CN1714458A - 用于gaas nems的二维电子气激励和传导的装置和方法 - Google Patents

用于gaas nems的二维电子气激励和传导的装置和方法 Download PDF

Info

Publication number
CN1714458A
CN1714458A CN 03815927 CN03815927A CN1714458A CN 1714458 A CN1714458 A CN 1714458A CN 03815927 CN03815927 CN 03815927 CN 03815927 A CN03815927 A CN 03815927A CN 1714458 A CN1714458 A CN 1714458A
Authority
CN
China
Prior art keywords
nems
layer
resonance
signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 03815927
Other languages
English (en)
Inventor
迈克尔·L.·鲁克斯
卡米尔·L.·埃肯斯
Y.·T.·杨
X.·M.·H.·黄
H.·X.·唐
达里尔·A.·哈灵顿
吉恩·卡赛
杰西卡·L.·阿勒特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
California Institute of Technology CalTech
Original Assignee
California Institute of Technology CalTech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by California Institute of Technology CalTech filed Critical California Institute of Technology CalTech
Publication of CN1714458A publication Critical patent/CN1714458A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

一种双钳制的梁具有处于梁内的不对称压电层,一个栅位于该梁的亚微米距离范围内,形成栅梁偶极子。悬臂梁用Cl2/He等离子体蚀刻形成,该等离子体分别以1∶9的流速比输入到等离子体室内。参数放大器包括一个在共振点驱动的NEMS信号梁和一对在二倍共振点驱动的泵梁,从而在泵梁上产生一个被调制的洛仑兹力以扰动信号梁的弹簧常数。桥电路向第一和第二臂中的第一和第二NEMS梁提供激励信号的两个异相分量。向AC驱动的NEMS器件提供DC电流以调谐共振频率。分析器包括多个具有不同共振频率的压阻NEMS悬臂和多个驱动/传感元件,或者包括多个相互作用的梁从而形成光衍射栅,或者包括多个应变传感NEMS悬臂,其中每一个都响应一个不同的分析物,或者包括多个具有不同IR吸附物的压阻NEMS悬臂。

Description

用于GAAS NEMS的二维电子气 激励和传导的装置和方法
相关专利申请
本发明涉及如下的美国临时专利申请:系列号No.60/379,536,于2002年5月7日提出申请;系列号No.60/379,542,于2002年5月7日提出申请;系列号No.60/379,544,于2002年5月7日提出申请;系列号No.60/379,535,于2002年5月7日提出申请;系列号No.60/379,546,于2002年5月7日提出申请;系列号No.60/379,644,于2002年5月7日提出申请;系列号No.60/379,713,于2002年5月7日提出申请;系列号No.60/379,709,于2002年5月7日提出申请;系列号No.60/379,685,于2002年5月7日提出申请;系列号No.60/379,550,于2002年5月7日提出申请;系列号No.60/379,551,于2002年5月7日提出申请;系列号No.60/379,617,于2002年10月17日提出申请,本文引用其内容作为参考,并依照35 USC 119要求获得其优先权。
共同审理中的专利申请引用
应当清楚地理解,本专利申请引用同时提出的如下专利申请作为参考并作为它们的整体提出,即系列号No.(PAU.35),标题为“用于提供生物纳机电系统(bionems)谐振腔信号分析的方法和装置”(AMethod And Apparatus For Providing Signal Analysis Of A BionemsResonator);和系列号No.(PAU.36),标题为“浸没在液体中的动态生物纳机电系统传感器和BIONEMS阵列传感器”(DynamicsBionems Sensors And Arrays Of BIONEMS Sensor Immersed InFluids)。进一步,本专利申请引用如下的专利申请作为参考并作为它们的整体提出,即美国专利申请系列号No.10/138,538,其于2002年5月3日提出申请,标题为“用于超敏感纳米电化学质量探测的装置和方法”(An Apparatus And Method For UltrasensitiveNanoelectrochemical Mass Detection);和美国专利申请系列号No.09/927,779,其于2001年8月9日提出申请,标题为“用于生化分析的有源NEMS阵列”(Active NEMS Arrays for BiochemicalAnalyses)。
技术领域
本发明涉及基于真空的纳米机械探测器,其将能量、力和质量的一些方面(aspect)或者特性转变成电响应。
背景技术
最近,薄悬式二维电子气异质结构得到了完善,从而被应用纳米级传感器件,例如Blick等在Phys.Rev.B62中叙述的。在Blick等的论文中,Appl.Phys.Lett.68,3763(1996)和Appl.Phys.Lett.73,1149(1998),应力感测场效应晶体管被集成到悬臂中用作挠度读出器(deflection readout)。所采用的FET具有大约1000μS的跨导和大约10MΩ的小信号漏-源电阻,并且其应变灵敏度被认为是产生于压电效应。
对共振机械系统中的运动进行灵敏的探测总是依赖于至少一种下列因素:将运动有效地转换成电信号;和使用低噪音的电读出电路。一般地,对于在真空中工作的具有极高纵横比的微米级结构,转换有足够的响应度从而能够探测到结构的热机械振动。然而,随着器件的尺寸按比例缩小到纳米级,为获得热机械振动或者量子零点运动(quantum zero-point motion)的基本灵敏度极限所需的灵敏转换保持一定纵横比变得相当困难。
因此,纳机电器件的探测灵敏度大体上受读出电路中线性电放大器的输入噪音的限制,而不是受固有振动的限制。为了避免该限制,在将信号传输到线性电放大器之前,需要用非线性放大器放大该信号。幸运的是,纳机电系统(NEMS)的一个主要特性是容易获得非线性。
在过去数十年里已经证实,一些微制造系统中存在机械参数放大。在所有这些系统中,谐振腔(resonator)运动的放大都是通过将谐振腔的弹簧常数调节在其自然频率的两倍实现的。这些系统的显著特征是它们的带宽、动力学范围和弹簧常数的调制特性。Rugar和Grutter首先证实了微制造器件中的机械参数放大。在他们的器件中,硅悬臂弹簧常数的电分量通过在悬臂和基板(baseplate)之间形成电容器并改变两个表面上电极之间的电压加以调制。他们的器件带宽为ω0/4Q=5.3Hz,其探测灵敏度足以获得热机械噪音压缩(thermomechanical noise squeezing)的第一个范例。Dana等在部分金属化砷化镓悬臂中观察到了参数放大,其中该悬臂被金属与砷化镓之间热失配导致的残余应力弯曲。弹簧常数的调制是通过在待放大的小机械信号上叠加一个大的泵驱动(pump drive),从而获得由弯曲的几何形状导致的二阶几何非线性。该实验中的带宽也在6Hz的量级。Carr等在500kHz下工作的表面微机加工扭转谐振腔(surfacemicromachined torsional resonator)中证实了参数放大,带宽为1KHz。在该器件中,在谐振腔和衬底之间形成了电容器,且弹簧常数的电分量也是被外加通过电容器的泵信号调制的。所有这些实验显示,机械增益最多为20,泵电压的域值从200mV到几伏。
用于VHF NEMS的平衡电子位移探测
最近将微机电系统(MEMS)按比例缩小到亚微米范畴的努力开启了有源研究的领域,同时吸引了技术和科研团体的兴趣。这些纳机电系统(NEMS)具有达到微米波段的基波机械共振频率,并且适用于许多重要的科技领域,例如超快驱动器、传感器和高频信号处理部件。在实验方面,它们使得对新声子介导的机械过程的研究和对介观(mesoscopic)机械系统量子行为的研究成为可能。
开发基于NEMS的技术并进入由其开启的有趣实验领域最需要的因素之一就是对亚微米位移敏感的灵敏、宽带、芯片上转换方法。尽管使用电耦合的磁、静电和压电传感器已经成功实现了对MEMS级位移的探测,但是这些技术中的大多数在亚微米等级上变得不灵敏。而且,由于伴随NEMS尺寸的降低会不可避免地遇到杂散耦合(straycoupling),大多数MEMS器件诱人的电子双端口(two-port)激励-探测构型难以在NEMS级别上实现。
能够良好地按比例缩小到NEMS范畴并且能够与NEMS位移直接电子耦合的芯片上位移转换方法是磁势探测。对射频(RF)NEMS的磁势反射测量已经被大量地使用并且被详细地加以分析。用于该测量的工作电路如图19(a)所示,其中NEMS被模拟为并联RLC网络。当由电源在ω下驱动时,RL上的电压能够被探测为:
V 0 ( ω ) = V in R e + Z m ( ω ) R L + 2 ( R e + Z m ( ω ) ) ≅ V in ( ω ) R e + Z m ( ω ) R L + 2 R e - - - 4.1
这里,Re是NEMS器件的电子DC耦合电阻,Zm(ω)是谐振腔的机械阻抗,RL和Rs分别是电源和负载的阻抗,并且进行简化假定RL=Rs=50Ω。我们近似估计Re>>|Zm(ω)|,这是大多数实验系统的情况。显然,由于和Zm(ω)成正比的NEMS位移导致的EMF测量值被淹没(embeded)在与Re成正比的背景电压中。这便于定义一个有用的参数——机械共振频率下的探测效率,其是信号电压S与背景B之比:
S B = R m R e - - - 4.2
上面的表达式指示了反射、单端口磁势位移探测的一些限制。首先,在没有金属化层或者具有高共振频率(小机械阻抗)的目标NEMS器件中,也就是当Re>>Rm时,EMF的探测变得极具挑战性。其次,信号中的电压背景禁止使用探测电子的全部动态范围。位移激励和探测的双端口构型可能通过提高S/B弥补上述问题,但实际上,端口之间的杂散电子耦合典型地会主导响应的测量值。
超高频碳化硅纳米机械谐振腔
最近,人们在制造和测量基波共振频率达到UHF(超高频率)和微米波带的纳米机械谐振腔中付出了巨大的努力。这些研究和发展无论在科学上还是技术上都具有很大的重要性。在基础科学领域,这种器件为通过观察介观机械运动检验量子力学和对标准量子极限的超敏感测量提供了诱人的潜力。在技术方面,当用作高分辨率传感器和致动器,或者用作高速信号处理部件时,纳米机械系统(NEMS)能够提供比现今工业上使用的大得多的可集成性。
最近,Cornell大学的Carr等报道,成功地测量了基波共振频率高达380MHz的单悬导线(single suspended wires)。然而,在他们的论文中指出,“长度小于2μm的导线不容易被探测”,这暗示,如果将来没有重大的新进展,那么380MHz接近于由他们的技术能够获得的最高基波共振频率。
通过洛伦兹力频率调谐MEMSINEMS谐振腔
将MEMS用作高性能传感器和传感器,需要在制造之后对器件频率进行调谐或调节。在MEMS文献中提出了几种用于器件频率调谐的不同方法,可将机械共振调高达数倍。这些方法能够被经典地分成两类,即改变由机械弹簧提供的回复力的方法和补充由机械弹簧提供的回复力的方法。前一种方法中最简单的实例是被钳制梁的热振荡(thermal cycling)。随着梁随温度的改变而缩短或者延长,共振频率由于梁内感生的应力而偏移。后一种实例通过补偿微机械器件中的静电激励器而实现,其中静电激励器与机械弹簧力一起提供静电回复力。
因为NEMS器件中的机械共振频率越高意味着弹簧常数越高,所以可以预期,通过改变机械回复力的力调谐在高频谐振腔中效果较小。为了评估高频率MEMS(f>1MHz)的调谐前景,我们就器件频率对恒力(constant force)和温度改变的依赖性进行了一些研究。我们的测量结果指出,随着器件频率提高,调谐效应确实变得不明显,隐没在其它的影响之中,例如热频率偏移等。当共振频率超过5MHz时,使用我们目前的技术不可能实现力调谐。在较低频谐振腔中(1MHz<f<3.5MHz),结构在微机械制造期间产生的应力以及电接触层中的应力可能控制低力调谐的应用。热调谐也强烈地依赖于器件的频率,具有最大弹簧常数的器件显示出最小的调谐。
利用磁势转换对弯曲和扭转谐振腔进行位移探测的最终限制
微机械器件已经广泛地应用于工作频率为1-100kHz的电子器件。因此,目前存在许多完善建立的适合于该频率范围的运动探测技术。因为在超过100MHz下工作的纳米机械器件被预期会在RF信号处理中发挥重要作用,所以需要全面地说明这些技术在该频率范围内的特性。特殊探测技术的使用取决于三个因素:(1)将运动高效地转换为可测量的信号,(2)信号与测量装置高效耦合,和(3)低噪音探测器的可实现性。现在需要的是量化在微机械谐振腔部分中描述的磁势探测技术的性能。
NEMS阵列标量分析器/相关器
机械阵列频谱分析器的概念已经提出了数十年。在一个众所周知的实施例中,分析器通过共振簧片(悬臂)起作用,该共振簧片(悬臂)由外加的随时间改变的波形加以谐振或者静电驱动。如果信号所含的频谱权重(spectral weight)位于给定元件能够进行共振响应的波带内,则能够使该元件运动,并且运动的幅度与该波带的频谱权重成比例。这些器件的一个普通应用是作为例如旋转结构的转速计,该实例中使用由轴编码器产生的AC电压静电地驱动簧片阵列。
微悬置器件能够形成超敏热辐射探测器的基本结构(basis),因为它们的热容极小,热传导极少,并由于这两个孪生性质导致其热响应时间极快。先前技术利用这些性质论证了微型MEMS阵列IR成像仪(imager)。元件被机械地读出;根据IR辐射的吸收,覆盖层产生与下置悬臂器件相比不同的热膨胀。然后通过分离光位移读出方法(separate optical displacement readout scheme)探测应变导致的弯曲。该领域的其他工作是基于在悬臂式微型器件上形成图案的不同材料之间产生的温差电压。该实例中,尽管读出是电性的,但是功能性的提高仍然来自于孤立(isolated)传感元件的微小(微米级)特性。
现在需要的是,通过使用NEMS技术获得从UHF到微波频率的机械响应,为超低工作功率水平和单光刻、超压缩格式提供前景,从而复兴这种分析器。
发明内容
纳机电系统,或者NEMS,是按比例缩小到亚微米尺寸的机械器件。在该尺寸范围内,有可能获得极高的基频,同时为共振机械响应保留非常高的机械响应性(小力常数)和相当高的品质因数(Q)。这些性质的强力组合直接转变成用于机械感测的光学特性,例如
a)高能量、力和质量敏感性
b)能够在超低电压下工作
c)用非常中等的控制力产生可用的非线性的能力。
因此,NEMS产生了需要快响应时间的机电器件装置;能够获得与当今大多数纯电子器件相当的工作频率。
有可能实现多端口机电器件,也就是,具有两个、三个、四个端口的器件。其中,单个机电传感器能够同时提供输入刺激,也就是信号力(signal force),和读出机械响应,也就是输出位移。在下文中,它们分别被称作激励器和(位移)传感器。通过附加的控制传感器,能够施加电信号——准静止的或随时间改变的——并将其转变成准静止的或者随时间改变的力,其以可控的或者有用的方式激励或者扰动机械元件的性质。利用机电转换和激励的不同物理过程允许这些端口之间产生高度独立的相互作用,能够有效地在输入、输出端口之间以及有可能在多控制端口之间实现“正交”。换言之,每个端口都能够与机械元件强烈地相互作用,同时彼此之间保持相对弱的直接耦合。对于随时间改变的刺激,当以频率转变为目标时,该正交能够通过被调谐的或者窄带传感器加以提供,该传感器响应来自控制信号,例如泵信号,的(频率)选择输入和输出信号。
信号范畴与位移之间的转换
位移范畴的输出信号能够是静态偏移、共振响应、稳态调制诱发的振幅、稳态谐波调制诱发的振动、或者噪音频谱修饰等。下表代表了转换模式的范围:
  输入信号范畴   敏感形式(相关响应性)
  能量   能量损失(阻尼、Q因子)
  热参数   热机械噪音增加
  力   静态位移(服从)和/或共振位移(动态服从)
  质量变化   频率偏移(质量响应)
纳米机械传感器
服从元件
服从元件是尺寸按比例缩小到亚微米尺寸的机械结构,它们可以移动或者被替代。由于它们的尺寸极小,所以它们能够作为微观世界的有效探针。这些结构通常用半导体材料制成。例如,在本发明中,我们使用GaAs、Si、SiC和GaAs/AlGaAs异质结构。有时,能够使用纯金属或者金属合金。材料的选择很大程度上取决于它们的电、化学和机械性能。传感器的几何形状是设计的一个重要因素。有限元仿真在评估共振频率、弹簧常数、力/质量敏感性时是有用的。
传感器
传感器是产生压电、压阻、磁势转变或者其它从输入信号范畴到感测形式转变的结构。典型地,传感器是用于产生由洛仑兹力产生的emf的组成结构层(compositional structural)或者电流路径和电源。
驱动器
驱动器(actuator)是产生NEMS器件机械运动的结构,其可以是用于在磁势传感器中产生驱动洛仑兹力的外部电流和磁场的组合,在相邻电极上产生偶极子场的电流,或者甚至周围液体的随机热振动。
纳米机械传感器系统
传感器系统包括简单的一元系统,或者更复杂的复合元件设计以获得特殊的功能性。传感器中产生的感测电信号或者传感器电参量的改变可以在桥、单端口、双端口或者其他的多端口组合中加以感测。
本说明书中的“NEMS”用于表示至少有一个维度等于或者小于一个微米的器件。并不排除如下的可能,即“NEMS”器件可以具有一个或者多个大于一个微米的维度。而且,可以理解,尺寸等于或者低于一个微米的器件的特性与尺寸大于一个微米的器件的特性之间的区分没有明显的界限。该术语更有意义的重要性在于,所讨论的“NEMS”器件可以分享被按比例缩小到亚微米尺寸的类似器件的某些特性,其中该特性仅属于亚微米器件或者操作。
本发明涉及一种装置和方法,其产生基于我们的能力的高分辨率位移读出,从而获得很高灵活性的悬置式量子线。双端口传感器的阻抗仅5kΩ。分子束外延(MBE)生长材料被直接绘制图形,并使用共面栅(in-plane gates)(IPG)激发振动。不需要金属化。因此能够获得高Q值。
本文说明的机械参数放大器是解决探测灵敏度问题的一个特殊方法,它使用NEMS固有的几何非线性。
本发明可以更明确地定义为单光刻制造装置,其包括双钳制悬臂梁,该悬臂梁具有亚微米的宽度,在梁内部或者上面制造的不对称布置机电转换层。在梁的亚微米范围内提供至少一个侧驱动栅。
不对称布置的机电转换层包括梁内的不对称布置压电层。该梁用2DEG异质结构制造。
在一个实施例中,梁具有电接触,并形成具有输出端口的双端口电路,并进一步包括一个与梁并联的感应器和一个与梁的输出端口耦合的阻塞电容器(blocking capacitor)。一个低噪音低温放大器耦合于该阻塞电容器。
栅具有栅偶极子电荷分离(separation),且梁具有梁偶极子电荷分离,从而梁和栅通过偶极子-偶极子相互作用而相互作用。侧栅包括一个2DEG层。
在例证性实施例中,梁和侧栅包括一个芯片,并且进一步包括一个在上面布置该芯片的衬底,该衬底上面形成一个电极,其中栅在衬底电极与栅之间具有栅偶极子电荷分离。梁具有梁偶极子电荷分离,梁和栅的相互作用是通过偶极子-偶极子相互作用。
在一个实施例中,梁和栅用由2DEG GaAs压电层构成的不对称异质结构堆叠制造而成,两个夹层AlGaAs隔离层位于GaAs层的两侧,第一和第二AlGaAs:Si施主层分别位于AlGaAs隔离层的上面和下面,两个GaAs帽层分别位于AlGaAs:Si施主层的上面和下面。2DEG GaAs压电层下面的每个层的厚度大于2DEG GaAs压电层上面的相应层。在堆叠下面布置一个AlxGa1-xAs牺牲层,在AlxGa1-xAs牺牲层下面布置一个衬底,其中0<x<1。
装置可以进一步包括两个栅,每一个都布置在梁的亚微米范围内,且每一个都具有一个栅偶极子电荷分离。
装置进一步包括一个向梁提供感测电流的电源,和一个与梁电路连接以产生输出信号的放大器。在例证性实施例中,放大器是低温的。
感测电流源向梁提供DC和AC感测电流。
在一个实施例中,梁的转换层是压电的,用于诱发梁的振动,也是压阻的,用于感测梁的振动。
本发明还进一步涉及对用于形成具有二维电子气层的悬臂式NEMS梁的方法的改进,包括如下步骤:提供一个异质结构堆叠,其包括位于牺牲层上面的2DEG层;在堆叠上选择性地设置掩模从而为NEMS梁限制图形;用Cl2/He等离子体腐蚀剂干腐蚀掉堆叠的暴露部分从而基本上不改变2DEG层电性能地限定NEMS梁;和腐蚀掉牺牲层从而释放NEMS梁。
用Cl2/He等离子体腐蚀剂干腐蚀掉堆叠暴露部分的步骤包括分别以1∶9的流速比向ECR等离子体室内供应Cl2和He。
向ECR等离子体室内提供Cl2和He的步骤进一步包括将堆叠保持在等于或者小于150V的自偏压和20W的恒定RF功率下,和用大约300W或者更高的微波功率使Cl2和He气体离子化。
本发明还涉及NEMS参数放大器,其包括:一个悬臂式振荡亚微米信号梁,其被限制在一个平面内,对于共面运动具有弯曲的(flexual)弹簧常数,并且以等于或者接近信号梁机械共振的频率在ω下加以驱动;一对泵梁,其耦合于信号梁,并在等于或者接近2ω下加以驱动;一个磁场源,其施加一个磁场,该磁场具有至少一个垂直于信号梁和泵梁对的分量;和一个交变电源,其与泵梁电耦合,在磁场的存在下施加一个通过泵梁的电流从而在泵梁上产生一个被调制的洛仑兹力,被调制的洛仑兹力顺次向信号梁施加一个振荡收缩和伸张的力从而扰动信号梁共面振动的弯曲弹簧常数。放大器可以与梁耦合。
泵梁和信号梁在平面内共同形成一个H形结构,该信号梁形成H形结构的中间部分。泵梁被调谐成以2ω共振。
本发明还涉及操作上述NEMS参数放大器的方法。
本发明还涉及亚微米悬臂,其特征是具有限制部分的NEMS悬臂的亚微米位移;一个耦合于悬臂的压阻应变传感器外延层;其中G是装置的量规因数,由下给出:
G = 3 β π L K ( 2 l - l 1 ) 2 b t 2 R T
其中参数πL是压阻传感器材料的压阻系数,因此β表征由于传导层的有限厚度导致的G的降低,K是悬臂的弹簧常数,l是悬臂的全长,l1是限制部分的长度,b是限制部分的厚度,t是限制部分的厚度的厚度,RT是传感器的双端阻抗。
接近共振,热机械振动的力频谱密度由下给出:
S F γ = 4 k B Tr = 4 K k B T / ( 2 πQ f 0 )
其中,kB是玻尔兹曼常数,T是温度,γ是阻尼系数,f0是共振频率,Q=mf0/γ是品质因数,m是悬臂质量。
接近共振,热机械振动的电压频谱密度由下给出:
S V γ = S F γ G 2 l 2 16 π 2 m 2 f 0 2 [ 4 ( f - f 0 ) 2 + f 0 2 / Q ]
其中f是悬臂的振荡频率。
本发明涉及用于按比例缩小和确定NEMS器件中载流子分布的方法,该NEMS器件具有位于本征层(instrinsic layer)上的不同掺杂浓度和不同厚度的掺杂层,该方法包括:提供具有预定厚度的掺杂层;在掺杂层中提供掺杂浓度;调制费米能级直到通过满足如下条件获得电荷中性:
∫ 0 l ( ρ ( x ) / e + N A - ( x ) ) dx = 0
其中,
Figure A0381592700262
是离子化受体位点的密度,其中ρ是由费米统计给出的载流子体积密度,ρ(x)=e(p(x)-n(x)),且正和负载流子密度分别是
p ( x ) = 1.04 × 10 25 e - β ( E F - E V ) / m 3
n ( x ) = 2.8 × 10 25 e - β ( E C - E F ) / m 3
其中β是1/kT,EF是费米能,EV是价带能,EC是导带能;根据如下的方程确定价带的弯曲:
d 2 E V dz 2 = eρ ( x ) ϵ
其中EV是价带能,ε是介电常数,e是电子电荷,边界条件为:
d 2 E V dz 2 | z = 0 = eσ ϵ .
其中σ是经验表面载流子密度;重复执行上述的调制和确定步骤直到使载流子密度ρ获得收敛。
本发明还涉及一种桥电路,其包括:一个激励信号源;一个与源耦合的功率分配器,用于产生激励信号的两个异相分量;一个与功率分配器耦合的第一激励端口;一个与功率分配器耦合的第二激励端口;一个与第一激励端口耦合的第一电路,包括具有被转换电输出的第一NEMS共振梁;一个与第二激励端口耦合的第二电路,包括具有被转换电输出的第二NEMS共振梁,该第一和第二梁彼此相互匹配;和一个探测端口,其与DC耦合电阻Re和NEMS共振梁耦合。
该桥进一步包括一个可变衰减器和一个相移位器,它们与第一和第二电路臂的相对末端电耦合。与没有该衰减器相比,有该衰减器能够更加精确地平衡第一和第二电路臂之间的输出阻抗失配,同时相移位器补偿由于包括该衰减器导致的相失衡。
NEMS共振梁包括一个用于吸附测试材料的表面,其中NEMS共振梁的性能受到测试材料的影响并由该桥加以测量。
该桥进一步包括一个放大器和一个将探测端口耦合于该放大器的输出阻抗失配电路。第一和第二NEMS共振梁是磁势NEMS共振梁,并且没有金属化。
本发明进一步涉及平衡上述桥电路中两个NEMS器件的输出的方法。
本发明被定义为一种设备,其包括一个驱动源;一个与源耦合的功率分配器,用于产生反相的驱动信号;第一磁势NEMS共振梁,其与功率分配器所产生的驱动信号的一个相相耦合;第二磁势NEMS共振梁,其与功率分配器所产生的驱动信号的另一个相相耦合;一个接线端,其与两个磁势NEMS共振梁耦合;一个放大器,其与接线端耦合;和一个耦合于放大器的装置,该装置用于测量设备前向传输系数S21的频率依赖性。
第一和第二磁势NEMS共振梁由SiC构成,并且进行共面共振和异面共振。在其中一个NEMS共振梁上布置一个的吸附表面,并通过测量装置测量吸附物在吸附表面上的吸附。
本发明涉及一种方法,该方法包括如下步骤:提供激励驱动信号;将激励驱动信号分成两个异相分量;向具有第一被转换电输出的第一NEMS共振梁提供其中一个异相分量;向具有第二被转换电输出的第二NEMS共振梁提供其中另一个异相分量,该第一和第二梁彼此相匹配;振动第一和第二NEMS共振梁;加和第一和第二被转换电输出从而产生平衡探测输出信号;在放大器中放大平衡探测输出信号;和测量正向传输系数S21的频率依赖性。
振动第一和第二磁势NEMS共振梁的步骤包括使梁进行共面共振和/或异面共振。
本发明可以被进一步定义为对磁势驱动的亚微米NEMS共振梁的一种改进,其包括:一个亚微米SiC NEMS梁,其具有一个表面,轴长度为L,宽度为W,杨氏模量为E,质量密度为ρ,位移幅度为A;一个磁场源,B;一个布置在梁表面上的电极装置,用于沿着梁的轴向长度的至少一部分传导电流;一个耦合于电极装置第一末端的交流电源,从而磁势驱
动SiC NEMS梁到一个共振频率 f 0 = E ρ E L 2 ; 和一个耦合于电极装置第二末端的探测器,从而探测从SiC NMES梁产生的Vemf
V emf ∝ BA E ρ W L .
电极装置包括一个单电极,其耦合于交流电源,用于驱动磁场中的梁,并耦合于探测器,用于感测由梁的运动在电极中产生的EMF。
电极装置包括一个耦合于交流电源的第一电极,用于驱动磁场中的梁,和一个耦合于探测器的第二电极,用于感测由梁的运动在电极中产生的EMF。
SiC NEMS梁的尺寸和参数能够提供处于UHF范围和更高的、特别是微波L带范围内的基波共振频率。
本发明涉及调谐具有异面共振的亚微米NEMS器件的方法,包括如下步骤:提供一个磁场,在其中布置NEMS器件;向NEMS器件提供AC电流,从而使NEMS器件在磁场中以共振频率振荡;向NEMS器件提供DC电流,从而以恒定的洛伦兹力调谐NEMS器件的异面共振频率。
向NEMS器件提供DC电流的步骤包括向金属化提供DC电流。
NEMS器件还具有共面共振,且该方法进一步包括改变NEMS器件的温度从而调谐NEMS器件的异面和共面共振的步骤。
本发明还涉及一种可调谐NEMS器件,其具有通过上述方法调谐的异面共振。该NEMS器件包括一个半导体-金属双层,其由单晶高掺杂半导体构成,且上面布置的金属化是多晶金属以减少半导体-金属双层中的应力。
本发明的特点是对共振亚微米单端口NEMS器件的一种改进,其包括一个共振梁,其宽度为W,厚度为t,轴长为L,探测器负载电阻为RL,等价机械阻抗为Rm。该NEMS器件在相应于波长λ的频率下工作,在导电率为σ的梁上具有一个电极,从而插入损失(insertionloss)ε被定义为:
ϵ 1 = α 2 ( 1 + α ) ( 1 + α + R m λσtw L ) , 其中 α = λσ R L tw L 被最小化或者接近1。
本发明涉及对共振亚微米双端口NEMS器件的一种改进,其包括一个共振梁,其宽度为W,厚度为t,轴长为L,探测器负载电阻为RL,等价机械阻抗为Rm。该NEMS器件在相应于波长λ的频率下工作,在导电率为σ的梁上具有一个电极,从而插入损失ε被定义为:
ϵ 2 = 1 2 α 1 2 ( 1 - α 1 - 0.75 α ) 1 2 , 其中 α = λσ R L tw L 被最小化或者接近1。
本发明涉及对耦合于负载电阻为RL的放大器的双端口、直、双钳制NEMS磁势梁的一种改进,该NEMS梁的长度为L,厚度为t,宽度为w,杨氏模量为E,质量密度为ρ,位于磁场内,其金属化的导电率为σ,温度为T,驱动信号波长为λ,共振频率为f0,放大器频谱功率密度为Sa v。通过选择使频谱位移灵敏度Sm x(2)等于或者大于与NEMS梁的热波动相对应的频谱位移密度,该频谱位移灵敏度Sm x(2)如下定义:
S X ( 2 ) m = 1.68 σ 1 2 λ 1 2 B ( ρ E ) 1 8 f 0 - 3 4 t - 3 4 w - 1 2 [ k B T + S V a R L ( 1 - 0.75 α 1 - α ) ] 1 2
其中kB是洛仑兹常数,且 α = 0.99 R L σλ ( ρ E ) 1 4 f 0 1 2 t 1 2 w .
本发明涉及一种用Si膜制造NEMS梁的方法,包括如下步骤:提供Si衬底;在Si衬底上布置SiO2层;在SiO2层上布置Si外延层;选择性各向异性腐蚀Si衬底的一部分直至用作停止层的SiO2层;选择性腐蚀SiO2层的一部分暴露出悬浮的Si外延层膜;和在悬浮的Si外延层膜内形成NEMS梁,借此避免毛细扭曲(capillary distortion),并获得电子束分辨率而没有来自衬底的直接散失。
本发明涉及一种用GaAs膜制造NEMS梁的方法,包括如下步骤:提供GaAs衬底;在GaAs衬底上布置AlGaAs层;在AlGaAs层上布置GaAs外延层;选择性各向异性腐蚀GaAs衬底的一部分直至用作停止层的AlGaAs层;选择性腐蚀AlGaAs层的一部分暴露出悬浮的GaAs外延层膜;和在悬浮的GaAs外延层膜内形成NEMS梁。
选择性各向异性腐蚀GaAs衬底的一部分直至用作停止层的AlGaAs层的步骤,包括用NH4OH或者柠檬酸溶液腐蚀。用NH4OH溶液腐蚀的步骤包括,用在腐蚀前新鲜配制的由NH4OH和H2O2构成的溶液腐蚀,其体积比近似为1∶30。
用柠檬酸溶液腐蚀的步骤,包括用室温浴液腐蚀,该室温浴液包括与去离子水按重量比1∶1混合并完全溶解的柠檬酸一水化合物,然后将该1∶1混合物与H2O2以3∶1体积比混合形成浴液。
本发明涉及一种NEMS阵列分析器,其包括两个相对平行的衬底;多个从其中一个衬底延伸的压阻NEMS悬臂,每个NEMS悬臂具有不同的共振频率从而相应的多个共振频率覆盖所选择的频谱范围;和多个从另一个衬底延伸的驱动/传感元件,每个驱动/传感元件主要与多个压阻NEMS悬臂耦合。
本发明涉及一种NEMS阵列分析器,包括:一个框;多个NEMS结构,其形成相互作用的阵列从而形成光衍射栅;用于响应输入信号驱动多个NEMS结构的装置;和光源,用于照明该多个NEMS结构;和探测器装置,用于探测来自多个NEMS结构的衍射光,这些结构联合作用作为随时间改变的衍射栅。
本发明涉及一种电化学传感阵列,包括:多个应变传感NEMS悬臂,每一个上面都布置有响应相应分析物的覆盖层,覆盖层的响应在相应悬臂上施加一个应变;和用于探测多个应变传感NEMS悬臂中每一个的应变的装置。覆盖层的响应包括覆盖层体积的扩张或者收缩变化,其导致在相应悬臂上施加应变使其弯曲,且其中用于探测的装置包括用于探测每个悬臂弯曲量的光学探测器阵列。该覆盖层的响应包括质量负载,其导致每个相应悬臂的总固有质量改变,且其中用于探测的装置包括用于探测每个悬臂的共振频率偏移改变的装置。
本发明涉及一种NEMS红外传感阵列,包括:两个相对平行的衬底;多个从其中一个衬底延伸的尺寸相似的压阻NEMS悬臂,每个悬臂具有相应于不同IR频率的相应IR吸收器(absorber),并根据每个IR吸收器吸收的IR量诱发相应的差分热膨胀;和多个从另一个衬底延伸的驱动/传感元件,每个驱动/传感元件主要耦合于多个压阻NEMS悬臂的其中一个。
尽管出于使对功能的解释在语法上流利的缘故说明了一些装置和方法,但是应当明确理解,权利要求,除非在35 USC 112中明确说明的,并不受“装置”和“步骤”的任何限制,而是在等价的法律条文下与权利要求所限定的含义和等价物的整体范围一致。在权利要求在35USC 112中有明确说明的情况下,权利要求与35 USC 112的全部法律上的等价物一致。现在,通过参考附图更好地说明本发明,其中类似的元件用类似的指代数字表示。
附图说明
图1a是图1b所示的异质结构在不同的厚度t处能带能级的曲线图。
图1b是图解堆叠的侧剖面图,其中构建了本发明的NEMS器件。
图2是本发明偶极子激励机构的剖面图,显示出偶极子在位于梁p1与dp2之间的梁上以及驱动栅上的形成。
图3(a)是本发明使用的双钳制梁的扫描电子显微镜图象。共面栅由2DEG形成。
图3b是测量设置的示意图。
图3c是在本发明的等离子体腐蚀步骤中使用的ECR室的简化侧剖面图。
图3d(i)-(v)是图解制造图1b异质结构所使用的2DEG的步骤的系列剖面图。
图4a是随着以逐渐增加的驱动振幅将梁驱动到其最低的机械共振,跨梁电压降对频率的曲线图。DC偏置电流固定在5μA。在插图中,振幅响应的峰值在线性范围内是驱动振幅的函数。
图4b是在不同的DC偏置电流下,幅共振电流对频率的曲线图。在插图中,与感测电流共振的信号振幅从-26μA增加到26μA。
图5是在各种温度下幅响应曲线对频率的曲线图。
图6是通过机械预放大器的缩影图,该机械预放大器在硅上通过表面纳米机械制造厚度为200nm的碳化硅层制造而成。金属电极用50nm厚的Au层绘制图形。
图7是显示全机械参数放大器操作原理的简图。信号电极用于激励和探测信号梁,而泵电极调制其弯曲弹簧常数。
图8是一个电路的电路图,该电路用于图解实施例参数放大器的增益测量。
图9是频率偏移Δf/f的简图,其是施加给泵梁的横向DC力的函数。该力是信号梁上的一个有效压缩(正)或者伸张(负)力。频率偏移的线性分量由该力产生,而二次分量由泵梁中的电流导致的欧姆热产生。
图10是参数放大器有限元模拟的简图,该参数放大器处于由图9所示信号梁上的压力或者张力产生的1nN的静载荷下,该静载荷被提供给泵梁。如果不存在泵梁从而负载被直接施加到信号梁的末端,则信号梁的压缩将是预期的0.235倍。
图11是显示增益对信号与泵激励之间相差的依赖性的简图。根据相,信号或者被放大或者被去放大。如所预期的,放大和去放大的幅度随磁场的增强而增大。
图12是信号梁对失共振频率激励的响应的简图,该泵梁以两倍的共振频率加以驱动。描点图显示了侧带在ω下的强度。对于接近阈值的泵激励,器件带宽显著降低。
图13是热机械噪音放大的简图。在8.2mV的泵电压下,Φ=0增益是39,而共振的品质因数从10600增加到180000。
图14是参数机械放大器输出噪音的矢量图。左上图显示了无激励、无泵信号梁的锁定放大器测量。其显示了放大器独立于相的输出噪音。右上图显示了无激励和5mV泵电压下信号梁的测量。波动仍然由电放大器主导。左下图显示了无激励和8.1mV泵电压下信号梁的测量。在1/4个周期中,热机械振动被放大超过放大器的输入噪音。在另外1/4个周期中,泵的效应没有显示出来。
图15是比较每1/4个周期中增益与噪音水平的简图,其被标准化到泵关闭时的数值。泵的效应是增加信噪比,特别是对于Φ=2π的相。
图16是显示增益对提供给泵的电压的依赖性的简图。在低泵振幅下,增益独立于信号梁的激励。在高泵电压下,当运动的rms振幅达到360pm时,增益开始饱和。
图17是130nm厚样品中载流子分布的简图,其中掺杂剂层厚30nm,掺杂剂浓度为4×1025m-3
图18是130nm厚样品中载流子分布的简图,其中掺杂剂层厚7nm,掺杂剂浓度为4×1025m-3
图19a、19b、19c和19d涉及磁势反射和桥测量。图19a是图解磁势反射的示意图,图19b是图解桥测量的示意图。图19c是图19b典型桥器件的扫描电子显微镜(SEM)图象。图19d是反射和桥布局的示意图,分别显示了单一和平衡梁构型的透视图。
图20a是双钳制B掺杂Si梁的简图,在上面曲线的反射中和在下曲线磁场强度B=0,2,4,6T的桥构型中,梁在25.598MHz下共振,Q大约为3×104。图20b是反射及桥构型宽带转移函数(broadbandtransfer function)振幅简图。
图21是传输系数(S21)振幅的简图,该传输系数是桥构型SiC梁在不同的磁场强度B=2,4,6,8T下测得的。
图22a-22d是器件一个实施例的SEM图象。图22a是顶视图。图22b是侧视图。图22c是一个梁的放大顶视图。图22d是一个梁的放大侧视图,显示了清晰悬置的机械结构。
图23是测量设置的示意图。
图24是所研究网络前向传输系数S21频率依赖性的三维图。插图显示了复杂函数在S21面上的投影。
图25是反馈给预放大器的信号振幅的简图。其是从粗数据中减去背景函数之后通过获取模量获得的,见本文减法处理部分。
图26是显示器件顶视图的SEM图象,用于图解高频调谐。
图27是共振测量值对Si和GaAs梁纵横比的简图。
图28是在施加了洛仑兹力之后,GaAs梁异面频率偏移的简图。
图29是图28所示频率偏移作为所施加力的函数的描点图。
图30是共面方向上洛仑兹力调谐的简图。
图31是图29所示频率偏移作为调谐力的函数的描点图。
图32是梁的两种模式温度偏移的简图。
图33是三个Si梁共振频率温度依赖性的简图。
图34是四个GaAs梁共振频率温度依赖性的简图。
图35是图29修正数据的简图。
图36是机械共振等价电路的示意图。
图37是单端口驱动和探测电路的示意图。
图38是单端口测量等价电路的示意图。
图39是双端口探测电路等价电路的示意图。
图40是弯曲(左)和扭曲(右)谐振腔典型设计的简化顶视图。
图41是双端口磁势探测技术的灵敏度作为频率的函数的简图,与热机械噪音作比较。
图42是50Ω放大器对于受热机械噪音限制的磁势灵敏度所需输入噪音水平的简图,其是电极导电率的函数。
图43a-43d是用体微机械制造方法制造Si膜的方法的侧剖面图。
图44a-44d是用体微机械制造方法制造GaAs膜的方法的侧剖面图。
图45a和45b是GaAs中用NH4OH腐蚀的阱的SEM图象,图45a显示了从背面看的倾视图,沿[011]面分开,图45b显示了[011]面的正视图。注意侧面和底部是光滑的并且被良好限制。
图46a和46b是GaAs中用柠檬酸腐蚀的阱的SEM图象,图46a显示了从背面看的倾视图,沿[011]面分开,图46b显示了[011]面的正视图。注意侧壁的降低(desending)和底表面的粗糙度不均匀。短划线表示[011]分割面。
图47是基于能谱分析器的NEMS阵列的简化透视图。阵列内的元件被沿着共用传输线电极突出的局部棒(stub)静电激励。每个共振元件都分别被压阻地读出。元件长度交错,和在振动簧片转速计中一样,从而使期望的能谱范围收敛。
图48是NEMS阵列能谱仪的简图,其基于在耦合阵列中产生的集合模式。信号被施加到整个阵列,但读出是光学的,并且涉及使光电二极管阵列同步分辨衍射量级。
图48a是图48中阵列的放大SEM图象。
图49是基于电子噪音的NEMS阵列的简图,其中共振传感器用于监视质量负载和由于化学和生物化学吸附物引发的表面应变改变。
图50是基于未冷却IR成像仪的NEMS阵列的简图。共振传感器阵列用于监视由于吸收IR能量诱发的异面弯曲。IR吸收器加热诱发的局部辐射导致吸附物与悬臂之间热膨胀不同。共用静电偏置/驱动连接为阵列的扫频询问(swept frequency interrogation)提供一个局部dc静电偏置和一个共用ac驱动电极。
图51a是压电悬臂的扫描电子显微镜图象。器件的尺寸为长15μm,宽2μm和厚130nm,厚度的上30nm形成导电层(硼掺杂密度为4×1019/cm3)。该器件b=0.5μm,l1=4μm。
图51b是悬臂位移的简图,其作为时间的函数,用原子力显微镜尖端进行研究从而将悬臂移动已知的量。这产生了一个直接的测量结果G=dRT/dx=3×107Ω/m。
图51c是悬臂电阻的简图,其作为相应于图51b的时间的函数,用原子力显微镜尖端进行研究从而将悬臂移动已知的量。这产生了一个直接的测量结果G=dRT/dx=3×107Ω/m。
图52是真空中纳米机械共振峰的简图。品质因数对压力的依赖性如插图所示。这些测量使用102μA的偏置电压。
图53a和53b是9K下测得的热机械噪音的简图。
图54a-54c是按比例缩小的压阻结构的示意性侧剖面图,其中按比例缩小通过附加半导体层加以增大从而将载流子限制在一个量子阱内。
图55是按比例缩小的压阻结构的示意性侧剖面图,其中按比例缩小通过布置在绝缘体上的量子阱加以放大。
现在通过参考下文优选实施例的详细说明能够更好地理解本发明及其各种实施例,这些实施例是作为由权利要求限制的本发明的例证性实例提供的。显然可以理解,由权利要求限制的本发明比下文说明的例证性实施例更广泛。
具体实施方式
双钳制梁
本文公开的双钳制梁用含有高移动性二维电子气体(2DEG)的GaAs/AlGaAs量子阱异质结构形成,其向共面侧栅提供IT驱动,从而通过偶极子-偶极子机制激励梁的机械共振。灵敏的高频位移转换通过在恒定D.C.感测电流下测量跨2DEG的A.C.EMF获得。所含2DEG的高移动性通过组合压电和压阻机制提供了低噪音、低功率和高增益的微机电位移传感。
梁30在两个栅32之间形成,从而共同构成图2和图3的显微图象所示的器件12。起始材料是特别设计的、MBE生长的二维电子气(2DEG)异质结构。用指代数字10一般地表示的结构层堆叠包括如图1b所示的总厚度为115nm的七个单独的层,其中图2所示的器件12由结构层堆叠形成。顶和底层14是薄GaAs帽层,防止其中间的AlGaAs:Si施主层16的氧化。中心厚10nm的GaAs层18形成一个量子阱,将高移动性二维电子气(2DEG)保持在顶层之下37nm,并使其被两个AlGaAs隔离层20包围。结构层堆叠10下面是400nm的Al0.8Ga0.2As牺牲层22。牺牲层22依次位于更厚的n+衬底上,n+衬底为芯片28提供背电极和机械支持物。
图1a是图1b中异质结构的能级图。纵坐标显示的是堆叠10的厚度或者位置t,横坐标是以MeV为单位的能级ε。费米能εF作为零能级。除了某些侧带中的少量传导率之外,大多数电子传导被限定在2DEG层18中。
注意,堆叠结构10有意制造成不对称,以避免使GaAs层18的压电效应呈中性,也就是说,层18不是堆叠10的中心,而是被制造在堆叠10的一侧。结果,当堆叠被拉紧时,层18沿着堆叠10侧面上的拉伸或者压缩层只被拉伸或者只被压缩。堆叠10和牺牲层22构成芯片28。实际上,在层18上制造覆盖钝化层或者其他层,在不受外力时也会增加内生应力。
在沉积了欧姆接触24之后,在芯片28上旋涂(spin)PMMA厚层26,接着进行单电子束光刻步骤,从而在PMMA层26中暴露出沟道34,将梁30与侧栅32隔离,如图2所示。然后以PMMA层26作为低压电子回旋加速反应(ECR)腐蚀的直接掩模,将沟道34进一步腐蚀到牺牲层22。剥去PMMA层26之后,通过用稀释的HF除去梁30下面的牺牲层22获得如图2的最终结构形貌。
为了使干腐蚀对2DEG层18的破坏最小,人们付出了大量的努力用于优化腐蚀过程。对大量的等离子体混合物进行测试之后,选择了Cl2/He等离子体,因为它具有优良的腐蚀性能,例如表面形貌和垂直侧壁光滑,不攻击PMMA从而保留具有完好限定的掩模边缘的阱。在传统ECR室中获得了35_/s的稳定腐蚀速度,如图3c的剖面图所示意性显示的。Cl2和He气分别以1∶9的体积流速(sccm)比通过气孔202供应到被部分抽真空到3mTorr的等离子体室200内,并通过300W的微波功率使该气体离子化从而腐蚀图2的沟道以限制梁30,同时向芯片28施加150V、20W的恒定RF功率。
该过程在图3d中进一步被图解。在步骤i,在牺牲层22上提供堆叠10,其包括由图1b的Al0.8Ga0.2As/GaAs三明治式结构构成的量子阱结构。在步骤ii,在堆叠10的表面上旋涂一个800nm厚PMMA掩模26,并用电子束光刻绘制图形从而形成将成为双钳制梁30和侧栅32的轮廓(出于简化的目的,图3d中省略了栅32的形成)。在步骤iii,执行上述的低损伤ECR腐蚀,将PMMA图形转移到下面的堆叠10。在步骤iv,执行选择性湿腐蚀从而优选地除去牺牲层22的暴露部分。在步骤V,用丙酮或者等离子体腐蚀剂剥去PMMA掩模26。
为了证实腐蚀处理不影响2DEG层18,我们还用相同的方法制造了悬臂式霍尔效应棒(Hall effect bar),并泛泛地表征了最终悬臂式2DEG的特点。在处理之前,经照射之后的最初移动性和密度分别是5.1×105cm2/Vs和1.26×1012cm-2。在我们的改良低损伤腐蚀中,移动性能够保持在2.0×105cm2/Vs,而电子密度则降低到4.5×1011cm-2。我们观察了在腐蚀结构中良好制造出来(developd)的量子霍尔平台(quantum Hall plateaus),其沟道宽度甚至只有0.35μm。在纵向电阻测量中,我们探测了低场最大值,其相应于当电子回旋加速运动直径达到悬线的电宽度时的最大边界散射。从峰值点我们能够推导出,导线每个侧面的损耗为0.1μm。我们通过对霍尔交联(cross-junction)进行传输测量(transport measurement)还证实了电子的弹道行为。在所有的器件12中均同时存在“终末霍尔平台”和“负弯曲电阻”。我们发现传输平均自由路径大约为2μm。
在纳机电系统(NEMS)中,诱发和探测活动都对材料提出了挑战。在图2的器件12中,激励相对容易且非常有效。RF驱动被直接提供给两个侧栅32中的一个或者全部,侧栅是2DEG的较大部分,通过图1中合金化的欧姆接触24连接网络分析器(未显示)输出端。通过一个或多个侧栅32诱发的梁30的异面共振是唯一的。因为栅梁隔离d能够窄到100纳米,所以小的驱动振幅已经足矣。在例证性实施例中,所有的沟道34都具有0.5μm的恒定宽度。器件12在真空中于4.2K下首先被测量。通过10mH RF阻塞栅36向振动梁30提供0-26μA的恒定DC感测电流,其数值选择得足够大,以便避免损失被诱发的小信号。通过位于器件12附近的低温放大器38拾取振荡信号,其中器件12的输出通过同轴电缆39从浸没着器件12的低温保持器引出。在将信号连接到网络分析器输入端之前,可以使用室温放大器(未显示)提高信噪比。组合放大器在例证性实验的频率范围内具有大约200的电压增益。
典型的完成器件12如图3a的显微图象所示,并且在图3b中示意性地加以描述。在到达梁30之前,来自电流源35的恒定DC偏置电流(Ib)被发送通过大RF扼流圈36(大约10mH)。施加到栅32的栅驱动电压由DC和RF分量构成:Vg=Vg (0)+Vgeiωt。诱发信号能够表示为V=V(0)+Vgei(ωt+Φ),其中DC电压V(0)=IbRdc由电容器37,C,阻止,且振荡分量同时在液氦和室温下加以放大。梁30宽0.5μm,长6μm,计算弹簧常数为0.25N/m。当冷却到液氦温度时,它们的双端电阻大约为100kΩ。照射之后,降低到大约5kΩ。梁30的电子宽度大约为0.3μm,R=170Ω。
我们在第一机械共振附近观察到了非常强的振动信号。图4a显示了各种驱动振幅下的幅度响应曲线,图4a是输出电压大小对频率的曲线图。经计算证实,该共振与第一异面振动模型一致,也就是说,位于梁通常所处的平面之外。当驱动振幅增大到超过45mV时,响应曲线将成为非线性并呈现不对称Lorentzian形。在线性响应区,共振振幅与AC栅电压振幅成比例,如图4a的插图所示。
为了阐明所观察信号的发源,我们将栅驱动固定在10mV,然后将DC偏置电流从-26μA改变到0,再到26μA。图4b提供了共振时响应振幅对驱动振幅的曲线。从该数据中可以显见两个特征。首先,在接近20μA的最高电流下,信号由于两个原因而饱和:(a)小梁30的焦耳热,和(b)偏移速率在这么高的外加电场下(大约15kV/m)饱和。其次,在中间的电流下,共振时的信号强度与DC偏置电流成比例,如图4b的插图所示。此外,当反转电流方向时,我们还发现,诱发信号也改变符号(180度相变)。
因此我们得出结论:对于观察信号的主要贡献是由于梁的振动导致的电阻改变。这似乎是因为体GaAs的压阻效应以及2DEG的反相压电电荷栅控。注意,甚至在零电流偏置下也能够观察到小信号。从图4b插图的线性部分的斜率,10mV的标称驱动能够在器件12中诱发大约100的电阻改变。梁30的压电性质被用于诱发梁的振荡,而其压阻性质被用于感测振荡。
我们接着评估该技术的灵敏性。通过观察非线性起始部分的临界振幅,我们能够确定出共振梁30的振幅。该临界位移振幅只取决于梁30的几何形状,由下近似地给出:
x c = 2 h 0.5 Q ( 1 - v 2 ) - - - ( 1.1 )
其中h是振动方向上梁的厚度,v是GaAs的泊松比。代入测量值Q=2600和v=0.31,得出xC=6nm,其在大约45mV的驱动能级下获得。最小的可解析信号在0.1mV的驱动和大约5μA的感测电流下获得。因此,在20μA的最高可能电流下,我们探测到的共振为xc/450/4=0.03_,或者
Figure A0381592700402
这与我们根据梁在4.2K下共振时的Johnson噪音得出的估计一致。相应的力灵敏度为 这与先前通过光干涉法和磁势法探测小NEMS谐振腔或者传感器的方法相当。驱动梁到非线性阈值所需的力为1.5nN。通过使用具有更高移动性的2DEG异质结构或者通过使用目前技术状态(state-of-the-art)低温预放大器在大约100mK下进行操作能够提高位移分辨率。
注意在图4a和4b中,我们施加的全部驱动力都与外加AC栅电压一致。对于栅上的DC偏置,我们没有发现共振频率或者幅度有任何显著的变化。这表明耦合机制与栅32和梁30之间的静电力不同。静电力与栅电势的DC和AC分量的乘积成比例,从而该响应直接随DC栅电压放缩。这采用了耦合极板(plate)之间的直接库仑相互作用。在我们的共面栅构型中,梁上的净电荷是C(Vg (0)+vgeiωt),其中Vg (0)是DC信号大小,vg是AC信号大小,而C是栅32共面2DEG区域之间的电容,其具有18aF/μm的估计值,与平行极板相比非常的小。在1V的标称DC电压下,梁30上只有几百个感应电荷。施加在栅上的电场的上限为(Vg (0)+vgeiωt)/d,其中d是图2所示梁栅分离的距离。因此,施加在具有角频率ω的梁30上的总静电力f=CVg (0)vgeiωty0/d2,其中y0是统计补偿。只有该力的投影沿着垂直于图3b平面的异面(z)方向驱动梁。该力的有效z分量的合理估计是:
fy=CVg (0)vgeiωty0/d2  (1.2)
其中y0是由于例如悬臂梁30的不可控制不对称导致的统计补偿。在器件12中应当能够观察到梁30相对于栅32的10nm失准,但是没有观察到。因此,我们将该数字作为y0估计值的上限。在1V的标称栅电压,45mV的AC栅电压下,计算出由静电驱动机制产生的力为fy=0.2pN。其比驱动梁30进行非线性响应所需的力小4个数量级。
对于具有严格对阵结构性异质结构的悬臂梁,统计净应力为零。因此在这种情况下,偶极子-偶极子激励是次级效应。该异质结构中的内生应变由故意设计的不对称量子阱结构层产生。选择地,通过制造含有压电层的双压电晶片(bimorph)结构,由于双层结构的点阵失配,在梁上会产生内生应力,并诱发梁内的静偶极子。(图2中的p2)。压电层可以是GaAs或者其他III-V半导体、PZT、ZnO等。图2中的另一组件p1在侧栅2DEG层和导电衬底或者芯片载体之间形成。假如不存在静电A.C.力,我们提出了一个新的驱动机制——短程偶极子-偶极子相互作用——主导我们的纳机电系统。该偶极子-偶极子相互作用电势能够表达为:
U = ∫ 1 4 π ϵ 0 p 2 d p 1 r 3 - - - ( 1.3 )
其可以理解为两个偶极子矩dp1和p2之间的RF耦合,如图2所概要显示的。图2显示了梁30上的一个偶极子电荷分离41,p1,和栅32上沿垂直于图3b和图2平面的方向截取的一个微分切片(slice)dr的一个微分偶极子电荷分离43,dp2。这里,dp1是栅切片的偶极子距,dp1=εrε0Lvgeiωtdr,p2是由于应变GaAs/AlGaAs梁30的压电效应导致的固定偶极子距。z是异面梁位移,p2=3EdAwt2z/L,L、w和t是图2所示梁的长度、宽度和厚度。εr是GaAs的介电常数。这里E是大约为85Gpa的杨氏模量,大约为3.8pC/N的dA是AlGaAs的适当压电常数。沿z方向的最终力是:
f z = ∂ U ∂ z = 3 ϵ r 4 π ( E d A ) ( wt 2 d 2 ) v z e iωt
该力独立于DC栅电压,与我们的观察结果一致。在45mV的AC栅电压驱动下,从该机制估计出的fZ为1.2nN,比直接库仑相互作用高4个数量级。这与我们在非线性起始部分观察到的力一致。由于其短程特性,偶极子-偶极子相互作用对NEMS而言是唯一的,并且在微机电系统(NEMS)中不显著。
我们还研究了我们的应变敏感器件的温度依赖性。该测量在三个不同的温度下在真空中执行。结果如图5所示。驱动和感测电流被保持在相同的水平。器件12在液氦和液氮温度下执行得格外好,但是在室温下,共振减小。共振时的信号强度随着温度的退化可以解释为,在更高的温度下2DEG的移动性显著降低。在较高的温度下,增大的双端口梁电阻起大电压分配器(divider)的作用,RF放大器38的输入端两侧的电压降只占感生信号电压的一小部分。
参数放大器
纳米级机械参数放大器完全根据双钳制梁的内在机械非线性提供。在退化模式下工作时,通过向梁末端施加交变的纵向力将梁的力常数参数调制其信号频率的二倍。这在参数振荡的阈值处提供了稳定的、接近千倍的小信号增益。对于大信号,我们发现增益在低于该阈值下饱和;在该范围内,器件起限制预放大器的作用。在最高的增益下,获得了热力学极限的噪音匹配性能。简单的理论模型能够解释所观察到的现象,并提示该方法为获得输出耦合量子限制纳机电系统提供了很大的前景。
在图6的显微图象中显示的例证性实施例中说明的参数放大器,在悬臂式纳米机械传感器上或者梁30上工作,自然频率为17MHz,增益-带宽乘积为2.6kHz,并需要只有几mV的泵电压和1μW量级的功率以产生接近1000的小信号增益。弹簧常数的调制是纯机械的,不象先前技术那样需要预应力。例证性实施例中采用的机制允许高的增益-动态范围乘积,超过65dB。在4K下观察了热机械振动的相依赖放大。由于器件40的硬度,探测灵敏度受电读出放大器38的噪音限制,并且不足以观察到热机械噪音。然而,利用器件40作为机械预放大器,证实了小振幅谐波运动信噪比的动态改良。
图6的器件40通过电子束光刻用硅衬底上的碳化硅外延层制造。器件40通过碳化硅的垂直等离子体腐蚀绘制图形,并通过各向同性等离子体腐蚀除去支持硅加以悬置。器件40由信号梁31构成,其中信号梁31的某一个末端被垂直的泵梁42支持,如图6的显微图象所示。器件40的横向扩展为17.5μm,厚度为200nm。器件40在4K的真空下在垂直于芯片表面的B=8T的磁场中加以测量,从而洛仑兹力提供信号梁31的激励,并使用磁势技术探测其运动。
信号梁31的弹簧常数是通过如图7所示的泵梁42施加交变电流1加以调制的,该交变电流的频率为2ω0并通过路径44,其中ω0是梁31的基频。由电流产生的洛仑兹力T向信号梁31施加正弦压力和张力:
T=2BIL2ξcos(2ω0t)  (2.1)
其中L2是泵梁42的长度,ξ是表征泵梁42有限回复力的几何因子。在原理上,ξ能够从有限元模拟中估计出来。纵向力扰动信号梁31共面运动的弯曲弹簧常数,振幅为:
k p k 1 = 12 π 2 E t 1 w 1 ( L 1 w 1 ) 2 T - - - ( 2.2 )
其中,E是杨氏模量,w1、L1和t1是信号梁31的宽度、长度和厚度。
对于小位移,在泵和谐波激励Fa的影响下,信号梁31的运动方程为:
m x · · + m ω 0 Q x · + ( k 1 + k p cos ( 2 ω 0 t ) ) x = F 0 sin ( ω 0 t + φ ) + f n - - - ( 2 . 3 )
其中m是有效质量,Q是品质因数,fn是热机械噪音。在阈值泵振幅之上,
k 1 = 2 k 1 Q - - - ( 2.4 )
参数放大器的增益发生变化。对于低于阈值的泵振幅,机械增益取决于激励和泵之间的相差Φ:
G ( φ ) = [ cos 2 φ ( 1 + k p k 1 ) 2 + sin 2 φ ( 1 - k p k 1 ) 2 ] 1 2 - - - ( 2.5 )
尽管随着kp接近阈值,增益的表达式改变,但实际上,系统的非线性导致增益饱和。我们系统中的主要非线性是由于弯曲导致的几何硬化(geometric stiffening),该弯曲来自于由半刚性支持物钳制的信号梁31的纵向展宽。为完善饱和模型,我们在运动方程中引入三次幂展开项:
m x · · + m ω 0 Q x · + ( k 1 + k p 0 cos ( 2 ω 0 t ) ) x + k 3 x 3 = F 0 sin ( ω 0 tφ ) + f n - - - ( 2.6 )
其中,k3=0.36k1t2  (2.7)
如果我们考虑基频下的运动,为最大增益G选择相Φ=0,则:
x=Gx0sin(ω0t)  (2.8)
三次幂项以2ω0扰动弹簧系数,对抗泵的运动:
x 3 = - G 2 x 0 2 2 cos ( 2 ω 0 t ) x + G 2 x 0 2 2 x - - - ( 2.9 )
忽略上面的线性项,得到运动x=Gx0的稳态振幅方程:
k 3 2 4 x 5 + k 3 ( k 1 - k p 0 ) x 3 + ( k 1 - k p 0 ) 2 x - k 1 2 x 0 = 0 - - - ( 2.10 )
参数放大器的响应用图8的示意图显示的电路进行测量。选择同轴电缆46和48到泵梁42和信号梁31的长度使它们分别作为2ω0和ω0的1-1电阻传感器。泵梁42通过电缆46与在2ω下工作的驱动振荡器50和等效热电噪音源(equivalent thermoelectric noise source)60耦合。在ω下工作的虚(virtue)输出振荡器52通过电缆48的负载电阻54与信号梁31耦合,并包括指示信号梁31参数振荡器的输出参考信号。来自信号梁31的输出通过放大器56与显示器或测量装置58耦合。那么,电响应是机械运动与信号梁31基线电阻的叠加。为确定机械增益,我们比较了共振与非共振电响应,其通过频谱分析器加以测量:
Figure A0381592700445
为核实泵的效力,用网络分析器替代图8中的信号源50和频谱分析器58,并测量共振峰的频率偏移,其作为DC泵力的函数。从图9的装置(fit),发现频率偏移为1.59/mN,忽略泵梁42的有限扭转力(假定(1)中ζ=1)。从方程(2.2),预期的变化值为Δf/f=6.24/Mn。这些数值之间的差异表明,泵梁42的刚度确实降低了外加到信号梁31的有效泵力。为了估计ζ,我们对结构进行有限元机械模拟,其中向泵梁42横向施加总计为1nN的静态力,如图10所示。从该模式下计算得到的87pm的信号梁31压缩,能够获得施加给信号梁31的有效压力:
T=EtwΔx/x(2.12)
这样,我们发现T=0.235nN和ζ=0.235,所以我们测得的实际频率偏移为6.77/mN,与预期值一致,表明我们的模型能够说明泵的效力。
为了进一步证实所观察到的参数效应是由于泵梁42上的洛仑兹力导致的,图11显示了图8放大器的相依赖增益在两个不同磁场中的测量结果。信号梁31在基频ω0下驱动,泵梁42通过可变相移位器(未显示)相对于信号梁31在2ω0下驱动。信号梁31的运动是被放大还是被减小,取决于信号梁31的运动和泵梁42的激励之间的相差。由方程(2.5)预知,最大增益出现在Φ=π/2,最小增益出现在Φ=0。由方程(2.1)和(2.2)预知,磁场越强,泵引发的频率偏移越大,所以最大增益越大,最小增益越小。尽管当泵刚好达到2ω0时放大和减小最大,但是增益的主要变化可能是在非共振下。对于稍微偏离共振的ω下的激励,产生了两条侧带,一条在ω,一条在2ω0-ω。图12显示了信号梁对某一固定激励的响应的主要侧带ω,该固定激励具有最大增益的相偏移。在高增益下,泵的作用使共振带宽显著降低。对于8.2mV泵电压,带宽从1760Hz减小到35Hz。
随着泵振幅接近阈值,参数放大器的共振增益预期会显著增加。当我们的装置在恰好低于阈值的8.2mV下工作时,Φ=0处大小为39的增益足以观察到被放大的热机械振动,如图13的曲线图所示。信号梁31对热机械振动的响应呈Lorentzian线形状,其被参数放大器变窄。因为波动力与泵无关,所以该峰的增益应当是整个相的平均值。假设平均增益为39,峰的振幅相当于以550fm/Hz1/2或14fm/Hz1/2运动的rms振幅。简单谐波振荡器在共振时的热机械振动振幅由下式给出
S x t = 4 k B TQ ω 0 k - - - ( 2.13 )
其中,弹性常数k=mw0 2为32N/m,为信号梁31产生一个大小为26fm/Hz1/2的数值。数值间的差异是由于平均增益近似的误差和在计算弹簧常数时产生的误差所致。
通过用射频锁定放大器(未显示)代替频谱分析器观察放大热机械振动相对于泵梁42的相依赖性。如图14所示,对于接近阈值的泵电压,波动被明显放大,但仅在其中一个1/4周期内(也就是ω与2ω之间的相关系)。在另一个1/4周期内没有观察到这种效应,因为该1/4周期中的总噪音由线性电放大器56输出端的相独立噪音(phase-independent noise)主导。
正像信号梁的布朗运动能够不添加机械噪音地被放大一样,谐波运动也是如此。因为在我们的系统中,电放大器控制噪音水平,信号梁31谐波运动测量的信噪比可以通过参数放大而显著提高。图15比较了谐波激励的增益与每1/4周期中的整体噪音水平,该谐波激励产生了1.2pm的运动rms振幅。接近阈值泵振幅,信噪比相对于Φ=π/2的1/4周期增加了接近100的因子。作为电放大器56的输出噪音主导热机械噪音的结果,Φ=0的1/4周期中的信噪比也被提高,尽管提高的幅度较低。该结果说明了参数放大器最基本的应用,即机械预放大器。
放大器的动态范围对该应用是非常重要的。对于没有泵的47fm的谐波激励,我们的器件显示的增益高达800,如图16所示。然而,对于更大的激励,增益在低得多的数值处达到饱和。图16清楚地证实了,增益开始饱和的点唯一地取决于运动的振幅,而不是激励。在-360pm的rms振幅下开始饱和,并为放大器的动态范围上界提供了良好的近似值。最终,动态范围的上限是系统非线性的直接结果。在我们的系统中,主要的非线性预期是弯曲弹性常数展开中的三次幂项。
压阻NEMS位移传感器在真空中的灵敏度
我们面对的其中一个最重要的技术挑战是对测量NEMS悬臂位移的读出系统的优化。图51的SEM图象显示了实际器件的一个实例——悬臂190,其具有一个压阻应变传感器。该传感器将悬臂190的运动转变成电信号,在该实例中,是通过应变诱导的传导路径电阻的改变,该传导路径由位于悬臂190上表面的p+掺杂Si外延层绘制图形。出于例证生物纳机电系统的目的,图51显微图象的透视图中显示的传感器或悬臂190,能够被模拟为具有“基部有一个开口的跳板”的形式。器件190的几何形状导致在由一个或多个宽度为b的腿194构成的限制区域192内发生明显的损耗,该区域192允许悬臂190的弯曲刚度提高或者被可变地设计。还需要理解,悬臂190具有传统的电极(未显示),借此提供偏置电流的传统外部测量电路(未显示)可以测量腿194弯曲时的压阻变化。此外,可以通过传统的方式向悬臂16施加或者不施加外驱动力,这取决于应用和设计选择。在优选实施例中,有两个腿194。我们假定悬臂190的生物功能化尖端196能够容忍温度增加10K的量级,其中该尖端长度为l,宽度为w,厚度为t,在真空中的共振频率为ω0/2π和力常数K。
用灵敏度
Figure A0381592700471
表征传感器的性能,单位为volts/m, 其中I是偏置电流,而 G = ∂ R T ∂ x 和RT分别是量规因数和传感器的双端阻抗。
接近共振,热机械位移波动的力谱密度由 S V γ = 4 k B Tγ=4KkBT/Q给出。由读出处理的电噪音产生的三个附加项也必须包括在内。它们必须用因子 反馈给输入,也就是,位移阈。第一个附加项产生于压阻传感器的热电压噪音,SVT=4kBTRT;而第二个附加项产生于读出放大器的电压和电流噪音,SVA=SV+SIRT 2,其中SV和SI分别是放大器电压和电流噪音的频谱密度。
这些波动的总和被我们称之为全耦合位移噪音,它是整个系统的实际位移灵敏度:
S x ( C ) = S x ( γ ) + 1 R 2 { S VT + S VA }
从中我们可以确定电机械系统的耦合力灵敏度,其在共振时由下式给出:
S x ( C ) = K 2 S x ( C ) / Q
其中K是弹簧常数,Q是悬臂梁的品质因数。
图51所示的机械器件与简单的悬臂几何形状相比有些复杂,提供了更高等级的灵活性(compliance),同时质量更低(如果其总尺寸保持较小)。其弹簧常数比简单的悬臂更复杂,可以写作***EQN修正***
K = Et 3 4 l 3 w + ( 2 l 1 3 - 6 l l 1 2 + 6 l 2 l 1 ) ( 1 b - 2 w ) - - - ( 7.1 )
表征器件几何形状的变量如图51所示,并且在表3中总结了这里讨论的悬臂的这些参数,其中表3显示了三种原型Si纳米悬臂的物理参数。列于表中的参数有厚度t,宽度w,长度l,压缩宽度b和长度l1,真空频率为ω0/2π,力常数K和电阻RT
表3
  悬臂   t   w   l   l1   b   ω0/2π   K   RT
  1   130nm   2.5μm   15μm   4.0μm   0.6μm   0.51MHz   34mN/m   15.6kΩ
  2   110nm   900nm   6μm   3μm   300nm   3.1MHz   145mN/m   22kΩ
  3   37nm   300nm   2μm   1μm   100nm   9.2MHz   48mN/m   67kΩ
  4   30nm   30nm   0.3μm   20nm   10nm   360MHz   1.0N/m   16kΩ
在例证器件中,悬臂190的厚度为130nm,最上面的30nm由重(p+)掺杂的Si外层构成,而剩余的100nm是位于Si外层下面本征Si层。压阻传感器从p+硼掺杂Si(4×1019/cm3)绘制图形,腿194中的电流路径沿<110>方向取向。悬臂的量规因数由下式给出:
G = 3 &beta;&pi; L K ( 2 l - l 1 ) 2 b t 2 R T - - - 7.2
参数ПL为p+传感器材料的压阻系数(p型<110>硅为4×10-10m2/N)。参数β是0到1之间的系数,用于说明传导层的有限厚度。当载流子(carriers)被限制在一个无穷小厚度的表面时,β单调地接近于1。我们预期我们的悬臂β~0.7。因数β解释因传导层的有限厚度造成的G的减少,当载流子被限制在一个无穷小厚度的表面时,β接近于1。对于我们的外层,我们假设β=0.7。对于图51所示的悬臂,我们发现G=3.3×107Ω/m。对于图中的传感器几何形状,获得了RT=15.6kΩ的双端(平衡)电阻。注意,这提示G/RT~2.1ppm/nm。
现在我们考察对外加于腿194电路中的电流偏置水平的限制。假设响应度与偏置电流成比例 则可获得的力灵敏度明显取决于可耐受偏置电流的最大值。最大实际水平由可以获得的最大温升决定。原型器件的几何形状导致在宽度为b的限制区192内产生明显的损耗。我们假设可耐受的最大温升为10K的量级。我们按一维问题处理梁190的限制区192,其长度为l1,横截面积为A,热量在支撑端195处散发。假设与真空没有热交换。在x<l1的损耗区,我们得出 2 &kappa; Si t l 1 b d 2 T d x 2 =-l2R,其中硅在300K下的热传导率为κsi=1.48×102W/Mk。假设悬臂190超出限制区192的区域中的损耗可以忽略不计,我们在x=l1时应用边界条件 dT/dX=0。该简单的热电导计算指出,使用I=60μA的稳态偏压电流可以获得的最大温升为10K,导致大约为60μW的功率损耗。对于该偏置电流,我们的原型器件产生的响应度为
Figure A0381592700493
根据对这些参数的理解,我们现在能够估计原型系统的耦合力灵敏度。对于悬臂190,从室温开始并且假定温升为10K,我们发现参考力域的传感器诱发热电压噪音,对于Q=2000在共振时为
K S VT / ( RQ ) = 92 aN / Hz . 对于电压和电流噪音水平(参考输入)分别为
Figure A0381592700495
Figure A0381592700496
的典型低噪音读出放大器,这些相同的参数生成了 K S VA / Q = 23 aN / Hz 的放大器项。对于该悬臂,热机械位移波动的力谱密度为 S F &gamma; = 300 aN / Hz . 表4给出了增高品质因子的总传感器噪音。
显然,来自热机械位移波动的噪音是主导的。这可以通过降低尺寸加以减小,从而增加共振频率和降低弹簧常数。
为了证实将该器件的尺寸进一步降低的益处,我们考察了两个更小的悬臂,其具有和图51相似的几何形状,但l=6μm,t=110nm,W=900nm,b=300nm,l1=3μm。假定该器件用与悬臂190相同的外层厚度比构建而成,这使得RT=19kΩ,G=2.9×109Ω/m(表4中的悬臂#2)。
对于#2悬臂,我们再次假设10K的尖端温升是可以容忍的。对于Q=2000,我们发现传感器诱发力噪音为 K S VT / ( RQ ) = 7.1 aN / Hz &OverBar; , 参考力域的读出放大器的贡献为 K S VT / ( RQ ) = 1.5 aN / Hz . 热机械位移波动的力谱密度为 S F &gamma; = 249 aN / Hz &OverBar; . 对于Q=30000,热机械位移波动的力谱密度为 S F &gamma; = 64 aN / Hz .
所考察的另一个器件——“悬臂#3”与悬臂#2相似,但全部的尺寸被均匀地减少~3的因子。对于该器件,RT=67kΩ,G=3.0×1010Ω/m。再次使用Q=2000,这使得传感器诱发Johnson力噪音 S F &gamma; = 1.5 aN / Hz , 而参考力域的放大器贡献为 K S VT / Q = 0.18 aN / Hz . 热机械位移波动的力谱密度为 S F &gamma; = 83 aN / Hz . 对于Q=30000,热机械位移波动的力谱密度为 S F &gamma; = 21 aN / Hz . 其他热量允许的力灵敏度由表4给出。
表4室温压阻探测共振的耦合力灵敏度
对于4×1019/cm3的掺杂浓度,损耗长度为2nm,因此虽然悬臂#3完全属于可行的范围内,但是继续将厚度推进到小于30nm是不现实的。为了使获得364MHz的悬臂#4,应当减小长度而不显著减少厚度。尽管受到弹簧常数增加的限制,但是力灵敏度仍然保持良好,室温下品质因数为2000时的耦合力灵敏度度 S F V = 62 aN / Hz . 表4总结了全部四个悬臂在各种品质因数下的灵敏度。表5给出了4K时的模拟数据。
表5在4K下压阻探测的共振时耦合力灵敏度
Figure A0381592700511
基于NEMS的压阻力感测
上面讨论了压阻探测器在室温和9K下的力灵敏度。还讨论了室温力灵敏度的压力依赖性。利用原子力显微镜[AFM]将悬臂尖端移动一个如图51a所示的已知量,直接测量了量规因数。这产生的直接测量结果为G=dRT/dx=3×107Ω/m,我们计算出,对于β=0.7,G~6×108Ω/m。该差异是由于处理期间的扩散。特别地,为了掩盖这些特殊的器件,其中在早期处理步骤期间通过KOH腐蚀在该器件上形成用于绘制悬臂图形的膜,在850℃下通过LPCVD生长碳化硅,在该温度下扩散的β值显著低于预期值;如果使用DRIE腐蚀替代用于形成膜的KOH腐蚀,则不需要该高温掩模步骤。
接近共振,热机械振动的力谱密度由下给出:
S F &gamma; = 4 k B T&gamma; = 4 K k B T / ( 2 &pi;Q f 0 ) - - - 8.1
其中γ是阻尼系数,单位为kg/s,f0是共振频率,Q=mf0/γ是品质因数。
因此接近共振,热机械振动的电压谱密度由下给出:
S V &gamma; = S F &gamma; G 2 l 2 16 &pi; 2 m 2 f 0 2 [ 4 ( f - f 0 ) 2 + f 0 2 / Q ] - - - 8.2
放大器测量的结果给出:
Figure A0381592700514
其中Rbias是与样品并联的偏置电阻器的电阻,Ramp是电耦合悬臂190的放大器(未显示)的输入电阻,C是放大器的输入电容,SV j测量值是在放大器输入端测得的Johnson噪音,而SV A是放大器的电压谱密度。
图52显示了尺寸与上面用于测量量规因数的器件相当的器件在室温的真空中热机械噪音的共振峰。样品电阻为16.7kΩ,并与10.5kΩ的电阻器并联。放大器的输入电容为33pF,输入电阻为100kΩ。因此,我们预测在605.5kHz下的Johnson噪音背景为
Figure A0381592700521
预放大器噪音在该频率下的测量值为
Figure A0381592700522
给出的综合预测背景为
Figure A0381592700523
测得的背景为
Figure A0381592700524
对于该悬臂,测得的共振频率为605.5kHz。真空中测得的品质因数为550。因此由方程8.1,热机械振动的力谱密度为 我们可以逆用(revert)方程8.2和8.3,并对实验数据进行Lorentzian拟合从而给出量规因数的测量值,为G=1.0×108Ω/m。
图52的插图显示了该器件品质因数的压力依赖性。该压力显然具有大于200毫托的阻尼效应。
图53a显示了同一器件置于液氦致冷器(cryostat)中的共振峰。使用48μA的偏置电流,估计在该温度下的最大发热(发生于器件尖端)应当为I2Rl1/(4kSitb)~4K。因此,器件尖端的温度为~9K。在该温度下获得的共振频率为552kHz,品质因数为2.1×103。力灵敏度由方程8.1给出。使用测得的品质因数和9K的估计温度,给出的力灵敏度为113由方程8.2,有可能推测量规因数。其给出的量规因数为1.6×108Ω/m,或者说由于压阻系数随着温度降低而增加,比室温值增加了1.6的因子。
图53b显示了另一个器件的相同数据,该器件在同一芯片上同步地制造且尺寸相同。悬臂电阻为14.4kΩ。悬臂共振频率为620kHz,测得的品质因数为2.11×103。由方程8.1,给出的力灵敏度为126
Figure A0381592700527
压阻传感器的比例缩放
压阻器(piezoresistor)被设计成在标称本征硅的上面具有薄重掺杂硅层。随着器件被按比例缩小到更小的尺寸,该薄硅层的耗尽层效应变得非常显著。下面通过在两个过程之间进行迭代直到获得收敛计算出了载流子的分布。第一个过程调节费米能级直到获得电荷中性。第二个过程根据下式计算价带的弯曲:
d 2 E v dz 2 = e&rho; ( x ) &epsiv; - - - 3.1
其中Ev是价带能,e是电子电荷,ρ是载流子的体积密度,ε是介电常数。ρ(x)是电荷密度,由费米统计ρ(x)=e(p(x)-n(x))给出,其中 p ( x ) = 1.04 &times; 10 25 e - &beta; ( E F - E V ) / m 3 是正载流子的密度。边界条件为:
d 2 E v dz 2 | z = 0 = e&sigma; &epsiv; - - - 3.2
其中σ是表面载流子密度。方程3.2和3.3的表面状态密度σ根据硅-二氧化硅界面的界面状态密度的公布值估计而得。
设定费米能级获得电荷中性,假定低表面处的边界条件为:
d 2 E v dz 2 | z = t = e&sigma; &epsiv; - - - 3.3
其中z=t是标称本征硅的下表面,其也是转变器或者悬臂的标称下表面。(z位于平面方向之外)
费米能级EF通过保持电中性的条件加以设定;
&Integral; 0 l ( &rho; ( x ) / e + N A - ( x ) ) dx = 0 - - - 3.6
其中
Figure A0381592700536
是离子化受体位点的密度,EA是离子化受体点的能量。
p ( x ) = 1.04 &times; 10 25 e - &beta; ( E F - E &gamma; ) / m 3
n ( x ) = 2.8 &times; 10 25 e - &beta; ( E C - E F ) / m 3
其中,β=1/kT,EC是导带能。迭代解出方程3.1和3.6直到获得收敛。
图17显示了130nm厚度样品的载流子分布,其中掺杂层厚30nm,掺杂浓度为4×1025m-3。图18显示了30nm厚度样品的载流子分布,其中掺杂层的厚度为7nm。在两种情况下,载流子均被良好地限制。
从图18可以显见,我们现在已经接近传统2层结构例如悬臂190可以获得的最小厚度。进一步直接降低尺寸而不牺牲性能是不可能的,例如耗尽层厚度相对于掺杂区的尺寸变得显著。因此需要一种新技术。
压阻NEMS传感器中约束载流子
通过限制量子阱结构中的载流子能够显著增加载流子约束(confinement)。在这些构型中,导电/压阻感测发生在量子阱(QW)层300和层302,它们被称为用于将载流子限制在QW层300的“约束层”。为了实现它,约束层302在p型传感器中必须具有非常低的价带边界,或者在n型传感器中具有非常高的导带边界。量级为0.4eV或者更大的带边界能差对于获得良好的载流子限制是非常重要的。
在图54b显示的该结构的具体实例中,上和下约束层302可能是在(100)面上生长的本征硅。而量子阱层300可以是p掺杂锗,(其也在(100)面上生长,该面可以在硅层上外延生长;硼、铟和镓是锗中掺杂剂的实例)。然后,沿<110>方向绘制压阻传感器图形。沿<110>方向的p型锗的压阻系数比沿相同方向的硅大50%。锗的价带边界为0.46eV,高于硅,足以限制用于该用途的载流子。
这些材料还可用于实现图54c的压阻层,其中锗再次作为量子阱300,而本征硅作为下层302。
可以使用的材料的特殊实例并不趋向于对本发明有任何的限制。将载流子限制在2DEG或者量子阱的场已经被良好提出,该场的所有知识和技术都可以用于制造传感器,例如本文所说明的。
上述结构在最小厚度上还具有限制,该最小厚度可以通过载流子限制(诉诸于有限的阱深度)和实际制造方法(诉诸于多层)获得。通过使用绝缘体作为支持层,传感器的厚度可以获得更多的减少,如图55所示。可以用于绝缘层306的材料实例是二氧化硅或者氮化硅,但是本发明包括任何的绝缘体,并不限制于这两种。
随着压阻传感器厚度的降低,灵敏度增加的益处在“真空压阻NEMS位移传感器的灵敏度”部分有说明。这里说明的本发明允许将厚度降低到超过使用本征硅上重掺杂硅的传统2层结构可以获得的厚度。
用于VHF NEMS的平衡电子位移探测
用于探测纳机电系统(NEMS)中电子位移的宽带射频(RF)平衡桥技术使用双端口激励-探测构型,其在DC磁场内产生背景为零的电动力(EMF),该力与NEMS传感器的位移成比例。该技术的有效性通过探测由NEMS电机械共振导致的小电阻变化加以显示,其中该共振在非常高的频率(VHF)内伴随着大的统计背景电阻。该技术允许研究实验系统,例如掺杂半导体NEMS,并为其它高频位移转换电路提供了益处。
图19a、19b和19c涉及磁势反射和桥测量。尽管图解的实施例涉及磁势NEMS器件,但是应当理解,本发明的精神包括所有类型的NEMS器件,而不论其诱发运动的方法,例如静电、热噪音、声学等。图19a是图解磁势反射的示意图,其中只有一个产生信号的NEMS器件,而图19b是图解桥测量的示意图,其中有两个产生信号的NEMS器件,它们彼此平衡。在两种测量中,网络分析器68或者其它的振荡器提供驱动电压Vin。在图19b的桥测量中,Vin在施加到端口64和66之前被功率分配器分成两个异相分量。RL是输入阻抗,RS是网络分析器68的源阻抗。在例证性实施例中,RS=RL=50Ω。
图19b中,NEMS器件60b被模拟成并联RLC网络,具有复合机械阻抗Zm(ω)和DC耦合电阻Re。ΔR是桥的两个臂——NEMS器件60a和60b——之间的DC失配电阻。如果传输线具有不相等的电路径长度,则特别是在高频桥测量中,它们会扰动整个相平衡。图19c是图19b中典型桥器件的扫描电子显微镜(SEM)图象,其中该器件由外延生长的晶片制造而成,该晶片在1μm厚度的AlGaAs牺牲层上具有50nm厚的n+GaAs和100nm厚的本征GaAs结构层,该图显示了在探测端口62和激励端口64和66之间延伸的NEMS梁或者器件60a和60b。欧姆接触衬垫在显微图象上显得粗糙。双钳制梁60a、60b的尺寸为8μm(L)×150nm(w)×500nm(t),且共面基波弯曲机械共振频率为大约35MHz。
设计如图19(b)所示的平衡电路提高探测效率,其中该电路在桥的一侧上具有NEMS传感器60b,在另一侧上具有电阻R≈Re的匹配有效电阻器60a。通过向电路的驱动端口64和驱动端口66施加两个180°反相的电压使ω≠ω0,则读出端口62的电压Vo(ω)为零。我们发现,通过在平衡点62的任何一侧上制造两个相同的双钳制梁传感器代替传感器和匹配电阻器,能够使该电路以非常高的灵敏度平衡。
图19(c)的SEM显微图象中显示了具有等价驱动端口64和66以及平衡或者探测点62的典型器件。在该器件中,我们总能获得两个良好分离的机械共振,每个梁传感器60a、60b具有|ω21|>>ω1/Q1,其中ω1和Q1是传感器60a、60b的共振频率和品质因数(i=1,2),如图21所示。图21表明,在任何机械共振的附近,该系统都能够通过图19(b)操作电路的机械传感器-匹配电阻器模型加以良好的描述。我们将该行为归因于制造过程中高的Q因子(Q≥103)和共振频率对参数局部改变的极大灵敏度。
首先,为了清晰地评估这些改进,我们比较了双钳制梁基本弯曲共振的反射和平衡桥测量,该双钳制梁由n+(B掺杂)Si及由n+(Si掺杂)GaAs绘制图形。这些无金属化层类型NEMS传感器60a、60b的机械共振的电子探测已经证实是很有希望的,因为对于这些系统,双端口阻抗能够非常高;Re≥2kΩ,Rm<<Re。磁势梁通常需要金属化以便被驱动,但是在桥测量的实例中,测量非常敏感以致于能够使用非金属化的磁势半导体梁。无论如何,利用这里说明的桥技术,我们探测了B掺杂Si传感器10MHz<f0<85MHz的基本弯曲共振,和Si掺杂GaAs梁7MHz<f0<35MHz的基本弯曲共振。在我们所有的测量中,当Rm≤10Ω且Re保持在2kΩ<Re<20kΩ时,Rm<<Re保持为真。
这里,我们聚焦于从n+Si梁获得的结果。这些器件由绝缘体晶片上的B掺杂Si制造,该晶片上具有厚度分别为350nm和400nm的Si层和埋置氧化物层。掺杂在950℃下执行,平均片电阻R≈60Ω样品的平均掺杂浓度估计为Na≈6×1019cm-3。实际器件的制造用传统或者标准方法采用光蚀刻,电子束蚀刻以及剥蚀(lift off)步骤,之后进行各向异性电子回旋加速共振(ECR)等离子体和选择性HF湿腐蚀执行。制造之后,样品粘合于芯片载体,并通过Al丝线键合提供电连接。桥在点62的电机械响应在超导螺线管产生的磁场中加以测量。
图20a是双钳制、B掺杂Si梁的简图,该梁在25.598MHz下共振,Q大约为3×104,在上曲线72的反射构型和下曲线74磁场强度为B=0,2,4,6T的桥构型中加以测量。驱动电压相等。在桥测量中,背景降低大约200的因子。桥测量中的共振相相对于图21所示的驱动信号偏移180°。图20b是两种构型宽带转换函数振幅的曲线。桥电路中激励和探测部分之间的耦合是电容性。
特别地,图20(a)显示了尺寸为15μm(L)×50nm(w)×350nm(t),Re≈2.14kΩ的器件的响应,其在反射(上曲线)72和曲线74中数个磁场强度下的桥构型中加以测量。当T≈20K,Q≈3×104时,该器件在25.598MHz处具有共面弯曲机械共振。DC失配阻抗,ΔR大约为10Ω。注意,在桥测量中背景降低了大约200≈Re/ΔR的因子,如下面的分析所示。
图20(b)是显示相当驱动在零磁场下两种构型宽带转移函数的测量结果的曲线图。注意在相当大的频率范围下动态背景降低了至少100的因子。
在Re为大约100Ω的并埋置在桥构型中的金属化SiC梁60a、60b中,我们能够探测到深达VHF带(Rm大约为1Ω)的机械弯曲共振。图21是显示两个2μm(L)×150nm(w)×80nm(t)的双钳制SiC梁60a、60b共面弯曲机械共振的数据轨迹的曲线图。在T≈4.2K时,有两个Q因子大约为103的良好分离的共振分别在198.00和199.45MHz是非常突出的。这些梁使用下面参考SiC梁制造说明的处理分别用厚度为20nm和3nm的Al和Ti顶金属化层制造。
桥中配置的NEMS器件60a,60b能够有效地看作具有独立激励-探测端口64-62,66-62的双端口器件。显然,两个端口64,66之间的耦合不是唯一的机械本质,而是机械响应由于端口64,66之间电子耦合的动态零值而主导电机械转换功能。
我们最近通过构建在桥中的双钳制梁60a或者60b的基本机械共振的相锁定环(phase locked loop)(PLL)证实了连续频率跟踪(tracking)。因为由功率分配器导致的源阻抗Rs在桥的两个臂内是对称的,所以显然不能并入到Zeq’(ω)中,而是能够看作Re的一部分。实际上,用Re+Rs代替Re将产生更一般的形式。
电路中点62的电压能够通过模拟方程4.1如下地确定:
V ( &omega; ) = - V in ( &omega; ) ( &Delta;R + Z ( &omega; ) ( Z m ( &omega; ) + &Delta;R ) ( 1 + R e R L ) + R e ( 2 + R e R L ) = - V in ( &omega; ) Z eq &prime; ( &omega; ) ( &Delta;R + Z m ( &omega; ) ) - - - 4.3
在ω=ω0,我们能够类似于方程4.2地为信号S和背景B定义探测效率:
S B = R m &Delta;R - - - 4.4
假定ΔR较小,则探测效率显著高于单端口的例子。在共振的附近,背景被减小Re/ΔR的因子,如图20(a)的测量所证实的。然而,由制造导致的本征共振失配ΔR并不是背景降低的最终限制。
进一步平衡,因此能够通过在相对臂内插入可变衰减器64a和相移位器66a获得背景降低。衰减器64a能够更精确地平衡失配,而相移位器66a可补偿由于插入衰减器64a产生的相失衡。
然而在较高的频率下,图19b的电路模式以及上述解释变得不准确,这从转换函数的测量结果中可以显见。电容耦合成为高频下激励端口64和66与探测或者平衡端口62之间的主导,如图20(b)所示,这可以降低该技术的整体效率。通过仔细地设计电路布局和键合衬垫,能够使这些问题最小化。
通过解决输出阻抗Re与放大器输入阻抗RL之间存在的显著阻抗失配问题,Re>>RL,能够进一步改良信号。在例证性实施例中,例如在图20(a)中显示的测量中,该输出阻抗失配导致了估计为40dB的信号衰减。输出阻抗匹配电路62a能够用于避免梁和负载电阻之间的失配。
NEMS器件中的能耗
对纳米级掺杂梁传感器的测量对NEMS器件中的能耗机制,特别是来自NEMS表面和表面吸附物的能耗机制提供了洞察力。在所调查的10MHz<f0<85MHz的频率范围内,B掺杂Si梁中测得的2.2×104<Q<8×104的Q因子比从金属化梁中获得的高2-5。比较严格上是定性的。我们在间隔指定频率范围的不同实验周期中比较了8种金属化的和14种掺杂的Si梁的Q因数。根据提议,金属化层和杂质掺杂剂都有利于能量消耗。我们的测量结果似乎证实,在纳米等级,金属化层能够显著降低Q因数。其次,所获得的高Q因数和无金属膜的表面使得这些掺杂梁成为探测由表面吸附物和缺陷导致的小能量消耗的优良工具。实际上,通过Re有效地原位电阻加热掺杂梁显示出利于热退火和表面吸附物的去吸附,借此产生更高的Q因子。这些器件对于研究吸附物介导的消耗过程是有希望的。
总之,我们开发出了宽带、平衡射频桥技术,用于探测小NEMS位移。该技术可以被证实有利于其他的高频高阻抗应用,例如压阻位移探测。该技术的唯一优势是能够对原本基本上不能测量的系统进行机械共振的电子测量。
超高频碳化硅纳米机械传感器
基本模式共振频率处于超高频(UHF)带的纳米机械传感器用单晶体碳化硅薄膜材料制造,并通过磁驱动变换与平衡桥读出电路一起进行测量。先于本发明制造的单元测得的最高共振频率是632MHz。这里说明的技术还在获得微波L带频率的机械运动中具有显然的潜力,该频率在研究介观等级的机械运动机制时,以及在开发下一代纳米电机械系统(NEMS)的崭新技术中具有巨大的希望。
在例证性实施例中,我们公布了超高频碳化硅纳米机械传感器。我们的测量基于磁势转换,成功地探测了频率超过600MHz的共振。进一步,容易看到,我们的技术并不仅限于已经获得的UHF频率范围。通过对同一测量设置进行微小的优化预期能够容易地获得微波L带(1-2GHz)。器件制造过程与Y.T.Yang等(Appl.Phys.Lett.,78,162-164(2001))说明的相似,只是在腐蚀掩模选择上有微小的差异。这里用于纳米级单晶的方法,3C-SiC层并不是基于湿化学腐蚀和/或晶片键合。特别值得注意的是,表面纳米机械制造过程的最终悬置步骤通过使用干腐蚀技术执行。当限制大机械服从器件时,这避免了由于湿腐蚀处理中遇到的表面张力导致的潜在损坏,并且避免了临界点干燥的需要。
用于器件制造的开始材料是在100mm直径(100)Si晶片上各向异性生长的259nm厚单晶体3C-SiC膜。3C-SiC外延生长在RF感应加热反应器中通过二步碳化物基大气压化学气相沉积(APCVD)处理加以执行。硅烷和丙烷用作处理气体,氢气用作运载气体。外延生长在大约1330℃的衬托器(susceptor)温度下执行。用该处理生长的3C-SiC膜在每个晶片上具有均匀的取向(100),如X射线衍射所表征的。透射电子显微镜和选择区域衍射分析表明,膜是单晶体。显微结构典型的是在Si衬底上生长的3C-SiC膜,最大的缺陷密度被发现位于SiC/Si界面附近,该界面随着膜厚度增加而降低。这些膜的唯一性质是,3C-SiC/Si界面没有空腔,这不是通过APCVD生长的3C-SiC/Si膜经常报告的性质。
通过用光蚀刻限定大面积接触衬垫开始制造。然后蒸发(evaporate)60nm厚Cr层,随后用丙酮执行标准剥离。然后在通过电子束蚀刻绘制图形之前,用双层聚甲基异丁烯酸酯PMMA抗蚀剂涂布样品。在抗蚀剂曝光和显影之后,在样品上蒸发30-60nM的Cr,之后在丙酮中进行剥离。然后通过各向异性电子回旋加速共振(ECR)等离子体腐蚀将Cr金属掩模中的图形转移到位于其下面的3C-SiC。我们使用NF3,O2和Ar等离子体,压力为3mTorr,各个流速为10,5,10sccm,微波功率为300W。加速DC偏置电压为250V。这些条件下的腐蚀速度为大约65nm/min。
然后用Si的选择性各向同性ECR腐蚀受控地局部腐蚀Si衬底释放垂直腐蚀的结构。我们使用NF3和Ar等离子体,压力为3mTorr,流速均为25sccm,微波功率为300W,DC偏置电压为100V。我们发现,单独的NF3和Ar在这些条件下并不能以显著的速度腐蚀SiC。Si的水平和垂直腐蚀速度大约为300nm/min。这些恒定的腐蚀速度使我们能够获得对结构钳制区域内的底切(undercut)进行显著水平的控制。悬置结构和该结构之间的距离能够被控制在100nm之内。
在结构被悬置之后,或者通过Ar等离子体的ECR腐蚀或者通过湿Cr光掩模腐蚀剂(高氯酸和硝酸氨铈(ceric ammonium nitrate))除掉Cr腐蚀掩模。结构的化学稳定性和机械强度(robustness)允许我们为磁势转换被释放的结构所需的金属化步骤执行随后的光蚀刻步骤。再次用双层PMMA涂布悬置样品,并且在对准步骤之后,通过电子束光蚀刻绘制图形限制期望的电极。电极结构通过热蒸发5nm厚Cr和40nm厚Au膜,之后进行标准剥离而实现。最后,执行另一个光蚀刻步骤,随后进行5nmCr和200nmAu蒸发和传统的剥离,从而为丝线键合限制大接触衬垫。
最终器件的SEM显微图象如图22所示。图22a和22b的照片分别是器件的顶视图和侧视图。通过热蒸发用于粘着的6nmCr金属膜,之后蒸发80nmAu膜形成大面积指垫(finger pad)76。由电子束光蚀刻限定的器件的精细结构78被由电子束蒸发沉积的36nm镍膜覆盖。这些金属膜,包括Ni和Au,起双重作用,即用作腐蚀掩模和用于电传导。
在垂直于晶片表面的各向异性电子回旋加速共振(ECR)腐蚀期间,构成结构78一部分的金属膜用于保护它们下方的单晶体3C-SiC薄膜。该第一腐蚀步骤暴露出未被金属覆盖区域内的衬底硅材料。随后的第二ECR腐蚀步骤缓慢地各向同性地除去硅材料,使金属化碳化硅梁76从衬底悬置。每个器件10都由两个标称上相同的双钳制梁78构成。图22c和22d是器件10的两个梁78其中一个的放大图。从图22d的照片中能够最好地看出梁悬置。另外从这些照片中,我们能够粗略地测量悬臂梁的几何尺寸:长度l为1.25μm,宽度w为0.18μm,厚度t为0.075μm。SiC膜的厚度能够通过从梁的整体厚度或者高度测量结果中减去36nm的镍厚度而获得,因为整个腐蚀处理期间镍厚度的减少的校准可以忽略。
所用的金属掩模被保留作为磁势转换所需的导体层。具有镍金属化的典型梁的电阻测量值为大约90欧姆,相同器件中两个梁78之间的电阻失配处于1-2%的范围内。
随后将样品安装在样品固定器上(未显示),丝线键合于50欧姆微带(microstrip)线(未显示),其进一步耦合于50欧姆同轴电缆(未显示)。连接图23中桥电路的器件指垫76a和76b的电缆和连接被制造得几乎相同,一直延伸到180°功率分配器80的两个输出连接器,该功率分配器将来自HP8720C网络分析器84端口82的驱动功率分成两个相等的分量,但相差为180°。在低温测量中,器件10位于浸渍器(dipper)或者装置柱(instrument column)中,其真空罐或者样品室被抽真空并且浸没在液氦中。通过超导磁极(未显示)提供均匀静磁场,其场方向垂直于双钳制梁78。当RF电流通过梁78的导电层时,梁78将经受频率为RF驱动频率的力。如果驱动力的频率与梁78的机械共振频率不匹配,则诱发的机械运动很微小。
在理想情况下,接线端86是完全接地的,其中两个梁78完全相同,电路部分的两个分支与它们相连。非理想会导致偏离理想完全接地的残余背景偏移,并且器件的两个梁78对于相同的模式其共振频率有微小的差异。当驱动频率与其中一个梁78的基波机械共振频率相匹配时,该梁78将发生共振机械运动。这种机械运动垂直于磁场,诱发相同频率的EMF电压。该EMF电压将起附加电发生器的作用,并且影响从器件的接线端86向探测端口88发送的功率。随后该功率在网络分析器84的端口88被放大和探测。
在网络分析语言中,我们测量了网络前传输系数S21的频率依赖性。由定义可知,|S21|2表示传递到匹配负载的功率与入射到输入端口上的功率的比。关于机械运动的信息作为频谱中的共振峰加以显示。
当外加磁场的方向与晶片表面90共面,其中该晶片表面是图22a的表面,并且垂直于梁78时,运动的方向垂直于晶片表面90并被参考作为异面共振。当磁场垂直于晶片表面90时,则激发所谓的共面共振的类似弯曲模式。该模式涉及晶片表面90平面内的共振运动。
对于标称上与图22a-22d中其中一个所示相同的器件10,异面共振峰发现在342MHz和346MHz,其分别响应器件10两个梁78的运动。将样品固定器的方位改变90°之后,又进行了共面共振测量。共面共振发现分别处于615MHz和632MHz。
使用下面的方程能够估计出共振频率的期望值。长度为L,厚度为t的双钳制梁的基波共振频率f随几何因子t/L2线性变化,具有如下的简单关系:
f = 1.03 E &rho; 1 L 2
其中E是杨氏模量,r是质量密度。在我们的器件中,共振响应并不如此简单,因为金属电极的附加质量和硬度改变了器件的共振频率。随着梁尺寸的缩小,该效应变得特别显著。为了从由于电极负载和硬度导致的次级效应中分离出对结构材料的主要依赖,我们对复合振动梁采用简单的模式。大体上,对于由材料不同的两个层构成的梁,共振方程被修改成:
f = &eta; L 2 ( E 1 I 1 + E 2 I 2 &rho; 1 A 1 + &rho; 2 A 2 ) 1 2
这里,角标1和2分别指结构和电极层的几何和材料性能。常数η取决于模式数和边界条件;对于双钳制梁的基本模式η=3.57。假定由电极层(层2)导致的修正较小,我们能够定义修正因数K,从而允许用表达式直接比较相似的梁:
f = &eta; L 2 ( E 1 I 10 &rho; 1 A 10 ) 1 2
其中 K = E 1 I 1 + E 2 I 2 E 1 I 10 1 1 + &rho; 2 A 2 &rho; 1 A 1
在该表达式中,I10是没有第二层时计算的力矩。然后能够使用修正因数K获得测得频率的有效几何因子[t/L2]eff的值。进一步,如果梁处于显著的拉伸或者压缩应力下,则预期会出现高于[t/L2]eff的非线性修正项。但是,我们的数据的线性趋势显示,对频率的内应力修正较小。
测得的共振频率比估计值低大约30%。与我们先前的工作在较低频率范围下遭遇到的相比,该差异并不令人吃惊。特别地,当器件尺寸减小时,表面、缺陷和不理想钳制等的作用变得非常重要。这些因素在该预测中没有考虑。
在图24所示的共面共振数据中,其中磁场为8特斯拉,驱动功率为-60dBm,分辨率带宽等于10Hz。描点作出前传输系数的频率依赖性的曲线图。该插图显示了复合函数在S21面上的投影。如所预期的,在大约180°相差下观察到了两个共振峰。在这些数据中,提供了有关机械传感器和连接的信息。为了提取关于机械共振结构的信息,我们从由共振峰获取的数据点中减去固定的背景,其也是频率的复值函数。减去背景之后,最终函数的振幅在图25中描点作图。在实验误差内,去包埋振幅峰能够被固定在Lorentzian形状,峰高度粗略地与B2成比例,和预期的一致。
图25的振幅轴被标准化,从而其值表示反馈回低温放大器(cryoamp)92输入端的信号电压。该标准化能够通过定义网络前传输系数并结合放大器92的增益(48dB)知识容易地实现。在该估计中,我们忽略了同轴电缆的损失。还忽略了器件输出端阻抗失配的影响,其中该影响在我们的例子中只能贡献单位量级的因子。在该简化中,参考图25所示低温放大器92输入端的信号电压可以认为近似于磁势转换产生的EMF电压,其可以如下表示:
Vemf~BL2πf0A    5.1
其中L是梁的长度,f0是共振频率,B是磁场大小,A是机械运动的位移幅度。我们由此获得了8特斯拉磁场中运动的最大振幅为大约7×10-3_。
如果每
Figure A0381592700641
的噪音电压已知,使用相同的表达式,我们还能够估计位移灵敏度。大体上,探测灵敏度受梁共振的Johnson噪音和来自预放大器92的噪音的限制。这两个噪音源彼此相当,因为实验是在液氦温度下进行的。梁电阻典型地为几十欧姆,MITEQ低温放大器92的噪音温度在目标频率范围内为数K。组合噪音相对于输入有效地是大约10K的噪音温度,其相应于 的每 的噪音电压。这进而给出了大约
Figure A0381592700653
的位移灵敏度。实际上,从图25估计出的噪音高于由因子a_得到的上限值。该附加噪音反映了网络分析器84的接收器灵敏度。
出于特别说明的目的,我们没有试图优化系统的噪音性能。然而,通过在低温放大器92后面添加增益为-40dB的合适低噪音二阶放大器(未显示),以便利用低温放大器92超低噪音特性的全部性能,基本上价值不大。
作为一级近似,我们知道,共面情况下的共振频率
f 0 = E &rho; W L 2 - - - 5.2
其中W、L分别是梁的宽度和长度。E是杨氏模量,ρ是质量密度。组合方程5.1和5.2我们得到:
V emf &Proportional; BA E &rho; W L - - - 5.3
由方程5.2,我们知道,梁的尺寸在三个维度上都缩小了相同的比率,利用上述的器件作为开始点,能够容易地使共振频率进入到微波L带。这种按比例缩小能够通过e束蚀刻的电流技术容易地实现。另一方面,方程5.3告诉我们,只要我们保持相同的B磁场,相同的材料和相似的机械运动振幅,信号振幅就不会被显著降低。
总之,我们说明了通过相同的技术对基波共振频率处于UHF范围和微波L带频率内的碳化硅纳米传感器的测量。这为获得先前无法获得的机械运动频率带提供了途径。
通过洛仑兹力频率调谐NEMSINEMS传感器
磁势NEMS传感器的共振频率能够通过由洛仑兹力器件施加给共振梁的变化静应力进行精细地调谐,该洛仑兹力通过使DC电流通过梁而产生。我们对双钳制梁94执行了全部的测量,如图26的SEM图象所示。这些梁用GaAs和Si微机械制造而成。为了电耦合于这些机械结构,我们在梁94的顶部绘制了d≈50nm的薄Au或Al电极层图形。多个梁94具有不同的长度50μm<L<70μm,固定的w=1.5μm和t=0.8μm,用于力调谐实验,覆盖的频率范围为1MHz<ω/2π<3.5MHz。为了考察频率的温度变化,在同一芯片上制造了具有不同纵横比(4MHz<f<40MHz)的多个梁,并在温度改变的同时记录共振频率。
对测量使用磁势激励和探测方案。简而言之,网络分析器96用于沿梁94顶部的电极(未显示)驱动交变电流(AC),其中梁94位于4.2K下超导磁体(未显示)的孔内。通过网络分析器94探测洛仑兹力,该洛仑兹力是由于被AC电流激励的梁94和由运动产生的电动力产生的。通过检查从共振曲线获得频率偏移的数据。
通过使直流(DC)以及AC驱动电流通过电极产生调谐力。恒定磁场中的DC电流向梁施加恒定的洛仑兹力,每单位长度τ=IB,其中I是电流,B是磁场。这些实验中考察了两个不同的几何形状。第一个实例中,梁94被垂直于芯片平面(定义为z方向)地加以激励,并通过DC电流施加相同方向的洛仑兹力。在第二个实例中,梁相对于磁场旋转90°,从而激励与拉力共面(x-y平面)。
双钳制梁94的运动能够通过梁方程加以模拟:
&PartialD; 4 u ( x , t ) &PartialD; x 4 - &sigma;A EI &PartialD; 2 u ( x , t ) &PartialD; x 2 = - &rho;A EI &PartialD; 2 u ( x , t ) &PartialD; t 2
其中σ是梁内的拉伸或者压缩应力,A和l分别是区域的截面积和力矩。E是杨式模量,ρ是材料通常的质量密度,t是时间,x是沿梁的距离,而u是梁在激励方向上的位移。
为了提供更一般的讨论,我们在梁方程中包括了内应力项。然而,我们下面的分析显示,内应力并不显著修改所观察的梁共振。基波共振频率能够由上面的方程得出:
&omega; 0 = 1.03 t L 2 E 12 &rho; ( 1 + 12 L 2 &sigma; 4 &pi; 2 E t 2 )
其中t和L分别是梁的厚度和长度,E是杨氏模量。
我们测量了多达30个Si和GaAs梁的共振频率。图27显示了梁94测得的基频,其作为纵横比t/L2的函数。实际上,我们观察了共振频率f对t/L2的线性依赖,表明梁94内各种内应力对f的修正很小。从图27的斜率测得的E/ρ值只有计算值的75%。然而,这能够通过半导体牺牲层中的非故意底切的频率降低效应和由于电极层的质量负载效应加以解释,其中非故意底切最多能够使有效长度改变10%,该电极层位于梁上用于磁势电流(未显示)。
i)洛仑兹力调谐
在图28中,我们提供了1.177MHz梁94的异面共振的调谐曲线。在三个不同的磁场内做出了作为外加DC电流函数的频率偏移Δfz/fz的图形,其中Δfz是Z方向或者异面激励的频率变化,fz是Z方向或者异面激励的频率。实际上,重叠在图30所示相同曲线上的图形再次证实,该效应确实是力调谐效应。最低场下的明显弯曲是由于DC电流的加热效应,这将在下面进行讨论。我们注意到,为4个1<f<3MHz的不同GAAs样品获得了性质上相似的曲线。
图29显示了同一梁94对共面激励的标准化共面频率偏移Δfxy/fxy,其是用于不同磁场强度的电流的函数。随着磁场强度的增加,数据缺乏对称性变得更加明显。图31中作为每单位长度上外加力的函数的调谐曲线暗示,该平面内的力调谐效应非常微弱,并且可能被加热的频率降低效应所掩盖。
ii)热调谐
图32显示了覆盖有薄Au层的GaAs梁标准化异面和共面频率的温度改变。注意,两个模式显示出与显示最小变化的刚性模型不同的温度系数,这是很重要的。在该实例中,梁的尺寸w×t×L为1.5×0.8×70微米。异面和共面共振分别在fz=1.177MHz和fxy=1.838MHz。在具有稍高频率(fz=2.830MHz和fxy=2.328MHz)的Si梁中观察到了类似的效应。
图32的数据表明,热调谐在非常刚性的结构中较微弱。该预期通过测量大量具有一定频率范围的梁94的共振频率温度依赖性得到证实。Si和GaAs的数据分别显示在图33和34中。还根据两种材料的数据对声速进行了描点作图,其假定密度电荷在该温度范围下是可以忽略。可以采用任何传统的加热和冷却源改变温度。
i)洛仑兹力
我们已经讨论了,梁内的本征应力对我们结构的观测共振频率没有任何贡献(见图27)。我们将通过采用中性梁并添加由于恒定洛仑兹力产生的应力项分析调谐问题。因此,我们通过考察钳制梁对与梁同轴的恒定应力(后面我们将涉及洛仑兹力)的响应开始。围绕平衡点的小振运动方程为:
&PartialD; 4 u ( x , t ) &PartialD; x 4 - &sigma;A EI &PartialD; 2 u ( x , t ) &PartialD; x 2 = - &rho;A EI &PartialD; 2 u ( x , t ) &PartialD; t 2 - - - 6.1
其中σ是梁内的拉伸或者压缩应力,A和l分别是区域的截面积和力矩。E是杨式模量,ρ是材料通常的质量密度。应力实例对钳制边界条件的振荡频率(ω0’)能够通过解上面的方程获得:
&omega; 0 &prime; = 1.03 t L 2 E &rho;A ( 1 + A L 2 &sigma; 4 &pi; 2 EI ) = &omega; 0 1 + 3 L 2 &sigma; &pi; 2 E t 2 - - - 6.2
在该方程中,L和t分别是梁的长度和厚度。共振频率可以根据应力的性质,例如压缩或者拉伸,而增加或降低。
每单位长度的小恒定横向力会修改梁94的平衡形状。该拉力(pull)效应下的梁94采取如下描述的弹性形状:
u ( x ) = &tau; 24 EI x 2 ( x - L ) 2 - - - 6.3
其中τ是梁上每单位长度的恒力。该力导致梁延长,从而产生拉伸应力。由于τ产生的拉伸应力由下给出:
&sigma; = E &Delta;L L = 1 60480 L 6 E t 2 &tau; 5 = 1 420 L 6 E w 2 t 2 &tau; 2 - - - 6.4
因此用方程6.2得到的新共振频率为:
&omega; 0 &prime; = &omega; 0 1 + 1 140 &pi; 2 ( L t ) 2 &tau; 2 E 2 w 2 - - - 6 . 6
注意,频率偏移对于所有横向力均是正的。
每单位长度上恒力τ=IB的频率偏移的表达式具有如下的形式:
&omega; 0 &prime; = &omega; 0 1 + 1 140 &pi; 2 ( L t ) 8 I 2 B 2 E 2 w 2 - - - 6.7
我们的L/t≈50,w=1μm的GaAsA梁的前因子(prefactor)在公制单位下处于100的量级。每单位长度上施加的最大力为4×10-3N/m。因此,我们能够安全地扩展频率偏移达:
&Delta;&omega; &ap; &omega; 0 ( 1 280 &pi; 2 ( L t ) 8 I 2 B 2 E 2 w 2 ) - - - 6.8
该表达式估计我们的梁94的标准化频率偏移为10-5-10-6量级。然而,我们的测量在几个显著的方面偏离了上述表达式。首先,测量的频率偏移对于z方向上的共振是不对称的,并且对于向衬底95牵引梁的力我们遇到了负的频率偏移。我们观察到的效应显著增大,并且在B和I变量内都是线性的。
然而,在每单位长度上施加恒定力的方法导致洛仑兹力调谐的情况变得复杂。恒定电流I使局部温度估计增加大约5-10K。因此,测得的频率偏移是外加电流与由此产生的力的更详细的函数:
Δf=Δf调谐(I,B)+Δf加热(I)
该效应随着磁场强度B趋于零变得更加明显。当B=0时,我们可以预期1中完全对称的曲线。如图29所示,频率偏移曲线随着调协力变小而变得更加对称。在图35中,我们在减去偶数分量之后对图29中的数据进行了绘图,其中我们假定偶数分量是由于加热导致的。注意图35与图28相似。但是,图35中的效应要小一个数量级。
我们不理解在两个实例中观察到的不对称调谐的起源。这种不对称调谐能够在弯曲结构(buckled structure)中观察到,然而在我们的实验中观察的梁共振频率显示,我们的梁远没有发生弯曲跃迁(buckling transition)。图32和33中共振频率的有兴趣的温度依赖性表明,共振频率随温度的偏移与所观察的行为无关。所观察到的效应可能是由于在半导体接触金属双层内形成的应力。用多晶金属和单晶高掺杂半导体制造的单部件梁消除了上述的应力。
用利用磁势转换的弯曲和扭转传感器进行位移探测的最终限制
在例证性实施例中,我们在微机械传感器部分中量化了磁势探测技术的性能。我们概述了限制其在1MHz-1GHz频率下的位移灵敏度的因素。我们评估了实际系统和装置的灵敏度,并且显示出,有可能获得灵敏度在1GHz下的热机械噪音极限。
i)磁势转换
当存在磁场时,垂直于场的机械运动诱发垂直于两者的电动力(EMF)。运动目标上的电极向探测器发送感应电压信号或者EMF。让我们评估机械传感器运动的磁势转换。在接近传感器标准模式的频率下,并且在低振幅下,其运动能够通过钳制简单谐波振荡器良好地加以描述,该振荡器的有效质量为m,有效弹簧常数为k:
m d 2 y ( t ) dt 2 + &gamma;m dy ( t ) dt + ky ( t ) = F ( t )
γ表示由于运动与内部和外部自由度的耦合而增加的阻尼系数,其导致损耗。m值取决于模式形状,k值取决于力F的施加方式和测量位移z的位置。对于长度为L、厚度为t、宽度为w并在t方向上以基本弯曲模式振动的直双钳制梁,梁的中心对均匀力的弹簧常数测量值为:
            k=32E(t/L)3w
其中E是材料的弹性常数。
探测电极中沿电极的x坐标感应的每单位长度的EMF是
V 0 ( x , t ) = B dy ( c , t ) dt sin &theta; ( x )
其中,y垂直于场测量,θ是电极与场B之间的夹角。通过沿着探测电极的长度Le进行积分,总电压能够表示为几何因子ξ的函数:
V 0 &OverBar; ( t ) = &xi; L e B dy ( t ) dt
如果位移在中心测量,则对于直双钳制梁的基本弯曲模式,ξ=0.53。那么,在共振频率ω0下,磁势转换的效率由下给出:
V0=2πξLBf0y0
我们因此定义器件的响应度R为:
R = V 0 y 0 = 2 &pi;&xi;LB f 0
ii)磁势电路模式
对于长度为Ld的驱动电极上由洛仑兹力F=BIdLd驱动的高Q传感器,磁势转换产生居中于共振频率 &omega; 0 = k / m 的Lorentzian线形状:
V 0 ( &omega; ) = i &omega;&omega; 0 2 &xi; L e L B 2 / k &omega; 0 2 - &omega; 2 + i&gamma;&omega; I d ( &omega; )
对于直双钳制梁,振动在厚度方向上的基频为:
f 0 = 1.03 t L 2 E &rho;
其中ρ是材料的质量密度。
运动的方程与在图36示意性显示的并联LCR电路中产生的电压方程具有相同的形式,因此机械系统的相似电参数能够如下定义:
R m = &xi; L 2 B 2 &omega; 0 k Q
C m = k &xi; L 2 B 2 &omega; 0
L m = &xi; L 2 B 2 k
品质因数Q描述了运动的能量消耗,并且与阻尼系数相关:γ=ω0/Q。因此,机械消耗可以用机械电阻表示。对于双钳制硅梁的基波共振ω0
R m = 0.00444 B 2 Q w t 1 2 f 3 2
运动的振幅与跨响应性LCR传感器的电幅成比例。
原理上,用于产生传感器运动的技术并不直接与其探测相关。然而实际上,由于亚微米传感器上的空间限制,使用梁表面上的单个电极进行驱动和探测是方便的。在磁势方案中,通过使交变电流通过垂直于场的电极,能够向器件施加振荡洛仑兹力。我们的分析分为两个性质不同的实例,单端口实例,其中单个电极同时用作磁势驱动和探测,和双端口实例,其中探测电极被隔离。该双端口实例与测量传感器在不存在磁势驱动时对外部激励的响应有关。
单端口实例
单端口电路模式如图37所示意性显示。电阻96,Re,表示电极的DC电阻,而电阻98,RL,表示探测器的输入阻抗。电阻100,R0,提供了大嵌入阻抗,从而驱动电流源102。该器件通过50Ω的传输线104连接于驱动102。图36的RLC电流耦合在电阻96,Re,和地之间。
双端口实例
在具有磁势驱动的双端口实例中,驱动电路与图37的单端口电路相似。图39所示的探测电路除了一个小的反应耦合之外完全分离。探测电极能够模拟为与电极电阻串联的理想AC电压源。AC源电压V’与跨RLC并联电路的电压或者传感器的运动成比例。测量电路中的电流Im通过在运动方程中添加阻尼力影响驱动电路:
γ→γ′=γ+κBLeIm/m
其中,Le是探测电极的长度,κ是说明位于结构不同位置处的两个电极的几何因子。在具有两个并联电极的直梁实例中,L’=L,κ=1。机械共振的电路通过添加并联电阻加以修改:
R d = &xi;B L 2 &kappa; L &prime; I M
该近似在共振峰附近无效。
耦合于测量电路
高频率下对磁势探测最显著的障碍是转换信号与探测器的有效耦合。随着器件频率的增加,其整体尺寸降低,探测电极的尺寸必须成比例地降低,以便使器件的机械性能不是由电极本身最终主导。因为电极的电阻随着L/wt按比例缩小,因此必须加以考虑。对于在100MHz及以上的频率下工作的典型机械器件,源阻抗Rs比探测电路的负载阻抗RL大得多。如果对耦合电路不注意,则由探测器测得的电压会显著降低。
单端口实例:
在单端口实例中,最直接的耦合选择是完全直接地或者通过传输线将探测器连接于器件。如果使用RL=50Ω的标准RF放大器,那么长度为λ/2的传输线起1-1变压器的作用,并且我们能够替换图38所示的等价电路。在该电路构型中,电响应不直接与传感器的运动成比例。出于该目的,适当的是将耦合效率定义为探测器在共振和失共振时的电压差Vm与由运动导致的电压V0之间的比值。共振时,响应机械部分由Rm给出,而在失共振时,其基本上为零。因此耦合效率ε1由下给出:
Figure A0381592700731
注意,当电极电阻较大时,并且当机械电阻或者传感器的响应较大时,耦合效率降低。耦合能够通过使用高阻抗探测器,例如金属半导体场效应晶体管(MESFET)(未显示),加以改良,但是如果是直接跨器件连接,则该改良只是大体上的。
双端口实例:
在双端口实例中,最实际的耦合策略是将源阻抗转换成标准低噪音RF放大器的50Ω输入阻抗。这里,我们考虑最简单的阻抗转换,二元L部分,如图39所示。
无功元件的最佳选择是:
L = R S &omega; R L R S - R L
C = 1 &omega; R S R S - R L R L
其中Rs是探测电极的电阻。
然后将测得的电压以如下因数减少:
&epsiv; 2 = V m V 0 = ( R L R S ) 1 2 ( R S - R L 4 R S - 3 R L ) 1 2
例如,从1kΩ电极转变成50Ω的信号,其耦合效率为0.11,而在单端口实例中为0.0023。显然,双端口构型是优选的,只要在器件上有足够的空间用于电极,特别是当意图测量器件对外激励的响应时。
寄生电抗
在高于100MHz的频率下,必须考虑耦合电路上的寄生电抗效应。对于长3μm、宽200nm、厚100nm,在100MHz下振动的直双钳制硅梁传感器,70nm宽电极的自感是可以忽略的,为~2mΩ。两个70nm宽的电极在相同传感器上隔离60nm,它们之间的共有阻抗为~1mΩ。它们的电容也可以忽略,为~1fF。对于第一种近似,这些元件的电容和感应系数随着L的对数(L/w)按比例变化,它们预期对于标准几何形状不重要,刚好进入GHz的频率范围。最显著的寄生元是地平面与导线之间的电容,其中地平面上放置有衬底,而导线将器件连接于传输线。对于500μm厚硅衬底上的宽100μm,长500μm的典型导线,并联电容为~150fF,或者在1GHz下为1kΩ。因为该电容分流类似阻抗的探测电极,因此它会降低测量的耦合效率和最终的灵敏度。为了保证在高于1GHz的频率下具有高效的耦合,必须致力于使导线长度最小化,或者通过在衬底上制造共面波导管向器件提供合适的传输线。
灵敏度分析
系统限制
磁势探测技术的灵敏度限制是三个测量分量中每一个的函数:转换、耦合和放大。如上所示,转换效率或者响应度直接取决于器件的物理尺寸和工作频率。读出电路的耦合效率最有优化潜力,因为它取决于许多参数,包括探测电极的有限电容,寄生电抗和电路元件的自我耦合。读出放大器的输入噪音认为是固定的。原理上,有三种用于测量的最终噪音源:放大器噪音Sa v,探测电极中的Johnson噪音SJ v,和传感器的本征热机械振动。由测量导致的噪音频谱密度Sm X能够转换成器件的运动,其转换如下:
S X ( 1,2 ) M = 1 R 2 ( S V J + 1 &epsiv; ( 1,2 ) 2 S V a )
我们的计算证实,器件和读出能够被设计成在最高达1GHz的频率下将放大器噪音的贡献降低到预期的热机械噪音之下。
为了限制问题的范围,我们把在分析中提出的一般关系应用于简单的实例,其中直双钳制梁在其表面上具有一个或两个金电极,在其基本标准模式下振动。我们进一步要求,器件的厚度不小于50nm,驱动和探测电极能够相当薄。许多应用都具有一个附加要求,即测量电路对待测量的运动的影响可以忽略。在磁势探测中,测量的反作用(back-action)或者摄动效应与测量电路拉出的电流成比例。
转换几何形状:
纳米机械器件的几何尺寸典型地受制造它的结构层的厚度限制,或者受适合于制造处理或应用的纵横比限制。对于如下所示的简单弯曲和扭转传感器,(L,t,f0)中只有两个独立的参数。因为我们特别对高频应用感兴趣,所以我们将根据(t,f0)和(L/t,f0)计算磁势转换的几何相关参数。
表1和2显示了这两种简单几何形状的硅的频率和响应度。表1列举了弯曲和扭转传感器中的几何相关参数。在弯曲实例中,力常数在梁的中心202处测量,在扭转实例中,在叶片(paddle)200的边缘测量,如图40所示。所有的数字量都具有SI单位。表2列举了典型弯曲和扭转传感器的几何相关参数。
表1
表2
  弯曲   扭转   弯曲   扭转
频率           100MHz                1GHz
厚度           100nm                50nm
长度比例   3μm   800nm   670nm   215nm
力常数   21N/m   41N/m   115N/m   140N/m
响应度,8T   790nV/=>   510nV/=>   1.12μV/=>   1.08μV/=>
双钳制梁202和扭转传感器200在RF频率范围内提供相当的磁势响应度。尽管它们的力常数和响应度相似,但是直梁比扭转叶片(torsion paddle)传感器具有明显的优势。为了获得接近1GHz的频率,而厚度不小于50nm,扭转传感器必须具有纵横比非常小的逆转棒204。例如,对于表中说明的1GHz传感器,该纵横比为4。不仅结构难以制造,而且回复扭矩的非线性系数对于纵横比如此之小的扭转棒而言也很强大。这严重地限制了任何器件应用的线性动力学范围。
耦合
耦合效率由两个相互矛盾的要求控制。源的阻抗要小,同时探测电极要小,以便使质量负载和可能的阻尼效应最小。为了使分析简化,我们给电极厚度相对于器件厚度的比值设定了上限A,其在原理上取决于具体的应用。在计算中,我们假定电极是最佳的,横截面积尽可能地大。对于直梁,电极的电阻由下给出:
R S = L &lambda;&sigma;t w e
其中σ是电极的导电率,λ是驱动信号波长,t是梁的厚度,L是梁的长度,we是其宽度。在单端口实例中,耦合电路的插入损失或者断电/通电(power out/power in)的比值是:
&epsiv; 1 = &alpha; 2 ( 1 + &alpha; ) ( 1 + &alpha; + R m &lambda;&sigma;tw L ) 其中 &alpha; = &lambda;&sigma; R L tw L .
对于具有大纵横比L/t,α<<1的典型器件,耦合效率能够近似为α2
在双端口实例中,耦合电路的插入损失为:
&epsiv; 2 = 1 2 &alpha; 1 2 ( 1 - &alpha; 1 - 0.75 &alpha; ) 1 2
对于具有大纵横比L/t,α<<1的典型器件,圆括号里的项可以忽略。因为寄生电抗较小,所以无论是否使用磁势驱动,该结果定性地是有效的。然而,如果使用磁势驱动,梁上存在两个电极需要被减小一个大约
Figure A0381592700772
的因子。
耦合效率能够根据直梁的厚度或者纵横比加以表达:
&epsiv; 2 = 0.496 ( &sigma;&lambda; ) 1 2 ( &rho; E ) 1 2 f 0 1 4 t 1 4 w 1 2 ( 1 - &alpha; 1 - 0.75 &alpha; ) 1 2
其中 &alpha; = 0.99 R L &sigma;&lambda; ( &rho; E ) 1 4 f 0 1 2 t 1 2 w
w=t时, &epsiv; 2 = 0.507 ( &sigma;&lambda; ) 1 2 ( E &rho; ) 1 4 ( t L ) 3 2 f 0 - 1 2 ( 1 - &alpha; 1 - 0.75 &alpha; ) 1 2
w=t时, &alpha; = 1.03 R L &sigma;&lambda; ( E &rho; ) 1 2 ( t L ) 3 f 0 - 1
测量灵敏度:
磁势探测的灵敏度受两个电噪音源的限制:探测电极自身的Johnson噪音和放大器输入端处的噪音。探测电极的频谱密度是:
S V J = 4 k B TL e &lambda;&sigma; tw e
该表达式能够根据直梁的厚度和纵横比写成:
S V J = 2.01 ( k B T &sigma;&lambda; ) 1 2 ( E &rho; ) 1 8 f 0 - 1 4 t - 1 4 w - 1 2
w=t时, S V J = 1.97 ( k B T &sigma;&lambda; ) 1 2 ( &rho; E ) 1 4 ( L t ) 3 2 f 0 1 2
综合响应度、耦合效率和电噪音源,我们获得了在直双钳制梁上进行双端口测量的频谱位移灵敏度:
S X ( 2 ) m = 1.68 &sigma; 1 2 &lambda; 1 2 B ( &rho; E ) 1 8 f 0 - 3 4 t - 3 4 w - 1 2 [ k B T + S V &alpha; R L ( 1 - 0.75 &alpha; 1 - &alpha; ) ] 1 2
w=t时, S X ( 2 ) m = 1.71 &sigma; 1 2 &lambda; 1 2 B ( &rho; E ) 1 2 ( L t ) 3 2 w - 1 2 [ k B T + S V &alpha; R L ( 1 - 0.75 &alpha; 1 - &alpha; ) ] 1 2
注意,当梁具有恒定的纵横比时,灵敏度独立于梁的频率。在前面的计算中,我们用电极的宽度代替了器件的宽度。这是假定只有一个电极,且器件被另一个装置驱动,或者在被动测量中使用。如果同时使用磁势驱动和探测,该计算在所有方面都相似,只是单个电极的近似宽度w必须用w/3代替。
与热噪音比较
机械传感器测量最终的噪音基底(floor)是其本征热振动。相应于机械传感器热振动的位移噪音的频谱密度具有Lorentzian线形状,共振时的数值由下给出:
S X &prime; = 4 k B TQ &xi;k &omega; 0
在直双钳制梁的特殊实例中,
S X &prime; = 0.200 ( k B TQ ) 1 2 E 1 8 &rho; 3 8 t 3 4 f 0 5 4 w 1 2
当w=t时, S X &prime; = 0.194 E - 1 2 ( L t ) 3 2 w - 1 2 f - 1 2
对于双端口探测技术,那么:
S X ( 2 ) M S X &prime; = 3.15 &rho; 1 2 ( &sigma;&lambda;Q ) 1 2 B f 0 1 2 [ 1 + S V &alpha; k B T R L ( 1 - 0.75 &alpha; 1 - &alpha; ) ] 1 2
由上面的表达式,探测热机械振动所需的放大器噪音的水平降低了大约I/f0,在小α的限制下,其独立于其它的几何因素。忽略α项,我们能够解出获得热机械限制所需的放大器输入噪音:
S V &alpha; = 0.1 k B TR L &sigma;&lambda;Q B 2 &rho;f 0
尽管其总体灵敏度被良好地按比例放缩到了高频,但是磁势探测的频率范围基本上受到必需测量电路的限制。在下面的部分中,我们将确定实际系统中的频率限制。
数字实例
输入阻抗RL=50Ω的典型低噪音RF放大器对于50Ω的源阻抗,具有的噪音数范围为0.3dB-1.0dB。在本报告中说明的双端口探测电路中,放大器通过阻抗转换观察到为50Ω,因此噪音数(NF.)能够由下面的方程转换成功率谱密度:
S V &alpha; = ( 4 k B T B L ) 10 NF / 10 dB
这给出了通过50Ω的有效噪音电压Sv a,其同时包括放大器输入端的电压和电流。对于所引用的噪音数,放大器噪音电压范围为 0.93 nV / Hz - 1.0 nV / Hz , 假定放大器处于室温。对于4K的低温放大器,噪音水平下降到
考虑具有正方形横截面的硅梁,其具有如下的电参数:λ=0.1,RL=50Ω,σ=1.6×107/Ω-m,处于B=8T的磁场之下。双端口探测灵敏度为:
S X ( 2 ) m = 1.72 &times; 10 - 6 f 0 - 3 4 t - 3 4 w - 1 2 [ k B T + S V &alpha; R L ( 1 - 0.75 &alpha; 1 - &alpha; ) ] 1 2
S X ( 2 ) m = 7.2 &times; 10 - 11 f 0 1 2 ( L t ) 5 2 [ k B T + S V &alpha; R L ( 1 - 0.75 &alpha; 1 - &alpha; ) ] 1 2
其中 &alpha; = 850000 f 0 1 2 t 3 2 &alpha; = 7.0 &times; 10 11 ( t L ) 3 f 0 - 1
该热噪音是:
S X th = 4.27 &times; 10 - 4 ( k B TQ ) 1 2 f 0 - 5 4 t - 5 4
S X th = 5.01 &times; 10 - 9 ( k B TQ ) 1 2 ( L t ) 5 2
图41以双端口磁势探测技术的灵敏度作为频率的函数的曲线图概述了灵敏度的计算,比较了Q=10000并具有不同厚度的直双钳制硅梁在8T磁场下测量的热噪音。注意,能够测量热机械噪音的频率只取决于电路的参数。
图42是对于受热机械噪音限制的磁势灵敏度,50Ω放大器所需输入噪音水平的曲线图,其是电极导电率的函数。器件是直双钳制硅梁,在8T磁场下具有Q=10000,其电极厚度是该结构的1/10。根据先前为放大器输入噪音得出的表达式,将磁势技术延伸到GHz频率范围的最佳方法是增加探测电极的导电率。图42的简图显示了该方法的有效性。
磁势技术对于探测运动中的纳米机械传感器是一个非常强大的工具,其在高达甚至超过1GHz的频率下能够获得高灵敏度,并且具有较大的线性动力范围。其有效性的物理原理是非常基础的,使得能够直接分析测量信号。利用简单的读出电路和标准RF放大器,磁势探测能够获得在1GHz下工作的纳米机械传感器热机械振动灵敏度的极限。
用Si和GaAs膜制造NEMS
Si和GaAs膜能够用体微机械加工技术制造。在两种情况下,使用各向异性选择性腐蚀剂的后侧处理(backside-processing)制造了各种宽度和尺寸的悬置膜片,其能够被进一步微机械加工成宽器件阵列。尽管每种处理的基本方法相同,但是两种材料的不同晶象本质要求两种迥异的处理过程。
Si膜制造
由于大的表面-体积比,自从上世纪80年代表面微机械加工出现以来,微机电系统(MEMS)中的静摩擦便成为主要的失效模式。当器件按比例缩小到纳机电系统(NEMS)时,静摩擦在制造处理期间造成了更大的挑战性问题。通过将NEMS器件绘图在预先限定的膜片内,悬臂纳米结构不再非常接近衬底。在干燥期间,相关静摩擦的释放是可以被有效防止的。从而获得更高的NEMS器件生产率。
膜衬底也利于高分辨率光蚀刻,因为图形曝光期间衬底中的背散射被大大降低。我们已经证实,通过电子束光蚀刻能够容易地限定纳米级图形。
图43a-43d概述了Si膜的处理过程。膜制造开始于一种材料,其包括硅外延层104和键合于Si衬底108的0.4μm厚注入SiO2层106,如图43a所示。使用高度各向异性KOH湿腐蚀从样品背部除去体Si衬底108的110区域。KOH的选择性腐蚀特性允许SiO2作为腐蚀停止层,这确保了光滑的背部和良好限定且均匀的膜厚度。
硅的各向异性腐蚀
KOH精确地沿着形成锥形腐蚀窗110的晶面腐蚀Si,该腐蚀窗110形成125°的侧壁角(sidewall angle),如图43b所示。掩模的底切(undercut)对于我们的目的而言可以忽略。该精确的各向异性允许非常容易地构建任意尺寸的膜。掩模由一系列正方形构成,这些正方形具有合适的尺寸,并被沿着开裂面的线分离从而便于大量的样品处理和一旦处理结束之后能够容易地切割成单独的单元片(die)。
膜制造
由于KOH腐蚀的侵入本质,使用低应力的(富硅的)Si3N4作为掩模。晶片的两侧均通过低压化学气相沉积(LPCVD)涂覆600_的Si3N4,生成用于Si外延层104的无针孔保护层,和背部的掩模层114。掩模112通过光蚀刻和随后在电子回旋加速共振(ECR)系统中腐蚀限制在氮化物内,其中该腐蚀使用10标准立方厘米每分钟(sccm)的Ar和20sccm的NF3的混合物进行2分钟。在腐蚀之前应当在外延层背部旋涂(spin)保护性光刻胶层(未显示),从而确保氮化硅涂层112不被损坏。
体Si腐蚀的执行优选地在30%KOH溶液中,保持在80℃下,并且在腐蚀前新鲜混合。该体积比产生了接近1.4μm/min的最大腐蚀速度,在到达SiO2层106之前需要略多于6小时的腐蚀时间。KOH以~8_/min的速度腐蚀SiO2,要预留足够的时间以便在对Si外延层104造成任何损伤之前停止腐蚀。
在10%HF溶液中除去SiO2牺牲层106,腐蚀速度为~340_/min,如图43c所示。SiO2层106的底切在两个方向拓宽膜的尺寸不超过4μm。稀释HF以~3_/min的速度腐蚀Si3N4,在12min的腐蚀时间内只除去~38_的掩模112。
然后在160℃的85%H3PO4浴内保持6分钟除去残余的Si3N4层112,如图43d所示。SiO2和Si在H3PO4中的腐蚀速度对于我们的目的而言可以忽略,尽管当腐蚀时间大于30分钟时观察到在Si层104上有一些损伤。
在腐蚀处理期间,溶液中小百分率的金属杂质有可能通过电化学位移镀反应沉积在下面的裸Si表面104上。这能够通过添加与溶液的重量比为5%的HCl作为螯合剂加以避免,而腐蚀特性不受影响。还应当注意,随着溶液蒸发,腐蚀速度显著变慢。出于这个原因,在达到合适的温度保证结果稳定之后,应当立即执行该处理。
GaAs膜制造
图44a-44d的侧剖视图显示了用于制造GaAs膜的处理过程。处理从由体GaAs衬底116构成的材料开始,顶部是三个电子束外延(MBE)生长层:600nmGaAs缓冲层118,1μmAl0.8Ga0.2As腐蚀停止层120,和获得期望最终膜厚度所需的适当GaAs外延层122,如图44a所示。试验了两种各向异性选择性腐蚀剂:NH4OH∶H2O2溶液和柠檬酸∶H2O2溶液。每种腐蚀剂都具有其自己的特征腐蚀轮廓(profile),每种的优点也相应改变。
腐蚀各向异性
GaAs的各向异性腐蚀相对于先前说明的硅处理要复杂一些,即腐蚀轮廓在两个主要的晶面上不同以及使用的腐蚀剂不同。NH4OH溶液产生了沿着腐蚀壁和底板的良好限制的光滑表面,如图45a的显微图象所示,而柠檬酸均匀地腐蚀所有的表面,如图46a的显微图象所示。两种腐蚀剂的底切比限制了最终的膜尺寸能够有多么小,需要比商业上提供的更薄的衬底以便制造具有合理尺寸的膜。底切比能够定义为横向腐蚀速度对垂直腐蚀速度的比。衬底116能够被减薄到100μm,低于它会使样品非常脆,容易破裂或者碎裂,从而不可能在后续处理步骤中保存下来。因为膜的前侧被保护,如在下面的处理步骤中说明的,因此有可能通过在减薄衬底和处理膜之前在前表面上制造期望的器件,避免由于衬底厚度导致的脆性问题。这需要红外线掩模准直仪以便在腐蚀之前使器件与膜图形对准。
NH4OH∶H2O2溶液的腐蚀速度沿着不同晶面改变,取决于腐蚀产物的体积比。出于最大选性选择的1∶30溶液在(010)面内产生了~130°的钝侧壁角,在(011)面内产生了~60°的锐侧壁角,如图44b所示。此外,还出现了明显的底切,两个晶面都具有平均~0.5的底切比。这使掩模窗尺寸在每一微米腐蚀深度上拓宽了~1平方微米。对于100μm的最初衬底厚度,上述特性的组合将沿着(011)面的尺寸限制在~200μm的最小值。
柠檬酸在GaAs上的各向异性腐蚀特性与NH4OH有一些不同。对于3∶1的体积比,其在[110]方向上也产生了~130°的侧壁角,但在[011]方向上产生了90°的有效角,如图46b的显微图象所示。[110]和[011]平面的底切比分别为1.2μm和1.5μm。对于100μm的最初衬底厚度,这两个特性的组合将[011]方向上的尺寸限制减低到了大约150μm。
在随后的器件限制需要更小的膜尺寸的实例中,柠檬酸溶液比NH4OH溶液更优选。然而,在目前的条件下,在经过大约100μm的深度之后,腐蚀速度接近零。这需要衬底尽可能减薄,结果产生难以处理的脆样品。因为NH4OH腐蚀剂能够均匀地腐蚀透过大于600μm的厚度,产生良好限制的和可复制的膜尺寸,所以目前,在更大的膜尺寸是可以容忍的情况下,该溶液是优选的。进一步的柠檬酸体积比与温度条件实验可以证实,该溶液在后期更加有用。
膜制造
衬底减薄
两种腐蚀方法的样品制备处理相同。膜制造开始于通过用体积比1∶8∶1的快速各向异性H2SO4∶H2O2∶H2O湿腐蚀剂将GaAs衬底116减薄到300-100μm的厚度。该腐蚀以大约5μm/min的速度进行,并产生对我们的目的而言相当光滑且足够均匀的背表面。制备了侧面为几毫米的材料片,其将在后面被切割成更小的样品用于单个膜处理。
在对玻璃盖片(coverslip)下面的材料表面涂蜡之前,在前侧旋涂光刻胶层124以保护外延层120。使用AZ4330光刻胶,并且应当注意不要将样品和蜡加热到130℃以上,因为这会使光刻胶在后面的处理中极难除去。一旦蜡被硬化,就能够使用有丙酮的小棉签从衬底116背部轻轻除去残留的光刻胶。
应当注意,腐蚀速度对温度非常敏感。因为当混合腐蚀剂成分时会产生一些热量,所以在浸没样品之前要将溶液放置一个小时使其返回到室温。同样由于温度敏感性,正常的室温波动会导致不稳定的腐蚀速度,最多变化20%。因为反复从溶液中除去样品以确定厚度会产生明显不同的腐蚀次数和后续腐蚀速度,因此一个垂直测微计(vertical micrometer)为获得精确设计的材料厚度是有用的。一旦达到该厚度,便在DI水中彻底清洗样品,并放置在丙酮中溶解蜡。
腐蚀方法
一旦除去蜡,便在前面再次旋涂用于保护的光刻胶。然后在掩模准直器中使背部泛光曝光(flood exposed)和显影以除去残余光刻胶。AZ4330光刻胶126以2750rpm旋涂在背部,并在95℃下烘烤1分钟,产生大约5μm后的光刻胶层。然后相对于合适的晶面限制相应于最终膜尺寸的腐蚀掩模。图形显影之后,在115℃下后烘烤2分钟,同时对玻璃显微镜滑片(microscope slide)下面的样品外延层侧面进行涂蜡。
所用的NH4OH溶液包括最大选择(~100)体积比为1∶30的NH4OH和H2O2,并且在腐蚀前新鲜配置。反应受扩散速度限制,将溶液喷到样品上用于循环和混合溶液,并且机械地除去腐蚀产物。应当注意,使用特氟纶样品固定器对于保证最大的选择性是重要的。当到达AlGaAs牺牲层时,透过上面两层看,腐蚀窗变得透明并且呈橘色。腐蚀允许持续~30秒以保证完全除去下面的GaAs层,并在DI水中完全冲洗样品以保证除去所有的腐蚀产物。
先前提到的柠檬酸溶液也能够用于除去体衬底。这受反应速度限制,因此用作简单浴液。一水合柠檬酸提前一天与DI水按重量1∶1混合以保证完全溶解。然后该溶液与H2O2按3∶1的体积比混合,并允许放置大约20分钟以便返回到室温。样品浸没在浴中直到看到透明窗口(对于被减薄到100μm的初始衬底为恰多于6小时),然后进行完全冲洗。
这样,同样在样品仍然附着于玻璃片时,使样品在20%HF中浸没1分15秒除去AlGaAs层,AlGaAs对GaAs的选择性大于107,如图44c所示。在完全除去AlGaAs层之后,在膜周围能够肉眼看到晕环(faint ring),表明牺牲层存在底切。为了完成该处理,样品放置在丙酮中过夜以溶解蜡,转移到异丙基乙醇中,轻柔地吹干产生图44d的结构。
这里提出了一种处理,其通过体微机械加工方法由硅和镓砷化物制造膜片机构。两种处理都利用选择性腐蚀各向异性腐蚀系统。对于Si系统,其特征是良好限制的KOH腐蚀剂,其对Si比对SiO2更有选择性。对于GaAs系统,其特点是NH4OH和柠檬酸溶液,它们对GaAs比对AlGaAs更有选择性。已经发现,对于重复性和耐久性而言优选的腐蚀剂是NH4OH,除非将来的器件限制需要小于150μm的膜尺寸。
NEMS阵列标量分析器/相关器
图47图解了NEMS阵列频谱分析器128的基本概念。在该概念中,“共振簧片”的类似物是压阻NEMS悬臂,如图47所示。形成阵列128的元件130的长度是交错的(这里表示为Li,...,Lk),这产生了覆盖期望预编制频谱范围的整体共振响应。这里,图中每一个元件130都被分别地驱动和感测,但是所有元件都分享一个共同的地电极132。值得注意的是,可能实现更加简单的读出器。本图中的信号通过具有局部截线(local stub)136的共用传输线134传递,以便在每个元件130处提供静电激励。注意,图47中驱动电极138与悬臂尖端140之间的厚度差的不同为诱发该方向上的机械运动提供了必需的异面电场。
图47代表了用单独、非耦合元件提供功能性的实际情况。在机械元件的耦合阵列中还可能具有集合机械模式。这为广泛类型的光机电阵列频谱分析器作好了准备。该家族的一个简单实例如图48所示意性显示的,其中多个如图48a所示的集成的或者阵列的且相互作用的梁或者悬臂210布置在两个相对的T框212之间。这里,傅立叶分量存在于电信号波形中,表示为v(t),参量地驱动阵列的集合模式。该运动依次调制光的衍射等级强度,该光来自通过光纤216耦合于器件10的激光器214,由准直仪218校准并且发送通过阵列128,该阵列128本质上是随时间改变的光衍射栅。这些命令能够被连续读出,因此能够对输入端220处的电波形v(t)提供实时频谱分析。
NEMS阵列化学/生物传感器
两个研究组开创了基于NEMS的电机械“鼻”器件。这些努力主要致力于气体分析物和液体分析物的感测。有两种工作模式,它们产生于相互作用的两种不同物理机制。第一个模式是两个组最近工作的基础,其是对基于悬臂与覆盖层差分应变的感应,其中覆盖层暴露于分析物时会膨胀或收缩。如果覆盖层只覆盖悬臂的一个表面,则覆盖层的膨胀或收缩导致弯曲,其随后被光学的探测。
感测的第二个模式是根据质量负载和传感器总体内在质量的最终改变,其能够被探测作为共振频率偏移。
对于将这些思想按比例缩小到NEMS阵列的范畴存在明显而强制的理由。最明显的是,随着NEMS元件的质量更小以及得自于纳米级机械元件的应变灵敏度、质量灵敏度、一致性和工作频率的进一步改进,“电机械鼻”的灵敏度能够极大地提高。其具体实例由我们最近对超灵敏NEMS质量感测的工作给出。
图49图解了NEMS阵列电子鼻的概念。分别转换的压阻悬臂144阵列内的每个元件142是安装有膜的表面,该膜为特殊靶分析物提供灵敏度。在该概念中,相邻静电驱动电极146允许分别地激励化学功能化元件。这需要单独地连接每个驱动电极。
寻址每个元件142的另一个装置如图50所示;如果悬臂144被计成具有如图50所示的交错长度,则其采用一个单一的传输线130和一个在频域内产生可寻址性的扫描信号。
NEMS阵列红外探测器/成象器
在图解实施例中,IR成象器是基于NEMS阵列128。尺寸的明显降低在灵敏度和响应时间上提供了极大的好处。一种可能的器件布局如图50所示。这里,通过IR吸附器(?)长度上光蚀刻图形的变化使单个元件的共振频率交错。应变诱发弯曲的AC读出被探测作为频率偏移,应变诱发弯曲来自于“吸附器”的IR吸附。该偏移是每个元件共振频率的直接结果,每个元件的共振频率取决于它们的平均位置。除了RF驱动信号自身之外,该位置依赖性产生于施加给每个元件驱动电极的静DC电压。该DC电压偏置转变为每个悬臂电位能的静电项,导致位置依赖的共振频率。在该特殊的概念中,我们还设想了通过步进频率激励各个共振元件快速地询问大量的阵列元件。这允许通过信号传输线进行单独寻址。通过将压阻器AC耦合于共用读出传输线,以相似的方式构想频率复用读出是非常合理的。
本领域的普通技术人员能够进行许多的改造和修改,而不背离本发明的精神和范围。因此,必须理解,例证性实施例只是出于举例的目的加以提出,不可认为是本发明的限制,本发明由后面的权利要求限制。例如,尽管事实上,权利要求的元件在下面以某种组合加以提出,但必须非常清楚,本发明包括其他具有更少、更多或者不同元件的组合,这些元件在上面已经公开,即使在最初的权利要求中不是处于这种组合。
本说明书使用的用于描述本发明及其各种实施例的文字不仅要理解为其通常限定的意义,而且包括超过了其通常定义的指定结构、材料或者行为。因此,如果一个元件在本说明书的上下文中能够理解为包括超过一个装置,那么其在权利要求中使用必须理解为普遍适用于所有被专利说明书以及单词本身支持的可能含义。
因此,后面权利要求中的单词和元件的定义在本说明书中的定义,不仅包括文字上提出的元件的组合,而且包括所有以基本上相同的方式执行基本上相同的功能以获得基本上相同的结果的等价结构、材料或者行为。因此在这方面可以预期,下面权利要求中的任何一个元件都可以认为是两个或者多个元件的等价替换,或者一个单独的元件可以替换权利要求中的两个或者多个元件。尽管上面可能把元件描述为某些组合的代表,甚至最初的权利要求也是如此,但是应当清楚地理解,权利要求组合中的一个或多个元件在某些情况下能够被排除在组合之外,且权利要求的组合可以变成子组合或者子组合的变型。
本领域普通技术人员从权利要求的对象中看出的非实质的改变,无论是现在已知的还是以后想出的,都显然是权利要求范围内的等价物。因此,本领域普通技术人员在现在或者在将来已知的明显替代品包含在本定义元件的范围内。
因此,权利要求应当理解为包括特别举出并在上面说明的,在概念上是等价的,能够明显替代的,以及基本上引用本发明的基本思想的事物。

Claims (83)

1.一种单光刻制造的装置,包括:
一个亚微米宽度的双钳制悬臂梁,具有在梁内或者梁上制造的不对称布置的机电转换层;
至少一个侧驱动栅,位于梁的亚微米距离附近。
2.根据权利要求1的装置,其中不对称布置的机电转换层包含梁内不对称布置的压电层。
3.根据权利要求1的装置,其中梁由2DEG异质结构制造而成。
4.根据权利要求1的装置,其中梁具有电接触,并形成具有输出端口的双端口电路,并且进一步包括一个与梁并联的感应器和一个与梁的输出端耦合的阻塞电容器。
5.根据权利要求4的装置,进一步包括与阻塞电容器耦合的低噪音低温放大器。
6.根据权利要求1的装置,其中栅具有栅偶极子电荷分离,且其中梁具有梁偶极子电荷分离,梁和栅通过偶极子-偶极子相互作用而相互作用。
7.根据权利要求1的装置,进一步包括用于将梁保持在低温的低温装置。
8.根据权利要求1的装置,其中侧栅包括一个2DEG层。
9.根据权利要求1的装置,其中梁和侧栅包括一个芯片,并进一步包括一个在上面布置该芯片的基片,该基片上面形成一个电极,其中栅在基片电极与栅之间具有栅偶极子电荷分离,并且其中梁具有梁偶极子电荷分离,梁和栅通过偶极子-偶极子相互作用而相互作用。
10.根据权利要求1的装置,其中梁和栅由不对称异质结构堆叠制造而成,该不对称异质结构堆叠包括:一个2DEG GaAs压电层;两个位于GaAs层每一侧面上的三明治式AlGaAs隔离层;分别位于AlGaAs隔离层的上面和下面的第一和第二AlGaAs:Si施主层;分别位于AlGaAs:Si施主层的上面和下面的两个GaAs帽层。
11.根据权利要求10的装置,其中2DEG GaAs压电层下面的每个层比2DEG GaAs压电层上面的相应层厚。
12.根据权利要求10的装置,进一步包括一个位于堆叠下面的AlxGa1-xAs牺牲层,和一个位于AlxGa1-xAs牺牲层下面的基片,其中0<x<1。
13.根据权利要求1的装置,其中栅具有栅偶极子电荷分离,且其中梁具有梁偶极子电荷分离,梁和栅通过偶极子-偶极子相互作用而相互作用。
14.根据权利要求13的装置,进一步包括两个栅,其每一个都位于梁的亚微米距离内,且每一个都具有栅偶极子电荷分离。
15.根据权利要求13的装置,进一步包括一个向梁提供感测电流的源和一个与梁电连接产生输出信号的放大器。
16.根据权利要求15的装置,其中放大器是低温的。
17.根据权利要求15的装置,其中感测电流源向梁提供DC和AC感测电流。
18.根据权利要求1的装置,其中梁的转换层是压电的,用于诱发梁的振动,同时也是压阻的,用于感测梁的振动。
19.一种用于形成悬臂NEMS梁的方法的改进,该悬臂梁包括一个二维电子气层,该改进包括:
提供异质结构堆叠,其包括一个位于牺牲层上的2DEG层;
在堆叠上选择性布置掩模,从而为NEMS梁确定图形;
用Cl2/He等离子体腐蚀干腐蚀掉该堆叠的暴露部分,从而确定NEMS梁而基本上不改变2DEG层的电性质;和
腐蚀掉牺牲层释放NEMS梁。
20.根据权利要求19的方法,其中用Cl2/He等离子体腐蚀干腐蚀掉堆叠的暴露部分包括以1∶9的流速比向ECR等离子体室提供Cl2和He气体。
21.根据权利要求20的方法,其中将Cl2和He气提供到ECR等离子体室进一步包括用20W的恒定RF功率将堆叠保持在150V或者更低的自偏压下,并以大约300W或者更高的微波功率使Cl2和He气离子化。
22.一种NEMS参数放大器,包括:
一个悬臂振荡亚微米信号梁,其被限制在一个平面内,其对共面运动具有挠性的弹簧常数,并且以ω或者以接近信号梁机械共振的频率加以驱动;
一对泵梁,其与信号梁耦合并以或者以接近2ω加以驱动;
一个磁场源,其施加的场至少有一个分量垂直于信号梁和泵梁对;和
一个在电路中与泵梁电耦合的交流电源,从而在磁场的存在下施加一个通过泵梁的电流,从而在泵梁上产生一个被调制的洛伦兹力,其进而向信号梁施加一个压力和张力振荡的力以扰动信号梁的共面运动的挠性弹簧常数。
23.根据权利要求22的装置,进一步包括一个耦合于梁的放大器。
24.根据权利要求22的装置,其中泵梁和信号梁在平面内共同形成一个H形结构,信号梁形成H形结构的中间部分。
25.根据权利要求22的装置,其中泵梁被调谐在以2ω共振。
26.一种操作NEMS参数放大器的方法,包括:
提供至少有一个分量垂直于泵梁对的磁场;
在磁场的存在下,向泵梁施加频率为或者接近2ω的交流电流从而在耦合于泵梁的信号梁上产生一个被调制的压力和张力洛伦兹力,以便扰动信号梁针对共面运动的挠性弹簧常数;
响应被驱动的泵梁以ω的频率振荡信号梁,该ω正好是或者接近信号梁的机械共振频率;和
感测信号梁的振荡。
27.根据权利要求26的方法,进一步包括将泵梁调谐到2ω的频率。
28.根据权利要求26的方法,其中泵梁相对于信号梁的振荡以反四分之一相驱动。
29.一种亚微米悬臂,其特征是亚微米位移,包括:
一个具有限制部分的NEMS悬臂;
一个耦合于悬臂的压阻应变传感器外延层(epilayer);
其中G是装置的量规因数,由下给出:
G = 3 &beta;&pi; l k ( 2 l - l 1 ) 2 bt 2 R T
其中,参数πL是压阻转换材料的压阻系数,因子β表征由于传导层的有限厚度导致的G降低,K是悬臂的弹簧常数,l是悬臂的全长,l1是限制部分的长度,b是限制部分的厚度,t是限制部分的厚度的厚度,而RT是传感器的双端电阻。
30.根据权利要求29的悬臂,其中热机械振动的接近共振的力谱密度由下给出:
S F &gamma; = 4 k B T&gamma; = 4 K k B T / ( 2 &pi;Qf 0 )
其中kB是玻尔兹曼常数,T是温度,γ是阻尼系数,f0是共振频率和Q=mf0/γ是质量因子,m是悬臂的质量。
31.根据权利要求30的悬臂,其中热机械振动的接近共振的电压谱密度由下给出:
S V &gamma; = S F &gamma; G 2 l 2 16 &pi; 2 m 2 f 0 2 [ 4 - ( f - f 0 ) 2 + f 0 2 / Q
其中f是悬臂的振荡频率。
32.一种用于按比例缩放和探测NEMS器件中载流子分布的方法,该NEMS器件具有位于本征层上的掺杂层,该掺杂层具有不同的掺杂浓度和不同的厚度,该方法包括:
提供具有预定厚度的掺杂层;
在掺杂层中提供一定的掺杂浓度;
通过满足如下的条件调节费米能级直到电中性:
&Integral; 0 e ( &rho; ( x ) / e + N A - ( x ) ) dx = 0
其中
是离子化受体点的密度,其中P是由费米统计给出的载流子体积密度,ρ(x)=e(p(x)-n(x)),而正和负载流子密度是
p(x)=1.04×1025e-β(EF-EV)/m3
n(x)=2.8×1025e-β(EC-EF)/m3
其中,β是1/kT,EF是费米能级,Ev是价带能,而EC是导带能;根据如下的公式确定价带的弯曲: d 2 E V dz 2 = e&rho; ( x ) &epsiv;
其中Ev是价带能,ε是介电常数,e是电子电荷,边界条件为:
d 2 E V dz 2 | z = 0 = e&sigma; &epsiv;
其中σ是经验表面载流子浓度;
迭代重复前述的调节和确定步骤直到获得载流子密度ρ的收敛。
33.一种桥电路,包括:
激励信号源;
功率分配器,其与源耦合从而产生激励信号的两个异相分量;
第一激励部分,其耦合于功率分配器;
第二激励部分,其耦合于功率分配器;
第一电路臂,其耦合于第一激励部分,包括具有转换电输出的第一NEMS共振梁;
第二电路臂,其耦合于第二激励部分,包括具有转换电输出的第二NEMS共振梁,该第一和第二梁彼此相匹配;和
探测部分,其耦合于DC耦合电阻Re和NEMS共振梁。
34.根据权利要求33的桥,进一步包括一个可变衰减器和一个移相器,它们耦合在与第一和第二电路臂相对的一个中,有衰减器比没有衰减器能够更精确地平衡第一和第二电路臂之间的阻抗失配,而移相器补偿由于引入衰减器导致的相失衡。
35.根据权利要求33的桥,其中NEMS共振梁包括一个用于吸附试验材料的表面,其中NEMS共振梁的性能受到试验材料的影响并由桥加以测量。
36.根据权利要求33的桥,进一步包括一个放大器和一个耦合于放大器探测部分的输出阻抗失配电路。
37.根据权利要求33的桥,其中第一和第二NEMS共振梁是磁势NEMS共振梁并且没有金属化。
38.一种用于平衡桥电路两个NEMS器件的输出的方法,包括:
提供激励驱动信号;
将激励驱动信号分成两个异相分量;
向具有第一转换电输出的第一NEMS共振梁提供其中一个异相分量;
向具有第二转换电输出的第二NEMS共振梁提供另一个异相分量,该第一和第二梁彼此相互匹配;和
加和第一和第二转换电输出以产生平衡探测输出信号。
39.根据权利要求38的方法,进一步包括可变地衰减第一和第二NEMS共振梁其中一个的驱动激励信号,向第一和第二NEMS共振梁的另一个提供驱动激励信号的补偿相移,从而与没有衰减或者没有对由于衰减产生的相失衡进行相移补偿相比,更精确地平衡第一和第二NEMS共振梁之间输出阻抗的失配。
40.根据权利要求38的方法,进一步包括将试验材料吸附在NEMS共振梁的表面从而改变NEMS共振梁的性能,和测量平衡探测输出信号中性能的改变。
41.根据权利要求38的方法,进一步包括在放大器中放大平衡探测输出信号,和对探测部分的输出进行阻抗匹配,其中放大器向探测部分提供平衡探测输出信号。
42.根据权利要求38的方法,进一步包括提供一个磁场,在磁场中暴露第一和第二NEMS共振梁;用磁势力驱动第一和第二NEMS共振梁,而不对第一和第二NEMS共振梁进行金属化。
43.根据权利要求38的方法,进一步包括位于其中一个NEMS共振梁上的吸附表面,其中吸附表面上被吸附物的吸附由平衡探测输出信号指示。
44.一种设备,包括:
驱动源;
功率分配器,其耦合于驱动源从而产生反相的驱动信号;
第一磁势NEMS共振梁,其耦合于驱动信号的一个相,该驱动信号由功率分配器产生;
第二磁势NEMS共振梁,其偶合于驱动信号的另一个反相的相,该驱动信号由功率分配器产生;
一个接线端,其与两个磁势NEMS共振梁电耦合;
一个放大器,其与接线端耦合;和
一个与放大器耦合的装置,该装置用于测量该设备正向传输系数S21的频率依赖性。
45.根据权利要求44的设备,其中第一和第二磁势NEMS共振梁由SiC构成。
46.根据权利要求44的设备,其中第一和第二磁势NEMS共振梁进行共面共振。
47.根据权利要求44的设备,其中第一和第二磁势NEMS共振梁进行异面共振。
48.根据权利要求44的设备,进一步包括位于一个NEMS共振梁上的吸附表面,其中吸附表面上吸附物的吸附通过测量装置加以测量。
49.一种方法,包括:
提供激励驱动信号;
将激励驱动信号分成两个异相分量;
向具有第一转换电输出的第一NEMS共振梁提供其中一个异相分量;
向具有第二转换电输出的第二NEMS共振梁提供另一个异相分量,该第一和第二梁彼此相匹配;
振动第一和第二NEMS共振梁;
加和第一和第二转换电输出从而产生平衡探测输出信号;
在放大器中放大平衡探测输出信号;和
测量正向传输系数S21的频率依赖性。
50.根据权利要求49的方法,其中振动第一和第二磁势NEMS共振梁包括使梁进行共面共振。
51.根据权利要求49的方法,其中振动第一和第二磁势NEMS共振梁包括使梁进行异面共振。
52.磁势驱动亚微米NEMS共振梁的一种改进,包括:
一个亚微米SiC NEMS梁,其具有表面、轴长度L、宽度W、杨氏模量E、质量密度ρ和位移幅度A;
一个磁场源B;
一个布置在梁表面上的电极装置,用于沿着梁的轴向长度的至少一部分传导电流;
一个耦合于电极装置第一末端的交流电源,其磁势驱动SiCNEMS梁到共振频率 f 0 = E &rho; W L 2 ;
一个耦合于电极装置第二末端的探测器,以探测从SiC NMES梁产生的Vemf V emf &Proportional; BA E &rho; W L .
53.根据权利要求52的改进,其中电极装置包括一个单电极,其耦合于交流电源用于驱动磁场中的梁,并耦合于探测器用于感测由梁的运动在电极中产生的EMF。
54.根据权利要求52的改进,其中电极装置包括一个耦合于交流电源的第一电极用于驱动磁场中的梁,和一个耦合于探测器的第二电极用于感测由梁的运动在电极中产生的EMF。
55.根据权利要求52的改进,其中SiC NEMS梁的尺寸和参数在UHF范围和更高的范围内提供基波共振频率。
56.根据权利要求52的改进,其中SiC NEMS梁的尺寸和参数在微波L带内提供基波共振频率。
57.一种调谐具有异面共振的亚微米NEMS器件的方法,包括:
提供一个磁场,其中布置NEMS器件;
向NEMS器件提供AC电流,从而以共振频率振荡磁场中的NEMS器件;
向NEMS器件提供DC电流,从而以恒定的洛伦兹力调谐NEMS器件的异面共振频率。
58.根据权利要求57的方法,其中NEMS器件具有轴向长度,并沿着其轴向长度提供金属化,其中向NEMS器件提供DC电流包括向金属化提供DC电流。
59.根据权利要求57的方法,其中NEMS器件还具有共面共振,并进一步包括改变NEMS器件的温度以调谐NEMS器件的异面和共面共振。
60.一种可调谐的NEMS器件,其具有异面共振,包括:
一个磁场源,其中布置NEMS;
一个AC电源,其耦合于NEMS器件从而以共振频率振荡磁场中的NEMS器件;
一个DC电源,其耦合于NEMS器件从而以恒定的洛伦兹力调谐NEMS器件的异面共振频率。
61.根据权利要求60的NEMS器件,其中NEMS器件具有轴向长度并沿着其轴向长度提供金属化,其中耦合于NEMS器件的DC电流源向金属化提供DC电流。
62.根据权利要求60的NEMS器件,其中NEMS器件还具有共面共振,并进一步包括用于改变NEMS器件温度的装置,从而调谐NEMS器件的异面和共面共振。
63.根据权利要求62的NEMS器件,其中NEMS器件包括由单晶体高掺杂半导体构成的半导体金属双层,且上面布置的金属化是多晶金属以减少半导体金属双层的应力。
64.共振亚微米单端口NEMS器件的一种改进,包括一个共振梁,其具有宽度W、厚度t、长度L、探测器负载电阻RL、等价机械阻抗Rm,在相应于波长λ的频率下工作,在导电率为σ的梁上具有一个电极,从而插入损失ε如下定义:
&epsiv; 1 = &alpha; 2 ( 1 + &alpha; ) ( 1 + &alpha; + R m &lambda;&sigma;tw L )
其中 &alpha; = &lambda;&sigma;R L tw L 被最小化或者接近1。
65.共振亚微米双端口NEMS器件的一种改进,包括一个共振梁,其具有宽度W、厚度t、长度L、探测器负载电阻RL、等价机械阻抗Rm,在相应于波长λ的频率下工作,在导电率为σ的梁上具有一个电极,从而插入损失ε如下定义:
&epsiv; 2 = 1 2 &alpha; 1 2 ( 1 - &alpha; 1 - 0.75 &alpha; ) 1 2
其中 &alpha; = &lambda;&sigma; R L tw L 被最小化或者接近1。
66.双端口、直、双钳制NEMS磁势梁的一种改进,该梁耦合于一个负载电阻为RL的放大器,该NEMS梁的长度为L,厚度为t,宽度为w,杨氏模量为E,质量密度为ρ,位于磁场B内,其金属化的导电率为σ,温度为T,驱动信号波长为λ,共振频率为f0,放大器频谱功率密度为Sa v,从而频谱位移灵敏度Sm x(2)等于或者大于相应于NEMS梁热波动的频谱位移密度,该频谱位移灵敏度Sm x(2)由下定义:
S X ( 2 ) m = 1.68 &sigma; 1 2 &lambda; 1 2 B ( &rho; E ) 1 8 f 0 - 3 4 t - 3 4 w - 1 2 [ k B T + S V a R L ( 1 - 0.75 &alpha; 1 - &alpha; ) ] 1 2
其中kB是洛仑兹常数,且
&alpha; = 0.99 R L &sigma;&lambda; ( &rho; E ) 1 4 f 0 1 2 t 1 2 w .
67.一种用Si膜制造NEMS梁的方法,包括:
提供Si衬底;
在Si衬底上布置SiO2层;
在SiO2层上布置Si外延层;
选择性各向异性腐蚀Si衬底的一部分直到用作停止层的SiO2层;
选择性腐蚀SiO2层的一部分以暴露出悬浮的Si外延层膜;和
在悬浮的Si外延层膜中形成NEMS梁,
借此避免毛细扭曲,并在衬底附近无散射地获得电子束分辨率。
68.一种用GaAs膜制造NEMS梁的方法,包括:
提供GaAs衬底;
在GaAs衬底上布置AlGaAs层;
在AlGaAs层上布置GaAs外延层;
选择性各向异性腐蚀GaAs衬底的一部分直到用作停止层的AlGaAs层;
选择性腐蚀AlGaAs层的一部分以暴露出悬浮的GaAs外延层膜;和
在悬浮的GaAs外延层膜中形成NEMS梁。
69.根据权利要求68的方法,其中选择性各向异性腐蚀GaAs衬底的一部分直到用作停止层的AlGaAs层包括用NH4OH或者柠檬酸溶液腐蚀。
70.根据权利要求69的方法,其中用NH4OH溶液腐蚀包括用在腐蚀前新鲜配制的由NH4OH和H2O2构成的溶液腐蚀,其体积比近似为1∶30。
71.根据权利要求69的方法,其中用柠檬酸溶液的腐蚀包括用室温浴液腐蚀,该室温浴液由柠檬酸一水化合物与去离子水按重量比1∶1混合并完全溶解,然后将该1∶1混合物与H2O2以3∶1体积比混合形成该浴液。
72.一种NEMS阵列分析器,包括:
两个反平行的衬底;
多个从其中一个衬底延伸的压阻NEMS悬臂,每个NEMS悬臂具有不同的共振频率从而相应的多个共振频率覆盖一个所选择的频谱范围;和
多个从另一个衬底延伸的驱动/感测元件,每一个驱动/感测元件主要与多个压阻NEMS悬臂中的一个耦合。
73.一种NEMS阵列分析器,包括:
一个框;
多个NEMS结构,其形成相互作用的阵列从而形成光学衍射栅;
用于响应输入信号驱动多个NEMS结构的装置;和
光源,用于照射多个NEMS结构;和
探测器装置,用于探测来自多个NEMS结构的衍射光,这些结构联合起作用作为随时间变化的衍射栅。
74.一种NEMS电化学传感阵列,包括:
多个应变感测NEMS悬臂,每一个上面都布置有响应相应的分析物的覆盖层,覆盖层的响应在相应悬臂上施加一个应变;和
用于探测多个应变感测NEMS悬臂中每一个的应变的装置。
75.根据权利要求74的NEMS电化学传感阵列,其中覆盖层的响应包括覆盖层体积的扩张或者收缩变化,导致在相应悬臂上施加应变使其弯曲,且其中用于探测的装置包括用于探测每个悬臂弯曲量的光学探测器阵列。
76.根据权利要求74的NEMS电化学传感阵列,其中覆盖层的响应包括质量负载,导致每个相应悬臂的总惯性质量的改变,且其中用于探测的装置包括用于探测每个悬臂共振频率偏移变化的装置。
77.一种NEMS红外传感阵列,包括:
两个反平行的衬底;
多个尺寸相近的从其中一个衬底延伸的压阻NEMS悬臂,每个悬臂具有相应于不同IR频率的相应IR吸收器,并根据每个IR吸收器吸收的IR量诱发相应的差分热膨胀;和
多个从另一个衬底延伸的驱动/感测元件,每一个驱动/感测元件主要耦合于多个压阻NEMS悬臂的其中一个。
78.一种具有限制载流子区域的压阻NEMS器件,包括:
掺杂半导体层;和
位于掺杂半导体下面的本征半导体,其中掺杂层和本征层的厚度分别只有大约7nm和大约23nm,同时保留限定导电层的阱。
79.一种具有限制载流子区域的压阻NEMS器件,包括:
掺杂半导体层,其中限定了量子阱;和
位于掺杂半导体下面的本征半导体,降低掺杂半导体层和下面本征层的厚度直到位于掺杂层和本征层之间界面上的以及位于掺杂层的顶表面上的耗尽层的预定幅度的厚度刚好被允许,并且在界面处建立0.4eV级别或者更大的带边缘能差。
80.根据权利要求79的压阻NEMS器件,进一步包括约束层,其邻近掺杂半导体层,相对于掺杂半导体层具有0.4eV级别或者更大的带边缘能差。
81.根据权利要求80的压阻NEMS器件,进一步包括一个邻接掺杂半导体层和位于其下面的约束层,和一个邻接掺杂半导体层和位于其上面的约束层,每个约束层相对于掺杂半导体层具有0.4eV级别或者更大的带边缘能差。
82.一种具有限制载流子区域的压阻NEMS器件,包括:
掺杂半导体层,其中限定了量子阱;和
掺杂半导体下面的绝缘层,降低掺杂半导体层和下面绝缘层的厚度,直到位于掺杂层和绝缘层之间的界面上和位于掺杂层的顶表面上的耗尽层的预定幅度的厚度刚好被允许,并在界面处建立0.4eV级别或者更大的带边缘能差。
83.一种在保留压阻特性的同时提供最小厚度压阻传感器的方法,包括降低掺杂半导体层的厚度,和降低下面的本征层,直到位于掺杂层和本征层之间的界面上以及掺杂层的顶表面上的耗尽层的预定幅度的厚度刚好被允许。
CN 03815927 2002-05-07 2003-05-07 用于gaas nems的二维电子气激励和传导的装置和方法 Pending CN1714458A (zh)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US37953602P 2002-05-07 2002-05-07
US60/379,542 2002-05-07
US60/379,713 2002-05-07
US60/379,551 2002-05-07
US60/379,535 2002-05-07
US60/379,546 2002-05-07
US60/379,709 2002-05-07
US60/379,685 2002-05-07
US60/379,550 2002-05-07
US60/379,644 2002-05-07
US60/379,536 2002-05-07
US60/379,544 2002-05-07
US60/419,617 2002-10-17

Publications (1)

Publication Number Publication Date
CN1714458A true CN1714458A (zh) 2005-12-28

Family

ID=35719287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03815927 Pending CN1714458A (zh) 2002-05-07 2003-05-07 用于gaas nems的二维电子气激励和传导的装置和方法

Country Status (1)

Country Link
CN (1) CN1714458A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425524C (zh) * 2006-01-13 2008-10-15 中国科学院上海微系统与信息技术研究所 硅微机械悬臂梁驱动结构、制作方法及应用
CN101371132B (zh) * 2006-01-23 2013-05-01 德雷塞尔大学 自励、自感知压电悬臂梁传感器
WO2017155750A1 (en) * 2016-03-10 2017-09-14 Allegro Microsystems, Llc Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
CN107252302A (zh) * 2012-07-27 2017-10-17 统雷有限公司 敏捷成像系统
CN107807155A (zh) * 2016-09-08 2018-03-16 中国科学院工程热物理研究所 一种ect/mwt双模态成像传感器
US10162017B2 (en) 2016-07-12 2018-12-25 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
CN109407020A (zh) * 2018-12-18 2019-03-01 中国工程物理研究院流体物理研究所 一种基于悬丝法的螺线管线圈的磁轴测量系统
CN109642915A (zh) * 2016-07-27 2019-04-16 卢米达因科技公司 复合振动平面内加速度计
CN111052604A (zh) * 2017-06-08 2020-04-21 Rf360欧洲有限责任公司 电器件晶片
CN111190126A (zh) * 2017-06-09 2020-05-22 合肥工业大学 采用折合梁结构的mems磁场传感器、制备工艺及用途
CN111896897A (zh) * 2015-01-12 2020-11-06 赫尔穆特.惠得利 用于引导载流子的设备和其应用
CN113614022A (zh) * 2019-03-21 2021-11-05 弗兰霍菲尔运输应用研究公司 具有大流体有效表面的mems
CN114689090A (zh) * 2022-03-28 2022-07-01 杭州电子科技大学 一种霍尔条阵列输出偏置的自适应补偿方法及电路
CN117352080A (zh) * 2023-12-05 2024-01-05 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Fe-Al/碳化铬系列功能涂层的腐蚀动力学方程的拟合方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425524C (zh) * 2006-01-13 2008-10-15 中国科学院上海微系统与信息技术研究所 硅微机械悬臂梁驱动结构、制作方法及应用
CN101371132B (zh) * 2006-01-23 2013-05-01 德雷塞尔大学 自励、自感知压电悬臂梁传感器
CN107252302B (zh) * 2012-07-27 2020-08-18 统雷有限公司 敏捷成像系统
CN107252302A (zh) * 2012-07-27 2017-10-17 统雷有限公司 敏捷成像系统
CN111896897B (zh) * 2015-01-12 2024-02-09 赫尔穆特.惠得利 用于引导载流子的设备和其应用
CN111896897A (zh) * 2015-01-12 2020-11-06 赫尔穆特.惠得利 用于引导载流子的设备和其应用
US10107873B2 (en) 2016-03-10 2018-10-23 Allegro Microsystems, Llc Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
CN108780120A (zh) * 2016-03-10 2018-11-09 阿莱戈微系统有限责任公司 用于补偿霍尔效应元件由于应力引起的灵敏度漂移的电子电路
CN108780120B (zh) * 2016-03-10 2022-03-25 阿莱戈微系统有限责任公司 用于补偿霍尔效应元件由于应力引起的灵敏度漂移的电子电路
US10254354B2 (en) 2016-03-10 2019-04-09 Allegro Microsystems, Llc Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
WO2017155750A1 (en) * 2016-03-10 2017-09-14 Allegro Microsystems, Llc Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
US10162017B2 (en) 2016-07-12 2018-12-25 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
US10746818B2 (en) 2016-07-12 2020-08-18 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
CN109642915A (zh) * 2016-07-27 2019-04-16 卢米达因科技公司 复合振动平面内加速度计
CN107807155A (zh) * 2016-09-08 2018-03-16 中国科学院工程热物理研究所 一种ect/mwt双模态成像传感器
CN111052604A (zh) * 2017-06-08 2020-04-21 Rf360欧洲有限责任公司 电器件晶片
CN111190126A (zh) * 2017-06-09 2020-05-22 合肥工业大学 采用折合梁结构的mems磁场传感器、制备工艺及用途
CN111190126B (zh) * 2017-06-09 2022-06-07 温州大学 采用折合梁结构的mems磁场传感器的制备方法
CN109407020B (zh) * 2018-12-18 2023-10-20 中国工程物理研究院流体物理研究所 一种基于悬丝法的螺线管线圈的磁轴测量系统
CN109407020A (zh) * 2018-12-18 2019-03-01 中国工程物理研究院流体物理研究所 一种基于悬丝法的螺线管线圈的磁轴测量系统
CN113614022A (zh) * 2019-03-21 2021-11-05 弗兰霍菲尔运输应用研究公司 具有大流体有效表面的mems
CN114689090A (zh) * 2022-03-28 2022-07-01 杭州电子科技大学 一种霍尔条阵列输出偏置的自适应补偿方法及电路
CN114689090B (zh) * 2022-03-28 2024-04-09 杭州电子科技大学 一种霍尔条阵列输出偏置的自适应补偿方法及电路
CN117352080A (zh) * 2023-12-05 2024-01-05 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Fe-Al/碳化铬系列功能涂层的腐蚀动力学方程的拟合方法
CN117352080B (zh) * 2023-12-05 2024-04-26 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Fe-Al/碳化铬系列功能涂层的腐蚀动力学方程的拟合方法

Similar Documents

Publication Publication Date Title
EP2064534B1 (en) Scanning probe microscopy with band excitation
Voigtländer Atomic force microscopy
CN1714458A (zh) 用于gaas nems的二维电子气激励和传导的装置和方法
Beardslee et al. Thermal excitation and piezoresistive detection of cantilever in-plane resonance modes for sensing applications
US20050161749A1 (en) Apparatus and method for vacuum-based nanomechanical energy force and mass sensors
Onaran et al. A new atomic force microscope probe with force sensing integrated readout and active tip
Jöns et al. Dependence of the redshifted and blueshifted photoluminescence spectra of single In x Ga 1− x As/GaAs quantum dots on the applied uniaxial stress
Bhaskar et al. On-chip tensile testing of nanoscale silicon free-standing beams
Maali et al. Improved acoustic excitation of atomic force microscope cantilevers in liquids
Talukdar et al. High frequency dynamic bending response of piezoresistive GaN microcantilevers
Faucher et al. Electromechanical transconductance properties of a GaN MEMS resonator with fully integrated HEMT transducers
Guthy et al. Resonant characteristics of ultranarrow SiCN nanomechanical resonators
Stefani et al. Mechanical reading of ferroelectric polarization
Gajula et al. Dynamic response of VO 2 mesa based GaN microcantilevers for sensing applications
Calahorra et al. Piezoelectricity in non-nitride III–V nanowires: Challenges and opportunities
Liu et al. Enhanced photothermal response near the buckling bifurcation in 2D nanomechanical resonators
Schwarz et al. Excitation of atomic force microscope cantilever vibrations by a Schottky barrier
Chen et al. Nems applications of graphene
Jaeger et al. Mechanical mode imaging of a High-Q hybrid hBN/Si3N4 resonator
Zeng et al. Breaking the Fundamental Limitations of Nanoscale Ferroelectric Characterization: Non‐Contact Heterodyne Electrostrain Force Microscopy
Kumar et al. Clamping effects on mechanical stability and energy dissipation in nanoresonators based on carbon nanotubes
Doll Advances in high bandwidth nanomechanical force sensors with integrated actuation
Bayram Nonlinearity in Piezotransistive III-Nitride Resonant Microcantilevers
Talukdar et al. III–V nitride microcantilever as a displacement sensor
Talukdar Piezotransistive III-V Nitride microcantilever based mems/nems sensor for photoacoustic spectroscopy of chemicals

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication