CN1557676A - Semi-independent flight control system of unmanned airship and control method thereof - Google Patents

Semi-independent flight control system of unmanned airship and control method thereof Download PDF

Info

Publication number
CN1557676A
CN1557676A CNA2004100157930A CN200410015793A CN1557676A CN 1557676 A CN1557676 A CN 1557676A CN A2004100157930 A CNA2004100157930 A CN A2004100157930A CN 200410015793 A CN200410015793 A CN 200410015793A CN 1557676 A CN1557676 A CN 1557676A
Authority
CN
China
Prior art keywords
micro controller
remote control
ground
controller system
transmission module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100157930A
Other languages
Chinese (zh)
Other versions
CN100458624C (en
Inventor
饶进军
谢少荣
罗均
蒋蓁
龚振邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CNB2004100157930A priority Critical patent/CN100458624C/en
Publication of CN1557676A publication Critical patent/CN1557676A/en
Application granted granted Critical
Publication of CN100458624C publication Critical patent/CN100458624C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention is the flying control system and method for semi-autonomous flying of unattended aeroboat. The control system includes aeroboat borne system and ground system, the aeroboat borne system has structure comprising sensors, A/D converter, monolithic computer, analog multiplexer, executor, aeroboat borne data transmission module, remote controlled signal receiver, etc. connected together; and the ground system has PC, ground data transmission module and remote signal emitter. The aeroboat borne data transmission module and the remote controlled signal receiver in the aeroboat borne system associate with the ground data transmission module and the remote signal emitter of the ground system via RF signal. The control system can identify the mode channel signal and realize the mode switching among remote control, local remote control and autonomous flying.

Description

Half independent flight control system and the control method thereof of unmanned airship
Technical field
The present invention relates to half independent flight control system and the control method thereof of a kind of flight control and control method thereof, particularly a kind of unmanned airship.
Background technology
Dirigible is a kind ofly to be lighter than air (Lighter Than Air, aircraft LTA), its chief component have the air bag that is full of light gas, one or several driving engine, gondola, empennage and the maneuvering systems etc. that produce thrust.Be with the main difference of the aircraft that overweights air: dirigible relies on the gas that is lighter than air (as hydrogen, helium or hot air etc.) that is sealed in the air bag that whole or most lift are provided, dirigible and load thereof are supported in the air, and this lift and flying speed are irrelevant.The main difference that dirigible and other are lighter than the air aircraft is: dirigible be dynamic, can control, driving engine provides power for it, by handling the elevating rudder on the empennage and the pitching and the direction motion of yaw rudder control dirigible.The characteristic dimension of unmanned airship is about below the 20m, can carry certain task load, and cruise duration is generally in 2h.
Compare with unmanned rotary wing aircraft with unmanned fixed-wing aircraft, unmanned airship have make that maintenance cost is low, commercial transport-big from anharmonic ratio, cruise duration is long, road-holding property is strong, control is simple and safe, can realize advantage such as low-altitude low-speed flight.From the eighties in 20th century; many countries have carried out the research of unmanned airship; main purpose is to be platform with it, carries out traffic monitoring, city planning, electric wire and pipeline construction and detection, mining site or archaeology place exploration and protection, enforcement, communication relaying and environment, bio-diversity, climate monitoring and research etc.In recent years, the micro-miniature unmanned airship has obtained increasing application, is just becoming an international research focus.
The overwhelming majority of unmanned airship adopts remote control mode, and remote control distance is generally in the horizon range.Obviously, remote control mode exists not enough, and limited as remote control distance, when objective was in beeper's ungetable place (as fully stocked wood, marsh), unmanned airship can't fly; Beeper's labour intensity is big, and the beeper faces upward always and sees dirigible limit operation in front, especially fatigue etc. easily under some long-time flight situations.
The purpose of half autonomous/autonomous unmanned airship flight control system is partly to replace manual handling, makes dirigible have certain independence.In this respect, a large amount of work has been done by the research institutions such as AURORA planning item, Centre National de la Recherche Scientifique system architecture and assay laboratory of Brazil, but its research is based on expensive sensor groups, is unfavorable for realizing commercialization.
Summary of the invention
The object of the present invention is to provide a kind of half independent flight control system and control method thereof of unmanned airship, improve the autonomous performance of unmanned airship flight, alleviate the labour intensity of teleoperator, widen the field of application of unmanned airship.
For achieving the above object, design of the present invention is: half independent flight control system of this unmanned airship comprises mobile system and ground system two parts, and wherein mobile system is made up of sensor groups (comprising position transduser and attitude sensor), micro controller system, remote control signal receiver, analog multichannel switch, actuator, airborne digital transmission module.The micro controller system signal links to each other with the actuator signal line through analog multichannel switch with the remote control signal receiver signal, and the micro controller system pin links to each other with the control end of analog multichannel switch; Micro controller system by serial communication interface and (or) mould/number conversion interface obtains the sensor groups signal; The general purpose I of micro controller system/O pin links to each other with the signal wire (SW) of the relevant control channel of remote control signal receiver; Micro controller system links to each other with digital transmission module by serial ports.Ground system comprises remote control signal transmitter, PC, ground digital transmission module; Remote control signal transmitter is operated by the beeper; The ground digital transmission module links to each other with PC by serial ports.
In order to make this control system can satisfy multiple user's request, by following some designed the control method of this system.
1. micro controller system is by discerning the receiver mode channel signal, control end by the control analog multichannel switch, control system is switched in these three kinds of patterns of manual remote control, local manual remote control and autonomous flight, thereby can realize the autonomous flight of unmanned airship, can in time switch under the remote control mode under special circumstances again, improve the safety of unmanned airship.
2. micro controller system is gathered the transducing signals such as attitude, position, speed, direction of unmanned airship by interrupt routine, calculate the following controlling quantity that requires each passage of control of current flight master mode according to control algorithm after treatment, send, control the relevant rudder face of unmanned airship by the I/O mouth, thereby control the flight of dirigible through analog multichannel switch to actuator.
3. by setting in advance or in flight course, setting way point in real time, make independently by the path flight of setting.
4, make mistakes according to module data and the adverse effect brought for fear of factor, to the form of the data setting strictness that digital transmission module transmitted and verification is set, whether correctly mobile system and ground system can be distinguished easily transmit data.
According to above-mentioned design, the present invention adopts following technical proposals:
A kind of half independent flight control system of unmanned airship, comprise mobile system and ground system, the system architecture that it is characterized in that mobile system is: the output of sensor groups is connected the input port of micro controller system by serial communication interface and/or mould/number conversion interface, the output of micro controller system is connected with the analog multichannel switch input end by the I/O pin, the mouth of analog multichannel switch connects the input end of actuator group, micro controller system links to each other with airborne digital transmission module by serial ports, and by module channels connection remote control signal receiver, the delivery port of remote control signal receiver connects analog switch; Ground system has PC to connect a ground digital transmission module by serial ports, and a remote control signal transmitter is arranged; The airborne digital transmission module of mobile system and remote control signal receiver are got in touch by the ground digital transmission module and the remote signal machine of radiofrequency signal and ground system respectively.
Above-mentioned sensor groups, micro controller system and analog multichannel switch are made on the printed circuit board, pass through cable connection airborne digital transmission module, remote control signal receiver and actuator group respectively by the data radio station connector lug on the printed circuit board (PCB), remote control signal receiver connector lug and actuator group connector lug.
Above-mentioned single chip circuit is made of a C8051F020 type micro controller system, double 5 * 2 standard socket, a 24M type crystal oscillator, 11 electric capacity and a resistance.
Above-mentioned sensor groups is made of a MAX3232 type serial communication interface chip, four electric capacity, a HMR3000 type digital compass and a RGM3000 type GPS receiver module.
Above-mentioned analog multichannel switch is a MAX333 cake core.
Above-mentioned data radio station connector lug adopts the accurate socket of single four pin marks, remote control signal receiver connector lug to adopt the accurate socket of single three pin marks, and the actuator group connector lug adopts the accurate socket of single three pin marks.
Above-mentioned sensor groups includes position transduser and attitude sensor, and actuator group is a steering wheel.
A kind of control method that is used for half independent flight control system of the described unmanned airship of claim 1 is characterized in that controlled step is:
A. in mobile system, the attitude of sensor groups perception unmanned airship and the signal of position are sent to the micro controller system processing;
B. in ground system, there is the beeper to handle remote control signal transmitter and sends remote signal, comprise the offline mode switching signal;
C. micro controller system is passed to the radiofrequency signal that the data transfer of airborne digital transmission module becomes in the ground digital transmission module receiver loading system, delivers to the ground PC and handles;
D. the ground digital transmission module receives the flicon instruction of PC, and is converted into radiofrequency signal and sends;
E. airborne digital transmission module receives the flicon instruction and is sent to the micro controller system processing, comprises the switching offline mode;
F. the micro controller system in the mobile system is by the control end bonded assembly I/O pin level of control with analog multichannel switch, select one between the two in the remote signal of remote control signal receiver reception ground remote control signal transmitter and the flicon signal of micro controller system transmission, the actuator group steering wheel is controlled, realized attitude control and navigation.
In above-mentioned control method, by of the state recognition of airborne micro controller system to remote control signal receiver pattern passage, change the control end level of analog multichannel switch related channel program, make corresponding actuator group signal in remote control signal receiver signal or micro controller system signal, select one, thereby flight control system is switched between manual remote control flight, the flight of local manual remote control and three kinds of patterns of automatic remote control flight.
In above-mentioned autonomous flight pattern, by in micro controller system, setting in advance the flight way point, or in flight course, set the flight way point in real time, unmanned airship is flown by way point.
The present invention compared with prior art, have following conspicuous outstanding feature and remarkable special advantage: in design-calculated control system of the present invention, micro controller system is discerned remote control receiver pattern channel signal, and command and control system can be switched in manual remote control, local manual remote control and three kinds of patterns of autonomous flight; Can make independently and fly by setting in advance or in flight course, setting way point in real time, carry out default task by setting path; Ground can send the instruction unmanned airship by remote control signal transmitter, and behaviour's short side just; Can obtain the various flying qualities of unmanned airship by the ground digital transmission module, be convenient to real time remote control.The present invention has improved the autonomous performance of dirigible, has alleviated beeper's labour intensity, can widen the field of application of unmanned airship simultaneously.
Description of drawings
Fig. 1 is the system architecture diagram of one embodiment of the invention
Fig. 2 is Fig. 1 example system structural representation
Fig. 3 is the schematic circuit diagram of printed circuit board (PCB) among Fig. 2
Fig. 4 is the principle schematic of single-pole double throw (SPDT) analog switch
Fig. 5 is the program flow diagram of micro controller system in Fig. 1 example
Fig. 6 is an offline mode changeover program diagram of circuit in Fig. 1 example
Fig. 7 is the control block diagram in Fig. 1 example
Fig. 8 is the format chart that digital transmission module transmits data in Fig. 1 example
The specific embodiment
A preferred embodiment of the present invention is as detailed below:
Referring to Fig. 1 and Fig. 2, half independent flight control system of this unmanned airship, comprise mobile system 2 and ground system 1, the system architecture of mobile system 2 is: the output of sensor groups 3 is connected the input port of micro controller system 4 by serial communication interface and/or mould/number conversion interface, the output of micro controller system 4 is connected with analog multichannel switch 5 input ends by the I/O pin, the mouth of analog multichannel switch 5 connects the input end of actuator group 6, micro controller system 4 links to each other with airborne digital transmission module 7 by serial ports, and by module channels connection remote control signal receiver 8, the delivery port of remote control signal receiver 8 connects analog switch 5; Ground system 1 has PC 11 to connect a ground digital transmission module 9 by serial ports, and a remote control signal transmitter 10 is arranged; The airborne digital transmission module 7 of mobile system 2 and remote control signal receiver 8 are got in touch by the ground digital transmission module 9 and the remote signal machine 10 of radiofrequency signal and ground system 1 respectively.Above-mentioned sensor groups 3, micro controller system 4 and analog multichannel switch 5 are made on the printed circuit board 12, pass through cable connection airborne digital transmission module 7, remote control signal receiver 8 and actuator group 6 respectively by the data radio station connector lug 14 on the printed circuit board (PCB) 12, remote control signal receiver connector lug 15 and actuator group connector lug 13.Sensor groups 3 includes position transduser and attitude sensor, position transduser adopts the RGM3000 type GPS receiver of RoyalTek company, attitude sensor is the HMR3000 digital compass of HoneyWell company, these two sensors are all communicated by letter with micro controller system 4 by serial ports, in addition, because the serial ports of data radio station and digital compass is the RS232 level, so need utilize the serial interface chip to be converted into micro controller system 4 acceptable Transistor-Transistor Logic levels, adopted in this example MAX3232 as under the interface core of sensor to realize this function; The C8051F020 type micro controller system that micro controller system 4 is produced for Cygnal company; The Max333 type element that analog multichannel switch 5 is made for MAXIUM company; The R149DP type 9 passage receivers that remote control signal receiver 8 is produced for Futaba company; The Futaba S9204 type steering wheel that actuator 6 is produced for Futaba company.The T9CAP type emitter that remote control signal transmitter 10 is produced for Futaba company in the ground system 1, ground PC 11 can be the portable laptop of general-duty. Digital transmission module 7,9 in ground system 1 and the mobile system 2 is the TDX-230 type duplex data radio station that prosperous company of Taida produces, and all links to each other with micro controller system 4 or PC 11 by serial ports.In order to improve the integrated level of system, in this example sensor groups and interface 3 circuit thereof, one-chip computer module 4, analog multichannel switch 5 etc. are integrated in the printed circuit board (PCB) 12, and on this circuit card, reserved connector lug 14 with the serial ports of airborne data radio station, reserved with remote control signal receiver 8 second and third, the connector lug 15 of four, six, eight channel signal interfaces, reserved interface 13 with four steering wheels 6.
Referring to Fig. 4, the each several part of above-mentioned printed circuit board (PCB) 12 circuit is respectively:
One-chip computer module 4 contains: the C8051F020 type micro controller system that U2-Cygnal company produces; The Y1-24M crystal oscillator; C14 and C15-27pF electric capacity; C1 ~ C9-0.1uF electric capacity; Double 5 * 2 standard socket of HDR1-, SCM program programming JTAG socket.
Remote control signal receiver joint 8 contains: the accurate socket of single three pin marks of CON1 ~ CON5-, be connected to passage 2, passage 3, passage 4, passage 6, the passage 8 of receiver respectively, and CON5 is connected with micro controller system P3.4 pin.Analog multichannel switch 5 contains: U1-analog multichannel switch MAX333, the annexation on its each road is as shown in table 1.
Steering wheel connector lug 13 contains: the accurate socket of single three pin marks of CON7 ~ CON10-is connected to unmanned airship elevating rudder steering wheel, Left Hand Engine air door steering wheel, yaw rudder steering wheel, right driving engine air door steering wheel respectively.
Sensor groups and interface circuit 3 thereof contain: U3-serial communication interface chip MAX3232; U4-GPS receiver module RGM3000; U5-digital compass HMR3000; C10 ~ C13-1.0uF tantalum electric capacity.
Data radio station connector lug 14 contains: the accurate socket of single four pin marks of CON6-.
Fig. 2 is the scheme drawing that the single-pole double throw (SPDT) pattern is intended switch.When control end is low level, common port with often close the end conducting; Otherwise when control end is high level, common port with often close the end conducting.The Max333 type element of the MAXIUM company manufacturing of adopting in the present embodiment has four road so independently analog switches, remote control signal receiver second and third, four, six passages elevating rudder, Left Hand Engine air door rudder, yaw rudder, the right driving engine air door rudder of corresponding dirigible (respectively) are connected with the Chang Heduan of Max333 respectively, its Chang Kaiduan, control end are communicated with the pin of corresponding micro controller system respectively, and common port is communicated with the actuator signal line.So by changing the level of control end, micro controller system can be controlled the source of actuator signal.
Each road of table 1 analog switch connects situation
Multiple way switch The 1 the tunnel The 2 the tunnel The 3 the tunnel The 4 the tunnel
Chang Heduan Remote control signal receiver passage 2 Remote control signal receiver passage 3 Remote control signal receiver passage 4 Remote control signal receiver passage 6
Chang Kaiduan Micro controller system P0.5 Micro controller system P0.6 Micro controller system P0.7 Micro controller system P1.0
Control end Micro controller system P2.0 Micro controller system P2.1 Micro controller system P2.2 Micro controller system P2.3
Common port Unmanned airship elevating rudder steering wheel Unmanned airship Left Hand Engine air door steering wheel Unmanned airship yaw rudder steering wheel The right driving engine air door of unmanned airship steering wheel
The control method of half independent flight control system of this unmanned airship is as described below: the controlled step of this control method is:
A. in mobile system 2, the attitude of sensor groups 3 perception unmanned airships and the signal of position are sent to the micro controller system processing;
B. in ground system, there is the beeper to handle remote control signal transmitter 10 and sends remote signal, comprise the offline mode switching signal;
C. micro controller system 4 is passed to the radiofrequency signal that the data transfer of airborne digital transmission module 7 becomes in the ground digital transmission module 9 receiver loading systems, delivers to ground PC 11 and handles;
D. ground digital transmission module 9 is accepted the flicon instruction of PC 11, and is converted into radiofrequency signal and sends;
E. airborne digital transmission module 7 is accepted the flicon instruction and is sent to micro controller system 4 processing, comprises the switching offline mode;
F. the analog multichannel switch 5 in the mobile system 2 is accepted the remote signal of ground remote control signal transmitter 10 and micro controller system 4 sends the flicon signals at remote control signal receiver 8, and actuator group steering wheel 6 is controlled, and realizes attitude control and navigation.
In the above-mentioned control method, state recognition by 4 pairs of remote control signal receiver 8 pattern passages of airborne micro controller system, the control end level of improvement analog multichannel switch 5 related channel programs, make corresponding actuator group 6 signals in remote control signal receiver 8 signals or micro controller system 4 signals, select one, thereby flight control system is switched between manual remote control flight, the flight of local manual remote control and three kinds of patterns of automatic remote control flight.
In the above-mentioned autonomous flight pattern, by in micro controller system, setting in advance the flight way point, or in flight course, set the flight way point in real time, unmanned airship is flown by way point.
Fig. 5 provides the program flow diagram of the airborne micro controller system of this unmanned airship flight control system.After the program initialization,, carry out in the cycle control then by the flight way point of unmanned airship being set with man-machine interactively.In cycle control, utilize the interrupt routine of micro controller system 4 to handle GPS and the signal statement of digital compass 3 and the control command of importing into through serial ports that ground PC 11 is uploaded, if statement receives and disposes, then write corresponding identification.In a circulation, at first judge the offline mode of unmanned airship; Inquire about the sign whether interrupt handling is finished then, be designated 1, then this sensing data is sent to ground by certain form, then with corresponding identification clear 0 if certain sensor signal disposes; PC 11 control commands in ground are used in the control algorithm with sensing data after receiving and handling, and control algorithm is by current flight state and dbjective state, calculate the required controlling quantity of each steering wheel 6, send to multiple way switch 5.
It in the frame of broken lines of Fig. 6 offline mode changeover program diagram of circuit.The P3.4 pin is communicated with the passage 8 of remote control signal receiver 8 in the present embodiment, because the signal of all passages all is pulse duration modulation (PWM) signals, therefore micro controller system 4 can be known the offline mode that the beeper sets by the high level time t of PWM ripple in the timer/counter calculating one-period.In an embodiment, set when 700<t≤1200, show that the operator wishes that unmanned airship is in the remote control distributor pattern, at this moment, micro controller system 4 control P2.0, P2.1, P2.2, P2.3 are that the level of control end of four passages of analog switch 5 is low, make each road often close end and common port conducting, promptly the incoming signal of all actuators 6 is the signal of receiver 8, thus remote-controlled all passages that are lighter than the air aircraft of beeper.When 1200<t≤1800, show that the operator wishes that unmanned airship is in local manual remote control offline mode, at this moment, Single-chip Controlling P2.0, P2.1, P2.3 are changed to high level, P2.2 is changed to low level, thereby the yaw rudder that the beeper can the remotely pilotless dirigible, other passage are then by micro controller system 4 controls.When 1800<t or t≤700, show that the operator wishes that unmanned airship is in the autonomous flight pattern, at this moment, micro controller system 4 control P2.0, P2.1, P2.2, P2.3 are that the level of control end of four passages of analog switch 5 is height, make normal beginning of each road and common port conducting, promptly all steering wheels 6 are by micro controller system 4 controls.Like this, the beeper, generally speaking, is provided with passage 8 and is third gear switch to realize the switching between the offline mode by operating walk way 8.
Fig. 7 is the control block diagram of each passage.The control basic process of each passage is: the expected value of controlling quantity is set, and this expected value and sensor 3 measured values compare and obtain error e, by algorithm calculate controlling quantity to steering wheel 6, thereby the motion of control unmanned airship, so circulation.In unmanned airship the amount of required control have speed, highly, three kinds in course, respectively by driving engine air door steering wheel, elevating rudder steering wheel, yaw rudder steering wheel are controlled.Because the characteristic of dirigible, the gondola that quality is bigger generally are located at the utricule bottom, so needn't control the roll passage; Its lift of dirigible mainly is air lift force, and is irrelevant with speed, so there is not the problem of stall in dirigible, therefore needn't consider the coupled relation between each passage in control, thus speed, highly, the three kinds of amounts in course can control separately, thereby the simplification control algorithm; Adopt and realize convenient, control failure-free pid control algorithm.Particularly, speed is controlled by adjusting driving engine air door steering wheel, and the ground velocity that is provided by GPS is represented the speed of dirigible, if ground velocity has gap with the setting flying speed, then, calculate the adjustment amount of air door steering wheel, realize speed control thereby constantly revise air door by control algorithm.Height is controlled by adjusting the lifting steering wheel, and the height that is provided by GPS compares with the flying height of setting, calculates the adjustment amount of elevating rudder steering wheel by control algorithm, realizes highly controlling thereby constantly adjust.The course is controlled by adjusting the yaw rudder steering wheel, and the first direction angle of ship and the direction expected value that are provided by compass compare, and calculate the adjustment amount of yaw rudder steering wheel by control algorithm, realize direction control thereby constantly adjust; Wherein the direction expected value draws by Current GPS position and next way point GPS position calculation.
Fig. 8 transmits the form of data for digital transmission module.Wherein numerical value of Chuan Songing and title thereof are variable parts, and check code HH is the XOR result of each character of these two parts and 0.In this way, can guarantee that mobile system and ground system can discern correct or wrong data, the adverse effect that causes to avoid digital transmission module to be interfered easily.
This control system and control method are used for 12 meters half Autonomous Control of filling the helium dirigible of length of Shanghai arrow micro-electromechanical technology Co., Ltd development, and be respond well.

Claims (10)

1. half independent flight control system of a unmanned airship, comprise mobile system (2) and ground system (1), the system architecture that it is characterized in that mobile system (2) is: the output of sensor groups (3) is connected the input port of micro controller system (4) by serial communication interface and/or mould/number conversion interface, the output of micro controller system (4) is connected with analog multichannel switch (5) input end by the I/O pin, the mouth of analog multichannel switch (5) connects the input end of actuator group (6), micro controller system (4) links to each other with airborne digital transmission module (7) by serial ports, and by module channels connection remote control signal receiver (8), the delivery port of remote control signal receiver (8) connects analog switch (5); Ground system (1) has PC (11) to connect a ground digital transmission module (9) by serial ports, and a remote control signal transmitter (10) is arranged; The airborne digital transmission module (7) of mobile system (2) and remote control signal receiver (8) are got in touch by the ground digital transmission module (9) and the remote signal machine (10) of radiofrequency signal and ground system (1) respectively.
2. half independent flight control system of unmanned airship according to claim 1, it is characterized in that sensor groups (3), micro controller system (4) and analog multichannel switch (5) are made on the printed circuit board (12), pass through the airborne digital transmission module of cable connection (7), remote control signal receiver (8) and actuator group (6) respectively by the data radio station connector lug (14) on the printed circuit board (PCB) (12), remote control signal receiver connector lug (15) and actuator group connector lug (13).
3. half independent flight control system of unmanned airship according to claim 1 and 2 is characterized in that micro controller system (4) circuit is made of a C8051F020 type micro controller system (U2), double 5 * 2 standard socket (HDR1), a 24M type crystal oscillator (Y1), 11 electric capacity (C14, C15, C1-C9) and a resistance (R1).
4. half independent flight control system of unmanned airship according to claim 1 and 2 is characterized in that sensor groups (3) is made of a MAX3232 type serial communication interface chip (U3), four electric capacity (C10-C13), a HMR3000 type digital compass (U5) and a RGM3000 type GPS receiver module (U4).
5. half independent flight control system of unmanned airship according to claim 1 and 2 is characterized in that analog multichannel switch (5) is a MAX333 cake core (U1).
6. half independent flight control system of unmanned airship according to claim 2, it is characterized in that data radio station connector lug (14) adopts the accurate sockets of single four pin marks (CON6), remote control signal receiver connector lug (15) to adopt the accurate sockets of single three pin marks (CON1-CON5), actuator group connector lug (13) adopts the accurate sockets of single three pin marks (CON7-CON10).
7. half independent flight control system of unmanned airship according to claim 1 is characterized in that sensor groups (3) includes position transduser and attitude sensor, and actuator group (6) is a steering wheel.
8. control method that is used for half independent flight control system of the described unmanned airship of claim 1 is characterized in that controlled step is:
A. in mobile system (2), the attitude of sensor groups (3) perception unmanned airship and the signal of position are transmitted
Handle to micro controller system;
B. in ground system, handle remote control signal transmitter (10) by the beeper and send remote signal, comprise flying
The row mode switching signal;
C. micro controller system (4) is passed to the number of airborne digital transmission module (7) in ground digital transmission module (9) the receiver loading system
According to the radiofrequency signal that converts to, deliver to ground PC (11) and handle;
D. ground digital transmission module (9) receives the flicon instruction of PC (11), and is converted into the radio frequency letter
Number send;
E. airborne digital transmission module (7) receives the flicon instruction and is sent to micro controller system (4) processing, comprises switching flying
Row mode;
F. the micro controller system (4) in the mobile system (2) is connected with the control end of analog multichannel switch (5) by control
The I/O pin level, receive ground remote control signal transmitter (10) at remote control signal receiver (8)
The flicon signal that remote signal and micro controller system (4) send selects one between the two, to the actuator group steering wheel
(6) control, realize attitude control and navigation.
9. the control method of half independent flight control system of unmanned airship according to claim 8, it is characterized in that by the state recognition of airborne micro controller system (4) remote control signal receiver (8) pattern passage, change the control end level of analog multichannel switch (5) related channel program, make corresponding actuator group (6) signal in remote control signal receiver (8) signal or micro controller system (4) signal, select one, thereby flight control system is switched between manual remote control flight, the flight of local manual remote control and three kinds of patterns of automatic remote control flight.
10. the control method of half independent flight control system of unmanned airship according to claim 8, it is characterized in that in the autonomous flight pattern, by in micro controller system, setting in advance the flight way point, or in flight course, set the flight way point in real time, unmanned airship is flown by way point.
CNB2004100157930A 2004-01-13 2004-01-13 Semi-independent flight control system of unmanned airship and control method thereof Expired - Fee Related CN100458624C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100157930A CN100458624C (en) 2004-01-13 2004-01-13 Semi-independent flight control system of unmanned airship and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100157930A CN100458624C (en) 2004-01-13 2004-01-13 Semi-independent flight control system of unmanned airship and control method thereof

Publications (2)

Publication Number Publication Date
CN1557676A true CN1557676A (en) 2004-12-29
CN100458624C CN100458624C (en) 2009-02-04

Family

ID=34351519

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100157930A Expired - Fee Related CN100458624C (en) 2004-01-13 2004-01-13 Semi-independent flight control system of unmanned airship and control method thereof

Country Status (1)

Country Link
CN (1) CN100458624C (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100495275C (en) * 2006-11-24 2009-06-03 中国科学院沈阳自动化研究所 Small-sized depopulated helicopter independent flight control system
CN102033546A (en) * 2010-11-09 2011-04-27 上海交通大学 Low-altitude airship flight control system and flight control method thereof
CN102183941A (en) * 2011-05-31 2011-09-14 河北科技大学 Civil-mobile-phone-network-based ultra-long-range unmanned aerial vehicle control system
CN102190081A (en) * 2010-03-04 2011-09-21 南京航空航天大学 Vision-based fixed point robust control method for airship
CN102249002A (en) * 2011-03-30 2011-11-23 杨当立 Air sampling aircraft and air sampling method
CN102553258A (en) * 2012-03-02 2012-07-11 北京航空航天大学 Switcher of model airplane remote controller
CN102737416A (en) * 2012-06-08 2012-10-17 清华大学 Data recorder of unmanned aircraft
CN102874399A (en) * 2012-10-13 2013-01-16 广西电网公司南宁供电局 Unmanned automatic-driving airship for inspecting power transmission lines
CN103231794A (en) * 2013-04-17 2013-08-07 华南农业大学 Multi-air-bag aerial operation platform
CN103838152A (en) * 2014-02-28 2014-06-04 北京航空航天大学 Ground test device used for flight control system and control method
CN104118555A (en) * 2014-07-14 2014-10-29 北京大学 Unmanned autonomous airship and method for building flight control system of unmanned autonomous airship
CN104155992A (en) * 2013-05-14 2014-11-19 中国电信股份有限公司 Method and system for realizing navigation of unmanned plane, and onboard system of unmanned plane
CN104608906A (en) * 2014-12-05 2015-05-13 中国航空工业集团公司第六三一研究所 Stratospheric airship task control subsystem
CN105573339A (en) * 2016-01-16 2016-05-11 深圳先进技术研究院 Navigation flight system based on rotor airship
CN105607644A (en) * 2016-01-16 2016-05-25 深圳先进技术研究院 Non-obstacle flight system
CN105717919A (en) * 2016-01-16 2016-06-29 深圳先进技术研究院 Scenic-spot guiding and rescuing system based on airship
CN106292695A (en) * 2015-12-11 2017-01-04 中国特种飞行器研究所 A kind of automatic flight control system for miniature self-service dirigible
CN106647801A (en) * 2016-10-21 2017-05-10 广东容祺智能科技有限公司 Planning system for unmanned aerial vehicle's back trip course
CN106828860A (en) * 2017-03-01 2017-06-13 北京天恒长鹰科技股份有限公司 The remote control system and its control method of a kind of stratospheric airship
CN107450396A (en) * 2017-08-16 2017-12-08 大连海事大学 A kind of autonomous navigation of unmanned boat and remote control navigation switching control module
CN108032985A (en) * 2017-12-05 2018-05-15 哈尔滨工程大学 Kite balloon airship system based on the comprehensive monitoring of marine desired target area
CN109144075A (en) * 2018-10-29 2019-01-04 长沙理工大学 A kind of control system and control method of unmanned boat
CN110653832A (en) * 2019-09-29 2020-01-07 河海大学常州校区 Man-machine cooperation football robot decision-making subsystem and working method thereof
CN111198575A (en) * 2020-02-27 2020-05-26 西北工业大学 Unmanned aerial vehicle flight controller

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2274602Y (en) * 1995-10-05 1998-02-18 王嘉謇 Remote controlling hot air airship
US5904724A (en) * 1996-01-19 1999-05-18 Margolin; Jed Method and apparatus for remotely piloting an aircraft
US5716032A (en) * 1996-04-22 1998-02-10 United States Of America As Represented By The Secretary Of The Army Unmanned aerial vehicle automatic landing system
JPWO2003004352A1 (en) * 2001-07-06 2004-10-21 セイコーエプソン株式会社 Airship system
CN2532511Y (en) * 2001-07-26 2003-01-22 北京超翼技术研究所有限公司 Real-time natural-imitated monitor system
CN1167576C (en) * 2002-01-29 2004-09-22 北京航空航天大学 Remote control system for axle-shared double-rotary wing pilotless helicopter

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100495275C (en) * 2006-11-24 2009-06-03 中国科学院沈阳自动化研究所 Small-sized depopulated helicopter independent flight control system
CN102190081B (en) * 2010-03-04 2013-09-04 南京航空航天大学 Vision-based fixed point robust control method for airship
CN102190081A (en) * 2010-03-04 2011-09-21 南京航空航天大学 Vision-based fixed point robust control method for airship
CN102033546B (en) * 2010-11-09 2013-03-27 上海交通大学 Low-altitude airship flight control system and flight control method thereof
CN102033546A (en) * 2010-11-09 2011-04-27 上海交通大学 Low-altitude airship flight control system and flight control method thereof
CN102249002B (en) * 2011-03-30 2013-07-03 杨当立 Air sampling aircraft and air sampling method
CN102249002A (en) * 2011-03-30 2011-11-23 杨当立 Air sampling aircraft and air sampling method
CN102183941A (en) * 2011-05-31 2011-09-14 河北科技大学 Civil-mobile-phone-network-based ultra-long-range unmanned aerial vehicle control system
CN102183941B (en) * 2011-05-31 2013-11-13 河北科技大学 Civil-mobile-phone-network-based ultra-long-range unmanned aerial vehicle control system
CN102553258A (en) * 2012-03-02 2012-07-11 北京航空航天大学 Switcher of model airplane remote controller
CN102553258B (en) * 2012-03-02 2013-12-11 北京航空航天大学 Switcher of model airplane remote controller
CN102737416A (en) * 2012-06-08 2012-10-17 清华大学 Data recorder of unmanned aircraft
CN102874399A (en) * 2012-10-13 2013-01-16 广西电网公司南宁供电局 Unmanned automatic-driving airship for inspecting power transmission lines
CN103231794A (en) * 2013-04-17 2013-08-07 华南农业大学 Multi-air-bag aerial operation platform
CN103231794B (en) * 2013-04-17 2016-12-28 华南农业大学 A kind of many air bags aerial work platform
CN104155992A (en) * 2013-05-14 2014-11-19 中国电信股份有限公司 Method and system for realizing navigation of unmanned plane, and onboard system of unmanned plane
CN103838152B (en) * 2014-02-28 2016-08-17 北京航空航天大学 A kind of ground test device for flight control system and control method
CN103838152A (en) * 2014-02-28 2014-06-04 北京航空航天大学 Ground test device used for flight control system and control method
CN104118555A (en) * 2014-07-14 2014-10-29 北京大学 Unmanned autonomous airship and method for building flight control system of unmanned autonomous airship
CN104608906A (en) * 2014-12-05 2015-05-13 中国航空工业集团公司第六三一研究所 Stratospheric airship task control subsystem
CN106292695A (en) * 2015-12-11 2017-01-04 中国特种飞行器研究所 A kind of automatic flight control system for miniature self-service dirigible
CN105717919B (en) * 2016-01-16 2018-09-28 深圳先进技术研究院 A kind of scenic spot tour guide's salvage system based on dirigible
CN105573339A (en) * 2016-01-16 2016-05-11 深圳先进技术研究院 Navigation flight system based on rotor airship
CN105607644A (en) * 2016-01-16 2016-05-25 深圳先进技术研究院 Non-obstacle flight system
CN105717919A (en) * 2016-01-16 2016-06-29 深圳先进技术研究院 Scenic-spot guiding and rescuing system based on airship
CN105573339B (en) * 2016-01-16 2019-01-11 深圳先进技术研究院 A kind of navigation flight system based on rotor dirigible
CN106647801A (en) * 2016-10-21 2017-05-10 广东容祺智能科技有限公司 Planning system for unmanned aerial vehicle's back trip course
CN106828860A (en) * 2017-03-01 2017-06-13 北京天恒长鹰科技股份有限公司 The remote control system and its control method of a kind of stratospheric airship
CN106828860B (en) * 2017-03-01 2019-11-05 北京天恒长鹰科技股份有限公司 A kind of remote control system and its control method of stratospheric airship
CN107450396A (en) * 2017-08-16 2017-12-08 大连海事大学 A kind of autonomous navigation of unmanned boat and remote control navigation switching control module
CN107450396B (en) * 2017-08-16 2019-10-11 大连海事大学 A kind of autonomous navigation of unmanned boat and remote control navigation switching control module
CN108032985A (en) * 2017-12-05 2018-05-15 哈尔滨工程大学 Kite balloon airship system based on the comprehensive monitoring of marine desired target area
CN109144075A (en) * 2018-10-29 2019-01-04 长沙理工大学 A kind of control system and control method of unmanned boat
CN110653832A (en) * 2019-09-29 2020-01-07 河海大学常州校区 Man-machine cooperation football robot decision-making subsystem and working method thereof
CN111198575A (en) * 2020-02-27 2020-05-26 西北工业大学 Unmanned aerial vehicle flight controller

Also Published As

Publication number Publication date
CN100458624C (en) 2009-02-04

Similar Documents

Publication Publication Date Title
CN1557676A (en) Semi-independent flight control system of unmanned airship and control method thereof
CN203433367U (en) Over-the-horizon wireless remote control system of small unmanned aerial vehicle
CN100587640C (en) Double-mode ground control system for coaxial dual-rotor unmanned helicopter
CN106681321B (en) The on-line scheduling control system of unmanned carrying Intelligent navigating bogie based on RFID
CN104656664B (en) Vehicle-mounted many rotor unmanned helicopter approaching and landing system control systems and guiding control method
CN103838152B (en) A kind of ground test device for flight control system and control method
CN202093395U (en) Earth station remote control device for unmanned vehicle
CN104597912A (en) Tracking flying control system and method of six-rotor unmanned helicopter
CN101561681B (en) Anti-jamming real-time data sampling system of unmanned aerial vehicle
CN202423959U (en) Intelligent electric transmission line tower inspection system with four-rotor unmanned aerial vehicle
CN102424112A (en) Three-layer airborne flight control device for micro four-rotor aerial vehicle
CN110562455A (en) Intelligent unmanned aerial vehicle automatic charging system
CN110488850A (en) A kind of quadrotor drone vision navigation system and method based on raspberry pie
CN104615019A (en) System and method for remotely controlling UAV (Unmanned Aerial Vehicle) based on wireless communication
CN110077992A (en) Remote control cabin and matched unmanned fork lift
CN102814047A (en) Autonomous return system and control method of dual-rotor remote-controlled model helicopter
CN201017202Y (en) Steering engine controller
CN107145159A (en) One kind is vehicle-mounted to be tethered at many rotor control system frameworks and control method
CN103019112A (en) Control communication apparatus, controlled communication apparatus and control communication system
CN106774352A (en) The robot control system of automatical pilot transportation vehicle and single two-way automatical pilot transportation vehicle of drive
CN107145160A (en) One kind is vehicle-mounted to be tethered at many rotor control system frameworks and control method
CN102331778A (en) Handheld device and method for controlling unmanned vehicle by utilizing same
CN111413862A (en) Unmanned aerial vehicle rocker redundancy control system and control method thereof
CN203455648U (en) Communication-in-moving satellite antenna servo control panel
CN106742015A (en) The flight system and its control method of a kind of automobile control unmanned plane

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090204

Termination date: 20120113