowie eine Determinante D wie folgt ermittelt:

Figure 00070001
D=N*Stq–St2 (7). Sum values Sm, St, Smt and Stq and a determinant D are now determined from these variables M i and T i as follows:
Figure 00070001
D = N * Stq-St 2 (7).

Aus diesen Größen werden dann im Berechnungsbaustein 5 die Konstanten wie folgt ermittelt:

Figure 00070002
These variables are then used in the calculation block 5 the constants are determined as follows:
Figure 00070002

In der Korrektureinrichtung 4 wird dann beim hier beschriebenen Ausführungsbeispiel aus den jeweiligen Messsignalen S1 und S2 unter Einbeziehung der Konstanten r und k jeweils ein korrigiertes Messsignal nach der Beziehung

Figure 00070003
In the correction facility 4 then in the exemplary embodiment described here, the respective measurement signals S 1 and S 2 , including the constants r and k, each result in a corrected measurement signal according to the relationship
Figure 00070003

Die Amplituden A der Messsignale S1 und S2 können dann noch nach der Beziehung

Figure 00080001
The amplitudes A of the measurement signals S 1 and S 2 can then still according to the relationship
Figure 00080001

In 3 sind nunmehr analog zur Darstellung nach der 2 die korrigierten Messsignale in einer S1/Sk2-Ebene dargestellt, wobei zu erkennen ist, dass die so korrigierte Messsignale einen Kreis bilden.In 3 are now analogous to the representation according to the 2 the corrected measurement signals are shown in an S 1 / Sk 2 plane, it being evident that the measurement signals corrected in this way form a circle.

Claims (8)

Verfahren zur Korrektur einer winkel- und/oder abstandsmessenden Sensoranordnung (1), bei der – sinus- und kosinusförmige Messsignale (S1,i, S2,i) ausgewertet werden, die durch Abtasten eines bewegten Messobjekts gewonnen worden sind und bei dem – Winkel- oder Phasenfehler der Messsignale korrigiert werden, dadurch gekennzeichnet, dass – aus einer Mehrzahl (N) von Messsignalen (S1,i, S2,i) mindestens eine Konstante (r, k) zur näherungsweisen Ermittlung des Winkel- oder des Phasenfehlers (6Φ) und/oder der Amplitude (A) der Messsignale (S1,i, S2,i) hergeleitet wird.Method for correcting an angle and / or distance measuring sensor arrangement ( 1 ), in which - sinusoidal and cosine-shaped measurement signals (S 1, i , S 2, i ) are evaluated, which have been obtained by scanning a moving measurement object and in which - angle or phase errors of the measurement signals are corrected, characterized in that - From a plurality (N) of measurement signals (S 1, i , S 2, i ) at least one constant (r, k) for the approximate determination of the angle or phase error (6Φ) and / or the amplitude (A) of the measurement signals (S 1, i , S 2, i ) is derived. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass – der Wert für die Konstanten (r, k) einmalig offline aus einem Eichdatensatz gewonnen wird.A method according to claim 1, characterized in that - The value for the constants (r, k) is obtained once offline from a calibration data record. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass – bei einer Mehrzahl (N, i = 1...N) Messungen aus den jeweiligen Messsignalen (S1,i, S2,i) die Quadratsumme Mi = S2 1,i + S2 2,i (1) und – das Produkt Ti = S1,i * S2,i (2), – ermittelt werden und dass – aus diesen Größen (Mi,Ti) Summenwerte (Sm,St,Smt,Stq) und eine Determinante (D) zur Berechnung der Konstanten (r,k) ermittelt werden.A method according to claim 1, characterized in that - for a plurality (N, i = 1 ... N) measurements from the respective measurement signals (S 1, i , S 2, i ) the sum of squares M i = S 2 1, i + S 2 2, i (1) and - the product T i = S 1, i * P 2, i (2) - are determined and - sum values (Sm, St, Smt, Stq) and a determinant (D) for calculating the constants (r, k) are determined from these quantities (M i , T i ). Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass – die Summenwerte und die Determinante (Sm,St,Smt,Stq,D) wie folgt berechnet werden:
Figure 00100001
– D=N*Stq–St2 (7) – und dass aus diesen Größen die Konstanten (r,k) wie folgt ermittelt werden:
Figure 00110001
A method according to claim 3, characterized in that - the sum values and the determinant (Sm, St, Smt, Stq, D) are calculated as follows:
Figure 00100001
- D = N * Stq-St 2 (7) - and that the constants (r, k) are determined from these quantities as follows:
Figure 00110001
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass – aus den jeweiligen Messsignalen (S1,i, S2,i) und den Konstanten (r,k) jeweils ein korrigiertes Messsignal nach der Beziehung
Figure 00110002
Method according to one of the preceding claims, characterized in that - from the respective measurement signals (S 1, i , S 2, i ) and the constants (r, k) in each case a corrected measurement signal according to the relationship
Figure 00110002
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass – aus den Konstanten (r,k) die Amplituden der Messsignale nach der Beziehung
Figure 00110003
Method according to one of the preceding claims, characterized in that - from the constants (r, k) the amplitudes of the measurement signals according to the relationship
Figure 00110003
Schaltungsanordnung zur Durchführung eines Verfahrens nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass – am Ausgang des Sensorsystems (1) an denen die analogen Messsignale (A* cos(Φ),A*sin(Φ+δΦ)) anliegen, jeweils Analog-/Digital-Wandler (2, 3) zur Erzeugung digitaler Messsignale (S1,i, S2,i) angeschaltet sind, dass – eine Korrektureinrichtung (4) zur Korrektur der digitalen Messsignale (S1,i, S2,i) vorhanden ist und dass – ein Berechnungsbaustein (5) zur Berechnung der Konstanten (r,k) aus den Messsignalen (S1,i, S2,i) vorhanden ist, wobei die erste Konstante (r) auf einen Korrektureingang der Korrektureinrichtung (4) zur Berechnung des korrigierten Messsignals (Sk2,i) geführt ist.Circuit arrangement for carrying out a method according to one of the preceding claims, characterized in that - at the output of the sensor system ( 1 ) to which the analog measurement signals (A * cos (Φ), A * sin (Φ + δΦ)) are present, each analog / digital converter ( 2 . 3 ) for generating digital measurement signals (S 1, i , S 2, i ) are switched on that - a correction device ( 4 ) for the correction of the digital measurement signals (S 1, i , S 2, i ) is available and that - a calculation module ( 5 ) for calculating the constant (r, k) from the measurement signals (S 1, i , S 2, i ) is present, the first constant (r) being applied to a correction input of the correction device ( 4 ) is used to calculate the corrected measurement signal (Sk 2, i ). Schaltungsanordnung nach Anspruch 7, dadurch gekennzeichnet, dass – an einem weiteren Ausgang des Berechnungsbausteins (5) die Konstante (k) zur Berechnung der Amplitude (A) der Messsignale (A*cos(Φ),A*sin(Φ+δΦ)) anliegt.Circuit arrangement according to claim 7, characterized in that - at a further output of the calculation module ( 5 ) the constant (k) for calculating the amplitude (A) of the measurement signals (A * cos (Φ), A * sin (Φ + δΦ)) is present.
DE2002160862 2002-12-23 2002-12-23 Correction of angle or distance measurements of a sensor system by derivation of one or more correction constants for angle, amplitude and or phase errors of sinusoidal and cosinusoidal measurement signals Withdrawn DE10260862A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2002160862 DE10260862A1 (en) 2002-12-23 2002-12-23 Correction of angle or distance measurements of a sensor system by derivation of one or more correction constants for angle, amplitude and or phase errors of sinusoidal and cosinusoidal measurement signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2002160862 DE10260862A1 (en) 2002-12-23 2002-12-23 Correction of angle or distance measurements of a sensor system by derivation of one or more correction constants for angle, amplitude and or phase errors of sinusoidal and cosinusoidal measurement signals

Publications (1)

Publication Number Publication Date
DE10260862A1 true DE10260862A1 (en) 2004-07-15

Family

ID=32519360

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2002160862 Withdrawn DE10260862A1 (en) 2002-12-23 2002-12-23 Correction of angle or distance measurements of a sensor system by derivation of one or more correction constants for angle, amplitude and or phase errors of sinusoidal and cosinusoidal measurement signals

Country Status (1)

Country Link
DE (1) DE10260862A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632753A2 (en) 2004-09-06 2006-03-08 Lenord, Bauer & Co. GmbH Method of electronic calibration of mechanical tolerances during manufacturing of position sensors
DE102005024879A1 (en) * 2005-05-31 2006-12-07 Infineon Technologies Ag Residual-error method for determining residual error compensation parameters for a magneto-resistive angle sensor causes the sensor to deliver test/measurement signals
EP2110643A1 (en) * 2008-04-15 2009-10-21 Continental Automotive GmbH System and method for determining an angle offset of a rotation angle sensor and system and method for providing a corrected rotation angle information
DE102015205772B3 (en) * 2015-03-31 2016-04-21 Schaeffler Technologies AG & Co. KG Method for generating a speed signal of an electric motor
DE102015222202B3 (en) * 2015-11-11 2016-11-24 Schaeffler Technologies AG & Co. KG Method for determining a corrected rotational speed signal and electric motor arrangement
US9846057B2 (en) 2015-07-14 2017-12-19 TDK—Micronas GmbH Method and apparatus for computing an angle of rotation
DE102017202218A1 (en) 2017-02-13 2018-08-16 Carl Zeiss Industrielle Messtechnik Gmbh Method and device for correcting an output signal of a measuring device
DE102017202217A1 (en) 2017-02-13 2018-08-16 Carl Zeiss Industrielle Messtechnik Gmbh Method and device for correcting an output signal of a measuring device
DE102010045556B4 (en) 2009-09-22 2021-08-26 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) System and method for calibrating an absolute position rotary sensor
FR3126499A1 (en) * 2021-09-02 2023-03-03 Continental Automotive Gmbh Method for determining the position of a rotating element of a vehicle from a position sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102655A1 (en) * 1991-01-30 1992-08-06 Vdo Schindling Operating inductive distance sensor
DE10034733A1 (en) * 1999-08-02 2001-02-15 Siemens Ag Procedure and device for determination of a position signal for a rotating measuring body that generates periodic sinusoidal signals that are sampled by two incremental encoders and has improved signal correction method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102655A1 (en) * 1991-01-30 1992-08-06 Vdo Schindling Operating inductive distance sensor
DE10034733A1 (en) * 1999-08-02 2001-02-15 Siemens Ag Procedure and device for determination of a position signal for a rotating measuring body that generates periodic sinusoidal signals that are sampled by two incremental encoders and has improved signal correction method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004043448A1 (en) * 2004-09-06 2006-03-23 Lenord, Bauer & Co. Gmbh Method for electronic calibration of mechanical manufacturing tolerances of position sensors
EP1632753A2 (en) 2004-09-06 2006-03-08 Lenord, Bauer & Co. GmbH Method of electronic calibration of mechanical tolerances during manufacturing of position sensors
DE102005024879B4 (en) 2005-05-31 2018-12-06 Infineon Technologies Ag A method for determining residual error compensation parameters for a magnetoresistive angle sensor and method for reducing a residual angle error in a magnetoresistive angle sensor
DE102005024879A1 (en) * 2005-05-31 2006-12-07 Infineon Technologies Ag Residual-error method for determining residual error compensation parameters for a magneto-resistive angle sensor causes the sensor to deliver test/measurement signals
US7288931B2 (en) 2005-05-31 2007-10-30 Infineon Technologies Ag Method for determining residual error compensation parameters for a magnetoresistive angle sensor and method for reducing a residual angle error in a magnetoresistive angle sensor
EP2110643A1 (en) * 2008-04-15 2009-10-21 Continental Automotive GmbH System and method for determining an angle offset of a rotation angle sensor and system and method for providing a corrected rotation angle information
DE102010045556B4 (en) 2009-09-22 2021-08-26 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) System and method for calibrating an absolute position rotary sensor
US10352957B2 (en) 2015-03-31 2019-07-16 Schaeffler Technologies AG & Co. KG Method for generating a speed signal of an electric motor
DE102015205772B3 (en) * 2015-03-31 2016-04-21 Schaeffler Technologies AG & Co. KG Method for generating a speed signal of an electric motor
WO2016155713A1 (en) 2015-03-31 2016-10-06 Schaeffler Technologies AG & Co. KG Method for producing a speed signal of an electric motor
US9846057B2 (en) 2015-07-14 2017-12-19 TDK—Micronas GmbH Method and apparatus for computing an angle of rotation
WO2017080547A1 (en) 2015-11-11 2017-05-18 Schaeffler Technologies AG & Co. KG Method for determining a corrected rotational speed signal, and electric motor arrangement
US10209268B2 (en) 2015-11-11 2019-02-19 Schaeffler Technologies AG & Co. KG Method for determining a corrected rotational speed signal, and electric motor arrangement
DE102015222202B3 (en) * 2015-11-11 2016-11-24 Schaeffler Technologies AG & Co. KG Method for determining a corrected rotational speed signal and electric motor arrangement
DE102017202218A1 (en) 2017-02-13 2018-08-16 Carl Zeiss Industrielle Messtechnik Gmbh Method and device for correcting an output signal of a measuring device
DE102017202217A1 (en) 2017-02-13 2018-08-16 Carl Zeiss Industrielle Messtechnik Gmbh Method and device for correcting an output signal of a measuring device
DE102017202217B4 (en) 2017-02-13 2019-07-11 Carl Zeiss Industrielle Messtechnik Gmbh Method and device for correcting an output signal of a measuring device
FR3126499A1 (en) * 2021-09-02 2023-03-03 Continental Automotive Gmbh Method for determining the position of a rotating element of a vehicle from a position sensor
US11879755B2 (en) 2021-09-02 2024-01-23 Continental Automotive Gmbh Method for determining the position of a rotary element of a vehicle based on a position sensor

Similar Documents

Publication Publication Date Title
EP3423863A1 (en) Radar system comprising an antenna arrangement for transmitting and receiving electromagnetic radiation
DE102019112469A1 (en) RESOLUTION OF DOPPLER AMBIGUITIES IN A MULTI-INPUT-MULTI-OUTPUT RADAR USING DIGITAL MULTIPLE-PULSE SEQUENCE FREQUENCIES
DE10260862A1 (en) Correction of angle or distance measurements of a sensor system by derivation of one or more correction constants for angle, amplitude and or phase errors of sinusoidal and cosinusoidal measurement signals
DE102014008670A1 (en) RADAR CALIBRATION SYSTEM FOR VEHICLES
DE102009038145B4 (en) Digital signal processor
DE102007052940A1 (en) radar device
DE102007054298B4 (en) radar device
DE102008061932A1 (en) Imaging radar sensor with digital beam shaping and synthetic magnification of the antenna aperture
DE102010004726A1 (en) Method and network analyzer for measuring the group delay in a DUT
DE102020005491A1 (en) RADAR RAYPHASE VALVE VERIFICATION
DE2905023A1 (en) DIGITAL PHASE DETECTOR AND METHOD FOR DETECTING A PHASE DIFFERENCE
DE102020115709B3 (en) AUTOMOTIVE RADAR ARRANGEMENT AND METHOD OF OBJECT DETECTION BY A VEHICLE RADAR
WO2016096199A1 (en) Method for calibrating a radar system
DE102020008040A1 (en) RADAR RECEIVING SYSTEM AND METHOD FOR COMPENSATING A PHASE ERROR BETWEEN RADAR RECEIVING CIRCUITS
DE102015113204A1 (en) Received signal processing device, radar and object detection method
DE102004029815A1 (en) Method and arrangement for correcting an angle and / or distance measuring sensor system
EP1635188A1 (en) Method and device for distance and speed measurement
DE2310242C2 (en) Arrangement for the same amplification of at least two high-frequency voltages
DE102020109611A1 (en) RADAR SYSTEM WITH BALANCING OF THE RECEIVE CHANNELS VIA MULTIPLE RADAR CHIPS
DE102010031635B4 (en) Localization system with digital evaluation
WO2019179669A1 (en) Radar sensor head for a radar system
DE102010027166B4 (en) Position measuring device and method for position measurement by means of Hall sensors
EP2754997A2 (en) Measuring system
DE19734248B4 (en) Method and device for converting and transmitting sensor output signals between asynchronously operating sensors and their respective data processing devices
DE112020005328T5 (en) RADAR DEVICE

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8139 Disposal/non-payment of the annual fee