DE102013217869A1 - Verfahren und Kommunikationsvorrichtung zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals sowie Verwendung der Kommunikationsvorrichtung - Google Patents

Verfahren und Kommunikationsvorrichtung zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals sowie Verwendung der Kommunikationsvorrichtung Download PDF

Info

Publication number
DE102013217869A1
DE102013217869A1 DE102013217869.7A DE102013217869A DE102013217869A1 DE 102013217869 A1 DE102013217869 A1 DE 102013217869A1 DE 102013217869 A DE102013217869 A DE 102013217869A DE 102013217869 A1 DE102013217869 A1 DE 102013217869A1
Authority
DE
Germany
Prior art keywords
communication
antennas
communication signal
data content
communication device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102013217869.7A
Other languages
English (en)
Inventor
Sighard Schräbler
Ulrich Stählin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive Technologies GmbH
Original Assignee
Continental Teves AG and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves AG and Co OHG filed Critical Continental Teves AG and Co OHG
Priority to DE102013217869.7A priority Critical patent/DE102013217869A1/de
Priority to JP2016539557A priority patent/JP6479014B2/ja
Priority to EP14761359.0A priority patent/EP3042216A1/de
Priority to PCT/EP2014/068989 priority patent/WO2015032920A1/de
Priority to CN201480048533.5A priority patent/CN105518478B/zh
Priority to US14/914,872 priority patent/US10018702B2/en
Priority to KR1020167008848A priority patent/KR102289780B1/ko
Publication of DE102013217869A1 publication Critical patent/DE102013217869A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0072Transmission between mobile stations, e.g. anti-collision systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/63Location-dependent; Proximity-dependent

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals, wobei der Dateninhalt mindestens eine Positionsangabe eines das Kommunikationssignal sendenden Sendemoduls (14) umfasst, wobei das Kommunikationssignal von einem mindestens zwei Antennen (12, 13) aufweisenden Empfangsmodul (11) empfangen wird, wobei mittels des Kommunikationssignals eine Richtung vom Empfangsmodul (11) zum Sendemodul (14) bestimmt wird und wobei die bestimmte Richtung zur Validierung der Positionsangabe herangezogen wird. Das Verfahren zeichnet sich dadurch aus, dass die Richtung aus einer Phasendifferenz des Kommunikationssignals an den mindestens zwei Antennen (12, 13) bestimmt wird. Die Erfindung betrifft weiterhin eine entsprechende Kommunikationsvorrichtung sowie eine Verwendung der Kommunikationsvorrichtung.

