CN1268047C - Method and apparatus for applying optical fiber array energy source to laser sintering rapid forming - Google Patents

Method and apparatus for applying optical fiber array energy source to laser sintering rapid forming Download PDF

Info

Publication number
CN1268047C
CN1268047C CNB2004100123900A CN200410012390A CN1268047C CN 1268047 C CN1268047 C CN 1268047C CN B2004100123900 A CNB2004100123900 A CN B2004100123900A CN 200410012390 A CN200410012390 A CN 200410012390A CN 1268047 C CN1268047 C CN 1268047C
Authority
CN
China
Prior art keywords
optical fiber
fiber
little
laser light
type groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100123900A
Other languages
Chinese (zh)
Other versions
CN1593817A (en
Inventor
朱林泉
王高
周汉昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUABEI POLYTECHNIC COLLEGE
Original Assignee
HUABEI POLYTECHNIC COLLEGE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUABEI POLYTECHNIC COLLEGE filed Critical HUABEI POLYTECHNIC COLLEGE
Priority to CNB2004100123900A priority Critical patent/CN1268047C/en
Publication of CN1593817A publication Critical patent/CN1593817A/en
Application granted granted Critical
Publication of CN1268047C publication Critical patent/CN1268047C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Laser Beam Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The present invention relates to a method and a device for optical fiber array energy sources to be used for the sintering and the quick forming of laser light. The present invention mainly solves the technical problems of small processing workpiece and low work efficiency existing in existing laser light sintering and quick forming techniques. The method of the present invention has the procedures: a plurality of high-power semiconductor lasers and optical fibers are coupled into optical fiber linear arrays, and an intermittent laser light line bundle is formed on a working surface through a microlens array; the two optical fiber linear arrays are arranged symmetrically, and two identical intermittent laser light line bundles are embedded into a continuous laser light line bundle after the two identical intermittent laser light line bundles are staggered mutually in a length direction; the laser light sintering of selective areas with complex patterns can be realized by controlling the length and the intermittent position of the continuous laser light line bundle by a computer. An energy source device for realizing the method comprises the high-power semiconductor lasers, the microlens array, a coupler, optical fibers and a V-shaped microgroove optical fiber seat.

Description

Optical array energy source is used for the method and the device of laser sintering rapid forming
Technical field
The present invention relates to method and device that a kind of optical array energy source is used for laser sintering rapid forming.
Background technology
Rapid shaping technique (RPT) can be widely used in comprising the fields such as machinery, petrochemical industry, electronics, computer, biomedical engineering, handicraft and toy manufacturing of auto industry.Can the processing rigid mould and be used for the wax-pattern of hot investment casting, the prototype manufacturing in new product development and the Change In Design also can be used on the functional or structural parts of the complex parts that are difficult to machining and some single-piece production.
The capital equipment and the process of existing rapid shaping have following several in the world at present: stereosopic printing method (SLA also claims photosensitive resin to solidify), precinct laser sintering method (SLS), laminated solid body method (LOM also claims the cut paper method) and constituency plastic-blasting method (FDM).Stereosopic printing method (SLA) can directly be made small plastic spare, and surface roughness is better, and dimensional accuracy is higher, but in making the thing phase change is arranged, thereby distortion is big, and forming part needs to support in the liquid, makes complex technical processization, and resin liquid cost is higher.The plastic small plastic spare of laminated solid body method (LOM), indeformable, molding time is short, but dimensional accuracy is lower, and spillage of material is big, and waste material is easy-clear not.The plastic small plastic spare of constituency plastic-blasting method (FDM), the product buckling deformation is less, but needs supporting construction, and the fill-type shaping efficiency is lower.Precinct laser sintering method (SLS) can be made middle-size and small-size part, and the wide valency of moulding material is low, thereby application prospect is comparatively wide.Use precinct laser sintering method (SLS) is structural member but the direct sintering metal powder material manufactures a product.But precinct laser sintering method (SLS) precision is not very high, and can not the machining large workpiece, and workpiece size generally is limited in 400mm * 400mm.Because the device of precinct laser sintering method adopts two vibration mirror scanning modes, therefore, exists the shortcoming that working (machining) efficiency is low, processing work is little.
For overcoming above-mentioned weak point, we work out a kind of " laser length-varying linear scanning system " (ZL97122130.8).It is with CO 2The output beam of laser becomes an elongated laser wire harness after expanding bundle, and this wire harness is scanned with guide rail, makes it can machining large-sized workpiece and do not reduce crudy, and real core part and thick-walled parts are improved on working (machining) efficiency.But when the processed complex part, because the laser wire harness can only be elongated and can not be interrupted, thus when running into the hole, will subarea-scanning, part is complicated more, and Kong Yue is many, and subregion is just many more, so working (machining) efficiency is still lower.
Summary of the invention
The objective of the invention is to solve the technological difficulties that processing work is little and working (machining) efficiency is low that existing laser sintering rapid prototyping technology exists and provide the big and high optical array energy source of working (machining) efficiency of a kind of processing work to be used for the method and the device of laser sintering rapid forming.
Task of the present invention is achieved in that this optical array energy source is used for the method for laser sintering rapid forming, it at first forms a fiber linear array that adopts several high-power semiconductor lasers and optical fiber coupling to form, by microlens array the output beam of fiber linear array is collimated again or assemble, on working face, form an interrupted laser wire harness; Above-mentioned two fiber linear arrays with symmetrical arrangement, are exported two identical interrupted laser wire harness and be set into a continuous laser wire harness after length direction is made mutual dislocation; The whether luminous of each laser in the fiber linear array of computerizeing control, the length and the discontinuity position that change this continuous laser wire harness just can be realized the laser sintered of complex figure constituency in scanning process.
Realize the energy source means of said method, it comprises several high-power semiconductor lasers and microlens array, wherein: it also comprises coupler, optical fiber and little V-type groove fiber bench, coupler is located at the front of high-power semiconductor laser, the output of coupler is connected with the input of optical fiber, the output of optical fiber is contained in little V-type groove fiber bench to form fiber linear array, microlens array is located at the front of little V-type groove fiber bench, so that the output beam of fiber linear array is collimated or assembles.
Described little V-type groove fiber bench is formed by being provided with several base, miniature elastic element and miniature board-like retaining elements of placing little V-type groove of optical fiber, optical fiber is located in little V-type groove of base and by the miniature elastic element and is fixed in little V-type groove, and miniature board-like retaining element is located at the top of base and optical fiber is fixed between miniature board-like retaining element and the base.
Because the present invention has adopted technique scheme, therefore compare with background technology, have following advantage:
1, have higher working (machining) efficiency, the present invention can finish the processing of one deck in an one-dimensional scanning, thereby can improve working (machining) efficiency.
2, can machining large-sized workpiece, this linear array energy source both had been suitable for the workpiece of high-precision processing small size, thin-walled, complex section shape, also can machining large-sized workpiece, during machining large-sized workpiece, adopt line slideway scanning, can not reduce crudy.
3, energy source of the present invention compares CO 2The laser volume is little, helps device miniaturization; Semiconductor laser is worked under low-voltage, helps the safety operation of equipment; The electro-optical efficiency of semiconductor laser is CO 2More than 2 times of laser help energy-conservation.
4, processing cost is low, spillage of material is little.
Description of drawings
Fig. 1 is the structural representation of energy source means of the present invention;
Fig. 2 is the structural representation of little V-type groove fiber bench.
Embodiment
Optical array energy source in the present embodiment is used for the method for laser sintering rapid forming, it at first forms a fiber linear array that adopts several high-power semiconductor lasers (0.5-2W) and optical fiber coupling to form, by microlens array the output beam of fiber linear array is collimated again or assemble, on working face, form an interrupted laser wire harness; Above-mentioned two fiber linear arrays with symmetrical arrangement, are exported two identical interrupted laser wire harness and be set into a continuous laser wire harness after length direction is made mutual dislocation; The whether luminous of each laser in the fiber linear array of computerizeing control, the length and the discontinuity position that change this continuous laser wire harness just can be realized the laser sintered of complex figure constituency in scanning process.
As shown in Figure 1, realize the energy source means of said method, it comprises several high-power semiconductor lasers (0.5-2W) 1 and microlens array 5, wherein: it also comprises coupler 2, optical fiber 3 and little V-type groove fiber bench 4, coupler 2 is located at the front of high-power semiconductor laser 1, the output of coupler 2 is connected with the input of optical fiber 3, the output of optical fiber 3 is contained in little V-type groove fiber bench 4 to form fiber linear array, microlens array 5 is located at the front of little V-type groove fiber bench 4, so that the output beam of fiber linear array is collimated or assembles processing.6 is interrupted laser wire harness among the figure, and 7 is working face.
As shown in Figure 2, little V-type groove fiber bench is formed by being provided with several base 8, microsprings sheet 10 and miniature board-like retaining elements 9 of placing little V-type groove of optical fiber, optical fiber 3 is located in little V-type groove of base 8 and by microsprings sheet 10 and is fixed in little V-type groove, and miniature board-like retaining element 9 is located at the top of base 8 and optical fiber 3 is fixed between miniature board-like retaining element 9 and the base 8.

Claims (3)

1, a kind of optical array energy source is used for the method for laser sintering rapid forming, it is characterized in that: at first form a fiber linear array that adopts several high-power semiconductor lasers and optical fiber coupling to form, by microlens array the output beam of fiber linear array is collimated again or assemble, on working face, form an interrupted laser wire harness; Above-mentioned two fiber linear arrays with symmetrical arrangement, are exported two identical interrupted laser wire harness and be set into a continuous laser wire harness after length direction is made mutual dislocation; The whether luminous of each laser in the fiber linear array of computerizeing control, the length and the discontinuity position that change this continuous laser wire harness just can be realized the laser sintered of complex figure constituency in scanning process.
2, a kind of energy source means that realizes the described method of claim 1, it comprises several high-power semiconductor lasers and microlens array, it is characterized in that: further comprising coupler, optical fiber and little V-type groove fiber bench, coupler is located at the front of high-power semiconductor laser, the output of coupler is connected with the input of optical fiber, the output of optical fiber is contained in little V-type groove fiber bench to form fiber linear array, microlens array is located at the front of little V-type groove fiber bench, so that the output beam of fiber linear array is collimated or assembles.
3, energy source means according to claim 2, it is characterized in that: described little V-type groove fiber bench is formed by being provided with several base, miniature elastic element and miniature board-like retaining elements of placing little V-type groove of optical fiber, optical fiber is located in little V-type groove of base and by the miniature elastic element and is fixed in little V-type groove, and miniature board-like retaining element is located at the top of base and optical fiber is fixed between miniature board-like retaining element and the base.
CNB2004100123900A 2004-07-06 2004-07-06 Method and apparatus for applying optical fiber array energy source to laser sintering rapid forming Expired - Fee Related CN1268047C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100123900A CN1268047C (en) 2004-07-06 2004-07-06 Method and apparatus for applying optical fiber array energy source to laser sintering rapid forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100123900A CN1268047C (en) 2004-07-06 2004-07-06 Method and apparatus for applying optical fiber array energy source to laser sintering rapid forming

Publications (2)

Publication Number Publication Date
CN1593817A CN1593817A (en) 2005-03-16
CN1268047C true CN1268047C (en) 2006-08-02

Family

ID=34662764

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100123900A Expired - Fee Related CN1268047C (en) 2004-07-06 2004-07-06 Method and apparatus for applying optical fiber array energy source to laser sintering rapid forming

Country Status (1)

Country Link
CN (1) CN1268047C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10589508B2 (en) 2016-12-15 2020-03-17 General Electric Company Additive manufacturing systems and methods

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382400C (en) * 2005-07-27 2008-04-16 北京工业大学 Optical fibre coherence coupling method for large power semiconductor laser array and optical fibre shaper
JP2007212565A (en) 2006-02-07 2007-08-23 Fuji Xerox Co Ltd Multi-channel optical communication module
US10532556B2 (en) 2013-12-16 2020-01-14 General Electric Company Control of solidification in laser powder bed fusion additive manufacturing using a diode laser fiber array
US10328685B2 (en) * 2013-12-16 2019-06-25 General Electric Company Diode laser fiber array for powder bed fabrication or repair
CN104923783A (en) * 2014-03-19 2015-09-23 上海航天设备制造总厂 Method forming high-melting-point high temperature alloy part via multi-laser head multi-laser beam path scanning
CN104029394B (en) * 2014-06-24 2017-05-24 山东省科学院海洋仪器仪表研究所 Method for improving laser scanning image light-curing quick-molding efficiency
CN105268969A (en) * 2014-07-21 2016-01-27 深圳市绎立锐光科技开发有限公司 Laser device and laser sintering device and method
IL287642B (en) 2015-10-30 2022-07-01 Seurat Tech Inc Additive manufacturing system and apparatus
CN105548011A (en) * 2016-01-15 2016-05-04 中国科学技术大学 Micro-cantilever array biochemical sensing device and method based on optical fiber array
EP3411170A4 (en) 2016-01-28 2020-02-12 Seurat Technologies, Inc. Additive manufacturing, spatial heat treating system and method
WO2017132668A1 (en) 2016-01-29 2017-08-03 Seurat Technologies, Inc. Additive manufacturing, bond modifying system and method
CN105710369B (en) * 2016-03-03 2018-09-25 西安铂力特增材技术股份有限公司 Device for successively manufacturing three-dimension object
CN105880593B (en) * 2016-06-17 2018-04-03 哈尔滨福沃德多维智能装备有限公司 The device and method of more laser line beam printing-type scanning Rapid Prototyping Manufacturing parts
KR102453653B1 (en) 2017-05-11 2022-10-11 쇠라 테크널러지스 인코포레이티드 Switchyard Beam Routing of Patterned Light for Additive Manufacturing
CN107671284B (en) * 2017-08-30 2019-09-10 杭州德迪智能科技有限公司 3D printing device based on optical-fiber laser melting
CN109346926A (en) 2018-09-29 2019-02-15 北京凯普林光电科技股份有限公司 A kind of sector solid matter laser
CN113226622B (en) 2018-12-19 2023-02-28 速尔特技术有限公司 Additive manufacturing system for two-dimensional printing using pulsed laser
CN113448106A (en) * 2021-06-02 2021-09-28 武汉安扬激光技术有限责任公司 Beam combiner for femtosecond pulse laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10589508B2 (en) 2016-12-15 2020-03-17 General Electric Company Additive manufacturing systems and methods

Also Published As

Publication number Publication date
CN1593817A (en) 2005-03-16

Similar Documents

Publication Publication Date Title
CN1268047C (en) Method and apparatus for applying optical fiber array energy source to laser sintering rapid forming
US6627835B1 (en) Three dimensional object fabrication techniques
CN100471594C (en) Method and apparatus for forming sheet metal
CN106311876A (en) Complicated thin-walled workpiece formation system and method based on progressive formation and additive manufacturing
CN103213405B (en) 3D printer capable of being produced in mass mode and three-dimensional manufacturing method
CN103658646A (en) Two-way powder spreading device of SLM equipment and powder spreading method
CN102615281B (en) Regional mobile light source scanning system for laser rapid prototyping technology
CN206169044U (en) Complicated thin wall spare forming system based on incremental forming and vibration material disk
KR100545293B1 (en) Serial forming method
CN1834699A (en) Plastic lens and method and apparatus for manufacturing same
CN103394594B (en) Production technology of baffle for computer case
CN110014068A (en) A kind of electromagnetic cutting device and method based on collection chinaware
KR100570484B1 (en) Method and device for machining an end face of plate material
CN102179628A (en) Laser type light guide plate carving equipment and using method thereof
CN108430741B (en) Three-dimensional object forming device and manufacturing method
CN205519041U (en) Extrusion molding mould for chamfer
JP7263228B2 (en) Female mold, mold, bending device, and bending method
KR20150106829A (en) Three-dimensional forming matter and mold manufacturing apparatus and manufacturing method using the same
CN112620932A (en) Three-dimensional five-axis laser cutting system based on 3D vision
CN101417300A (en) Tube liquid-filling forming method and module structure thereof
CN103640127A (en) Automobile guide pin dust shield mold
CN107282727B (en) A kind of method of metal board laser flexible bending forming arc groove
CN1363440A (en) Selective laser evaporating-sintering technology and system for quickly shaping thin wall with powder material
KR101766262B1 (en) Apparatus for automatic porous lattice truss core manufacturing and the method
US20210339357A1 (en) Microchannel electrophoresis-assisted micro-ultrasonic machining apparatus and method based on three dimensional printing mold

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee