CN1756892B - 具有较高有效表面积的加撑裂缝 - Google Patents

具有较高有效表面积的加撑裂缝 Download PDF

Info

Publication number
CN1756892B
CN1756892B CN2004800058242A CN200480005824A CN1756892B CN 1756892 B CN1756892 B CN 1756892B CN 2004800058242 A CN2004800058242 A CN 2004800058242A CN 200480005824 A CN200480005824 A CN 200480005824A CN 1756892 B CN1756892 B CN 1756892B
Authority
CN
China
Prior art keywords
acid
rock stratum
crack
fluid
fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800058242A
Other languages
English (en)
Other versions
CN1756892A (zh
Inventor
肯·S·钱
J·欧内斯特·布朗
阿瑟·W·米尔恩
布雷特·里默
马克·布拉迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sofitech NV
Original Assignee
Sofitech NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sofitech NV filed Critical Sofitech NV
Publication of CN1756892A publication Critical patent/CN1756892A/zh
Application granted granted Critical
Publication of CN1756892B publication Critical patent/CN1756892B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/922Fracture fluid
    • Y10S507/923Fracture acidizing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/933Acidizing or formation destroying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/933Acidizing or formation destroying
    • Y10S507/934Acidizing or formation destroying with inhibitor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Gears, Cams (AREA)
  • General Details Of Gearings (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了岩层中的由其开采流体的加撑裂缝,其具有在远离钻井的位置处从裂缝表面延伸到岩层中的虫孔。本发明给出了用于产生这种具有虫孔的加撑裂缝的方法,其中,或者形成闭合的加撑裂缝并然后形成虫孔,或者在闭合发生之前形成整个裂缝和通道系统。

