DE102015113730A1 - Method for Physical Key Generation in Frequency Division Duplexing (FDD) - Google Patents

Method for Physical Key Generation in Frequency Division Duplexing (FDD) Download PDF

Info

Publication number
DE102015113730A1
DE102015113730A1 DE102015113730.5A DE102015113730A DE102015113730A1 DE 102015113730 A1 DE102015113730 A1 DE 102015113730A1 DE 102015113730 A DE102015113730 A DE 102015113730A DE 102015113730 A1 DE102015113730 A1 DE 102015113730A1
Authority
DE
Germany
Prior art keywords
key
key generation
quantization
reconciliation
arrival times
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102015113730.5A
Other languages
German (de)
Inventor
Werner Henkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jacobs University gGmbH
Original Assignee
Jacobs University gGmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jacobs University gGmbH filed Critical Jacobs University gGmbH
Priority to DE102015113730.5A priority Critical patent/DE102015113730A1/en
Priority to PCT/DE2016/100376 priority patent/WO2017028846A1/en
Priority to DE112016003729.5T priority patent/DE112016003729A5/en
Publication of DE102015113730A1 publication Critical patent/DE102015113730A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0838Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0875Generation of secret information including derivation or calculation of cryptographic keys or passwords based on channel impulse response [CIR]

Abstract

Die Erfindung betrifft ein Verfahren zur physikalischen Schlüsselgenerierung bei nicht-reziproken, d.h. nicht-symmetrischen Funkkanälen. Dabei wird die Eigenschaft genutzt, dass die einzelnen Wellenkomponenten, die von reflektierenden oder beugenden Hindernisses herrühren, gleiche Wege in beide Richtungen zurücklegen und damit die Ankunftszeiten gleich sind. Dies gilt auch bei Funkkanälen, die verschiedene Frequenzbereiche in beiden Richtungen verwenden (FDD, frequency division duplexing). Damit eröffnet das erfindungsgemäße Verfahren die Möglichkeit der physikalisch-gestützten Schlüsselgenerierung bei nicht-reziproken Funkkanälen. Die Ankunftszeiten oder daraus abgeleitete Messgrößen können quantisiert und den Quantisierungsergebnissen Schlüsselteile zugeordnet werden. Die Wellenkomponenten erlauben auch die Schätzung der Übertragungsfunktion im jeweils anderen Frequenzband, allerdings sind die Abweichungen üblicherweise zur symmetrischen Schlüsselgenerierung zu groß. Zum Schlüsselabgleich können “Key Reconciliation“-Verfahren verwendet werden.The invention relates to a method for physical key generation in non-reciprocal, i. non-symmetrical radio channels. It uses the property that the individual wave components resulting from a reflective or diffractive obstacle travel the same way in both directions and thus the arrival times are the same. This also applies to radio channels that use different frequency ranges in both directions (FDD, frequency division duplexing). Thus, the inventive method opens up the possibility of physically-based key generation in non-reciprocal radio channels. The arrival times or measured variables derived therefrom can be quantized and key parts assigned to the quantization results. The wave components also allow the estimation of the transfer function in the other frequency band, but the deviations are usually too large for symmetric key generation. Key reconciliation can be done using key reconciliation.

Description

Die Erfindung betrifft ein Verfahren zur physikalischen Schlüsselgenerierung bei nicht-reziproken, d.h. nicht-symmetrischen Funkkanälen. Dabei wird die Eigenschaft genutzt, dass die einzelnen Wellenkomponenten, die von reflektierenden oder beugenden Hindernisses herrühren, gleiche Wege in beide Richtungen zurücklegen und damit die Ankunftszeiten gleich sind. Dies gilt auch bei Funkkanälen, die verschiedene Frequenzbereiche in beiden Richtungen verwenden (FDD, frequency division duplexing). Damit eröffnet das erfindungsgemäße Verfahren die Möglichkeit der physikalisch-gestützten Schlüsselgenerierung bei nicht-reziproken Funkkanälen. Die Ankunftszeiten oder daraus abgeleitete Messgrößen können quantisiert und den Quantisierungsergebnissen Schlüsselteile zugeordnet werden. Die Wellenkomponenten erlauben auch die Schätzung der Übertragungsfunktion im jeweils anderen Frequenzband, allerdings sind die Abweichungen üblicherweise zur symmetrischen Schlüssel¬generierung zu groß. Zum Schlüsselabgleich können “Key Reconciliation“-Verfahren verwendet werden. The invention relates to a method for physical key generation in non-reciprocal, i. non-symmetrical radio channels. It uses the property that the individual wave components resulting from a reflective or diffractive obstacle travel the same way in both directions and thus the arrival times are the same. This also applies to radio channels that use different frequency ranges in both directions (FDD, frequency division duplexing). Thus, the inventive method opens up the possibility of physically-based key generation in non-reciprocal radio channels. The arrival times or measured variables derived therefrom can be quantized and key parts assigned to the quantization results. The wave components also allow the estimation of the transfer function in the other frequency band, however, the deviations are usually too large for symmetric Schlüssel¬generierung. Key reconciliation can be done using key reconciliation.

Das erfindungsgemäße Verfahren ermöglicht die sichere Schlüsselgenerierung aus den physikalischen Übertragungseigenschaften eines nicht-reziproken Funkkanals, beispielsweise bei Verwendung von unterschiedlichen Frequenzbändern für beide Übertragungsrichtungen (FDD, frequency division duplexing). Bekannt ist die Vorgehensweise bei reziproken, d.h. symmetrischen Kanälen, wie sie bei Zeit-Duplex (TDD, time division duplexing) näherungsweise gegeben ist. Hier wird der Funkkanal in beide Richtungen gemessen und durch Quantisierung der komplexen Messwerte der Kanalübertragungsfunktion oder auch von Amplitude, Phase oder anderen Parametern erhält man auf beiden Seiten näherungsweise ein gleiches Quantisierungsergebnis, das man einem Teil eines Schlüssels zur Datenverschlüsselung zuweisen kann. Näherungsweise bedeutet, dass durch unterschiedliches Rauschen und nicht-idealen Schaltungskomponenten die Quantisierungsergebnisse verschieden ausfallen können, was man durch geeignete Sicherungsintervalle oder fehlerkorrigierende Codierung reduzieren kann (key reconciliation). The inventive method enables secure key generation from the physical transmission characteristics of a non-reciprocal radio channel, for example when using different frequency bands for both transmission directions (FDD, frequency division duplexing). The procedure is known in reciprocal, i. symmetrical channels, as given in time-division duplexing (TDD). Here, the radio channel is measured in both directions, and by quantizing the complex measured values of the channel transfer function or also of amplitude, phase or other parameters, approximately the same quantization result is obtained on both sides, which can be assigned to a part of a key for data encryption. Approximately means that due to different noise and non-ideal circuit components, the quantization results can be different, which can be reduced by suitable fuse intervals or error-correcting coding (key reconciliation).

Veröffentlichungen, die sich auf die Schlüsselgenerierung und -korrektur bei reziproken (TDD) Kanälen beziehen, sind beispielsweise:

  • J. Wallace, R. Sharma, “Automatic Secret Keys From Reciprocal MIMO Wireless Channels: Measurement and Analysis,” IEEE Transactions on Information Forensics and Security, vol. 5, no. 3, pp. 381–392, September 2010 .
  • C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, N. B. Mandayam, “Information-Theoretically Secret Key Generation for Fading Wireless Channels,” IEEE Transactions on Information Forensics and Security, vol. 5, no. 2, S. 240–254, Juni 2010 .
  • A. Sayeed, A. Perrig, “Secure Wireless Communications: Secret Keys Through Multipath,” in 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008), Las Vegas, März 2008, S. 3013–3016 .
  • T. Aono, K. Higuchi, T. Ohira, B. Komiyama, H. Sasaoka, “Wireless Secret Key Generation Exploiting Reactance-Domain Scalar Response of Multipath Fading Channels,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 11, S. 3776–3784, November 2005 .
  • R. D. Wilson, D. Tse, R. A. Scholtz, “Channel Identification: Secret Sharing Using Reciprocity in Ultrawideband Channels,” IEEE Transactions on Information Forensics and Security, vol. 2, no. 3-1, S. 364–375, 2007 .
  • R. Mehmood, J. W. Wallace, “Wireless Security Enhancement using Parasitic Reconfigurable Aperture Antennas,” in 2011 European Antennas Propagation Conference, Rome, Italy, April 11–15, 2011, S. 2761–2765 .
  • R. Mehmood, J. Wallace, M. Jensen, “Key Establishment Employing Reconfigurable Antennas: Impact of Antenna Complexity,” IEEE Transactions on Wireless Communications, vol. 13, no. 11, pp. 6300–6310, Nov. 2014 .
  • R. Mehmood, J. W. Wallace, “MIMO Capacity Enhancement using Parasitic Reconfigurable Aperture Antennas (RECAPs),” IEEE Transactions Antennas and Propagation, vol. 60, pp. 665–673, Feb. 2012 .
  • J. Wallace, “Secure Physical Layer Key Generation Schemes: Performance and Information Theoretic Limits,” in 2009 IEEE International Conference on Communications, ICC ’09., Dresden, Germany, June 2009, pp. 1–5 .
  • A. Pierrot, R. Chou, M. Bloch, “Experimental Aspects of Secret Key Generation in Indoor Wireless Environments,” in IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC), June 2013, pp. 669–673 .
  • X. Sun, X. Wu, C. Zhao, M. Jiang, W. Xu, “Slepian-Wolf Coding for Reconciliation of Physical Layer Secret Keys,” in 2010 IEEE Wireless Communications and Networking Conference (WCNC), April 2010, S. 1–6 .
  • A. Filip, R. Mehmood, J. Wallace, W. Henkel, “Variable Guard Band Construction to Support Key Reconciliation,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014), Florence, Italy, May. 4–9, 2014 .
  • A. Filip, R. Mehmood, J. Wallace, W. Henkel, “Physical-Layer Key Generation Supported by RECAP Antenna Structures,” 9th International ITG Conference on Source and Channel Coding (SCC), Munich, Germany, 2013 .
  • J. Etesami and W. Henkel, “LDPC Code Construction for Wireless Physical-Layer Key Reconciliation,” First IEEE International Conference on Communications in China (ICCC 12), Beijing, China, 2012 .
  • O. Graur, N. Islam, A., “Physical Layer Security,” 10th Hamburg, Germany, FebruaryFilip, and W. Henkel, “Quantization Aspects in LDPC Key Reconciliation for International ITG Conference on Systems, Communications and Coding (SCC), 2–5, 2015 .
  • R. Mehmood, R. Sharma, J. Wallace, O. Graur, N. Islam, A. Filip, W. Henkel, “Physical-Layer Key Generation and Reconciliation” under publication in Signals and Communication Technology, Springer, 2015 .
  • N. Islam, O. Graur, W. Henkel, A. Filip, “LDPC Code Design Aspects for Physical-Layer Key Reconciliation”, IEEE Global Communications Conference (GLOBECOM), San Diego, California, Dec. 2015 .
Publications relating to key generation and correction on reciprocal (TDD) channels include:
  • J. Wallace, R. Sharma, "Automatic Secret Keys From Reciprocal MIMO Wireless Channels: Measurement and Analysis," IEEE Transactions on Information Forensics and Security, vol. 5, no. 3, pp. 381-392, September 2010 ,
  • C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, NB Mandayam, "Information-Theoretically Secret Key Generation for Fading Wireless Channels," IEEE Transactions on Information Forensics and Security, vol. 5, no. 2, pp. 240-254, June 2010 ,
  • A. Sayeed, A. Perrig, "Secure Wireless Communications: Secret Keys Through Multipath," 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008), Las Vegas, March 2008, pp. 3013-3016 ,
  • T. Aono, K. Higuchi, T. Ohira, B. Komiyama, H. Sasaoka, "Wireless Secret Key Generation Exploiting Reactance Domain Scalar Response of Multipath Fading Channels," IEEE Transactions on Antennas and Propagation, vol. 53, no. 11, p. 3776-3784, November 2005 ,
  • RD Wilson, D. Tse, RA Scholtz, "Channel Identification: Secret Sharing Using Reciprocity in Ultrawideband Channels," IEEE Transactions on Information Forensics and Security, vol. 2, no. 3-1, pp. 364-375, 2007 ,
  • R. Mehmood, JW Wallace, "Wireless Security Enhancement Using Parasitic Reconfigurable Aperture Antennas," in 2011 European Antennas Propagation Conference, Rome, Italy, April 11-15, 2011, pp. 2761-2765 ,
  • R. Mehmood, J. Wallace, M. Jensen, "Key Establishment Employing Reconfigurable Antennas: Impact of Antenna Complexity," IEEE Transactions on Wireless Communications, vol. 13, no. 11, pp. 6300-6310, Nov. 2014 ,
  • R. Mehmood, JW Wallace, "MIMO Capacity Enhancement Using Parasitic Reconfigurable Aperture Antennas (RECAPs)," IEEE Transactions Antennas and Propagation, vol. 60, pp. 665-673, Feb. 2012 ,
  • J. Wallace, "Secure Physical Layer Key Generation Schemes: Performance and Information Theoretical Limits," 2009 IEEE International Conference on Communications, ICC '09., Dresden, Germany, June 2009, p. 1-5 ,
  • A. Pierrot, R. Chou, M. Bloch, "Experimental Aspects of Secret Key Generation in Indoor Wireless Environments," in the IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC), June 2013, p. 669-673 ,
  • X. Sun, X. Wu, C.Zhao, M.Jiang, W.Xu, "Slepian-Wolf Coding for Reconciliation of Physical Layer Secret Keys," in the 2010 IEEE Wireless Communications and Networking Conference (WCNC), April 2010, p 1-6 ,
  • A. Filip, R. Mehmood, J. Wallace, W. Henkel, "Variable Guard Band Construction to Support Key Reconciliation," IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014), Florence, Italy, May. 4 -9, 2014 ,
  • A. Filip, R. Mehmood, J. Wallace, W. Henkel, Physical Layer Key Generation Supported by RECAP Antenna Structures, 9th International ITG Conference on Source and Channel Coding (SCC), Munich, Germany, 2013 ,
  • J. Etesami and W. Henkel, "LDPC Code Construction for Wireless Physical Layer Key Reconciliation," First IEEE International Conference on Communications in China (ICCC 12), Beijing, China, 2012 ,
  • O. Graur, N. Islam, A., "Physical Layer Security," 10th Hamburg, Germany, FebruaryFilip, and W. Henkel, "Quantization Aspects in LDPC Key Reconciliation for International ITG Conference on Systems, Communications and Coding (SCC)," 2-5, 2015 ,
  • R. Mehmood, R. Sharma, J. Wallace, O. Graur, N. Islam, A. Filip, W. Henkel, "Physical-Layer Key Generation and Reconciliation" under publication in Signals and Communication Technology, Springer, 2015 ,
  • N. Islam, O. Graur, W. Henkel, A. Filip, LDPC Code Design Aspects for Physical Layer Key Reconciliation, IEEE Global Communications Conference (GLOBECOM), San Diego, California, Dec. 2015 ,

Die Reziprozität (Symmetrie) des Kanals ist die Grundlage aller dieser Verfahren. Sobald jedoch die Übertragung in beiden Richtungen (auch nur teilweise) in einem anderen Frequenzband erfolgt, ist die Reziprozität der Kanalübertragungsfunktion nicht mehr gegeben, worauf bislang die allgemeine Einschätzung beruhte, dass physikalisch-basierte Schlüsselgenerierung in diesem Fall nicht möglich sei. The reciprocity (symmetry) of the channel is the basis of all these methods. However, once the transmission takes place in both directions (even partially) in a different frequency band, the reciprocity of the channel transfer function is no longer present, so far based on the general assessment that physically-based key generation is not possible in this case.

Das erfindungsgemäße Verfahren bezieht sich stattdessen nicht auf die Übertragungsfunktion, sondern auf die zeitliche Sequenz der eingehenden Wellenkomponenten (im Zeitbereich), die durch reflektierende oder beugende Objekte gegeben sind. Die sich ergebenden Wellenpfade gemäß 1 sind für beide Übertragungsrichtungen (näherungsweise) gleich, was wiederum eine symmetrischen Datenbasis ergibt. Die Amplituden der eingehenden Wellenkomponenten mögen dabei nicht gleich sein, jedoch gibt es einen Zusammenhang bei beiden Richtungen bzgl. der zeitlichen Abfolge. Die zeitliche Abfolge der Wellenkomponenten bezeichnet man üblicherweise als Delay Profile. Zusammen mit der Verwendung eines Antennen-Arrays auf zumindest einer Seite, ist es zusätzlich möglich, die Komponenten entsprechend ihrer Richtungen (Direction of Arrival, DoA) zu trennen, was eine genauere Darstellung ermöglicht. Instead, the method according to the invention does not relate to the transfer function but to the temporal sequence of the incoming wave components (in the time domain) given by reflecting or diffracting objects. The resulting wave paths according to 1 are (approximately) the same for both directions of transmission, which in turn gives a symmetric database. The amplitudes of the incoming wave components may not be the same, but there is a relationship in both directions with respect to the time sequence. The time sequence of the wave components is commonly referred to as delay profiles. In addition, with the use of an antenna array on at least one side, it is additionally possible to separate the components according to their directions of direction (DoA), which allows a more accurate representation.

Die Schlüsselgenerierung erfolgt dann beispielsweise durch Quantisierung der zeitlichen Abstände der eingehenden Wellenkomponenten oder unter Verwendung anderer Maße, die von der zeitlichen Abfolge der Komponenten abhängen. Ähnlich zu den Verfahren bei reziproken Kanälen (TDD) sind auch hier gegebenenfalls Verfahren zum Schlüsselabgleich (key reconciliation) nötig. The key generation then takes place, for example, by quantizing the time intervals of the incoming wave components or using other measures that depend on the time sequence of the components. Similar to the methods for reciprocal channels (TDD), key reconciliation methods may also be necessary here.

Dass die Kanaleigenschaften in Form der einzelnen Wellenkomponenten verwandt sind, wurde in der Veröffentlichung von N. Palleit und T. Weber, "Obtaining Transmitter Side Channel State Information in MIMO FDD Systems," in 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, September 2009, S. 2439–2443 , genutzt, allerdings nicht zur Schlüsselgenerierung, sondern zur Schätzung der gesamten Kanalübertragungsfunktion im jeweils anderen Frequenzbereich. Dieser weitere Schritt stellt natürlich auch eine Möglichkeit dar, den reziproken Kanal insgesamt herstellen zu wollen, allerdings ist davon auszugehen, dass die Abweichungen in den resultierenden Quantisierungsergebnissen und den entsprechenden Schlüsseln zu groß sind. Die Autoren hatten auch andere Anwendungen, wie z.B. Kanalentzerrung, im Auge. Das erfindungsgemäße Verfahren nutzt nun genau diese frequenzunabhängigen Parameter zur symmetrischen Schlüsselgenerierung. That the channel properties are related in terms of the individual wave components was in the publication of N. Palleit and T. Weber, "Obtaining Transmitter Side Channel State Information in MIMO FDD Systems," 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, September 2009, pp. 2439-2443 , but not for key generation, but for estimating the entire channel transfer function in the other frequency band. Of course, this further step is also a way of trying to make the reciprocal channel as a whole, but it is to be assumed that the deviations in the resulting quantization results and the corresponding keys are too great. The authors also looked at other applications, such as channel equalization. The inventive method now uses exactly these frequency-independent parameters for symmetric key generation.

Da das erfindungsgemäße Verfahren sich auf einzelne Wellenkomponenten bezieht, existiert eine gewisse Beziehung zu sogenanntem Ray Tracing, womit man Funkkanäle auf Basis der möglichen Reflexionswege modelliert. Dabei geht es aber um Kanalmodellierung, nicht um physikalische Schlüsselgenerierung. Beispielhaft sei hier die folgende Veröffentlichung genannt: S. Seidel und T. Rappaport, “Site-specific Propagation Prediction for Wireless in-Building Personal Communication System Design,” IEEE Transactions on Vehicular Technology, vol. 43, no. 4, S. 879–891, Nov. 1994 . Since the method according to the invention relates to individual wave components, there is a certain relationship with so-called ray tracing, with which one models radio channels on the basis of the possible reflection paths. But it's about channel modeling, not physical key generation. By way of example, the following publication may be mentioned here: S. Seidel and T. Rappaport, "Site-Specific Propagation Prediction for Wireless In-Building Personal Communication Systems Design," IEEE Transactions on Vehicular Technology, vol. 43, no. 4, pp. 879-891, Nov. 1994 ,

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte Nicht-PatentliteraturCited non-patent literature

  • J. Wallace, R. Sharma, “Automatic Secret Keys From Reciprocal MIMO Wireless Channels: Measurement and Analysis,” IEEE Transactions on Information Forensics and Security, vol. 5, no. 3, pp. 381–392, September 2010 [0003] J. Wallace, R. Sharma, "Automatic Secret Keys From Reciprocal MIMO Wireless Channels: Measurement and Analysis," IEEE Transactions on Information Forensics and Security, vol. 5, no. 3, pp. 381-392, September 2010 [0003]
  • C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, N. B. Mandayam, “Information-Theoretically Secret Key Generation for Fading Wireless Channels,” IEEE Transactions on Information Forensics and Security, vol. 5, no. 2, S. 240–254, Juni 2010 [0003] C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, NB Mandayam, "Information-Theoretically Secret Key Generation for Fading Wireless Channels," IEEE Transactions on Information Forensics and Security, vol. 5, no. 2, pp. 240-254, June 2010 [0003]
  • A. Sayeed, A. Perrig, “Secure Wireless Communications: Secret Keys Through Multipath,” in 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008), Las Vegas, März 2008, S. 3013–3016 [0003] A. Sayeed, A. Perrig, "Secure Wireless Communications: Secret Keys Through Multipath," 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008), Las Vegas, March 2008, pp. 3013-3016 [0003]
  • T. Aono, K. Higuchi, T. Ohira, B. Komiyama, H. Sasaoka, “Wireless Secret Key Generation Exploiting Reactance-Domain Scalar Response of Multipath Fading Channels,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 11, S. 3776–3784, November 2005 [0003] T. Aono, K. Higuchi, T. Ohira, B. Komiyama, H. Sasaoka, "Wireless Secret Key Generation Exploiting Reactance Domain Scalar Response of Multipath Fading Channels," IEEE Transactions on Antennas and Propagation, vol. 53, no. 11, pp. 3776-3784, November 2005 [0003]
  • R. D. Wilson, D. Tse, R. A. Scholtz, “Channel Identification: Secret Sharing Using Reciprocity in Ultrawideband Channels,” IEEE Transactions on Information Forensics and Security, vol. 2, no. 3-1, S. 364–375, 2007 [0003] RD Wilson, D. Tse, RA Scholtz, "Channel Identification: Secret Sharing Using Reciprocity in Ultrawideband Channels," IEEE Transactions on Information Forensics and Security, vol. 2, no. 3-1, pp. 364-375, 2007 [0003]
  • R. Mehmood, J. W. Wallace, “Wireless Security Enhancement using Parasitic Reconfigurable Aperture Antennas,” in 2011 European Antennas Propagation Conference, Rome, Italy, April 11–15, 2011, S. 2761–2765 [0003] R. Mehmood, JW Wallace, "Wireless Security Enhancement Using Parasitic Reconfigurable Aperture Antennas," in 2011 European Antennas Propagation Conference, Rome, Italy, April 11-15, 2011, pp. 2761-2765 [0003]
  • R. Mehmood, J. Wallace, M. Jensen, “Key Establishment Employing Reconfigurable Antennas: Impact of Antenna Complexity,” IEEE Transactions on Wireless Communications, vol. 13, no. 11, pp. 6300–6310, Nov. 2014 [0003] R. Mehmood, J. Wallace, M. Jensen, "Key Establishment Employing Reconfigurable Antennas: Impact of Antenna Complexity," IEEE Transactions on Wireless Communications, vol. 13, no. 11, pp. 6300-6310, Nov. 2014 [0003]
  • R. Mehmood, J. W. Wallace, “MIMO Capacity Enhancement using Parasitic Reconfigurable Aperture Antennas (RECAPs),” IEEE Transactions Antennas and Propagation, vol. 60, pp. 665–673, Feb. 2012 [0003] R. Mehmood, JW Wallace, "MIMO Capacity Enhancement Using Parasitic Reconfigurable Aperture Antennas (RECAPs)," IEEE Transactions Antennas and Propagation, vol. 60, pp. 665-673, Feb. 2012 [0003]
  • J. Wallace, “Secure Physical Layer Key Generation Schemes: Performance and Information Theoretic Limits,” in 2009 IEEE International Conference on Communications, ICC ’09., Dresden, Germany, June 2009, pp. 1–5 [0003] J. Wallace, "Secure Physical Layer Key Generation Schemes: Performance and Information Theoretical Limits," 2009 IEEE International Conference on Communications, ICC '09., Dresden, Germany, June 2009, p. 1-5 [0003]
  • A. Pierrot, R. Chou, M. Bloch, “Experimental Aspects of Secret Key Generation in Indoor Wireless Environments,” in IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC), June 2013, pp. 669–673 [0003] A. Pierrot, R. Chou, M. Bloch, "Experimental Aspects of Secret Key Generation in Indoor Wireless Environments," in the IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC), June 2013, p. 669-673 [0003]
  • X. Sun, X. Wu, C. Zhao, M. Jiang, W. Xu, “Slepian-Wolf Coding for Reconciliation of Physical Layer Secret Keys,” in 2010 IEEE Wireless Communications and Networking Conference (WCNC), April 2010, S. 1–6 [0003] X. Sun, X. Wu, C.Zhao, M.Jiang, W.Xu, "Slepian-Wolf Coding for Reconciliation of Physical Layer Secret Keys," in the 2010 IEEE Wireless Communications and Networking Conference (WCNC), April 2010, p 1-6 [0003]
  • A. Filip, R. Mehmood, J. Wallace, W. Henkel, “Variable Guard Band Construction to Support Key Reconciliation,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014), Florence, Italy, May. 4–9, 2014 [0003] A. Filip, R. Mehmood, J. Wallace, W. Henkel, "Variable Guard Band Construction to Support Key Reconciliation," IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014), Florence, Italy, May. 4 -9, 2014 [0003]
  • A. Filip, R. Mehmood, J. Wallace, W. Henkel, “Physical-Layer Key Generation Supported by RECAP Antenna Structures,” 9th International ITG Conference on Source and Channel Coding (SCC), Munich, Germany, 2013 [0003] A. Filip, R. Mehmood, J. Wallace, W. Henkel, "Physical Layer Key Generation Supported by RECAP Antenna Structures," 9th International ITG Conference on Source and Channel Coding (SCC), Munich, Germany, 2013 [0003]
  • J. Etesami and W. Henkel, “LDPC Code Construction for Wireless Physical-Layer Key Reconciliation,” First IEEE International Conference on Communications in China (ICCC 12), Beijing, China, 2012 [0003] J. Etesami and W. Henkel, "LDPC Code Construction for Wireless Physical Layer Key Reconciliation," First IEEE International Conference on Communications in China (ICCC 12), Beijing, China, 2012 [0003]
  • O. Graur, N. Islam, A., “Physical Layer Security,” 10th Hamburg, Germany, FebruaryFilip, and W. Henkel, “Quantization Aspects in LDPC Key Reconciliation for International ITG Conference on Systems, Communications and Coding (SCC), 2–5, 2015 [0003] O. Graur, N. Islam, A., "Physical Layer Security," 10th Hamburg, Germany, FebruaryFilip, and W. Henkel, "Quantization Aspects in LDPC Key Reconciliation for International ITG Conference on Systems, Communications and Coding (SCC)," 2-5, 2015 [0003]
  • R. Mehmood, R. Sharma, J. Wallace, O. Graur, N. Islam, A. Filip, W. Henkel, “Physical-Layer Key Generation and Reconciliation” under publication in Signals and Communication Technology, Springer, 2015 [0003] R. Mehmood, R. Sharma, J. Wallace, O. Graur, N. Islam, A. Filip, W. Henkel, "Physical-Layer Key Generation and Reconciliation" under publication in Signals and Communication Technology, Springer, 2015 [0003 ]
  • N. Islam, O. Graur, W. Henkel, A. Filip, “LDPC Code Design Aspects for Physical-Layer Key Reconciliation”, IEEE Global Communications Conference (GLOBECOM), San Diego, California, Dec. 2015 [0003] N. Islam, O. Graur, W. Henkel, A. Filip, LDPC Code Design Aspects for Physical Layer Key Reconciliation, IEEE Global Communications Conference (GLOBECOM), San Diego, California, Dec. 2015 [0003]
  • N. Palleit und T. Weber, "Obtaining Transmitter Side Channel State Information in MIMO FDD Systems," in 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, September 2009, S. 2439–2443 [0007] N. Palleit and T. Weber, "Obtaining Transmitter Side Channel State Information in MIMO FDD Systems, "2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, September 2009, pp. 2439-2443 [0007]
  • S. Seidel und T. Rappaport, “Site-specific Propagation Prediction for Wireless in-Building Personal Communication System Design,” IEEE Transactions on Vehicular Technology, vol. 43, no. 4, S. 879–891, Nov. 1994 [0008] S. Seidel and T. Rappaport, "Site-Specific Propagation Prediction for Wireless In-Building Personal Communication Systems Design," IEEE Transactions on Vehicular Technology, vol. 43, no. 4, pp. 879-891, Nov. 1994 [0008]

Claims (8)

Verfahren zur physikalischen Schlüsselgenerierung bei nicht-reziproken, insbesondere nicht-symmetrischen Funkkanälen, dadurch gekennzeichnet, dass die Wellenkomponenten, insbesondere deren Ankunftszeiten mittels Quantisierung und Zuordnung von Schlüsselteilen, insbesondere Bitmuster, zu Quantisierungsbereichen zur Schlüsselgenerierung verwendet werden. Method for physical key generation in non-reciprocal, in particular non-symmetrical radio channels, characterized in that the wave components, in particular their arrival times by means of quantization and assignment of key parts, in particular bit pattern, are used to quantization areas for key generation. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass durch Änderungen im Funkkanal neue Schlüsselteile generiert werden, welche zusammengenommen einen Schlüssel bilden. A method according to claim 1, characterized in that new key parts are generated by changes in the radio channel, which together form a key. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Änderungen im Funkkanal durch zusätzliche Maßnahmen, insbesondere durch rekonfigurierbare Antennen, insbesondere RECAP antennas, erzeugt werden. Method according to one of the preceding claims, characterized in that the changes in the radio channel by additional measures, in particular by reconfigurable antennas, in particular RECAP antennas, are generated. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass eine Richtungsinformation oder mehrere Richtungsinformationen zur Trennung von Ankunftszeiten hinzugenommen werden, wobei insbesondere DoA (Direction-of-Arrival) Verfahren eingesetzt werden. Method according to one of the preceding claims, characterized in that direction information or a plurality of direction information for the separation of arrival times are added, in particular DoA (direction-of-arrival) methods are used. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass von den Ankunftszeiten abgeleitete Größen, insbesondere Zeitdifferenzen, verwendet werden. Method according to one of the preceding claims, characterized in that from the arrival times derived variables, in particular time differences, are used. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wellenkomponenten genutzt werden, um eine komplette Kanalschätzung im jeweils anderen Frequenzband des Rückkanals zu ermitteln, die dann einer Quantisierung zugeführt werden. Method according to one of the preceding claims, characterized in that the wave components are used to determine a complete channel estimate in the respective other frequency band of the return channel, which are then fed to a quantization. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Abweichungen in den Quantisierungsergebnissen und den zugeordneten Schlüsselteilen durch Schlüsselabgleichverfahren angeglichen werden, insbesondere durch Slepian-Wolf-Coding oder durch Sicherheitsintervalle an Quantisierungsgrenzen. Method according to one of the preceding claims, characterized in that deviations in the quantization results and the associated key parts are adjusted by means of key matching methods, in particular by Slepian-Wolf coding or by security intervals at quantization limits. Vorrichtung, insbesondere Rechner aufweisende Einrichtungen, welche derart eingerichtet ist, dass ein zuvor beschriebenes Verfahren durchführbar ist. Device, in particular computer having devices, which is arranged such that a method described above is feasible.
DE102015113730.5A 2015-08-19 2015-08-19 Method for Physical Key Generation in Frequency Division Duplexing (FDD) Withdrawn DE102015113730A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102015113730.5A DE102015113730A1 (en) 2015-08-19 2015-08-19 Method for Physical Key Generation in Frequency Division Duplexing (FDD)
PCT/DE2016/100376 WO2017028846A1 (en) 2015-08-19 2016-08-18 Method for generating a cryptographic key for a wireless transmission, and computer for carrying out the method
DE112016003729.5T DE112016003729A5 (en) 2015-08-19 2016-08-18 A method for generating a cryptographic key for a radio transmission and computer for carrying out the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015113730.5A DE102015113730A1 (en) 2015-08-19 2015-08-19 Method for Physical Key Generation in Frequency Division Duplexing (FDD)

Publications (1)

Publication Number Publication Date
DE102015113730A1 true DE102015113730A1 (en) 2017-02-23

Family

ID=57046925

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102015113730.5A Withdrawn DE102015113730A1 (en) 2015-08-19 2015-08-19 Method for Physical Key Generation in Frequency Division Duplexing (FDD)
DE112016003729.5T Pending DE112016003729A5 (en) 2015-08-19 2016-08-18 A method for generating a cryptographic key for a radio transmission and computer for carrying out the method

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE112016003729.5T Pending DE112016003729A5 (en) 2015-08-19 2016-08-18 A method for generating a cryptographic key for a radio transmission and computer for carrying out the method

Country Status (2)

Country Link
DE (2) DE102015113730A1 (en)
WO (1) WO2017028846A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140219449A1 (en) * 2013-02-01 2014-08-07 Steve J. Shattil LPI/LPD Communication Systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604806A (en) * 1995-01-20 1997-02-18 Ericsson Inc. Apparatus and method for secure radio communication
US5745578A (en) * 1996-06-17 1998-04-28 Ericsson Inc. Apparatus and method for secure communication based on channel characteristics
WO2010030927A2 (en) * 2008-09-11 2010-03-18 University Of Utah Research Foundation Method and system for secret key exchange using wireless link characteristics and random device movement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140219449A1 (en) * 2013-02-01 2014-08-07 Steve J. Shattil LPI/LPD Communication Systems

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
A. Filip, R. Mehmood, J. Wallace, W. Henkel, "Physical-Layer Key Generation Supported by RECAP Antenna Structures," 9th International ITG Conference on Source and Channel Coding (SCC), Munich, Germany, 2013
A. Filip, R. Mehmood, J. Wallace, W. Henkel, "Variable Guard Band Construction to Support Key Reconciliation," IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014), Florence, Italy, May. 4–9, 2014
A. Pierrot, R. Chou, M. Bloch, "Experimental Aspects of Secret Key Generation in Indoor Wireless Environments," in IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC), June 2013, pp. 669–673
A. Sayeed, A. Perrig, "Secure Wireless Communications: Secret Keys Through Multipath," in 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2008), Las Vegas, März 2008, S. 3013–3016
C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, N. B. Mandayam, "Information-Theoretically Secret Key Generation for Fading Wireless Channels," IEEE Transactions on Information Forensics and Security, vol. 5, no. 2, S. 240–254, Juni 2010
J. Etesami and W. Henkel, "LDPC Code Construction for Wireless Physical-Layer Key Reconciliation," First IEEE International Conference on Communications in China (ICCC 12), Beijing, China, 2012
J. Wallace, "Secure Physical Layer Key Generation Schemes: Performance and Information Theoretic Limits," in 2009 IEEE International Conference on Communications, ICC ’09., Dresden, Germany, June 2009, pp. 1–5
J. Wallace, R. Sharma, "Automatic Secret Keys From Reciprocal MIMO Wireless Channels: Measurement and Analysis," IEEE Transactions on Information Forensics and Security, vol. 5, no. 3, pp. 381–392, September 2010
N. Islam, O. Graur, W. Henkel, A. Filip, "LDPC Code Design Aspects for Physical-Layer Key Reconciliation", IEEE Global Communications Conference (GLOBECOM), San Diego, California, Dec. 2015
N. Palleit und T. Weber, "Obtaining Transmitter Side Channel State Information in MIMO FDD Systems," in 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, September 2009, S. 2439–2443
O. Graur, N. Islam, A., "Physical Layer Security," 10th Hamburg, Germany, FebruaryFilip, and W. Henkel, "Quantization Aspects in LDPC Key Reconciliation for International ITG Conference on Systems, Communications and Coding (SCC), 2–5, 2015
R. D. Wilson, D. Tse, R. A. Scholtz, "Channel Identification: Secret Sharing Using Reciprocity in Ultrawideband Channels," IEEE Transactions on Information Forensics and Security, vol. 2, no. 3-1, S. 364–375, 2007
R. Mehmood, J. W. Wallace, "MIMO Capacity Enhancement using Parasitic Reconfigurable Aperture Antennas (RECAPs)," IEEE Transactions Antennas and Propagation, vol. 60, pp. 665–673, Feb. 2012
R. Mehmood, J. W. Wallace, "Wireless Security Enhancement using Parasitic Reconfigurable Aperture Antennas," in 2011 European Antennas Propagation Conference, Rome, Italy, April 11–15, 2011, S. 2761–2765
R. Mehmood, J. Wallace, M. Jensen, "Key Establishment Employing Reconfigurable Antennas: Impact of Antenna Complexity," IEEE Transactions on Wireless Communications, vol. 13, no. 11, pp. 6300–6310, Nov. 2014
R. Mehmood, R. Sharma, J. Wallace, O. Graur, N. Islam, A. Filip, W. Henkel, "Physical-Layer Key Generation and Reconciliation" under publication in Signals and Communication Technology, Springer, 2015
S. Seidel und T. Rappaport, "Site-specific Propagation Prediction for Wireless in-Building Personal Communication System Design," IEEE Transactions on Vehicular Technology, vol. 43, no. 4, S. 879–891, Nov. 1994
T. Aono, K. Higuchi, T. Ohira, B. Komiyama, H. Sasaoka, "Wireless Secret Key Generation Exploiting Reactance-Domain Scalar Response of Multipath Fading Channels," IEEE Transactions on Antennas and Propagation, vol. 53, no. 11, S. 3776–3784, November 2005
X. Sun, X. Wu, C. Zhao, M. Jiang, W. Xu, "Slepian-Wolf Coding for Reconciliation of Physical Layer Secret Keys," in 2010 IEEE Wireless Communications and Networking Conference (WCNC), April 2010, S. 1–6

Also Published As

Publication number Publication date
WO2017028846A1 (en) 2017-02-23
DE112016003729A5 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
Vasil’ev et al. Doubly stochastic models of images
DE102014014615B4 (en) spectrum scan
Covo et al. A novel single-gamma approximation to the sum of independent gamma variables, and a generalization to infinitely divisible distributions
DE102016112128A1 (en) Determination circuit and apparatus, mobile transceiver, communication device, method for determining, computer program and memory for determining a spatial transmission mode
Coutts et al. Impact of fast-converging PEVD algorithms on broadband AoA estimation
Chen et al. Direction finding using compressive one-bit measurements
Civelli et al. Numerical methods for the inverse nonlinear Fourier transform
Slezak et al. 60 ghz blockage study using phased arrays
Apaydin et al. Calibration of three-dimensional parabolic-equation propagation models with the rectangular waveguide problem
DE102015113730A1 (en) Method for Physical Key Generation in Frequency Division Duplexing (FDD)
CN116500541B (en) Target angle of arrival estimation method, device, electronic equipment and storage medium
Blazek et al. Model order selection for LASSO fitted millimeter wave vehicular channel data
DE112019003501T5 (en) Semi-hemispherical antennas for the localization of remote facilities
Yi et al. Simulation of inverse Gaussian compound Gaussian distribution sea clutter based on SIRP
Han et al. A novel wavelet-based energy detection for compressive spectrum sensing
US9882750B2 (en) Method for recovering a sparse communication signal from a receive signal
DE102020111842A1 (en) Method for calibrating a multi-port antenna system mounted on a mobile or stationary support
Méndez-Rial et al. Augmented covariance estimation with a cyclic approach in DOA
Sedletsky Even polyphase Barker codes with large alphabet
EP1584943B1 (en) High resolution direction finding method with broad band FFT sensors
Pang et al. Markov process based array non-stationarity modeling for Massive MIMO channels
Wang et al. DOA estimation of smart antenna signal based on MUSIC algorithm
Ghirmai Representing a cascade of complex Gaussian AR models by a single Laplace AR model
DE112020005751T5 (en) Communication device and position identification method
Alizadeh Noughabi Tests of symmetry based on the sample entropy of order statistics and power comparison

Legal Events

Date Code Title Description
R163 Identified publications notified
R118 Application deemed withdrawn due to claim for domestic priority