Description

  • Die Erfindung betrifft Verfahren zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals gemäß Oberbegriff von Anspruch 1, eine Kommunikationsvorrichtung zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals gemäß Oberbegriff von Anspruch 12 sowie eine Verwendung der Kommunikationsvorrichtung.
  • Im Stand der Technik sind unterschiedliche Gattungen von Fahrerassistenzsystemen bekannt, denen im Wesentlichen gemein ist, dass sie der Entlastung des Fahrers im Verkehrsgeschehen dienen. Oftmals sind derartige Fahrerassistenzsysteme h auch zur Ausführung von über einen reinen Komforteffekt hinausgehenden und insbesondere gefahrenvorbeugenden Maßnahmen in der Lage. Beispiele hierfür sind etwa situationsbedingte Warnausgaben an den Fahrer oder sogar Eingriffe in die Fahrzeugsteuerung. Die notwendige Informationserfassung basiert dabei zunehmend auf der sogenannten Fahrzeug-zu-X-Kommunikation, welche jedoch zur Gewährleistung der notwendigen Datensicherheit und damit zum Schutz vor böswillig gefälschten Fahrzeug-zu-X-Botschaften auf rechenintensive Codierungs- bzw. Decodierungsverfahren angewiesen ist. Dabei ist es im Stand der Technik auch bekannt, den Inhalt einer empfangenen Fahrzeug-zu-X-Botschaft mittels geeigneter Umfeldsensorik zu validieren, so dass auf die vergleichsweise rechenintensive Decodierung der entsprechenden Fahrzeug-zu-X-Botschaft verzichtet werden kann.
  • In diesem Zusammenhang beschreibt die DE 10 2007 058 192 A1 ein zentrales Steuergerät für mehrere in einem Kraftfahrzeug vorgesehene Assistenzsysteme, welche zumindest teilweise mit Umfeldsensoren ausgestattet sind, wobei gemäß der DE 10 2007 058 192 A1 auch ein Telematiksystem als Umfeldsensor verstanden wird. Das zentrale Steuergerät ist auf Datenebene mit den einzelnen Assistenzsystemen verbunden und plausibilisiert die Informationen einzelner Umfeldsensoren mittels der Informationen anderer Umfeldsensoren. Z.B. kann die Bildinformation einer Kamera die Abstandsmessung eines Radarsensors bestätigen. Einzelne Sensorinformationen können somit bestätigt werden und liegen redundant vor.
  • Die DE 10 2012 221 260 A1 offenbart ein Verfahren zur Positionsbestimmung von Objekten im Straßenverkehr. Dabei sendet ein Sendeempfänger zunächst drahtlose Kommunikationssignale. Diese werden in ihrem Ausbreitungsbereich an den dort befindlichen Objekten zumindest teilweise reflektiert und schließlich vom Sendeempfänger als Reflektionssignale wieder empfangen. Der Sendeempfänger bestimmt nun aus unterschiedliche Phaseninformationen der Reflektionssignalen die Entfernung und die Richtung des Objekts relativ zum Sendeempfänger. Die Bestimmung der Entfernung erfolgt dabei aus der Phasendifferenz von zwei auf unterschiedlichen Frequenzen gesendeten und wieder empfangenen Reflektionssignalen. Die Bestimmung der Richtung hingegen erfolgt aus der Phasendifferenz eines Reflektionssignals, das mittels zwei räumlich leicht versetzten Antennenelementen empfangen wird. Die Phasendifferenz ist in letzterem Fall diejenige Phasendifferenz, die durch den räumlichen Abstand der beiden Antennenelemente erzeugt wird. Gemäß der DE 10 2012 221 260 A1 ist es nicht notwendig, dass die Kommunikationssignale und die Reflektionssignale vom selben Sendeempfänger gesendet bzw. empfangen werden. Vielmehr ist es auch möglich, dass ein erster Sendeempfänger die Kommunikationssignale sendet und ein zweiter Sendeempfänger die Reflektionssignale empfängt.
  • Aus der DE 10 2011 079 052 A1 sind ein Verfahren und ein System zu Validierung einer Fahrzeug-zu-X-Botschaft bekannt. Dabei wird eine drahtlos gesendete Fahrzeug-zu-X-Botschaft von einer mindestens zwei Antennenglieder aufweisenden Antennenanordnung empfangen, wobei die elektromagnetische Feldstärke der Fahrzeug-zu-X-Botschaft wegen unterschiedlicher, richtungsabhängiger Empfangscharakteristiken der Antennenglieder von den Antennengliedern mit unterschiedlichen Leistungsdichten aufgenommen wird. Aus dem Verhältnis der unterschiedlichen Leistungsdichten in den Antennengliedern bestimmt der Empfänger eine relative Position des Senders zum Empfänger. Die Fahrzeug-zu-X-Botschaft enthält außerdem eine auf GPS-Daten basierende absolute Position des Senders, aus welcher der Empfänger der Fahrzeug-zu-X-Botschaft über seine eigene Absolutposition eine weitere relative Position des Senders zum Empfänger berechnet. Mittels eines Vergleichs der beiden relativen Positionen kann nun die empfangene Fahrzeug-zu-X-Botschaft validiert werden, sofern beide Positionen übereinstimmen, oder verworfen werden, sofern die Positionen voneinander abweichen.
  • Die im Stand der Technik bekannten Verfahren, Vorrichtungen und Systeme sind jedoch nachteilbehaftet, weil sie zur Validierung eines empfangenen Kommunikationssignals stets zusätzliche Sensoreinrichtungen bzw. Messeinrichtungen – wie etwa eine mehrgliedrige Richtantenne – benötigen oder aber eine rechenintensive Decodierung ausführen müssen, was wiederum entsprechend leistungsfähige und damit teure Rechenmodule voraussetzt.
  • Es ist daher die Aufgabe der Erfindung, ein Verfahren vorzuschlagen, welches die vorherrschenden Nachteile überwindet.
  • Diese Aufgabe wird erfindungsgemäß durch das Verfahren zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals gemäß Anspruch 1 gelöst.
  • Die Erfindung betrifft ein Verfahren zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals, wobei der Dateninhalt mindestens eine Positionsangabe eines das Kommunikationssignal sendenden Sendemoduls umfasst, wobei das Kommunikationssignal von einem mindestens zwei Antennen aufweisenden Empfangsmodul empfangen wird, wobei mittels des Kommunikationssignals eine Richtung vom Empfangsmodul zum Sendemodul bestimmt wird und wobei die bestimmte Richtung zur Validierung der Positionsangabe herangezogen wird. Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass die Richtung aus einer Phasendifferenz des Kommunikationssignals an den mindestens zwei Antennen bestimmt wird.
  • Durch die Bildung der Phasendifferenz des Kommunikationssignals an den mindestens zwei Antennen wird eine vom Dateninhalt des Kommunikationssignals unabhängige Information zur Bestimmung der Richtung vom Empfangsmodul zum Sendemodul, also derjenigen Richtung, aus welcher das Kommunikationssignal auf das Empfangsmodul trifft, herangezogen. Der Vorteil hierbei ist es, dass die beschriebene Phasendifferenz ausschließlich durch die Richtung des Sendemoduls zur Ausrichtung der Antennen des Empfangsmoduls geprägt ist. Im Gegensatz zur vom Dateninhalt des Kommunikationssignals umfassten Positionsangabe kann die aus der Phasendifferenz bestimme Richtung daher nicht vom Absender oder ggf. von Zwischenstationen gefälscht werden. Somit steht eine zuverlässige Größe zur Validierung der vom Dateninhalt des Kommunikationssignals umfassten Positionsangabe zur Verfügung.
  • Gemäß dem erfindungsgemäßen Verfahren wird die Richtung des Empfangsmoduls zum Sendemodul aus der Phasendifferenz bevorzugt nach dem sogenannten Interferometer-Verfahren bestimmt. Zu beachten ist dabei, dass die räumliche Beabstandung der mindestens zwei Antennen nicht größer als die halbe Wellenlänge der Kommunikationssignale sein darf, da sonst Mehrdeutigkeiten in der Richtungsinformation auftreten. Da das Kommunikationssignal vom Sendemodul zum Empfangsmodul läuft und das Empfangsmodul das Kommunikationssignal mit mindestens zwei Antennen empfängt, wird das Kommunikationssignal von den mindestens zwei Antennen in der Regel unter einem leicht unterschiedlichen Winkel erfasst. Dieser unterschiedliche Winkel ist dafür verantwortlich, dass die vom Kommunikationssignal zurückgelegte Entfernung vom Sendemodul zu den mindestens zwei Antennen des Empfangsmoduls nicht exakt identisch ist. Dies wiederum führt zu einer Phasendifferenz des Kommunikationssignals an den mindestens zwei Antennen. Da zudem die räumliche Beabstandung der Antennenelemente bekannt ist, kann bei bekannter Wellenlänge des Kommunikationssignals aus der Phasendifferenz ein Winkel bestimmt werden, welcher die Richtung vom Empfangsmodul zum Sendemodul angibt. Bei Verwendung von zwei Antennen kann die Richtung vom Empfangsmodul zum Sendemodul auf 180° eindeutig bestimmt werden.
  • Insbesondere ist es bevorzugt, dass die Kommunikationssignale mittels vier Antennen des Empfangsmoduls empfangen werden, wobei insbesondere die Phasendifferenz an den vier Antennen bestimmt wird. Dies erlaubt es, die Bestimmung der Richtung auf 360° eindeutig vorzunehmen. Beispielsweise kann die Phasendifferenz an einem ersten Paar von Antennen als Sinus-Anteil und die Phasendifferenz an einem zweiten Paar von Antennen als Cosinus-Anteil eines Gesamtsignals betrachtet werden. Durch Anwendung einer arctan2-Funktion auf den Sinus-Anteil und den Cosinus-Anteil erhält man nun einen Winkel, welcher die Richtung zum Objekt auf 360° eindeutig beschreibt.
  • Bevorzugt umfasst die Positionsangabe sowohl eine Richtung des Empfangsmoduls zum Sendemodul als auch eine Entfernung des Empfangsmoduls vom Sendemodul. Die Positionsangabe kann dazu z.B. in Form von GPS-Koordinaten ausgebildet sein, wobei das Empfangsmodul oder ein dem Empfangsmodul zugeordnetes Positionsbestimmungsmodul aus einer Eigenposition und der Positionsangabe die Richtung bzw. die Entfernung bestimmt. Die Eigenposition kann dabei ebenfalls mittels GPS, aber auch mittels jedes anderen globalen Navigationssatellitensystems bestimmt werden. Auch ein Bestimmen der Eigenposition mittels Map-Matching ist bevorzugt.
  • Ein weiterer Vorteil des Heranziehens der Phasendifferenz zur Validierung ist es, dass das erfindungsgemäße Verfahren dadurch vergleichsweise robuster und weniger störanfällig wird als aus dem Stand der Technik bekannte Verfahren, welche zur Validierung eine Information über die Empfangsleistung des Kommunikationssignals heranziehen, da die Phasendifferenz im Gegensatz zu Leistungsinformationen nur schwer beeinflusst werden kann. Beispielsweise reicht schone eine nur geringe Abschattung des Sendemoduls oder des Empfangsmoduls, um die Kommunikationssignale nur noch in deutlich abgeschwächter Form erfassbar zu machen. Die Phasendifferenz jedoch bleibt von derartigen Abschattungen unbeeinflusst.
  • Die Erfindung beschreibt somit ein Verfahren, welches mit vergleichsweise einfachen Mitteln eine Bestimmung der Richtung vom Empfangsmodul zum Sendemodul in einem 360°-Winkel rund um das Empfangsmodul ermöglicht. Dieser maximale Positionsbestimmungswinkel ergibt sich durch den Empfangswinkel der Kommunikationssignale, welcher in aller Regel 360° beträgt.
  • Das erfindungsgemäße Verfahren bietet somit einen deutlich größeren Positionsbestimmungswinkel als beispielsweise für ähnliche Zwecke eingesetzte Radarsensoren oder Kamerasensoren.
  • Ein weiterer Vorteil stellt sich insofern dar, als dass die gemäß dem Stand der Technik für die gängigen Verschlüsselungsverfahren bzw. Codierungsverfahren zum Verschlüsseln bzw. Codieren des Dateninhalts des Kommunikationssignals vorzuhaltende Rechenleistung wesentlich reduziert werden kann, da das erfindungsgemäße Verfahren eine Validierung zumindest der Positionsangabe durch einen vergleichsweise einfachen Vergleich der bestimmten Richtung mit der Positionsangabe ermöglicht.
  • Das Sendemodul und das Empfangsmodul sind vorteilhafterweise einer Fahrzeug-zu-X-Kommunikationseinrichtung zugeordnet. Das Sendemodul und das Empfangsmodul senden bzw. empfangen Kommunikationssignale dabei zweckmäßigerweise mittels mindestens einer der folgenden Kommunikationsarten:
    • – WLAN-Kommunikation, insbesondere nach IEEE 802.11p,
    • – WiFi-Direct-Kommunikation,
    • – ISM-Kommunikation (Industrial, Scientific, Medical Band), insbesondere über eine funkverbindungsfähige Schließvorrichtung,
    • – Bluetooth-Kommunikation,
    • – ZigBee-Kommunikation,
    • – UWB-Kommunikation (Ultra Wide Band),
    • – WiMax-Kommunikation (Worldwide Interoperability for Microwave Access),
    • – Remote-Keyless-Entry-Kommunikation,
    • – Mobilfunk-Kommunikation, insbesondere GSM-, GPRS-, EDGE-,
    • – UMTS-Kommunikation,
    • – LTE-Kommunikation und
    • – Infrarot-Kommunikation.
  • Die aufgeführten Kommunikationsarten bieten hinsichtlich ihrer Kommunikationseigenschaften unterschiedliche Vor- und Nachteile, je nach Art, Wellenlänge und verwendetem Datenprotokoll. WLAN-Verbindungen ermöglichen z.B. eine hohe Datenübertragungsrate und einen schnellen Verbindungsaufbau. ISM-Verbindungen bieten hingegen nur eine geringere Datenübertragungsrate, sind aber hervorragend zur Datenübertragung um Sichthindernisse herum geeignet. Infrarotverbindungen wiederum bieten ebenfalls eine geringe Datenübertragungsrate. Mobilfunkverbindungen schließlich werden durch Sichthindernisse nicht beeinträchtigt und bieten eine gute Datenübertragungsrate. Dafür ist der Verbindungsaufbau von Mobilfunkverbindungen jedoch vergleichsweise langsam. Die mobilfunkbasierten Kommunikationsmittel sind bevorzugt einem automatischen Notruf-Modul zugeordnet.
  • Da Fahrzeug-zu-X-Kommunikationseinrichtungen aus Gründen der Zuverlässigkeit und Sicherheit in der Regel ohnehin mit mindestens zwei Antennen versehen sind, erübrigt sich vorteilhafterweise das Aufbringen eines Mehraufwands für die Bereitstellung einer zweiten Antenne.
  • Zweckmäßigerweise ist es vorgesehen, dass die Phasendifferenz mittels Mischen bestimmt wird, wobei das an der ersten der mindestens zwei Antennen empfangene Kommunikationssignal mit dem an der zweiten der mindestens zwei Antennen empfangenen Kommunikationssignal gemischt wird. Das Mischen erfolgt dabei bevorzugt mittels konjugiert komplexer Multiplikation und/oder mittels Überkreuz-Multiplikation. Durch das Mischen zweier Signale entstehen sogenannte Seitenbänder im Abstand der Phasendifferenz neben der Frequenz des Kommunikationssignals bzw. der Kommunikationssignale. Durch die konjugiert komplexe Multiplikation bzw. die Überkreuz-Multiplikation kann dieser Schritt auch rechnerisch in der Ebene der komplexen Zahlen erfolgen. Somit wird auf einfache Weise eine zuverlässige Bestimmung der Phasendifferenz ermöglicht.
  • Weiterhin ist es bevorzugt, dass das Kommunikationssignal vom Empfangsmodul mittels der mindestens zwei Antennen zeitlich parallel erfasst wird. Durch das zeitlich parallele, also das gleichzeitige Erfassen des Kommunikationssignals an den mindestens zwei Antennen, ist ein besonders genaues Vergleichen der an den mindestens zwei Antennen jeweils anliegenden Phase möglich und somit ein besonders genaues Bestimmen der Phasendifferenz. Das Gegenteil zur zeitlich parallelen Erfassung wäre ein abwechselndes, d.h. zeitlich versetztes, Erfassen des Kommunikationssignals an den mindestens zwei Antennen.
  • Außerdem ist es vorgesehen, dass mittels einer erfassten Empfangsleistung des Kommunikationssignals an mindestens einer der mindestens zwei Antennen eine erste Entfernung vom Empfangsmodul zum Sendemodul bestimmt wird und dass die erste Entfernung zur Validierung der Positionsangabe herangezogen wird. Da sich die Empfangsleistung pro Flächeneinheit mit dem Quadrat der zurückgelegten Entfernung des Kommunikationssignals abschwächt, kann das Empfangsmodul über die empfangene Leistung mittels des genannten Zusammenhangs auf die Entfernung zum Sendemodul schließen. Dies stellt eine zusätzliche Information dar, welche zur Validierung der Positionsangabe herangezogen werden kann. Da davon ausgegangen werden muss, dass das Kommunikationssignal durch Hindernisse bzw. Abschattung zusätzlich in seiner Empfangsleitung beim Erreichen des Empfangsmoduls geschwächt wurde, wird die erfasste Empfangsleistung zur Validierung der Positionsangabe bevorzugt mit einer maximal möglichen Empfangsleistung verglichen. Die maximal mögliche Empfangsleistung ergibt sich dabei insbesondere aus der in der Positionsangabe enthaltenen Entfernung und der über diese Entfernung quadratisch abfallenden Empfangsleistung, wobei davon ausgegangen wird, dass das Kommunikationssignal keine Abschwächungen der Empfangsleistung durch Abschattungen erfährt.
  • Zweckmäßigerweise ist es vorgesehen, dass eine Dopplerfrequenz des Kommunikationssignals bestimmt wird. Die Dopplerfrequenz enthält eine zusätzliche, ebenfalls nicht manipulierbare Information über die Geschwindigkeit des Sendemoduls. Somit kann neben der Entfernung und der Richtung zum Sendemodul also auch eine Geschwindigkeit des Sendemoduls bestimmt werden.
  • Insbesondere ist es zweckmäßig, dass mittels der Dopplerfrequenz eine Unterteilung der Sendeeinheiten in bewegte Sendeeinheiten und stationäre Sendeeinheiten erfolgt. Da die Bestimmung der exakten Dopplerfrequenz und somit die Bestimmung der exakten Geschwindigkeit des Sendemoduls aufgrund von zufälligen Frequenzdrifts der Oszillatoren des Sendemoduls und des Empfangsmoduls vergleichsweise schwierig und nur mit großem Aufwand exakt zu bewerkstelligen ist, ergibt sich also der Vorteil, dass auf eine exakte Bestimmung der Geschwindigkeit des Sendemoduls von vornherein verzichtet wird und somit eine exakte Bestimmung der Dopplerfrequenz überhaupt nicht notwendig ist. Die grobe Unterteilung in bewegte Sendeeinheiten und stationäre Sendeeinheiten ist hingegen vergleichsweise einfach möglich.
  • Ganz besonders zweckmäßig ist es, dass der Dateninhalt weiterhin eine Geschwindigkeitsangabe des das Kommunikationssignal sendenden Sendemoduls umfasst, wobei die Unterteilung der Sendeeinheiten zur Validierung der Geschwindigkeitsangabe herangezogen wird. Daraus ergibt sich der Vorteil, dass über die vom Dateninhalt umfasste Geschwindigkeitsangabe und die aus der Dopplerfrequenz erstellte Unterteilung der Sendeeinheiten eine weitere Größe zur Validierung des Dateninhalts des Kommunikationssignals zur Verfügung steht.
  • Des Weiteren ist es vorgesehen, dass mittels der mindestens einen der mindestens zwei Antennen zeitlich parallel Kommunikationssignale auf mindestens zwei Frequenzen gesendet und/oder empfangen werden. Dabei werden die Dateninhalte empfangener Kommunikationssignale bevorzugt auch ausgewertet. Daraus ergibt sich zunächst der Vorteil einer möglichst schnellen und effizienten Kommunikation zwischen dem Empfangsmodul und dem Sendemodul, da auf mehreren Frequenzen gleichzeitig gesendet werden kann, wodurch entsprechend mehr Übertragungsbandbreite zur Verfügung steht. Außerdem kann so zum Übertragen des Kommunikationssignals auf eine andere Frequenz bzw. einen anderen Kanal ausgewichen werden, falls die aktuell genutzte Frequenz bzw. der aktuell genutzte Kanal nicht die notwendige Bandbreite bietet, z.B. wegen zu starker Belegung durch andere Sendeeinheiten. Durch entsprechende Auslegung des Empfangsmoduls bzw. des Sendemoduls, z.B. mittels eines sogenannten Zirkulators, kann das zeitlich parallel Senden bzw. Empfangen von Kommunikationssignalen auf einfache Art und Weise bewerkstelligt werden. Auch eine zeitlich parallele Auswertung der Dateninhalte der empfangenen Kommunikationssignale wird somit ermöglicht.
  • Insbesondere ist es vorgesehen, dass aus einer Phasendifferenz der Kommunikationssignale auf den mindestens zwei Frequenzen an der mindestens einen der mindestens zwei Antennen eine zweite Entfernung vom Empfangsmodul zum Sendemodul bestimmt wird. Das Heranziehen von zwei unterschiedlichen Frequenzen ermöglicht dabei über das sogenannte Vernier-Verfahren eine Bestimmung der zweiten Entfernung, also eine zusätzliche Bestimmung der Entfernung vom Empfangsmodul zum Sendemodul. Dabei wird aus der Phasendifferenz der Kommunikationssignale auf den mindestens zwei Frequenzen, welche sich aufgrund der unterschiedlichen Wellenlänge bzw. Frequenz der gesendeten Kommunikationssignale mit der zurückgelegten Entfernung unterschiedlich ändern, auf die Entfernung geschlossen. Da sich die Phasendifferenz ab einer bestimmten Entfernung vom Sendemodul zu wiederholen beginnt, ist eine Bestimmung der Entfernung ab einem bestimmten Entfernungsgrenzwert nicht mehr eindeutig, weil eine bestimmte Phasendifferenz sowohl einer bestimmten Entfernung als auch einem beliebigen Vielfachen dieser Entfernung entsprechen kann. Es soll betont werden, dass die Phasendifferenz, die für das Vernier-Verfahren herangezogen wird, die Phasendifferenz zweier unterschiedlicher Wellenlängen an ein und derselben Antenne ist, im Gegensatz zur Phasendifferenz, welche beim Interferometer-Verfahren herangezogen wird. Beim Interferometer-Verfahren wird nämlich die Phasendifferenz ein und derselben Wellenlänge an zwei unterschiedlichen Antennen herangezogen.
  • Ganz besonders bevorzugt ist vorgesehen, dass die mindestens zwei Frequenzen zwei unterschiedliche Kommunikationskanäle eines gemeinsamen Kommunikationsmittels sind. Dadurch ist in der Regel sichergestellt, dass der Frequenzabstand der zwei Frequenzen nicht zu groß ist und zudem eine einheitliche Auswertung und Verarbeitung durch ein und dasselbe Empfangsmodul gewährleistet ist.
  • Insbesondere bevorzugt ist in diesem Zusammenhang WLAN nach IEEE 802.11p als Kommunikationsmittel geeignet, da hier über zwei jeweils 10 MHz Bandbreite aufweisende Kanäle kommuniziert wird, welche durch einen dritten, ungenutzten und ebenfalls 10 MHz Bandbreite aufweisenden Kanal getrennt sind.
  • Es ist vorteilhaft, dass der gesamte Dateninhalt validiert wird, wenn der Dateninhalt mindestens der bestimmten Richtung und/oder mindestens der bestimmten ersten Entfernung und/oder mindestens der bestimmten zweiten Entfernung und/oder mindestens der Unterteilung nicht widerspricht. Alle diese Größen erlauben eine zuverlässige Überprüfung der ihnen entsprechenden, vom Dateninhalt umfassten Größen. Da davon ausgegangen werden kann, dass dem vollständigen Dateninhalt des Kommunikationssignals vertraut werden kann, wenn eine oder mehrere der eben genannten, vom Dateninhalt umfassten Größen nicht den ihnen entsprechenden bestimmten Größen widersprechen bzw. sogar mit diesen übereinstimmen, kann der Dateninhalt somit validiert werden. Insbesondere wird der gesamte Dateninhalt nur dann validiert, wenn er nicht nur einer der genannten Größen nicht widerspricht, sondern wenn er allen zur Validierung herangezogenen Größen nicht widerspricht. Andernfalls wird er als unzuverlässig verworfen und nicht weiter ausgewertet bzw. nicht elektronisch verarbeitet.
  • Es ist bevorzugt, dass das Sendemodul und das Empfangsmodul unterschiedlichen Verkehrsteilnehmern zugeordnet sind. Somit kann das Verfahren vorteilhafterweise im Straßenverkehr bei der Kommunikation unterschiedlicher Verkehrsteilnehmer eingesetzt werden. Da gerade im Straßenverkehr die Zuverlässigkeit der empfangenen Kommunikationssignale von besonderer Bedeutung ist, ergibt sich hier ein großer Vorteil. Verkehrsteilnehmer im Sinne der Erfindung sind insbesondere alle Arten von Kraftfahrzeugen, wie etwas LKW, PKW und Motorräder, aber auch Fahrradfahrer und Fußgänger.