Description

具有较高有效表面积的加撑裂缝
技术领域
本发明涉及改善来自穿透地下岩层(subterranean formation)的井的流体的开采。具体而言,涉及用于提高裂缝(fracture)对地下岩层进行引流的能力。尤其,涉及具有从裂缝表面延伸到岩层的虫孔(wormhole)的加撑裂缝(propped fracture),和建立这样的裂缝的方法。
背景技术
流体穿过多孔介质的流动,例如从井中开采流体,由三个主要因素影响:流路的尺寸、流路的渗透性以及驱动力。
经常,在井的产出不令人满意时,必须对流体从地下岩层的开采进行增产处理。开采不足一般是由于流体从岩层到井筒的流路不足或者受损。这可能是因为岩层原有的孔隙和/或渗透性不足,或者因为在钻井和/或完成和/或开采过程中井筒附近孔隙和/或渗透性减小(受损)。有两种主要的增产处理技术:基岩增产处理技术(matrix stimulation)和压裂技术。基岩增产处理技术的实现是通过注入一种流体(例如,酸或溶剂),以溶解及/或分散砂岩中妨害井开采的物质或者在井筒和碳酸盐岩层之间建立新的不受妨害的流动通道。在基岩增产处理技术中,流体在低于岩层压裂压力下被注入。基岩增产处理技术,在增产处理流体为酸时一般称为基岩酸化,该技术一般仅用来处理近井筒区域。在基岩酸化处理中,所使用的酸(对于碳酸盐一般为盐酸)在低至足以防止岩层压裂的压力下被注入。需要考虑井和岩层因素(例如温度和岩层成份)并调整酸处理参数(例如酸强度和注入速率),以便形成穿透近井筒区域的主要“虫孔”。
当以低于压裂压力的压力将酸泵送到岩层,例如碳酸盐(石灰石或白云石)岩层中时,酸优先流入可溶解性最高或可渗透性最高的区域(即,最大的孔隙、空腔(vug)或天然裂缝)处。高可溶解性或高可渗透性区域中酸性反应理想地导致形成称为虫孔的近似垂直于裂缝而形成的大且高传导性的流动通道。虫孔的产生与酸与岩石的化学反应速度有关。象在典型浓度的不变(unaltered)无机酸,例如盐酸,和碳酸盐之间的高反应速度,有利于虫孔形成。油田处理中通常使用的酸在储层(reservoir)条件下是高反应性的,开且趋向于形成有限数量的虫孔。低反应速度有利于形成若干小直径的虫孔。但是,如果不适当地设计处理,不会形成虫孔。相反,例如如果酸的流量太低,则酸与岩层均匀反应,这一般被称为密集溶解(compactdissolution),其溶解井筒附近的所有岩石,而并不深入穿透到岩层中并在那里建立流路。在基岩酸化技术中虫孔是希望得到的。
另一方面,在压裂中,流体在高于岩层岩石会分裂的压力下被迫使进入岩层。这建立了被扩大很多的流路。但是,当压力被释放时,如果操作者不提供一些能够保持裂缝张开的机制,则裂缝一般会闭合,并且新的流路不能被保持。实现提供上述机制的常用方法有两种。在传统的加撑液压压裂中,用来产生并传播裂缝的流体是粘性的,并运载着固体支撑剂(proppant),当压力释放时,这些固体支撑剂被卡在裂缝中,防止裂缝闭合。在又被称为裂缝酸化的酸压裂(acid fracturing)中,裂缝产生并随后用酸处理。但是,这种情况下,处理参数过去被调整为使得不出现虫孔。确切地说,以前的目标是差异性地刻蚀裂缝的表面。则,当压力释放时,由于差异性地刻蚀在表面之间造成凹凸不平,使得它们不能再匹配,并在移除了材料的地方出现间隙,所以裂缝并不完全闭合。理想地,差异性刻蚀形成通常大体上沿着裂缝表面从井筒延伸到末端的流动通道,这提高了产出。在酸压裂中,虫孔形成是不希望出现的,因为在以前使用的方法中,它不在沿着裂缝的很多位置上出现,而主要地只出现在酸最容易或者首先接触岩层的地方。这在井筒附近是最典型的,尽管,如果存在天然的高传导性的条层(streak)、裂隙、空腔等,则高密度的虫孔会在其它位置上。这增加了所需的酸的量(浪费了可以用来刻蚀传导性通道的酸)并提高了传播裂缝以及保持裂缝张开所需的泵送速率。因此,当酸压裂中井筒附近存在虫孔时,需要大量的酸和高的泵送速率,使得如果能够形成裂缝,则到达远处进入裂缝中的流体仍然具有充分的酸性来与裂缝表面反应。这种情形由于以下情况而加剧,即,即使泵送速率在井口(wellhead)处看来可能是很高的,但是裂缝中的增产处理流体速度(影响新鲜的酸到达的位置处的速率)可能非常低,因为裂缝面的表面积随着裂缝传播而大大增加。
在由裂缝增产处理的(fracture-stimulated)井的开采中,可获得的流路的范围是裂缝大小和形状的函数,尤其是裂缝表面的有效表面积的函数。流路的可渗透性是闭合之后的裂缝的有效可渗透性,即,支撑剂填塞或经刻蚀的通道的有效可渗透性。驱动力是岩层中流体与井筒中流体之间的压力差。该驱动力沿着裂缝的长度而变化。最优的裂缝是具有较大有效表面积和较高有效可渗透性的裂缝。由于其涉及最大化产出,所以这等同于具有更大的有效井筒半径。因此,其仅需要较小的压降来提供从岩层到井筒的高流体流动速率。
过去,产生对于从岩层进入裂缝的流体流动具有较高有效表面积的裂缝的唯一途径是产生或者高(假设竖直裂缝)或者长(从井筒开始向远处延伸)或者两者兼有的裂缝,而产生具有较高有效可渗透性的裂缝的最好途径是利用支撑剂。具有从其表面向外延伸到岩层中的虫孔的加撑裂缝和形成这样的裂缝的方法,会是非常需要的,因为它们可以具有较高有效表面积,并且井可以具有较高的有效井筒半径。
美国专利No.3768564公开了一种处理方法(process),其中不加撑的裂缝被允许在进一步接触酸之前闭合。当裂缝保持张开时,流动通道被刻蚀,然后仅当裂缝允许闭合时扩张流动通道。美国专利No.3842911描述了这种处理方法中支撑剂的使用。其描述了裂缝的形成和向裂缝中引入支撑剂,之后在支撑剂上完成裂缝闭合,并然后在裂缝保持闭合的条件下注入酸,使得能够建立从井筒开始的相对较长距离的流动通道。美国专利No.4254702描述了通过适用适用于比较硬的岩层的支撑剂来压裂并酸化井的处理方法。美国专利No.3642068描述了适用粘性介质并之后向裂缝中流入支撑剂来建立裂缝。通过酸对裂缝壁的钻孔附近的部分的刻蚀,将所述支撑剂转移到裂缝中较远的位置。随后,裂缝闭合。在所有这些压裂方法中,都没有建议形成虫孔。
发明内容
本发明的一个实施例是井筒所穿透的地下岩层中的一流路,其包括一个或多个加撑裂缝,所述裂缝具有从所述裂缝延伸到所述岩层中的多个主通道(虫孔)。在另一实施例中,这些主通道具有从其延伸出的次通道(虫孔)。在这些实施例的任何一个中,所述裂缝具有用于流体从岩层流入所述裂缝的增大了的有效表面积。
本发明的另一个实施例是通过以下按顺序的步骤形成这样的流路的方法:以足以压裂岩层的速度和压力注入包括支撑剂的粘性运载流体,并允许裂缝闭合;以及,然后以不足以压裂所述岩层的速度和压力注入岩层溶解流体。特别是在碳酸盐中,岩层溶解流体优选为自转向酸、例如羟乙基乙二胺三乙酸(hydroxyethylethylenediamine triacetic acid)的氨基多羧酸、例如优选用盐酸被调节至pH值大约为4的羟乙基乙二胺三乙酸三钠(trisodiumhydroxyethylethylenediamine triacetate)的氨基多羧酸盐、或氨基多羧酸和氨基多羧酸盐的混合物。在沙石中,岩层溶解流体优选包括氢氟酸或氢氟酸前体(precursor),并可选地包括磷酸盐。在注入包括支撑剂的粘性运载流体的步骤中,可以可选地引入末梢滤砂,并可以可选地在流体中包括破胶剂。在其它实施例中,以不足以压裂岩层的速度和压力注入岩层溶解流体的步骤是补救性地实施的,也就是说,其适用于以前已产生的、可能已经尝试过或者实现了流体开采的裂缝。
另一个实施例是一种产生这种流路的方法,所述流路由于出现远离井筒的虫孔而具有用于流体从岩层流入裂缝的增大的有效表面积,所述方法中,包括支撑剂的聚合粘性运载流体以足以压裂岩层的速度和压力被注入,然后包括支撑剂的岩层溶解粘性运载流体以足以保持裂缝张开(以及可选地传播裂缝)的速度和压力被注入,然后允许裂缝闭合。在第一支撑剂运载步骤中可以可选地引入末梢滤砂,并且任何一种运载流体可以可选地包括破胶剂。在碳酸盐中,岩层溶解粘性运载流体优选是表面活性剂基的粘弹性流体,最优选为自转向酸。在沙石中,岩层溶解粘性运载流体优选包括氢氟酸或氢氟酸前体,并可选地包括磷酸盐。
另一个实施例是产生这种流路的方法,其中,岩层溶解粘性流体首先以足以压裂岩层的速度和压力被注入,然后包括支撑剂的粘性运载流体以足以保持裂缝张开的速度和压力被注入,然后允许裂缝闭合。特别在碳酸盐中,该岩层溶解粘性流体优选包括自转向酸、例如羟乙基乙二胺三乙酸的氨基多羧酸、例如优选用盐酸被调节至pH值大约为4的羟乙基乙二胺三乙酸三钠的氨基多羧酸盐、或氨基多羧酸和氨基多羧酸盐的混合物。在沙石中,岩层溶解流体优选包括氢氟酸或氢氟酸前体,并可选地包括磷酸盐。岩层溶解粘性流体和粘性运载流体之一或者两者可以可选地包括破胶剂。
另一个实施例是产生这种流路的方法,其中包括支撑剂的粘性运载流体首先以足以压裂岩层的速度和压力被注入,然后岩层溶解流体以足以保持裂缝张开的速度和压力被注入,然后允许裂缝闭合。特别在碳酸盐中,该岩层溶解粘性流体优选包括自转向酸、例如羟乙基乙二胺三乙酸的氨基多羧酸、例如优选用盐酸被调节至pH值大约为4的羟乙基乙二胺三乙酸三钠的氨基多羧酸盐、或氨基多羧酸和氨基多羧酸盐的混合物。在沙石中,岩层溶解流体优选包括氢氟酸或氢氟酸前体,并可选地包括磷酸盐。可以可选地在支撑剂运载步骤中引入末梢滤砂,并且可以在粘性运载流体中包括破胶剂。可选地,以足以保持裂缝张开的速度和压力注入粘性运载流体(可选地包括破胶剂)的步骤可以在注入岩层溶解流体之后、允许裂缝闭合之前进行。
另一个实施例是产生这种流路的方法,其中包括支撑剂的岩层溶解粘性运载流体以足以压裂岩层的速度和压力被注入,并允许裂缝闭合。末梢滤砂可以可选地被引入,并且岩层溶解粘性运载流体可以可选地包括破胶剂。在碳酸盐中,岩层溶解粘性运载流体优选为表面活性剂基的粘弹性流体,最优选为自转向酸。在沙石中,岩层溶解粘性运载流体优选包括氢氟酸或氢氟酸前体,并可选地包括磷酸盐。
另一个实施例是增大用于流体从已经与井筒或裂缝连通的已有天然裂隙流入的有效表面积的方法,其中,岩层溶解流体以不足以压裂岩层的速度和压力被注入。在碳酸盐中,岩层溶解粘性运载流体优选为表面活性剂基的粘弹性流体,最优选为自转向酸。在沙石中,岩层溶解粘性运载流体优选包括氢氟酸或氢氟酸前体,并可选地包括磷酸盐。岩层溶解流体可以可选地包括稠化剂,这种情况下,其进一步可选地包括支撑剂和/或破胶剂。
附图说明
图1为传统裂缝的示意图。
图2为具有主虫孔和次虫孔的裂缝的示意图。
具体实施方式
尽管以下描述的原理和方法是根据碳酸盐和沙石来讨论的,但是其适用于任何矿物类型。示为碳酸盐的岩层可以包含一定的沙石,反之亦然。另外,当我们描述酸与其接触到的第一材料反应的情形时,尽管我们会将反应的位置描述为“井筒附近”,但是当然,也会存在大部分的酸首次接触岩层的位置更加远离的情况,例如,当存在天然的传导性非常高的条层或裂缝或空腔时。在这种情况下,“井筒附近”应该实际上被理解为酸最容易到达的区域。
对基岩增产处理(碳酸盐增产处理)中的虫孔形成处理方法的众多研究已经显示,由流动的酸产生的溶解模式(dissolution pattern)是通过以下三种机制之一发生的:(a)密集溶解,其中绝大部分酸耗费在井筒附近的岩石表面处;(b)虫孔形成(wormholing),其中溶解在少量高传导性的微通道(即虫孔)的末端处,比在井筒壁处,前进得更快;(c)均匀溶解,其中象在沙石酸化中通常发生的那样,很多孔隙被扩大。密集溶解出现在酸耗费在岩层表面上时。在这种情况下,有活力的酸穿透通常限于井筒的几厘米以内。当酸在流体流经多孔介质的情况下反应时,出现均匀溶解。这种情况下,有活力的酸穿透最多等于所注入的酸的体积穿透。(均匀溶解也是酸化压裂中对裂缝表面的传导性通道刻蚀的优选的主要机制,这在以下将讨论。)当利用最少量的酸将近井筒可渗透性提高至最大深度时,最有效地实现了酸化处理的主要目的。在上述机制(b)中,当建立起虫孔形成模式时,这一点得以实现。
所建立的溶解模式取决于酸流量。酸流量是给定时间内通过给定面积的酸的量。密集溶解出现在相对较低的酸流量下,虫孔建立在中等酸流量下,而均匀溶解出现在较高的酸流量下。从一种机制到另一种机制并没有突然的过渡。随着酸流量增大,密集模式会变化为其中产生大直径虫孔的模式。流量的进一步增大导致较窄的虫孔,对于给定的酸注入量它们传播得更远。最后,随着酸流量继续增大,越来越多的分支虫孔出现,导致流体损耗限制模式(fluid-loss limiting mode)和更低的酸使用效率。这种现象对基岩增产处理效率有不良影响,尤其是在分支发展出次级分支的速率下;存在很多虫孔,但它们并不实现很大的深度。最终,出现真正的均匀模式。因此,基岩酸化中最有效的处理是这样一种处理,即,其中产生的虫孔具有最少的分支,并且该处理的特征在于使用最少量的酸来将虫孔传播一给定距离的。
由于虫孔形成有效地形成高传导性的通道,所以它是用于例如对碳酸盐岩层的基岩酸化的优选溶解处理。因此,优化虫孔的形成是这种处理成功的关键。接近最优流量或者在此之上注入酸对于确保成功的碳酸盐酸处理是非常关键的,因为更慢的酸注入会导致密集溶解的风险。换句话说,以高速率注入酸通常有助于基岩酸处理的成功,以最优流量速率注入酸会确保最有效的基岩酸处理。但是,最优值是岩层特性、酸的特性以及诸如温度之类的酸化条件的复杂函数,使得对于什么样的速率是最好的,不可能存在简单的规则。这种复杂性直接地源于与碳酸盐的酸反应所产生的溶解模式的范围。当酸流量较低时,虫孔传播由于较慢的酸对流(convection)而受阻,虫孔传播速率通过平衡对流和分子扩散来控制。当酸流量足够高时,虫孔传播主要受反应速度的限制,而虫孔生长通过平衡表面反应和分子扩散来控制。
另一方面,在酸压裂中,很多情况下,增产处理的深度(裂缝长度)一般受到井筒附近酸的快速消耗(密集溶解)和通过裂缝表面的酸的损耗(通常称为流体泄漏或流体损耗)的限制。流体泄漏是很大地受在裂缝的多孔壁上的虫孔的形成影响的一种动态过程。在酸压裂中,这些虫孔一直被认为是有害的,因为它们靠近井口形成,并转移来自裂缝的流体,消耗大量的酸,而对裂缝的传导性并无益处。
我们已经发现,产生在裂缝表面中远离井筒处的具有虫孔的加撑裂缝是有利的。在增产处理过程中,在支撑步骤过程中或者之后,这一点是通过适当地控制给定的注入的反应性岩层溶解的反应速率、扩散速率和泵送速率(其控制对流速率)以及给定的形成温度、压力和组成,并且在其间进行平衡,而实现的。通过对泵送速率和流体反应性的控制,实现了反应性岩层溶解流体在产生位置理想的虫孔方面的效率,并且优化了增产处理。基岩酸化及/或酸压裂领域的技术人员已经建立了反应性流体与岩层矿物反应的数据、相关性和模型。这些数据、相关性和模型过去已经被用来避免酸压裂中的虫孔形成,以及用来最大化基岩酸化中的虫孔形成。具有与本专利申请相同受让人的美国专利No.10/065441以及美国专利No.6196318给出了示例。与此不同,这些数据、相关性和模型可以用来选择流体和准备增产处理工作设计,以促进加撑裂缝中的虫孔形成。
当在加撑裂缝的表面中产生虫孔时,会遇到与裂缝酸化过程中刻蚀裂缝表面时相同的一些问题。即,必须小心以确保所有或者绝大部分酸反应不会出现得太靠近井筒。本领域中已知,为了实现裂缝酸化处理的最大有效性,通常希望最大化裂缝暴露于酸的时间,同时将所使用的酸的量限制于一经济合理的量。但是,在迄今为止所使用的裂缝酸化程序中,当酸暴露时间被最大化时,获得的效果经常都并不令人满意。例如,在一个或者几个阶段中,通过在岩层中首先产生一裂缝,然后继续以高速率和压力向裂缝中注入酸,已经实现了井形成的裂缝酸化处理的情况下,邻近井的裂缝表面被相当长时间地暴露以被大量酸刻蚀,而最远离井的裂缝表面接受到的酸接触可能不足,即使是在注入大量酸之后。在一些岩层中,酸能够刻蚀邻近井的岩石表面的时间越长,那些岩石表面就越可能变软或者过分刻蚀,使得一旦闭合,表面会彼此碾压,有效地破坏或限制邻近井产生的流动通道。在反应更慢的其它岩层中,酸接触时间和向裂缝中的有效酸穿透可能不足以在不邻近井的距离处提供额外的流动通道。
尽管我们使用并将继续使用术语酸化和酸压裂,因为它们在该产业中是如此根深蒂固,但是替代术语“酸”,我们将经常地使用术语“岩层溶解流体”,因为酸并不是唯一的会溶解岩层矿物的反应性流体。在产生具有从远离井筒的裂缝表面延伸出的虫孔的加撑裂缝的一些优化方法中,酸并不是最优的反应性流体。与对虫孔形成的理论理解相关联的是近年岩层溶解流体配方的发展。除了已知的使用无机或者有机酸的胶化酸、乳化酸、钝化酸(retarded acid)或者这些传统酸的混合物外,我们将在以下详细说明现在已经开发出的、主要使用螯合剂(chelant)系统的新的非传统反应性流体,它们已经被证实在增产处理的整个过程被优化时,在碳酸盐储层岩层中产生虫孔。非传统岩层溶解流体的示例包括氨基多羧酸(aminopolycarboxylic acid)及其盐,当它们是碱性的时,有时被称为“非酸反应性溶液”或NARS。另外,新颖的自转向虫孔形成酸法(acid system)是作为pH的函数急剧改变粘性的粘弹性表面活性剂,它也可用于能够增强由裂缝表面产生更多虫孔的这种应用。
岩层溶解流体的反应性可以根据流动速率以及岩层和流体参数来选择(例如,利用裂缝和/或酸化模拟器计算机程序)。岩层溶解流体的反应性可以通过改变反应速度、物质传送速率或两者都改变来控制。例如,反应速度可以通过改变岩层溶解流体的类型,通过将流体形式从溶液改变为乳剂,通过添加适当的盐(其改变表面反应的平衡常数),或者通过增大岩层溶解流体的pH值来降低。反应速度也可以通过改变物理处理条件(例如,通过减小泵送流动速度和/或泵送压力),或者通过使用外部冷却机制或内部冷却机制(例如,泵送大的填塞阶段(pad stage),或通过添加氮或者其它在处理中呈惰性的气体)冷却岩层溶解流体。
一般,在远离井筒的裂缝表面上具有虫孔的加撑裂缝的产生中,诸如HCl、HF或HCl和HF的混合物之类的简单无机酸的反应性会太强,会耗费在过于接近井筒处。通常必须使用反应性更弱的岩层溶解流体。非限制性的示例可以为有机酸(例如,乙酸或甲酸,它们的反应性可以通过分别包括不同量的乙酸钠或甲酸钠来进一步调节)、诸如氨基多羧酸之类的螯合剂(chelating agent)(例如乙二胺四乙酸或羟乙基乙烯二胺三乙酸(HEDTA),它们的反应性可以通过将它们部分或者完全地转变成钠盐、钾盐或者铵盐,或者通过利用例如HCl调节pH值而进一步调节),或者钝化无机酸(例如胶化或乳化HCl,它们的反应性可以通过控制表面活性剂角油/水的比率的选择和浓度来进一步调节)。
可用于这里的螯合剂是有着很多成员的一个已知材料类型。螯合剂的类型包括例如氨基多羧酸和磷酸及其钠盐、钾盐和铵盐。HEDTA和HEIDA(羟乙基亚胺基二乙酸(hydroxyethyliminodiacetic acid))可用于本处理;自由酸及其Na、K、NH4+盐(以及Ca盐)在强酸以及高pH值下可溶,因此它们可以更容易地被用在任何pH下,并与任何其它反应性流体(例如HCl)组合。其它氨基多羧酸成员,包括EDTA、NTA(次氮基三乙酸(nitrilotriaceticacid))、DTPA(二亚乙基三胺五乙酸(diethylenetriaminepentaacetic acid))以及CDTA(环己二胺四乙酸(cyclohexylenediaminetetraacetic acid))也是适合的。在低pH值下,后面的这些酸及其盐的溶解性可能小一些。适合的磷酸及其盐的示例包括ATMP:氨基三(亚甲基膦酸(aminotri(methylenephosphonic acid));HEDP:1-羟基亚乙基-1,1-膦酸(1-hydroxyethylidene-1,1-phosohonic acid);HDTMPA:六亚甲基二胺四(亚甲基膦酸(hexamethylenediaminetetra(methylenephosphonic));DTPMPA:二亚乙基二胺五亚甲基膦酸(diethylenediaminepentamethylenephosphonicacid);和2-膦酸基丁烷-1,2,4-三羟酸。所有这些膦酸可从美国密苏里州圣路易斯市的Solutia公司购买到,产品为DEQUEST(Solutia的注册商标)磷酸盐。这样的材料在油田中中是公知的。但是,现有技术处理并没有将这样的流体注入岩层中,以便保持最优的虫孔形成效率,并且这些现有技术处理在于岩层中形成从裂缝表面延伸出的虫孔方面不如本发明的方法有效。特别优选的螯合基(chelant-based)溶解器(dissolver)是那些包含诸如羟乙基乙烯二胺三乙酸(hydroxyethylethylenediaminetriacetic acid)(HEDTA)、羟乙基亚胺基二乙酸(HEIDA)、或其混合物之类的羟乙基氨基羧酸(hydroxyethylaminocarboxylic acid)的,这在美国专利No.6436880中有描述,该专利与本申请被转让给同一受让人,其全部内容被结合于此。包含这样的螯合剂的流体可以被稠化。
特别优选的自转向虫孔形成酸法是那些由某些表面活性剂,特别是某些三甲铵乙内酯(betaine)的溶液制成的,可以选择与共表面活性剂(co-surfactant)或低级醇结合。在美国专利No.6399546、美国专利申请No.10/054161以及美国专利申请No.10/065144中描述了一些示例,所有这些申请与本发明具有相同的受让人,它们的全部内容被结合于此。高度优选的自转向酸是由芥酸氨基丙基二甲基甜菜碱(erucic amidopropyl dimethylbetaine)制成的。这些自转向虫孔形成酸法具有重要的特性,即,它们在配制时(当它们是强酸性时)具有水一样的粘性,但是当随着它们反应,pH增大到大约2到2.5的值以上时,它们的粘性急剧增大。
传统的加撑液压压裂方法,(必要时对其进行适当调节(这对于本领域技术人员是显然的)),被用于本发明的方法中。根据本发明的一种优选的裂缝增产处理一般以传统的填塞阶段开始,用于产生裂缝,接着是一序列的阶段,其中随着裂缝传播,粘性运载流体将支撑剂运送到裂缝中。一般,在这一序列的阶段中,支撑剂的量通常台阶式地增加。填塞和运载流体可以是,通常为,胶化水状流体,例如水或盐水,用表面活性剂或用水溶性或水分散性聚合物,例如瓜尔、羟基丙基瓜尔(hydroxypropylguar)等加稠。填塞和载流流体可以包括各种添加剂。非限制性的示例有流体损耗添加剂,交联剂、粘土控制剂和流动性控制剂,例如纤维、破胶剂等,只要添加剂不影响岩层溶解流体的稳定性和活性。
沿井筒往下泵送裂缝增产处理流体以压裂地下岩层的程序性技术是众所周知的。设计压裂处理的人员是本公开所针对的本领域普通技术人员。该人员具有很多有用的工具来帮助设计和完成压裂处理,其中之一是通常称为压裂模拟模型(也称为裂缝模型、裂缝模拟器和裂缝位置模型)的计算机程序。即使不是所有的、那么绝大部分的向油田提供压裂服务的商业服务公司都具有一个或者多个裂缝模拟模型供它们的处理设计人员使用。几个服务公司广泛使用的一种商业裂缝模拟模型被称为FracCADETM。这种商业计算机程序是一种裂缝设计、预测和处理监视程序,其由Schlumberger有限公司设计。所有的各种裂缝增产处理模型使用计算中处理设计人员可用的有关被处理岩层和各种处理流体(以及添加剂)的信息,程序输出是用来向井筒中泵送裂缝模拟流体的泵送进度表。John Wiley & Sons 2000年出版的由Michael J.Economides和Kenneth G.Nolte编辑的“储层增产处理”第三版(”ReservoirStimulation”,Third Edition,Edited by Michael J.Economides and Kenneth G.Nolte,Published by John Wiley & Sons,(2000))是压裂和其它油井处理的非常好的参考书;它在第5章(第5-28页)和第5章附录(第A-15页)讨论了裂缝模拟模型,该书内容通过引用被结合于此。
在某些优选实施例中,由于可用于流体向井筒的流入的裂缝面积通过产生虫孔而增大,所以并不必须在岩层中形成长的裂缝。在这种情况下,为了节省流体、液压马力、时间和金钱,末端滤砂(tip screenout)可能是合乎需要的。在末端滤砂中,裂缝末端处的固体浓度由于流体渗漏到岩层中而变得很高,使得浆液(slurry)不再是可流动的。浓缩的支撑剂浆液堵住了裂缝,防止裂缝长度进一步增长。在滤砂(screenout)出现之后再将支撑剂/流体浆液向岩层中的泵送造成裂缝膨胀。裂缝的宽度而不是长度增长,并且在裂缝中出现支撑剂单位表面积上的高浓度。作业(job)可以特意地设计以提高末端滤砂的可能性,并且可以采取其它步骤来引发末端滤砂,例如通过美国专利申请No.10/214817和No.10/227690中所描述的方法,这两个专利申请与本申请具有共同的受让人。
本发明的很多岩层溶解流体,例如酸,可以有额外的优点,即,成为聚合物或VES中的一些胶束(micelle)及/或表面活性剂的破胶剂。有利于该方法的另一个优点在于,它使得操作者能够更远、更快地推进有活力的岩层溶解流体,因为裂缝容积的一部分已经被支撑剂所占据。另一个优点在于,操作者将能够以低得多的压力向加撑的裂缝中进行泵送,这是一个经济节省的优点。这还使得岩层溶解步骤能够在最有利于在正确位置形成虫孔的流动速度下完成,而不是在根据保持裂缝张开的需要的流动速度下完成。
图1(未按比例)示意性地示出了从井筒(2)延伸到岩层中的裂缝(1)的一半的俯视图(假设裂缝近似是竖直的)。未示出的是从井筒沿近似相反的方向延伸的裂缝的另一半。如果裂缝是加撑的,裂缝会在其容积的绝大部分中被填入支撑剂(未示出)。如果裂缝是通过酸压裂形成的,裂缝的表面(3)会被刻蚀出通道(未示出)。图2示出了具有从裂缝表面向外延伸到岩层中的虫孔(主通道)(4)和从主通道延伸出的附加虫孔(5)(次通道)。
在诸如图1所示的裂缝的传统裂缝中,可用于岩层中位于距裂缝任何可观距离处的流体流入裂缝的通路,受到裂缝表面的表面积的限制。流体必须穿过岩层流动,直到它们达到裂缝,而岩层的可渗透性比裂缝的低很多。由于差异性刻蚀、密集溶解或均匀溶解而在裂缝表面处增加的局部表面积,并不减少流体在其达到高渗透性流路之前必须穿过岩层流经的通路的长度,也就是说,它们并不增加有效表面积。但是,虫孔作为延伸到岩层中的高流体渗透性通道,确实有助于流体从岩层流入裂缝,因为它们在流体还远离裂缝时为它们提供了进入高渗透性通道的机会。当存在一定的从主通道分支出来的次通道(次虫孔)时,这种机会会更大。具有虫孔的加撑裂缝可以产生在所有类型的岩层中,例如深且热的碳酸盐岩层和浅且高渗透性的沙石岩层。当处理沙石岩层时,岩层溶解流体优选包含氢氟酸,并且可以包含磷酸盐,非限制性的示例例如有,含磷酸盐的聚合物或二亚乙基三胺五(亚甲基膦酸)(diethylene triamine penta-(methylene phosphonic acid)。
形成从加撑裂缝的表面延伸到岩层中的虫孔的专用方法分为两类:a)其中形成闭合的加撑裂缝并然后形成虫孔的方法,和b)其中裂缝和通道系统在闭合发生前形成的方法。形成闭合的加撑裂缝并然后形成虫孔的方法中的后续步骤可以补救性地使用,即,用来改善之前形成的加撑裂缝的性能。所有这些方法都可以,直接地或者作为产生液压裂缝的结果,用在岩层中已经天然地出现接触井筒的裂缝或空腔的情况下。应该理解,本发明的产生虫孔用的(wormhole-creating)岩层溶解流体和方法对于任何岩层、在高于或者低于压裂速度和压力的速度和压力下都是有效的。还应该理解,当岩层溶解流体在最优的虫孔产生条件下被注入时,一般泵送继续的时间越长,虫孔向岩层中的穿透就越深,得到的结果越好。最终,应该理解,机械的或化学的转向器(diverter)可以用来确保所使用的流体进入感兴趣的岩层。
过去已经尝试过形成有虫孔的加撑裂缝的方法,但是通常并不令人满意,这不仅仅是由于虫孔形成的动力学没有被很好地理解,并且可用于确定最优作业设计的计算机程序还不完善,而且还是因为不能得到某些岩层溶解流体。例如,即使是对于钝化酸,该酸并不穿透加撑裂缝的长度。最近开发出两种新类型的流体,它们有助于实现这些方法,尤其是对于碳酸盐的处理。(当处理沙石岩层时,岩层溶解流体优选包含氢氟酸,并可以包含磷酸盐,非限制性的示例例如有,含磷酸盐的聚合物或二亚乙基三胺五(亚甲基膦酸)。
上述两种新类型的流体适合于不同的温度。在较低的温度下,例如低于大约300°F,必须使用相当强的岩层溶解流体,因此成功的关键在于确保虫孔不是都形成得太靠近井筒。在较高温度下,例如高于大约300°F,需要在低温下反应性不是太强,而在较高温度下反应的流体。我们发现,低温下尤其适合的是表面活性剂基(surfactant-based)流体,当在强酸中配置这种流体时,它们具有较低的粘性(近似相当于同等条件下的水),而当酸被消耗并且pH值上升到大约2到2.5时,它们建立起具有高粘性的胶束结构。被称为“粘弹性转向酸”或VDA’s的这些材料具有附加的有用特性,即,它们在与岩层流体(岩层水、冷凝水或油)接触时失去高粘性。(如果岩层中的主要流体是烃,所述烃表面压力下是气体,例如甲烷,则存在能够破坏胶束结构或表面活性剂本身的可用的破胶剂。上述给出了VDA’s的一个示例。
以下将描述方法,但不讨论填塞物,但是应该理解,填塞物通常都使用。为了在其中形成闭合的加撑裂缝并然后形成虫孔的方法中使用VDA,利用运载流体中的传统的聚合稠化剂产生传统液压裂缝。运载流体可以包括破胶剂、破胶剂辅助剂(breaker aid)和助排剂(clean-up additive)。裂缝允许闭合,并且如果有必要,允许足够的时间使流体断开(break);该裂缝还可以选择性地向回变形。在这个阶段,裂缝包含支撑剂以及断开的裂缝流体或岩层流体。然后,以低于压裂压力的压力和一计算得到的流动速度注入低粘性、高酸度的VDA,所述流动速度是在考虑了温度、VDA酸浓度和岩层特性的情况下计算得到,其有利于虫孔形成,尤其有利于分支虫孔的网络的形成。尽管没有理论来限制,但是VDA在本处理中的作用被认为如下。所注入的VDA中的最早部分在井筒处或近井筒处产生虫孔或虫孔网络。但是,随着酸消耗掉,最初产生的虫孔或分支虫孔的网络中的VDA的粘性增大,并且随后注入的酸不能流入虫孔中,而是流向更远进入裂缝中,造成产生其它虫孔或分支虫孔的网络。随着酸消耗掉,那些VDA的粘性也增大,这个过程越来越远离井筒地重复,直到在原始裂缝的表面上的很多位置形成虫孔。在产生虫孔的VDA注入停止时,虫孔中的VDA的粘性降低,这或者是因为由时间和温度造成的胶束或表面活性剂的固有不稳定性,或者是由于原始VDA配方中包括的破胶剂,或者是通过降低井口压力,使流动反向,使得岩层流体能够接触VDA。
更高温度下使用的流体是如上所述的螯合剂。特别优选的示例是螯合基的溶解器,其包括羟乙基氨基羧酸,例如羟乙基乙烯二胺三乙酸(HEDTA)、羟乙基亚胺基二乙酸(HEIDA)、或其混合物。这些材料具有低反应性、低粘性,但具有较高的溶解能力。以前可用的岩层溶解流体是强酸、钝化酸或有机酸。不能使用强酸的原因已经非常明显。钝化酸不能被使用是因为它们要么是粘性的要么是乳状的,两种形式的流体被注入到加撑裂缝中都会带来不良的结果。粘性流体会需要较高的液压马力和/或必须以非常低的速率被泵送,以防止裂缝传播及/或将支撑剂从裂缝的近并筒区域移开。除了可能是粘性的以外,要在高温下以及在穿过支撑剂充填区域的流动中保持乳剂的稳定性较为困难。为了对酸向岩石表面的移动形成障碍而在酸的水溶液(aqueousacid)中添加油浸润的(oil-wetting)表面活性剂经常需要在处理过程中连续注入油。而且,由于岩层岩石上的对表面活性剂的吸收减小,所以这些系统经常在高岩层温度和高流动速率下无效。乳化的酸法还受到增大的流动阻力的限制。有机酸不适合是因为它们比无机酸昂贵太多,并且在它们具有较低的反应速率的同时,它们还具有更低的反应性——事实上,它们并不完全反应,而是建立与岩层岩石的平衡。因此,1摩尔的HCl产生1摩尔的可用酸(即,H+),但是1摩尔的乙酸产生远远少于1摩尔的可用酸。但是,因为上述螯合基材料在高温下具有低反应性,具有低粘性,但具有高溶解能力,所以它们能够在产生虫孔所需的速率下被注入加撑裂缝中,而不会传播裂缝或转移支撑剂。
由于相同的原因,这两种类型的流体在形成具有从其表面延伸到岩层中的虫孔的加撑裂缝的第二种方法中是优选的(但可以使用其它的流体),第二种方法中:全部裂缝和通道系统在闭合发生之前形成。这种方法有四种变形。
第一种,较早的支撑剂运送阶段中的运载流体是传统的聚合物稠化(polymer-viscosified)的水性流体,而较晚的支撑剂运送阶段中的运载流体是粘性的岩层溶解流体。每种流体在足以产生并传播裂缝的压力和速度下被注入。例如,较早阶段中的运载流体是用瓜尔胶或包括诸如氧化剂和/或酶的破胶剂的代用瓜尔胶(substituted guar)稠化的。在这些阶段中使用不溶解岩层的流体,以便产生期望大小和形状的裂缝,而不产生如果运载流体与近井筒的岩层反应会遇到的问题。由于裂缝的有效表面积接下来通过产生远离井筒的虫孔系统而越来越大,所以裂缝并不必须是长的,因此可以选择设计作业(job)以便形成末梢滤砂。其它阶段中的稠化的岩层溶解运载流体的非限制性示例有包括酸或螯合剂或两者都包括的粘弹性表面活性剂基的胶束体系。这种体系的粘性取决于以下因素:表面活性剂浓度、环境(例如盐的浓度、性质和pH值)、时间、温度以及是否存在诸如酒精、共表面活性剂和破胶剂之类的其它成份。这种体系的反应性取决于一部分相同的因素以及岩层溶解成份的性质和浓度。这些依赖关系的特性是已知的,从而调节运载流体失去粘性并与岩层反应的相对速度,并考虑保持所需压力和运送支撑剂必需的流动速度,将体系设计成使得稠化的岩层溶解运载将支撑剂运送到裂缝中,并然后与岩层反应以产生虫孔,同时或随后失去其粘性。在一特别优选的实施例中,经稠化的岩层溶解运载流体为VDA。绝大多数情况下,实验室实验和/或计算机建模被用来对这种以及其它作业设计进行优化。
第二种,裂缝是利用可选地包括螯合剂的VDA,其具有足以产生期望尺寸的裂缝的粘性和泄漏控制。调节条件,使得VDA形成距离井筒越来越远的连续序列的虫孔,这在以上对形成闭合的加撑裂缝并然后形成虫孔的方法的描述中已经说明了。这可以出现在裂缝生长过程中,或者出现在已经实现最终的裂缝长度之后,即,在某些点可以减小泵送速度,以便通过泵送来平衡由于虫孔形成而造成的流体损失以保持裂缝张开。然后,经聚合物或VES稠化剂稠化的装有支撑剂的(proppant-laden)阶段,被注入以用支撑剂填充裂缝。这是在至少足以保持裂缝张开的压力的流动速度下完成的。可选地,作业被设计成使得末端滤砂在支撑剂阶段开始时即刻或紧随其后发生,裂缝倾向于变宽而不是变长。裂缝传播和/或虫孔形成也可以可选地发生在支撑剂布置阶段中。该实施例具有可以用支撑剂填充虫孔的优点。
第三种,用传统聚合的或VES基的稠化运载流体产生加撑裂缝,然后,在裂缝保持张开的同时,注入例如VDA的岩层溶解流体。运载流体可以包括破胶剂,或者破胶剂可以与岩层溶解流体一起被注入。VES(如果使用)是一种在其为强酸性的情况下为VDA的体系。按照这一顺序,VDA破坏聚合物或VES(选择它们中的任一者,使得其能够被强酸破坏),以便VDA能够深入加撑裂缝,并形成如上所述的裂缝。如果运载流体没有被岩层溶解流体的前沿(front)完全破坏,则可能出现一些额外的裂缝传播(这是有利的),并且一些支撑剂会被移动远离井筒。如果需要的话,例如纤维的流动性减小剂或者使用树脂包覆的支撑剂,可以帮助防止支撑剂更加深入地向裂缝中移动。或者,最终的运载支撑剂的经稠化的台(stage)被用来替代裂缝的近井筒区域中的支撑剂。在一优选实施例中,运载流体是VES,岩层溶解流体是VDA。在最优选实施例中,填塞物、运载流体以及岩层溶解流体都包括芥酸氨基丙基二甲基甜菜碱。
最后一种,加撑裂缝用岩层溶解粘性运载流体产生,该流体具有足以产生期望尺寸的加撑裂缝的粘性和泄漏控制。可以调节条件,使得裂缝生长过程中,部分岩层溶解粘性运载流体的泄漏会沿着裂缝形成虫孔,并可选地使得虫孔在裂缝闭合过程中或闭合之后延伸。可选地,作业被设计成使得发生末梢滤砂。该实施例也具有可以以支撑剂填充虫孔的优点。
本发明方法中注入的所有流体,例如填塞物、粘性的支撑剂运载流体和岩层溶解流体,可以包括各种增产处理中众所周知的添加剂(例如,腐蚀抑制剂、离子控制剂、表面活性剂、粘土控制添加剂、缓冲剂、氧化抑止剂(scaleinhibitor)等),只要添加剂不干扰所期望的流体稳定性和作用。进行实验室试验或计算机模拟来确保这些添加剂适合是可以预见的,并在本发明的范围之内。
尽管这里已经描述了用于并绝大多数情况下是用于烃类开采的方法,但是它们也可以被用于注入井以及用于诸如水和卤水之类的其它流体的开采。

Claims (7)

1.一种在井筒所穿透的地下岩层中形成裂缝的方法,该方法的改进包括产生具有分支虫孔的裂缝的方法,提供流体流入所述裂缝的增大了的有效表面积,包括以下步骤:
a.以足以压裂岩层的速度和压力注入包括支撑剂的粘性运载流体,并允许所述裂缝闭合;和
b.注入岩层溶解流体,注入岩层溶解流体的速度和压力足以断裂岩层,在注入岩层溶解流体的流量下分支虫孔形成,从而使得分支虫孔从裂缝延伸。
2.如权利要求1所述的方法,其中,在步骤a中工序“以足以压裂岩层的速度和压力注入包括支撑剂的粘性运载流体”在工序“允许所述裂缝闭合”之前进行。
3.如权利要求2所述的方法,其中,在所述以足以压裂所述岩层的速度和压力注入包括支撑剂的流体的步骤中,引入末梢滤砂。
4.如权利要求1或2所述的方法,其中,所述岩层溶解流体包括选自由自转向酸、氢氟酸、氢氟酸前体、氨基多羧酸和氨基多羧酸盐构成的组的成份。
5.如权利要求4所述的方法,其中所述氨基多羧酸盐是用盐酸调节到pH值大约为4的羟乙基乙二胺三乙酸三钠,所述氨基多羧酸是羟乙基乙二胺三乙酸。
6.如权利要求1或2所述的方法,其中,所述粘性运载流体包括粘弹性表面活性剂。
7.如权利要求1或2所述的方法,其中,所述岩层溶解流体包括粘弹性表面活性剂。
CN2004800058242A 2003-01-28 2004-01-27 具有较高有效表面积的加撑裂缝 Expired - Fee Related CN1756892B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/248,540 2003-01-28
US10/248,540 US7114567B2 (en) 2003-01-28 2003-01-28 Propped fracture with high effective surface area
PCT/IB2004/000182 WO2004067911A2 (en) 2003-01-28 2004-01-27 Propped fracture with high effective surface area

Publications (2)

Publication Number Publication Date
CN1756892A CN1756892A (zh) 2006-04-05
CN1756892B true CN1756892B (zh) 2011-11-09

Family

ID=32823576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800058242A Expired - Fee Related CN1756892B (zh) 2003-01-28 2004-01-27 具有较高有效表面积的加撑裂缝

Country Status (11)

Country Link
US (3) US7114567B2 (zh)
EP (1) EP1604095B1 (zh)
CN (1) CN1756892B (zh)
AT (1) ATE404774T1 (zh)
CA (2) CA2514208C (zh)
DE (1) DE602004015745D1 (zh)
EA (1) EA006882B1 (zh)
EG (1) EG23883A (zh)
MX (1) MXPA05007877A (zh)
NO (1) NO336549B1 (zh)
WO (1) WO2004067911A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2737618C1 (ru) * 2018-05-10 2020-12-01 Чайна Юниверсити Оф Майнинг Энд Текнолоджи Способ водоудержания для ускорения самовосстановления рудничных трещин посредством химического размягчения карбонатита

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192908B2 (en) * 2003-04-21 2007-03-20 Schlumberger Technology Corporation Composition and method for treating a subterranean formation
US7073588B2 (en) * 2004-02-27 2006-07-11 Halliburton Energy Services, Inc. Esterquat acidic subterranean treatment fluids and methods of using esterquats acidic subterranean treatment fluids
US7225869B2 (en) 2004-03-24 2007-06-05 Halliburton Energy Services, Inc. Methods of isolating hydrajet stimulated zones
US7352560B2 (en) * 2004-07-16 2008-04-01 Cardiac Pacemakers, Inc. Method and apparatus for interconnecting electrodes with partial titanium coating
US7380600B2 (en) * 2004-09-01 2008-06-03 Schlumberger Technology Corporation Degradable material assisted diversion or isolation
US7350572B2 (en) * 2004-09-01 2008-04-01 Schlumberger Technology Corporation Methods for controlling fluid loss
US7237608B2 (en) * 2004-10-20 2007-07-03 Schlumberger Technology Corporation Self diverting matrix acid
CA2536957C (en) 2006-02-17 2008-01-22 Jade Oilfield Service Ltd. Method of treating a formation using deformable proppants
US7581594B2 (en) * 2006-03-15 2009-09-01 Chemeor, Inc. Surfactant method for improved oil recovery from fractured reservoirs
US7772162B2 (en) * 2006-03-27 2010-08-10 Board Of Regents, The University Of Texas System Use of fluorocarbon surfactants to improve the productivity of gas and gas condensate wells
US7306041B2 (en) 2006-04-10 2007-12-11 Schlumberger Technology Corporation Method for treating a subterranean formation
RU2324810C2 (ru) * 2006-05-31 2008-05-20 Шлюмберже Текнолоджи Б.В. Способ определения размеров трещины гидроразрыва пласта
US7774183B2 (en) * 2006-07-11 2010-08-10 Schlumberger Technology Corporation Flow of self-diverting acids in carbonate reservoirs
US7603261B2 (en) * 2006-07-11 2009-10-13 Schlumberger Technology Corporation Method for predicting acid placement in carbonate reservoirs
US8567504B2 (en) * 2006-08-04 2013-10-29 Halliburton Energy Services, Inc. Composition and method relating to the prevention and remediation of surfactant gel damage
US9027647B2 (en) 2006-08-04 2015-05-12 Halliburton Energy Services, Inc. Treatment fluids containing a biodegradable chelating agent and methods for use thereof
US9120964B2 (en) 2006-08-04 2015-09-01 Halliburton Energy Services, Inc. Treatment fluids containing biodegradable chelating agents and methods for use thereof
US8567503B2 (en) * 2006-08-04 2013-10-29 Halliburton Energy Services, Inc. Composition and method relating to the prevention and remediation of surfactant gel damage
US9127194B2 (en) 2006-08-04 2015-09-08 Halliburton Energy Services, Inc. Treatment fluids containing a boron trifluoride complex and methods for use thereof
US20080047706A1 (en) * 2006-08-23 2008-02-28 Pope Gary A Method of obtaining a treatment composition for improving the productivity of hydrocarbon producing wells
US8412500B2 (en) * 2007-01-29 2013-04-02 Schlumberger Technology Corporation Simulations for hydraulic fracturing treatments and methods of fracturing naturally fractured formation
US9135475B2 (en) 2007-01-29 2015-09-15 Sclumberger Technology Corporation System and method for performing downhole stimulation operations
US7699106B2 (en) * 2007-02-13 2010-04-20 Bj Services Company Method for reducing fluid loss during hydraulic fracturing or sand control treatment
WO2008118244A1 (en) * 2007-03-23 2008-10-02 Board Of Regents, The University Of Texas System Method for treating a fractured formation
US9353309B2 (en) 2007-03-23 2016-05-31 Board Of Regents, The University Of Texas System Method for treating a formation with a solvent
CN101809044B (zh) * 2007-03-23 2013-12-04 德克萨斯州立大学董事会 用于处理水堵井的组合物和方法
RU2453690C2 (ru) * 2007-03-23 2012-06-20 Борд Оф Риджентс, Зе Юниверсити Оф Техас Систем Способ обработки углеводородной формации
EP2134803A4 (en) * 2007-03-23 2011-08-03 Univ Texas METHOD AND SYSTEM FOR TREATING HYDROCARBON FROST INFORMATION
MX2009010142A (es) * 2007-03-23 2010-03-22 Univ Texas Composiciones y metodos para tratar un pozo de agua bloqueado.
US7431089B1 (en) 2007-06-25 2008-10-07 Schlumberger Technology Corporation Methods and compositions for selectively dissolving sandstone formations
US8627889B2 (en) * 2007-09-27 2014-01-14 Schlumberger Technology Corporation Drilling and fracturing fluid
CN101970794B (zh) * 2007-11-30 2014-02-19 德克萨斯州立大学董事会 用于提高产油井产率的方法
EP2231747A1 (en) * 2007-12-21 2010-09-29 3M Innovative Properties Company Fluorinated polymer compositions and methods for treating hydrocarbon-bearing formations using the same
EP2240552B1 (en) 2007-12-21 2012-02-29 3M Innovative Properties Company Methods for treating hydrocarbon-bearing formations with fluorinated polymer compositions
US8312929B2 (en) 2008-01-24 2012-11-20 Schlumberger Technology Corporation Method for single-stage treatment of siliceous subterranean formations
US8316941B2 (en) * 2008-01-24 2012-11-27 Schlumberger Technology Corporation Method for single-stage treatment of siliceous subterranean formations
WO2009137285A1 (en) * 2008-05-05 2009-11-12 3M Innovative Properties Company Methods for treating hydrocarbon-bearing formations having brine
US20110067871A1 (en) * 2008-05-22 2011-03-24 Burdette Jason A Methods For Regulating Flow In Multi-Zone Intervals
EP2135913A1 (en) 2008-06-20 2009-12-23 Schlumberger Holdings Limited Electrically and/or magnetically active coated fibres for wellbore operations
EP2206761A1 (en) 2009-01-09 2010-07-14 Services Pétroliers Schlumberger Electrically and/or magnetically active coated fibres for wellbore operations
US8372787B2 (en) * 2008-06-20 2013-02-12 Schlumberger Technology Corporation Electrically and/or magnetically active coated fibres for wellbore operations
CA2730971A1 (en) * 2008-07-18 2010-01-21 3M Innovative Properties Company Cationic fluorinated polymer compositions and methods for treating hydrocarbon-bearing formations using the same
CA2735572C (en) * 2008-08-21 2015-03-24 Schlumberger Canada Limited Hydraulic fracturing proppants
EP2359305A4 (en) * 2008-11-20 2017-05-10 Exxonmobil Upstream Research Company Sand and fluid production and injection modeling methods
WO2010080353A2 (en) 2008-12-18 2010-07-15 3M Innovative Properties Company Method of contacting hydrocarbon-bearing formations with fluorinated phosphate and phosphonate compositions
WO2010080473A1 (en) 2008-12-18 2010-07-15 3M Innovative Properties Company Method of contacting hydrocarbon-bearing formations with fluorinated ether compositions
US8293696B2 (en) * 2009-02-06 2012-10-23 Ecolab, Inc. Alkaline composition comprising a chelant mixture, including HEIDA, and method of producing same
US20100314171A1 (en) * 2009-06-15 2010-12-16 David Yerusalimsky Method of excavation of oil and gas-producting wells
MX2012000413A (es) 2009-07-09 2012-02-08 3M Innovative Prosperties Company Metodos para tratar con compuestos anfotericos fluorados a las formaciones de carbonato que poseen hidrocarburos.
US8347960B2 (en) * 2010-01-25 2013-01-08 Water Tectonics, Inc. Method for using electrocoagulation in hydraulic fracturing
US20110220360A1 (en) * 2010-03-12 2011-09-15 Thomas Lindvig Application of alkaline fluids for post-flush or post-treatment of a stimulated sandstone matrix
US8788252B2 (en) * 2010-10-26 2014-07-22 Schlumberger Technology Corporation Multi-well time-lapse nodal analysis of transient production systems
US8613314B2 (en) * 2010-11-08 2013-12-24 Schlumberger Technology Corporation Methods to enhance the productivity of a well
BR112013015611A2 (pt) 2010-12-20 2018-05-15 3M Innovative Properties Co métodos para tratamento de formações contendo hidrocarboneto e carbonato com óxidos de amina fluorado.
CN103270134B (zh) 2010-12-21 2016-12-21 3M创新有限公司 用氟化胺处理含烃地层的方法
BR112013017767A2 (pt) * 2010-12-22 2016-10-11 Maurice B Dusseault processo de injeção multi-estácio para produção de recurso aperfeiçoada a partir de xisto
CN103282600B (zh) 2010-12-30 2016-09-28 普拉德研究及开发股份有限公司 用于执行井下增产作业的系统和方法
US9701889B2 (en) 2011-01-13 2017-07-11 3M Innovative Properties Company Methods for treating siliciclastic hydrocarbon-bearing formations with fluorinated amine oxides
US20130087340A1 (en) * 2011-01-13 2013-04-11 Conocophillips Company Chemomechanical treatment fluids and methods of use
US8881823B2 (en) 2011-05-03 2014-11-11 Halliburton Energy Services, Inc. Environmentally friendly low temperature breaker systems and related methods
US9334716B2 (en) 2012-04-12 2016-05-10 Halliburton Energy Services, Inc. Treatment fluids comprising a hydroxypyridinecarboxylic acid and methods for use thereof
CA2870002A1 (en) * 2012-04-12 2013-10-17 Baker Hughes Incorporated Method of increasing the permeability of a subterranean formation by creating a multiple fracture network
AR090762A1 (es) * 2012-04-20 2014-12-03 Univ Texas Sistemas y metodos para tratar las formaciones subsuperficiales que contienen fracturas
US20130327529A1 (en) * 2012-06-08 2013-12-12 Kenneth M. Sprouse Far field fracturing of subterranean formations
US9010421B2 (en) * 2012-06-15 2015-04-21 Schlumberger Technology Corporation Flowpath identification and characterization
WO2014078825A1 (en) 2012-11-19 2014-05-22 3M Innovative Properties Company Composition including a fluorinated polymer and a non-fluorinated polymer and methods of making and using the same
BR112015011484A2 (pt) 2012-11-19 2017-07-11 3M Innovative Properties Co método para colocar formações portadoras de hidrocarboneto em contato com polímeros iônicos fluorados
US9670399B2 (en) 2013-03-15 2017-06-06 Halliburton Energy Services, Inc. Methods for acidizing a subterranean formation using a stabilized microemulsion carrier fluid
US9359544B2 (en) 2013-12-11 2016-06-07 Schlumberger Technology Corporation Composition and method for treating subterranean formation
US9617839B2 (en) 2014-05-28 2017-04-11 Exxonmobil Upstream Research Company Method of forming directionally controlled wormholes in a subterranean formation
WO2016195623A1 (en) * 2015-05-29 2016-12-08 Halliburton Energy Services, Inc. Methods and systems for characterizing and/or monitoring wormhole regimes in matrix acidizing
CN105114050B (zh) * 2015-09-15 2018-05-25 中国石油大学(北京) 一种新型压裂泵注方法
WO2017223005A1 (en) 2016-06-20 2017-12-28 Schlumberger Technology Corporation Viscosity dependent valve system
WO2018034652A1 (en) * 2016-08-16 2018-02-22 Halliburton Energy Services, Inc. Methods and systems of modeling fluid diversion treatment operations
CN108732010B (zh) * 2017-04-24 2021-06-01 中国石油天然气股份有限公司 一种压裂裂缝的模拟及评价装置及方法
WO2020086097A1 (en) * 2018-10-26 2020-04-30 Weatherford Technology Holdings, Llc Systems and methods to increase the durability of carbonate reservoir acidizing
US10961833B2 (en) * 2019-05-15 2021-03-30 Saudi Arabian Oil Company Sandstone stimulation using in-situ mud acid generation
US10961440B2 (en) * 2019-05-15 2021-03-30 Saudi Arabian Oil Company Sandstone stimulation using in-situ mud acid generation
US10975293B2 (en) 2019-07-24 2021-04-13 Saudi Arabian Oil Company Methods for treating a subterranean formation with a foamed acid system
US10927291B2 (en) 2019-07-24 2021-02-23 Saudi Arabian Oil Company Compositions for treating a subterranean formation with a foamed system and corresponding methods
CN112343572A (zh) * 2020-10-27 2021-02-09 长江大学 一种碳酸盐岩储层酸化压裂改造的生产模拟采集装置
CN112592703B (zh) * 2020-12-16 2022-10-21 湖南科技大学 一种防治钻孔孔壁失稳的弹性胶结透气材料及其制备方法
US20230105939A1 (en) * 2021-10-05 2023-04-06 Grant Hocking Propagation of High Permeable Planar Inclusions in Weakly Cemented Formations

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3417821A (en) * 1966-06-08 1968-12-24 Halliburton Co Fluid loss control
US3842911A (en) * 1971-04-26 1974-10-22 Halliburton Co Method of fracture acidizing a well formation
EP0005874A1 (en) * 1978-05-26 1979-12-12 Shell Internationale Researchmaatschappij B.V. Method for increasing the productivity of a well penetrating an underground formation
US4507440A (en) * 1980-12-15 1985-03-26 Cassella Aktiengesellschaft Cross-linkable and cross linked macromolecular compositions wherein cross-linking is by structural bridges of the formula --NRx --CH═N--CO-- and their preparation
EP0278540A2 (en) * 1987-01-27 1988-08-17 Compagnie Des Services Dowell Schlumberger Composition and method for fluid loss control in acid fracturing of earthen formations
US5207778A (en) * 1991-10-24 1993-05-04 Mobil Oil Corporation Method of matrix acidizing
US5224546A (en) * 1991-03-18 1993-07-06 Smith William H Method of breaking metal-crosslinked polymers
US5595245A (en) * 1995-08-04 1997-01-21 Scott, Iii; George L. Systems of injecting phenolic resin activator during subsurface fracture stimulation for enhanced oil recovery
US20020023752A1 (en) * 1996-10-09 2002-02-28 Qi Qu Compositions containing aqueous viscosifying surfactants and methods for applying such compositions in subterranean formations

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3380529A (en) * 1964-10-23 1968-04-30 Dow Chemical Co Method of acidizing a fluid-bearing formation
US3642068A (en) * 1968-03-21 1972-02-15 Mobil Oil Corp Formation fracturing
US3601197A (en) * 1970-04-29 1971-08-24 Exxon Production Research Co Treatment of formations with aryl sulfonic acid
US3703928A (en) * 1971-02-24 1972-11-28 Cities Service Oil Co Oil recovery utilizing acidic organic phosphate scale inhibitors
US3734186A (en) * 1971-03-25 1973-05-22 Exxon Co Method for acidizing subterranean formations
US3768564A (en) * 1971-04-26 1973-10-30 Halliburton Co Method of fracture acidizing a well formation
GB1569063A (en) * 1978-05-22 1980-06-11 Shell Int Research Formation parts around a borehole method for forming channels of high fluid conductivity in
US4322306A (en) * 1978-06-30 1982-03-30 Halliburton Company Retarding acidizing fluids
US5054554A (en) * 1990-07-13 1991-10-08 Atlantic Richfield Company Rate control method for hydraulic fracturing
US5297628A (en) * 1991-10-24 1994-03-29 Mobil Oil Corporation Simultaneous matrix acidizing using acids with different densities
US5529125A (en) * 1994-12-30 1996-06-25 B. J. Services Company Acid treatment method for siliceous formations
US7060661B2 (en) * 1997-12-19 2006-06-13 Akzo Nobel N.V. Acid thickeners and uses thereof
US6196318B1 (en) * 1999-06-07 2001-03-06 Mobil Oil Corporation Method for optimizing acid injection rate in carbonate acidizing process
US6399546B1 (en) 1999-10-15 2002-06-04 Schlumberger Technology Corporation Fluid system having controllable reversible viscosity
WO2001051767A2 (en) * 2000-01-14 2001-07-19 Schlumberger Technology Corporation Addition of solids to generate viscosity downhole
US6399549B1 (en) * 2000-02-07 2002-06-04 Bp Oil International Limited Condensates
US6394184B2 (en) * 2000-02-15 2002-05-28 Exxonmobil Upstream Research Company Method and apparatus for stimulation of multiple formation intervals
US6436880B1 (en) * 2000-05-03 2002-08-20 Schlumberger Technology Corporation Well treatment fluids comprising chelating agents
US7084095B2 (en) * 2001-04-04 2006-08-01 Schlumberger Technology Corporation Methods for controlling the rheological properties of viscoelastic surfactants based fluids
US6911418B2 (en) * 2001-05-17 2005-06-28 Schlumberger Technology Corporation Method for treating a subterranean formation
US6828280B2 (en) * 2001-08-14 2004-12-07 Schlumberger Technology Corporation Methods for stimulating hydrocarbon production
US6938693B2 (en) * 2001-10-31 2005-09-06 Schlumberger Technology Corporation Methods for controlling screenouts
US6837309B2 (en) * 2001-09-11 2005-01-04 Schlumberger Technology Corporation Methods and fluid compositions designed to cause tip screenouts
US6929070B2 (en) * 2001-12-21 2005-08-16 Schlumberger Technology Corporation Compositions and methods for treating a subterranean formation
US6749022B1 (en) * 2002-10-17 2004-06-15 Schlumberger Technology Corporation Fracture stimulation process for carbonate reservoirs
US7065728B2 (en) * 2004-09-29 2006-06-20 International Business Machines Corporation Method for placing electrostatic discharge clamps within integrated circuit devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3417821A (en) * 1966-06-08 1968-12-24 Halliburton Co Fluid loss control
US3842911A (en) * 1971-04-26 1974-10-22 Halliburton Co Method of fracture acidizing a well formation
EP0005874A1 (en) * 1978-05-26 1979-12-12 Shell Internationale Researchmaatschappij B.V. Method for increasing the productivity of a well penetrating an underground formation
US4507440A (en) * 1980-12-15 1985-03-26 Cassella Aktiengesellschaft Cross-linkable and cross linked macromolecular compositions wherein cross-linking is by structural bridges of the formula --NRx --CH═N--CO-- and their preparation
EP0278540A2 (en) * 1987-01-27 1988-08-17 Compagnie Des Services Dowell Schlumberger Composition and method for fluid loss control in acid fracturing of earthen formations
US5224546A (en) * 1991-03-18 1993-07-06 Smith William H Method of breaking metal-crosslinked polymers
US5207778A (en) * 1991-10-24 1993-05-04 Mobil Oil Corporation Method of matrix acidizing
US5595245A (en) * 1995-08-04 1997-01-21 Scott, Iii; George L. Systems of injecting phenolic resin activator during subsurface fracture stimulation for enhanced oil recovery
US20020023752A1 (en) * 1996-10-09 2002-02-28 Qi Qu Compositions containing aqueous viscosifying surfactants and methods for applying such compositions in subterranean formations

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2737618C1 (ru) * 2018-05-10 2020-12-01 Чайна Юниверсити Оф Майнинг Энд Текнолоджи Способ водоудержания для ускорения самовосстановления рудничных трещин посредством химического размягчения карбонатита

Also Published As

Publication number Publication date
CA2675806C (en) 2012-10-30
WO2004067911A3 (en) 2004-09-16
US20070102155A1 (en) 2007-05-10
DE602004015745D1 (de) 2008-09-25
NO336549B1 (no) 2015-09-21
US7303012B2 (en) 2007-12-04
CA2675806A1 (en) 2004-08-12
CA2514208A1 (en) 2004-08-12
CA2514208C (en) 2009-11-03
CN1756892A (zh) 2006-04-05
EA006882B1 (ru) 2006-04-28
EP1604095A2 (en) 2005-12-14
US20040177960A1 (en) 2004-09-16
MXPA05007877A (es) 2005-09-21
NO20053746D0 (no) 2005-08-04
EG23883A (en) 2007-12-11
US7114567B2 (en) 2006-10-03
WO2004067911A2 (en) 2004-08-12
US20050245401A1 (en) 2005-11-03
US7165613B2 (en) 2007-01-23
EP1604095B1 (en) 2008-08-13
NO20053746L (no) 2005-10-21
EA200501195A1 (ru) 2006-02-24
ATE404774T1 (de) 2008-08-15

Similar Documents

Publication Publication Date Title
CN1756892B (zh) 具有较高有效表面积的加撑裂缝
US6749022B1 (en) Fracture stimulation process for carbonate reservoirs
US8082994B2 (en) Methods for enhancing fracture conductivity in subterranean formations
US6929069B2 (en) Fracturing fluid and method of use
US8567503B2 (en) Composition and method relating to the prevention and remediation of surfactant gel damage
US9074120B2 (en) Composition and method relating to the prevention and remediation of surfactant gel damage
EP1817391B1 (en) Composition and method for treating a subterranean formation
US9376888B2 (en) Diverting resin for stabilizing particulate in a well
US20090288826A1 (en) Enzyme enhanced oil recovery (EEOR) for cyclic steam injection
US20080115945A1 (en) Enzyme enhanced oil recovery (EEOR) for cyclic steam injection
CA2860087A1 (en) A method of increasing efficiency in a hydraulic fracturing operation
US10150910B2 (en) Well treatment fluids comprising cross-linkable polysaccharides
US20090156433A1 (en) HF acidizing compositions and methods for improved placement in a subterranean formation to remediate formation damage
Bergstrom et al. Results of acid-in-oil emulsion stimulations of carbonate formations
Crenshaw et al. Stimulation of the deep Ellenburger in the Delaware Basin
WO2022081813A2 (en) Enhanced scale inhibitor squeeze treatment using a chemical additive
WO2005040552A1 (en) Improved fracturing fluid and method of use
Stanley et al. Enzyme Treatments Greatly Enhance Production on Horizontal Completions in Indonesia

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111109

Termination date: 20170127

CF01 Termination of patent right due to non-payment of annual fee