  • Außerdem ist es zweckmäßig, dass der Dateninhalt einen fahrzeugsicherheitskritischen Eingriff in eine Fahrzeugsteuerung eines Fahrzeugs, welchem das Empfangsmodul zugeordnet ist, auslöst. Daraus ergibt sich der Vorteil, dass das Kommunikationssignal bzw. dessen Dateninhalt im Fahrzeug, dem das Empfangsmodul zugeordnet ist, zur Unfallvermeidung bzw. zur Unfallminderung verwendet werden kann.
  • Die Erfindung betrifft weiterhin eine Kommunikationsvorrichtung zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals, mindestens umfassend ein Sendemodul, ein Empfangsmodul, zwei Antennen, Datenauslesemittel, Richtungsbestimmungsmittel und Validierungsmittel, wobei die zwei Antennen gleichermaßen sowohl dem Sendemodul als auch dem Empfangsmodul zugeordnet sind, wobei die Kommunikationsvorrichtung mittels des Sendemoduls zum Senden von Kommunikationssignalen und mittels des Empfangsmoduls zum Empfangen von Kommunikationssignalen ausgebildet ist, wobei die Kommunikationsvorrichtung mittels der Datenauslesemittel zum Auslesen einer vom Dateninhalt umfasste Positionsangabe ausgebildet ist, wobei die Kommunikationsvorrichtung mittels der Richtungsbestimmungsmittel zum Bestimmen einer Richtung, aus der die Kommunikationssignale empfangen werden, ausgebildet ist und wobei die die Kommunikationsvorrichtung mittels der Validierungsmittel zum Heranziehen der Richtung zur Validierung der Positionsangabe ausgebildet ist. Die erfindungsgemäße Kommunikationsvorrichtung zeichnet sich dadurch aus, dass die Richtungsbestimmungsmittel zum Bestimmen der Richtung aus einer Phasendifferenz des Kommunikationssignals an den zwei Antennen ausgebildet sind.
  • Das Empfangsmodul und das Sendemodul können beide jeweils gleichzeitig auf beide Antennen zugreifen, beispielsweise mittels eines sogenannten Zirkulators. Die Datenauslesemittel, die Richtungsbestimmungsmittel und die Validierungsmittel können als getrennte oder als ein zusammengefasstes elektronisches Rechenwerk ausgebildet sein, welches Software-Algorithmen zum Auslesen der Daten, zum Bestimmen der Richtung bzw. zum Validieren der Positionsangabe und ggf. des weiteren Dateninhalts ausführt.
  • Da die erfindungsgemäße Kommunikationsvorrichtung somit alle zur Ausführung des erfindungsgemäßen Verfahrens notwendigen Mittel umfasst, ergeben sich hieraus die bereits beschriebenen Vorteile.
  • Bevorzugt ist es vorgesehen, dass die mindestens zwei Antennen räumlich um weniger als die halbe Wellenlänge des Kommunikationssignals beabstandet sind. Daraus ergibt sich der Vorteil, dass Mehrdeutigkeiten bei der Bestimmung der Richtung vom Empfangsmodul zum Sendemodul vermieden werden.
  • Außerdem ist es vorgesehen, dass die Kommunikationsvorrichtung das erfindungsgemäße Verfahren ausführt. Dazu können insbesondere zusätzlich zu den bereits genannten Mitteln Entfernunsgbestimmungsmittel, Unterteilungsmittel und Dopplerfrequenzbestimmungsmittel vorgesehen sein, welche beispielsweise ebenfalls als elektronische Rechenwerke ausgebildet sein können.
  • Schließlich betrifft die Erfindung eine Verwendung der erfindungsgemäßen Kommunikationsvorrichtung zur Fahrzeug-zu-X-Kommunikation in einem Fahrzeug.
  • Weitere bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung eines Ausführungsbeispiels an Hand von Figuren.
  • Es zeigen
  • 1 ein Empfangsmodul einer Kommunikationsvorrichtung, welches die Richtung zu einem Sendemodul bestimmt und
  • 2 einen möglichen Ablauf des erfindungsgemäßen Verfahrens in Form eines Flussdiagramms.
  • In 1 ist schematisch Empfangsmodul 11 einer nicht dargestellten Kommunikationsvorrichtung in einem ebenfalls nicht dargestellten Kraftfahrzeug zu sehen. Empfangsmodul 11 umfasst zwei Antennen 12 und 13, mittels derer Empfangsmodul 11 Kommunikationssignale von Sendemodul 14 empfängt. Die Kommunikationssignale sind dabei als Pfeile 15 und 16 dargestellt und veranschaulichen die unterschiedlichen Winkel, unter denen die von Sendemodul 14 gesendeten Kommunikationssignale auf Antennen 12 und 13 treffen bzw. von diesen erfasst werden. Auch Sendemodul 14 ist einer nicht dargestellten Kommunikationsvorrichtung in einem nicht dargestellten Kraftfahrzeug zugeordnet. Die räumliche Beabstandung von Antennen 12 und 13 beträgt weniger als die halbe Wellenlänge der von Sendemodul 14 gesendeten Kommunikationssignale. Wie zu sehen ist, laufen die von Sendemodul 14 gesendeten Kommunikationssignale jeweils über eine unterschiedliche Entfernung, bevor sie von Antenne 11 bzw. 12 erfasst werden. Da die Kommunikationssignale somit von Antennen 11 und 12 mit unterschiedlichen Phasen erfasst werden, kann aus der Phasendifferenz der Winkel ρ bestimmt werden, welcher die Richtung vom Empfangsmodul zum Sendemodul angibt. Das anhand von 1 dargestellte, sogenannte Interferometer-Verfahren ist jedoch nur auf 180° eindeutig, da sich Sendemodul 14 auch unter dem Winkel ρ auf der linken Seiten von Empfangsmodul 11 befinden könnte (anstatt, wie hier dargestellt, auf der rechten Seite). Zur Validierung einer von den Kommunikationssignalen umfassten Positionsangabe ist dies jedoch ausreichend.
  • 2 zeigt einen möglichen Ablauf des erfindungsgemäßen Verfahrens in Form eines Flussdiagramms. In Verfahrensschritt 201 wird ein Kommunikationssignal, dessen Dateninhalt eine Positionsangabe des das Kommunikationssignal sendenden Sendemoduls umfasst, von einem Empfangsmodul mittels zwei Antennen empfangen. In Schritt 202 wird nun eine Phasendifferenz des Kommunikationssignals an den zwei Antennen bestimmt. Gleichzeitig wird in Schritt 203 die Positionsangabe im Dateninhalt des Kommunikationssignals ausgelesen und in Schritt 207 eine Empfangsleistung des Kommunikationssignals an einer der zwei Antennen bestimmt. In Verfahrensschritt 204 wird gemäß dem Interferometer-Verfahren aus der bestimmten Phasendifferenz die Richtung vom Empfangsmodul zum Sendemodul bestimmt. In Schritt 205 wird aus der Positionsangabe im Dateninhalt des Kommunikationssignals ebenfalls die Richtung vom Empfangsmodul zum Sendemodul bestimmt und in Schritt 206 wird aus der Positionsangabe im Dateninhalt des Kommunikationssignals eine Entfernung vom Empfangsmodul zum Sendemodul bestimmt. In Schritt 208 wird nun aus der an einer der zwei Antennen bestimmten Empfangsleistung des Kommunikationssignals eine Entfernung vom Empfangsmodul zum Sendemodul bestimmt. Dabei wird davon ausgegangen, dass das Kommunikationssignal auf der Wegstrecke vom Sendemodul zum Empfangsmodul nicht durch Sichthindernisse oder sonstige Abschattungen abgeschwächt wird. Sofern dies dennoch er Fall ist, ist die solcherart bestimmte Entfernung größer als die tatsächliche Entfernung. Die bestimmte Entfernung beschreibt somit eine gerade noch plausible maximale Entfernung. In Schritt 209 wird die aus der Empfangsleistung bestimmte Entfernung mit der aus der Positionsangabe bestimmten Entfernung verglichen. Da die aus der Positionsangabe bestimmte Entfernung nur halb so groß ist wie die aus der Empfangsleistung bestimmte Entfernung, liegt in diesem Fall kein Widerspruch vor. In Schritt 210 wird nun die aus der Phasendifferenz bestimmte Richtung mit der aus der Positionsangabe bestimmten Richtung verglichen. Da auch in diesem Fall kein Widerspruch vorliegt, wird der gesamte Dateninhalt des Kommunikationssignals in Schritt 211 validiert und gilt somit als vertrauenswürdig. In Schritt 212 wird daher der gesamte Dateninhalt des Kommunikationssignals ausgelesen und von unterschiedlichen Fahrzeugsystemen verarbeitet.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102007058192 A1 [0003, 0003]
    • DE 102012221260 A1 [0004, 0004]
    • DE 102011079052 A1 [0005]
  • Zitierte Nicht-Patentliteratur
    • IEEE 802.11p [0018]
    • IEEE 802.11p [0030]

Claims (15)

  1. Verfahren zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals, wobei der Dateninhalt mindestens eine Positionsangabe eines das Kommunikationssignal sendenden Sendemoduls (14) umfasst, wobei das Kommunikationssignal von einem mindestens zwei Antennen (12, 13) aufweisenden Empfangsmodul (11) empfangen wird, wobei mittels des Kommunikationssignals eine Richtung vom Empfangsmodul (11) zum Sendemodul (14) bestimmt wird und wobei die bestimmte Richtung zur Validierung der Positionsangabe herangezogen wird, dadurch gekennzeichnet, dass die Richtung aus einer Phasendifferenz des Kommunikationssignals an den mindestens zwei Antennen (12, 13) bestimmt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Kommunikationssignal vom Empfangsmodul (11) mittels der mindestens zwei Antennen (12, 13) zeitlich parallel erfasst wird.
  3. Verfahren nach mindestens einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass mittels einer erfassten Empfangsleistung des Kommunikationssignals an mindestens einer der mindestens zwei Antennen (12, 13) eine erste Entfernung vom Empfangsmodul (11) zum Sendemodul (14) bestimmt wird und dass die erste Entfernung zur Validierung der Positionsangabe herangezogen wird.
  4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Dopplerfrequenz des Kommunikationssignals bestimmt wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass mittels der Dopplerfrequenz eine Unterteilung der Sendeeinheiten in bewegte Sendeeinheiten (14) und stationäre Sendeeinheiten (14) erfolgt.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Dateninhalt weiterhin eine Geschwindigkeitsangabe des das Kommunikationssignal sendenden Sendemoduls (14) umfasst, wobei die Unterteilung der Sendeeinheiten zur Validierung der Geschwindigkeitsangabe herangezogen wird.
  7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass mittels der mindestens einen der mindestens zwei Antennen (12, 13) zeitlich parallel Kommunikationssignale auf mindestens zwei Frequenzen gesendet und/oder empfangen werden.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass aus einer Phasendifferenz der Kommunikationssignale auf den mindestens zwei Frequenzen an der mindestens einen der mindestens zwei Antennen (12, 13) eine zweite Entfernung vom Empfangsmodul (11) zum Sendemodul (14) bestimmt wird.
  9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der gesamte Dateninhalt validiert wird, wenn der Dateninhalt mindestens der bestimmten Richtung und/oder mindestens der bestimmten ersten Entfernung und/oder mindestens der bestimmten zweiten Entfernung und/oder mindestens der Unterteilung nicht widerspricht.
  10. Verfahren nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Sendemodul (14)und das Empfangsmodul (11) unterschiedlichen Verkehrsteilnehmern zugeordnet sind.
  11. Verfahren nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Dateninhalt einen fahrzeugsicherheitskritischen Eingriff in eine Fahrzeugsteuerung eines Fahrzeugs, welchem das Empfangsmodul (11) zugeordnet ist, auslöst.
  12. Kommunikationsvorrichtung zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals, umfassend ein Sendemodul (14), ein Empfangsmodul (11), mindestens zwei Antennen (12, 13), Datenauslesemittel, Richtungsbestimmungsmittel und Validierungsmittel, wobei die zwei Antennen (12, 13) gleichermaßen sowohl dem Sendemodul (14) als auch dem Empfangsmodul (11) zugeordnet sind, wobei die Kommunikationsvorrichtung mittels des Sendemoduls (14) zum Senden von Kommunikationssignalen und mittels des Empfangsmoduls (11) zum Empfangen von Kommunikationssignalen ausgebildet ist, wobei die Kommunikationsvorrichtung mittels der Datenauslesemittel zum Auslesen einer vom Dateninhalt umfasste Positionsangabe ausgebildet ist, wobei die Kommunikationsvorrichtung mittels der Richtungsbestimmungsmittel zum Bestimmen einer Richtung, aus der die Kommunikationssignale empfangen werden, ausgebildet ist und wobei die die Kommunikationsvorrichtung mittels der Validierungsmittel zum Heranziehen der Richtung zur Validierung der Positionsangabe ausgebildet ist, dadurch gekennzeichnet, dass die Richtungsbestimmungsmittel zum Bestimmen der Richtung aus einer Phasendifferenz des Kommunikationssignals an den zwei Antennen ausgebildet sind.
  13. Kommunikationsvorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die mindestens zwei Antennen (12, 13) räumlich um weniger als die halbe Wellenlänge des Kommunikationssignals beabstandet sind.
  14. Kommunikationsvorrichtung nach mindestens einem der Ansprüche 12 und 13, dadurch gekennzeichnet, dass die Kommunikationsvorrichtung ein Verfahren nach mindestens einem der Ansprüche 1 bis 11 ausführt.
  15. Verwendung der Kommunikationsvorrichtung nach mindestens einem der Ansprüche 12 bis 14 zur Fahrzeug-zu-X-Kommunikation in einem Fahrzeug.
DE102013217869.7A 2013-09-06 2013-09-06 Verfahren und Kommunikationsvorrichtung zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals sowie Verwendung der Kommunikationsvorrichtung Withdrawn DE102013217869A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102013217869.7A DE102013217869A1 (de) 2013-09-06 2013-09-06 Verfahren und Kommunikationsvorrichtung zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals sowie Verwendung der Kommunikationsvorrichtung
JP2016539557A JP6479014B2 (ja) 2013-09-06 2014-09-05 無線式に受信される通信信号のデータ内容の確認の為の通信装置及び方法と、該通信装置の使用
EP14761359.0A EP3042216A1 (de) 2013-09-06 2014-09-05 Verfahren und kommunikationsvorrichtung zur validierung eines dateninhalts eines drahtlos empfangenen kommunikationssignals sowie verwendung der kommunikationsvorrichtung
PCT/EP2014/068989 WO2015032920A1 (de) 2013-09-06 2014-09-05 Verfahren und kommunikationsvorrichtung zur validierung eines dateninhalts eines drahtlos empfangenen kommunikationssignals sowie verwendung der kommunikationsvorrichtung
CN201480048533.5A CN105518478B (zh) 2013-09-06 2014-09-05 用于验证在无线接收的通信信号中的数据内容的方法和通信装置,以及该通信装置的使用
US14/914,872 US10018702B2 (en) 2013-09-06 2014-09-05 Method and communication apparatus for validating a data content in a wirelessly received communication signal, and use of the communication apparatus
KR1020167008848A KR102289780B1 (ko) 2013-09-06 2014-09-05 무선으로 수신된 통신 신호에서의 데이터 컨텐츠를 검증하기 위한 방법 및 통신 장치, 및 그 통신 장치의 이용

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013217869.7A DE102013217869A1 (de) 2013-09-06 2013-09-06 Verfahren und Kommunikationsvorrichtung zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals sowie Verwendung der Kommunikationsvorrichtung

Publications (1)

Publication Number Publication Date
DE102013217869A1 true DE102013217869A1 (de) 2015-03-12

Family

ID=51492962

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013217869.7A Withdrawn DE102013217869A1 (de) 2013-09-06 2013-09-06 Verfahren und Kommunikationsvorrichtung zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals sowie Verwendung der Kommunikationsvorrichtung

Country Status (7)

Country Link
US (1) US10018702B2 (de)
EP (1) EP3042216A1 (de)
JP (1) JP6479014B2 (de)
KR (1) KR102289780B1 (de)
CN (1) CN105518478B (de)
DE (1) DE102013217869A1 (de)
WO (1) WO2015032920A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016208808A1 (de) * 2016-05-20 2017-11-23 Continental Teves Ag & Co. Ohg Sensorvorrichtung für ein Fahrzeug
WO2018024299A1 (de) * 2016-08-01 2018-02-08 Continental Teves Ag & Co. Ohg Verfahren zum bestimmen einer empfangsrichtung eines funksignals
DE102016217531A1 (de) 2016-09-14 2018-03-15 Continental Automotive Gmbh Verfahren zur Verbesserung der Verkehrssicherheit
WO2022094647A1 (de) 2020-11-09 2022-05-12 Avl List Gmbh Validierung einer v2x-nachricht
DE102021212964A1 (de) 2021-11-18 2023-05-25 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Ermitteln einer Anordnungsinformation bezüglich einer Relativanordnung zweier mobiler Vorrichtungen

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11212647B2 (en) * 2015-01-12 2021-12-28 Qualcomm Incorporated Location reporting of a wireless device
CN105137393B (zh) * 2015-07-31 2017-08-01 石川 一种用于网络的空间多传感器快速定位方法
CN109074688A (zh) * 2016-02-04 2018-12-21 苹果公司 用于车辆授权的系统和方法
DE102016218643A1 (de) * 2016-09-28 2018-03-29 Robert Bosch Gmbh Verfahren zum Auswerten von Radarstrahlung und Radarvorrichtung
US11493348B2 (en) 2017-06-23 2022-11-08 Direct Current Capital LLC Methods for executing autonomous rideshare requests
US11106927B2 (en) 2017-12-27 2021-08-31 Direct Current Capital LLC Method for monitoring an interior state of an autonomous vehicle
US10853629B2 (en) 2018-02-20 2020-12-01 Direct Current Capital LLC Method for identifying a user entering an autonomous vehicle
KR102186598B1 (ko) * 2019-02-20 2020-12-03 빌리브마이크론(주) 출입 관리 시스템 및 그 출입 관리 방법
KR20210030785A (ko) * 2019-09-10 2021-03-18 삼성전자주식회사 외부 전자 장치의 위치를 결정하기 위한 전자 장치 및 그 방법
KR20210035639A (ko) * 2019-09-24 2021-04-01 삼성전자주식회사 거리 감지 기능을 지원하는 안테나 모듈 및 그것을 포함하는 전자 장치
CN111273273B (zh) * 2020-01-15 2023-08-18 张慧 无线通信引导的双向主动测距定位方法及系统
JP7108360B2 (ja) 2020-04-13 2022-07-28 防衛装備庁長官 車識別システム
KR102492975B1 (ko) * 2021-09-23 2023-01-31 (주)아울링크 장치간 직접 통신 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007058192A1 (de) 2007-12-04 2009-06-10 Continental Teves Ag & Co. Ohg Zentrales Steuergerät für mehrere in einem Kraftfahrzeug vorgesehene Assistenzsysteme und Kraftfahrzeug (Wegen nicht zuerkannter Prio)
DE102010029744A1 (de) * 2009-06-05 2011-02-17 Continental Teves Ag & Co. Ohg Verfahren zur Positionierung und Fahrzeug-Kommunikationseinheit
DE102011079052A1 (de) 2010-07-16 2012-03-15 Continental Teves Ag & Co. Ohg Verfahren und System zur Validierung einer Fahrzeug-zu-X-Botschaft sowie Verwendung des Verfahrens
DE102012221260A1 (de) 2011-11-21 2013-05-23 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur kommunikationssignalbasierten Positionsermittlung von Objekten im Straßenverkehr sowie Verwendung der Vorrichtung
DE102012221264A1 (de) * 2011-11-21 2013-05-23 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Positionsbestimmung von Objekten mittels Kommunikationssignalen sowie Verwendung der Vorrichtung

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959580A (en) * 1994-11-03 1999-09-28 Ksi Inc. Communications localization system
US5648767A (en) * 1994-11-30 1997-07-15 Hughes Aircraft Transponder detection system and method
JPH10148670A (ja) * 1996-09-18 1998-06-02 Matsushita Electric Ind Co Ltd 速度測定装置および位置検出装置
JP3257494B2 (ja) * 1997-12-26 2002-02-18 トヨタ自動車株式会社 車両用通報情報確認装置、車両用通報情報確認方法、及び車両用通報情報確認プログラムを記録した記録媒体
JPH11271433A (ja) * 1998-03-26 1999-10-08 Toyota Central Res & Dev Lab Inc レーダ装置
US6246376B1 (en) * 2000-06-28 2001-06-12 Texas Instruments Incorporated Wireless location and direction indicator for multiple devices
US9285453B2 (en) * 2002-08-19 2016-03-15 Q-Track Corporation Method of near-field electromagnetic ranging and location
JP2006072725A (ja) * 2004-09-02 2006-03-16 Matsushita Electric Ind Co Ltd 車載装置
US7764224B1 (en) * 2006-05-26 2010-07-27 Rockwell Collins, Inc. Advanced spoofer mitigation and geolocation through spoofer tracking
JP2008233017A (ja) * 2007-03-23 2008-10-02 Toyota Infotechnology Center Co Ltd 無線通信装置および路車間通信システム
JP4941121B2 (ja) * 2007-06-18 2012-05-30 住友電気工業株式会社 路側通信装置及び車両の異常検出方法
US20090002165A1 (en) * 2007-06-28 2009-01-01 Micron Technology, Inc. Method and system of determining a location characteristic of a rfid tag
JP5462626B2 (ja) * 2007-08-08 2014-04-02 富士通テン株式会社 レーダ装置、及び方位角検出方法
JP5309569B2 (ja) * 2008-01-11 2013-10-09 ソニー株式会社 方向検出システム
ES2400310T3 (es) * 2008-06-18 2013-04-09 Saab Ab Verificación de la validez de la información de posición de un vehículo
JP5164729B2 (ja) * 2008-08-08 2013-03-21 株式会社日立製作所 位置情報処理システム
US9702964B2 (en) 2008-10-15 2017-07-11 Continental Teves Ag & Co. Ohg Validation of position determination
JP4900360B2 (ja) * 2008-10-17 2012-03-21 ソニー株式会社 受信装置、移動角度推定方法、プログラム、および無線通信システム
JP4784651B2 (ja) * 2009-01-08 2011-10-05 ソニー株式会社 通信装置、通信システム、位置検出方法、及びプログラム
JP5168174B2 (ja) * 2009-02-04 2013-03-21 株式会社デンソー 車両用通信装置
JP4858559B2 (ja) * 2009-03-18 2012-01-18 株式会社デンソー レーダ装置
JP2010250667A (ja) * 2009-04-17 2010-11-04 Sumitomo Electric Ind Ltd 通信機及び携帯電話
FR2949867B1 (fr) * 2009-09-04 2012-04-27 Thales Sa Dispositif radar aeroporte multifonction a large bande de large couverture angulaire permettant la detection et le pistage, notamment pour une fonction de detection et evitement
US8130142B2 (en) * 2009-09-21 2012-03-06 Appareo Systems, Llc GNSS ultra-short baseline heading determination system and method
JP2011097352A (ja) * 2009-10-29 2011-05-12 Sumitomo Electric Ind Ltd 通信制御装置及び路側通信機
JP5696312B2 (ja) * 2009-12-04 2015-04-08 中国電力株式会社 広域位置特定システム
JP2011210250A (ja) * 2010-03-11 2011-10-20 Rcs:Kk 走行車両の安全運転支援システム
JP2011211336A (ja) 2010-03-29 2011-10-20 Japan Radio Co Ltd 無線通信機
SI2463682T1 (sl) * 2010-12-07 2013-06-28 Kapsch Trafficcom Ag Postopek za ugotavljanje oddaljenosti vozila od radijskega svetilnika in ustrezen radijski svetilnik
JP2012211844A (ja) * 2011-03-31 2012-11-01 Daihatsu Motor Co Ltd 端末位置判定装置および端末位置判定システム
US8923147B2 (en) * 2011-10-03 2014-12-30 Qualcomm Incorporated Method and apparatus for filtering and processing received vehicle peer transmissions based on reliability information
JP2013096828A (ja) 2011-10-31 2013-05-20 Panasonic Corp ドップラーレーダシステム、及び物体検知方法
JP5879108B2 (ja) * 2011-11-30 2016-03-08 新日本無線株式会社 動体検知装置
FR2986870B1 (fr) * 2012-02-10 2014-03-28 Thales Sa Procede d'estimation de la direction d'arrivee de signaux de navigation sur un recepteur apres reflexion par des parois dans un systeme de positionnement par satellite
WO2014007686A1 (en) * 2012-07-03 2014-01-09 Saab Ab A method for determining a direction to a signal-emitting object
EP2901720B1 (de) * 2012-09-25 2019-07-17 Telefonaktiebolaget LM Ericsson (publ) Nachrichtenübertragung zwischen fahrzeug-zu-fahrzeug kommunikationsfähigen vorrichtungen
US9234758B2 (en) * 2012-12-20 2016-01-12 Caterpillar Inc. Machine positioning system utilizing position error checking
US9188979B2 (en) * 2013-08-06 2015-11-17 Lockheed Martin Corporation Method and system for remotely controlling a vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007058192A1 (de) 2007-12-04 2009-06-10 Continental Teves Ag & Co. Ohg Zentrales Steuergerät für mehrere in einem Kraftfahrzeug vorgesehene Assistenzsysteme und Kraftfahrzeug (Wegen nicht zuerkannter Prio)
DE102010029744A1 (de) * 2009-06-05 2011-02-17 Continental Teves Ag & Co. Ohg Verfahren zur Positionierung und Fahrzeug-Kommunikationseinheit
DE102011079052A1 (de) 2010-07-16 2012-03-15 Continental Teves Ag & Co. Ohg Verfahren und System zur Validierung einer Fahrzeug-zu-X-Botschaft sowie Verwendung des Verfahrens
DE102012221260A1 (de) 2011-11-21 2013-05-23 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur kommunikationssignalbasierten Positionsermittlung von Objekten im Straßenverkehr sowie Verwendung der Vorrichtung
DE102012221264A1 (de) * 2011-11-21 2013-05-23 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Positionsbestimmung von Objekten mittels Kommunikationssignalen sowie Verwendung der Vorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE 802.11p

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016208808A1 (de) * 2016-05-20 2017-11-23 Continental Teves Ag & Co. Ohg Sensorvorrichtung für ein Fahrzeug
WO2018024299A1 (de) * 2016-08-01 2018-02-08 Continental Teves Ag & Co. Ohg Verfahren zum bestimmen einer empfangsrichtung eines funksignals
DE102016217531A1 (de) 2016-09-14 2018-03-15 Continental Automotive Gmbh Verfahren zur Verbesserung der Verkehrssicherheit
WO2022094647A1 (de) 2020-11-09 2022-05-12 Avl List Gmbh Validierung einer v2x-nachricht
DE102021212964A1 (de) 2021-11-18 2023-05-25 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Ermitteln einer Anordnungsinformation bezüglich einer Relativanordnung zweier mobiler Vorrichtungen
DE102021212964B4 (de) 2021-11-18 2023-06-07 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Ermitteln einer Anordnungsinformation bezüglich einer Relativanordnung zweier mobiler Vorrichtungen

Also Published As

Publication number Publication date
KR20160050083A (ko) 2016-05-10
US10018702B2 (en) 2018-07-10
CN105518478A (zh) 2016-04-20
US20160209489A1 (en) 2016-07-21
WO2015032920A1 (de) 2015-03-12
JP2016538560A (ja) 2016-12-08
JP6479014B2 (ja) 2019-03-06
KR102289780B1 (ko) 2021-08-12
CN105518478B (zh) 2019-07-09
EP3042216A1 (de) 2016-07-13

Similar Documents

Publication Publication Date Title
DE102013217869A1 (de) Verfahren und Kommunikationsvorrichtung zur Validierung eines Dateninhalts eines drahtlos empfangenen Kommunikationssignals sowie Verwendung der Kommunikationsvorrichtung
EP2783236B1 (de) Verfahren und vorrichtung zur positionsbestimmung von objekten mittels kommunikationssignalen sowie verwendung der vorrichtung
EP3236427B1 (de) Verfahren und system zur passiven zugangskontrolle
EP2593807B1 (de) Verfahren und system zur validierung einer fahrzeug-zu-x- botschaft sowie verwendung des verfahrens
EP2783233B1 (de) Verfahren und vorrichtung zur kommunikationssignalbasierten positionsermittlung von objekten im strassenverkehr sowie verwendung der vorrichtung
EP3452847B1 (de) Kraftfahrzeug mit wenigstens zwei radarsensoren
DE102013224167A1 (de) Verfahren und Steuer- und Erfassungseinrichtung zum Plausibilisieren einer Falschfahrt eines Kraftfahrzeugs
DE102010029744A1 (de) Verfahren zur Positionierung und Fahrzeug-Kommunikationseinheit
DE102016204838A1 (de) Schlüsselloses Zugangssystem für ein Kraftfahrzeug und Verfahren zur Ortung eines Signalgebers des Zugangssystems
DE102017001092A1 (de) Schutz gegen einen Relayangriff
DE102018115337A1 (de) System und Verfahren zum Detektieren von fingierter Information über einen Fahrzeugstandort
WO2020104305A1 (de) Kodierung und verschlüsselung von radardaten in einer chip-radarsensor-architektur zur datenkommunikation im kfz
DE102017214020B4 (de) Kraftfahrzeug mit mehreren Radarsensoren zur Umfelderfassung
DE102022200328A1 (de) Fahrzeugmontiertes Entfernungsmesssystem
EP3734559A1 (de) Sicherheitssystem für ein fahrzeug
DE102012221004A1 (de) Verfahren und System zur verbesserten Bestimmung einer Eigenposition eines Fahrzeugs
EP2064688B1 (de) Verfahren zur verifikation von informationen
DE102020200023A1 (de) Verfahren und Vorrichtung zur hochgenauen Bestimmung der Position und/oder Orientierung eines zu ortenden Objektes sowie Feststation für ein Mobilfunkkommunikationssystem
DE102010008306A1 (de) Verfahren und System zur Ermittlung einer Umgebungsinformation eines Fahrzeugs
AT524386B1 (de) Validierung einer V2X-Nachricht
DE102018125379A1 (de) Vorrichtung zur Positionsbestimmung eines relativ zu einem Fahrzeug bewegbaren Gegenstandes und ein damit ausgestattetes Fahrzeug
EP3965393B1 (de) Verfahren zum authentifizieren des absenders einer nachricht durch den empfänger der nachricht, wobei die nachricht drahtlos über eine zwischenstation übertragen wird, system, zwischenstation, empfänger, computerprogramm und computerlesbares medium
AT524385B1 (de) Validierung einer Fahrzeugposition
EP3673283B1 (de) Vorrichtung und verfahren zum bestimmen von qualitätseigenschaften für winkelmessung für ein kraftfahrzeug
DE102010019150B4 (de) Verfahren und Vorrichtung zur Bestimmung eines relativen Horizontalwinkels

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL TEVES AG & CO. OHG, 60488 FRANKFURT, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee