CN117170485A - Context-based task execution - Google Patents

Context-based task execution Download PDF

Info

Publication number
CN117170485A
CN117170485A CN202310643061.9A CN202310643061A CN117170485A CN 117170485 A CN117170485 A CN 117170485A CN 202310643061 A CN202310643061 A CN 202310643061A CN 117170485 A CN117170485 A CN 117170485A
Authority
CN
China
Prior art keywords
task
application
user
electronic device
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310643061.9A
Other languages
Chinese (zh)
Inventor
L·富士达
P·马里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/949,952 external-priority patent/US20230393712A1/en
Application filed by Apple Inc filed Critical Apple Inc
Publication of CN117170485A publication Critical patent/CN117170485A/en
Pending legal-status Critical Current

Links

Landscapes

  • User Interface Of Digital Computer (AREA)

Abstract

The present disclosure relates to context-based task execution. Systems and processes for operating intelligent automated assistants are provided. An exemplary process includes: at an electronic device having one or more processors and memory: receiving user input comprising a request for a task; in accordance with a determination that the context that the electronic device is displaying does not include an application for performing the task: determining a target application for performing the task; providing the payload determined from the request to the target application; performing tasks with the target application using the payload; and providing the results of the task.

Description

Context-based task execution
Technical Field
The present disclosure relates generally to intelligent automated assistants, and more particularly, to performing tasks with intelligent automated assistants.
Background
An intelligent automated assistant (or digital assistant) may provide an advantageous interface between a human user and an electronic device. Such assistants may allow a user to interact with a device or system in voice form and/or text form using natural language. For example, a user may provide a voice input containing a user request to a digital assistant running on an electronic device. The digital assistant may interpret the user intent from the voice input and operate the user intent into a task. These tasks may then be performed by executing one or more services of the electronic device, and the relevant output in response to the user request may be returned to the user.
In some cases, a service or application of the electronic device may not be launched or opened when voice input is received from the user. Accordingly, an efficient method and system for determining services or applications to use to perform tasks would be beneficial.
Disclosure of Invention
Exemplary methods are disclosed herein. An exemplary method includes: at an electronic device having one or more processors and memory: receiving user input comprising a request for a task; in accordance with a determination that the context that the electronic device is displaying does not include an application for performing the task: determining a target application for performing the task; providing the payload determined from the request to the target application; performing the task with the target application using the payload; and providing the results of the task.
Exemplary non-transitory computer readable media are disclosed herein. An example non-transitory computer-readable storage medium storing one or more programs configured for execution by one or more processors of an electronic device, the one or more programs comprising instructions for receiving user input comprising a request for a task; in accordance with a determination that the context that the electronic device is displaying does not include an application for performing the task: determining a target application for performing the task; providing the payload determined from the request to the target application; performing the task with the target application using the payload; and providing the results of the task.
An exemplary electronic device is disclosed herein. An exemplary electronic device includes one or more processors; a memory; and one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs comprising instructions for receiving user input comprising a request for a task; in accordance with a determination that the context that the electronic device is displaying does not include an application for performing the task: determining a target application for performing the task; providing the payload determined from the request to the target application; performing the task with the target application using the payload; and providing the results of the task.
An example electronic device includes means for receiving user input including a request for a task; means for, in accordance with a determination that the context that the electronic device is displaying does not include an application for performing the task: determining a target application for performing the task; providing the payload determined from the request to the target application; performing the task with the target application using the payload; and providing the results of the task.
In accordance with a determination that the context that the electronic device is displaying does not include an application for performing the task: determining a target application for performing the task; providing the payload determined from the request to the target application; performing the task with the target application using the payload; and providing the results of the tasks allows the results of the tasks to be efficiently determined, executed, and provided regardless of the context displayed by the electronic device. For example, when an application has not been previously opened or instantiated, the digital assistant may efficiently determine and open the application to perform tasks. Thus, the digital assistant may provide more efficient interaction with the user, thereby increasing user enjoyment. Thus, the user may interact with the digital assistant with less input, which additionally reduces power usage and increases the battery life of the device.
Drawings
Fig. 1 is a block diagram illustrating a system and environment for implementing a digital assistant according to various examples.
Fig. 2A is a block diagram illustrating a portable multifunction device implementing a client-side portion of a digital assistant in accordance with various examples.
FIG. 2B is a block diagram illustrating exemplary components for event processing according to various examples.
Fig. 3 illustrates a portable multifunction device implementing a client-side portion of a digital assistant in accordance with various examples.
FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with various examples.
FIG. 5A illustrates an exemplary user interface of a menu of applications on a portable multifunction device in accordance with various examples.
FIG. 5B illustrates an exemplary user interface of a multi-function device having a touch-sensitive surface separate from a display according to various examples.
Fig. 6A illustrates a personal electronic device according to various examples.
Fig. 6B is a block diagram illustrating a personal electronic device in accordance with various examples.
Fig. 7A is a block diagram illustrating a digital assistant system or server portion thereof according to various examples.
Fig. 7B illustrates the functionality of the digital assistant shown in fig. 7A according to various examples.
Fig. 7C illustrates a portion of a ontology according to various examples.
FIG. 8 is a block diagram illustrating a digital assistant and an application program for performing tasks according to various examples.
Fig. 9A-9C illustrate exemplary electronic devices including digital assistants for performing tasks according to various examples.
Fig. 10 illustrates a process for operating a digital assistant to perform tasks according to various examples.
Detailed Description
In the following description of the examples, reference is made to the accompanying drawings in which, by way of illustration, specific examples in which the embodiments may be practiced are shown. It is to be understood that other examples may be utilized and structural changes may be made without departing from the scope of the various examples.
Although the following description uses the terms "first," "second," etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another element. For example, a first input may be referred to as a second input, and similarly, a second input may be referred to as a first input, without departing from the scope of the various described examples. The first input and the second input are both inputs, and in some cases are independent and different inputs.
The terminology used in the description of the various illustrated examples herein is for the purpose of describing particular examples only and is not intended to be limiting. As used in the description of the various described examples and the appended claims, the singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term "and/or" as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms "comprises" and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Depending on the context, the term "if" may be interpreted to mean "when..or" in response to a determination "or" in response to detection ". Similarly, the phrase "if a [ stated condition or event ] is detected" may be interpreted to mean "upon a determination" or "in response to a determination" or "upon a detection of a [ stated condition or event ] or" in response to a detection of a [ stated condition or event ], depending on the context.
1. System and environment
Fig. 1 illustrates a block diagram of a system 100 in accordance with various examples. In some examples, system 100 implements a digital assistant. The terms "digital assistant," "virtual assistant," "intelligent automated assistant," or "automated digital assistant" refer to any information processing system that interprets natural language input in spoken and/or textual form to infer user intent and performs an action based on the inferred user intent. For example, to act on inferred user intent, the system performs one or more of the following steps: identifying a task flow having steps and parameters designed to achieve the inferred user intent, inputting specific requirements into the task flow based on the inferred user intent; executing task flows through calling programs, methods, services, APIs and the like; and generating an output response to the user in audible (e.g., speech) and/or visual form.
In particular, the digital assistant is capable of accepting user requests in the form of, at least in part, natural language commands, requests, statements, lectures, and/or inquiries. Typically, users request that the digital assistant be asked to make informational answers or perform tasks. Satisfactory responses to user requests include providing the requested informational answer, performing the requested task, or a combination of both. For example, the user presents questions to the digital assistant such as "where is i now? ". Based on the user's current location, the digital assistant answers "you are near the central park siemens. "the user also requests to perform a task, such as" please invite my friends to take part in my girl's birthday party next week. In response, the digital assistant may acknowledge the request by speaking "good, immediate" and then send an appropriate calendar invitation on behalf of the user to each of the user's friends listed in the user's electronic address book. During execution of the requested task, the digital assistant sometimes interacts with the user in a continuous conversation involving multiple exchanges of information over a long period of time. There are many other ways to interact with a digital assistant to request information or perform various tasks. In addition to providing verbal responses and taking programmed actions, the digital assistant also provides responses in other video or audio forms, for example as text, alerts, music, video, animation, and the like.
As shown in fig. 1, in some examples, the digital assistant is implemented according to a client-server model. The digital assistant includes a client-side portion 102 (hereinafter "DA client 102") that executes on a user device 104 and a server-side portion 106 (hereinafter "DA server 106") that executes on a server system 108. DA client 102 communicates with DA server 106 through one or more networks 110. The DA client 102 provides client-side functionality such as user-oriented input and output processing, and communication with the DA server 106. The DA server 106 provides server-side functionality for any number of DA clients 102 each located on a respective user device 104.
In some examples, the DA server 106 includes a client-oriented I/O interface 112, one or more processing modules 114, a data and model 116, and an I/O interface 118 to external services. The client-oriented I/O interface 112 facilitates client-oriented input and output processing of the DA server 106. The one or more processing modules 114 process the speech input using the data and models 116 and determine user intent based on the natural language input. Further, the one or more processing modules 114 perform task execution based on the inferred user intent. In some examples, DA server 106 communicates with external services 120 over one or more networks 110 to accomplish tasks or collect information. The I/O interface 118 to external services facilitates such communication.
The user device 104 may be any suitable electronic device. In some examples, the user device 104 is a portable multifunction device (e.g., device 200 described below with reference to fig. 2A), a multifunction device (e.g., device 400 described below with reference to fig. 4), or a personal electronic device (e.g., device 600 described below with reference to fig. 6A-6B). The portable multifunction device is, for example, a mobile phone that also contains other functions such as PDA and/or music player functions. Specific examples of portable multifunction devices include Apple from Apple inc (Cupertino, california)iPodAnd->An apparatus. Other examples of portable multifunction devices include, but are not limited to, earbud/headphones, speakers, and laptop or tablet computers. Further, in some examples, the user device 104 is a non-portable multifunction device. In particular, the user device 104 is a desktop computer, a gaming machine, speakers, a television, or a television set-top box. In some examples, the user device 104 includes a touch-sensitive surface (e.g., a touch screen display and/or a touch pad). In addition, the user device 104 optionally includes one or more other physical user interface devices, such as a physical keyboard, mouse, and/or joystick. Various examples of electronic devices, such as multifunction devices, are described in more detail below.
Examples of communication network 110 include a Local Area Network (LAN) and a Wide Area Network (WAN), such as the Internet. One or more of the communication networks 110 are implemented using any known network protocol, including various wired or wireless protocols, such as Ethernet, universal Serial Bus (USB), FIREWIRE, global System for Mobile communications (GSM), enhanced Data GSM Environment (EDGE), code Division Multiple Access (CDMA), time Division Multiple Access (TDMA), bluetooth, wi-Fi, voice over Internet protocol (VoIP), wi-MAX, or any other suitable communication protocol.
The server system 108 is implemented on one or more standalone data processing devices or distributed computer networks. In some examples, the server system 108 also employs various virtual devices and/or services of a third party service provider (e.g., a third party cloud service provider) to provide potential computing resources and/or infrastructure resources of the server system 108.
In some examples, the user device 104 communicates with the DA server 106 via a second user device 122. The second user device 122 is similar or identical to the user device 104. For example, the second user device 122 is similar to the device 200, 400, or 600 described below with reference to fig. 2A, 4, and 6A-6B. The user device 104 is configured to be communicatively coupled to the second user device 122 via a direct communication connection (such as bluetooth, NFC, BTLE, etc.) or via a wired or wireless network (such as a local Wi-Fi network). In some examples, the second user device 122 is configured to act as a proxy between the user device 104 and the DA server 106. For example, the DA client 102 of the user device 104 is configured to transmit information (e.g., user requests received at the user device 104) to the DA server 106 via the second user device 122. The DA server 106 processes this information and returns relevant data (e.g., data content in response to a user request) to the user device 104 via the second user device 122.
In some examples, the user device 104 is configured to send a thumbnail request for data to the second user device 122 to reduce the amount of information transmitted from the user device 104. The second user device 122 is configured to determine supplemental information to be added to the thumbnail request to generate a complete request for transmission to the DA server 106. The system architecture may advantageously allow user devices 104 (e.g., watches or similar compact electronic devices) with limited communication capabilities and/or limited battery power to access services provided by the DA server 106 by using a second user device 122 (e.g., mobile phone, laptop, tablet, etc.) with greater communication capabilities and/or battery power as a proxy to the DA server 106. Although only two user devices 104 and 122 are shown in fig. 1, it should be understood that in some examples, system 100 may include any number and type of user devices configured to communicate with DA server system 106 in this proxy configuration.
Although the digital assistant shown in fig. 1 includes both a client-side portion (e.g., DA client 102) and a server-side portion (e.g., DA server 106), in some examples, the functionality of the digital assistant is implemented as a standalone application installed on a user device. Furthermore, the division of functionality between the client portion and the server portion of the digital assistant may vary in different implementations. For example, in some examples, the DA client is a thin client that provides only user-oriented input and output processing functions and delegates all other functions of the digital assistant to the back-end server.
2. Electronic deviceApparatus and method for controlling the operation of a device
Attention is now directed to an implementation of an electronic device for implementing a client-side portion of a digital assistant. Fig. 2A is a block diagram illustrating a portable multifunction device 200 with a touch-sensitive display system 212 in accordance with some embodiments. Touch-sensitive display 212 is sometimes referred to as a "touch screen" for convenience and is sometimes referred to or referred to as a "touch-sensitive display system". Device 200 includes memory 202 (which optionally includes one or more computer-readable storage media), memory controller 222, one or more processing units (CPUs) 220, peripheral interface 218, RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, input/output (I/O) subsystem 206, other input control devices 216, and external ports 224. The device 200 optionally includes one or more optical sensors 264. The device 200 optionally includes one or more contact intensity sensors 265 for detecting the intensity of contacts on the device 200 (e.g., a touch-sensitive surface of the device 200 such as the touch-sensitive display system 212). The device 200 optionally includes one or more haptic output generators 267 for generating haptic outputs on the device 200 (e.g., generating haptic outputs on a touch-sensitive surface such as the touch-sensitive display system 212 of the device 200 or the touch pad 455 of the device 400). These components optionally communicate via one or more communication buses or signal lines 203.
As used in this specification and the claims, the term "intensity" of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of the contact on the touch-sensitive surface (e.g., finger contact), or to an alternative to the force or pressure of the contact on the touch-sensitive surface (surrogate). The intensity of the contact has a range of values that includes at least four different values and more typically includes hundreds of different values (e.g., at least 256). The intensity of the contact is optionally determined (or measured) using various methods and various sensors or combinations of sensors. For example, one or more force sensors below or adjacent to the touch-sensitive surface are optionally used to measure forces at different points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., weighted average) to determine an estimated contact force. Similarly, the pressure sensitive tip of the stylus is optionally used to determine the pressure of the stylus on the touch sensitive surface. Alternatively, the size of the contact area and/or its variation detected on the touch-sensitive surface, the capacitance of the touch-sensitive surface and/or its variation in the vicinity of the contact and/or the resistance of the touch-sensitive surface and/or its variation in the vicinity of the contact are optionally used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, surrogate measurements of contact force or pressure are directly used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to surrogate measurements). In some implementations, surrogate measurements of contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). The intensity of the contact is used as an attribute of the user input, allowing the user to access additional device functions that are not otherwise accessible to the user on a smaller sized device of limited real estate for displaying affordances and/or receiving user input (e.g., via a touch-sensitive display, touch-sensitive surface, or physical/mechanical control, such as a knob or button).
As used in this specification and in the claims, the term "haptic output" refers to a physical displacement of a device relative to a previous location of the device, a physical displacement of a component of the device (e.g., a touch sensitive surface) relative to another component of the device (e.g., a housing), or a displacement of a component relative to a centroid of the device, to be detected by a user with a user's feel. For example, in the case where the device or component of the device is in contact with a touch-sensitive surface of the user (e.g., a finger, palm, or other portion of the user's hand), the haptic output generated by the physical displacement will be interpreted by the user as a haptic sensation corresponding to a perceived change in a physical characteristic of the device or component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or touch pad) is optionally interpreted by a user as a "press click" or "click-down" of a physically actuated button. In some cases, the user will feel a tactile sensation, such as "press click" or "click down", even when the physical actuation button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movement is not moved. As another example, movement of the touch-sensitive surface may optionally be interpreted or sensed by a user as "roughness" of the touch-sensitive surface, even when the smoothness of the touch-sensitive surface is unchanged. While such interpretation of touches by a user will be limited by the user's individualized sensory perception, many sensory perceptions of touches are common to most users. Thus, when a haptic output is described as corresponding to a particular sensory perception of a user (e.g., "click down," "click up," "roughness"), unless stated otherwise, the haptic output generated corresponds to a physical displacement of the device or component thereof that would generate that sensory perception of a typical (or ordinary) user.
It should be understood that the device 200 is only one example of a portable multifunction device, and that the device 200 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in fig. 2A are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application specific integrated circuits.
Memory 202 includes one or more computer-readable storage media. These computer readable storage media are, for example, tangible and non-transitory. Memory 202 includes high-speed random access memory, and also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. The memory controller 222 controls other components of the device 200 to access the memory 202.
In some examples, the non-transitory computer-readable storage medium of memory 202 is used to store instructions (e.g., for performing aspects of the processes described below) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In other examples, the instructions (e.g., for performing aspects of the processes described below) are stored on a non-transitory computer-readable storage medium (not shown) of the server system 108 or divided between a non-transitory computer-readable storage medium of the memory 202 and a non-transitory computer-readable storage medium of the server system 108.
Peripheral interface 218 is used to couple the input and output peripherals of the device to CPU 220 and memory 202. The one or more processors 220 run or execute various software programs and/or sets of instructions stored in the memory 202 to perform various functions of the device 200 and process data. In some embodiments, peripheral interface 218, CPU 220, and memory controller 222 are implemented on a single chip, such as chip 204. In some other embodiments, they are implemented on separate chips.
The RF (radio frequency) circuit 208 receives and transmits RF signals, also referred to as electromagnetic signals. RF circuitry 208 converts/converts electrical signals to/from electromagnetic signals and communicates with communication networks and other communication devices via electromagnetic signals. RF circuitry 208 optionally includes well known circuitry for performing these functions including, but not limited to, an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a codec chipset, a Subscriber Identity Module (SIM) card, memory, and the like. RF circuitry 208 optionally communicates via wireless communication with networks such as the internet (also known as the World Wide Web (WWW)), intranets, and/or wireless networks such as cellular telephone networks, wireless Local Area Networks (LANs), and/or Metropolitan Area Networks (MANs), and other devices. The RF circuitry 208 optionally includes well-known circuitry for detecting a Near Field Communication (NFC) field, such as by a short-range communication radio. Wireless communications optionally use any of a variety of communication standards, protocols, and technologies including, but not limited to, global system for mobile communications (GSM), enhanced Data GSM Environment (EDGE), high Speed Downlink Packet Access (HSDPA), high Speed Uplink Packet Access (HSUPA), evolution, pure data (EV-DO), HSPA, hspa+, dual cell HSPA (DC-HSPDA), long Term Evolution (LTE), near Field Communications (NFC), wideband code division multiple access (W-CDMA), code Division Multiple Access (CDMA), time Division Multiple Access (TDMA), bluetooth low energy (BTLE), wireless fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11 ac), voice over internet protocol (VoIP), wi-MAX, email protocols (e.g., internet Message Access Protocol (IMAP) and/or Post Office Protocol (POP)), messages (e.g., extensible messaging and presence protocol (XMPP), protocols for instant messaging and presence initiation with extended session initiation (sime), messages and presence (pls), or other fashionable communications protocols, or any other suitable fashion-oriented protocols, or non-compliant communications including, such as may be developed on the date of any other suitable date.
Audio circuitry 210, speaker 211, and microphone 213 provide an audio interface between the user and device 200. Audio circuit 210 receives audio data from peripheral interface 218, converts the audio data into an electrical signal, and transmits the electrical signal to speaker 211. The speaker 211 converts electrical signals into sound waves that are audible to humans. The audio circuit 210 also receives electrical signals converted from sound waves by the microphone 213. Audio circuitry 210 converts the electrical signals to audio data and transmits the audio data to peripheral interface 218 for processing. The audio data is retrieved from and/or transmitted to the memory 202 and/or the RF circuitry 208 via the peripheral interface 218. In some embodiments, the audio circuit 210 also includes a headset jack (e.g., 312 in fig. 3). The headset jack provides an interface between the audio circuit 210 and a removable audio input/output peripheral, such as an output-only earphone or a headset having both an output (e.g., a monaural earphone or a binaural earphone) and an input (e.g., a microphone).
I/O subsystem 206 couples input/output peripheral devices on device 200, such as touch screen 212 and other input control devices 216 to peripheral interface 218. The I/O subsystem 206 optionally includes a display controller 256, an optical sensor controller 258, an intensity sensor controller 259, a haptic feedback controller 261, and one or more input controllers 260 for other input or control devices. One or more input controllers 260 receive electrical signals from/send electrical signals to other input control devices 216. Other input control devices 216 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and the like. In some alternative implementations, the input controller 260 is optionally coupled to (or not coupled to) any of the following: a keyboard, an infrared port, a USB port, and a pointing device such as a mouse. One or more buttons (e.g., 308 in fig. 3) optionally include an up/down button for volume control of speaker 211 and/or microphone 213. The one or more buttons optionally include a push button (e.g., 306 in fig. 3).
A quick press of the push button may disengage the lock of the touch screen 212 or begin the process of unlocking the device using gestures on the touch screen, as described in U.S. patent application No. 11/322549 to U.S. patent 7657849, entitled "Unlocking a Device by Performing Gestures on an Unlock Image," filed 12-23, 2005, which is hereby incorporated by reference in its entirety. Longer presses of the push button (e.g., 306) cause the device 200 to power on or off. The user is able to customize the functionality of one or more buttons. Touch screen 212 is used to implement virtual buttons or soft buttons and one or more soft keyboards.
The touch sensitive display 212 provides an input interface and an output interface between the device and the user. Display controller 256 receives electrical signals from touch screen 212 and/or transmits electrical signals to touch screen 212. Touch screen 212 displays visual output to a user. Visual output includes graphics, text, icons, video, and any combination thereof (collectively, "graphics"). In some implementations, some or all of the visual output corresponds to a user interface object.
Touch screen 212 has a touch-sensitive surface, sensor or set of sensors that receives input from a user based on haptic and/or tactile contact. Touch screen 212 and display controller 256 (along with any associated modules and/or sets of instructions in memory 202) detect contact (and any movement or interruption of the contact) on touch screen 212 and translate the detected contact into interactions with user interface objects (e.g., one or more soft keys, icons, web pages, or images) displayed on touch screen 212. In an exemplary embodiment, the point of contact between touch screen 212 and the user corresponds to a user's finger.
Touch screen 212 uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, but other display technologies may be used in other embodiments. Touch screen 212 and display controller 256 detect contact and any movement or interruption thereof using any of a variety of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 212. In an exemplary embodiment, a projected mutual capacitance sensing technique is used, such as that described in the text from Apple inc (Cupertino, california)And iPod->Techniques used in the above.
In some implementations, the touch sensitive display of touch screen 212 is similar to the following U.S. patents: 6,323,846 (Westerman et al), 6,570,557 (Westerman et al) and/or 6,677,932 (Westerman) and/or a multi-touch-sensitive touch pad as described in U.S. patent publication 2002/0015024A1, which are incorporated herein by reference in their entirety. However, touch screen 212 displays visual output from device 200, while the touch sensitive touchpad does not provide visual output.
Touch sensitive displays in some implementations of touch screen 212 are described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, "Multipoint Touch Surface Controller", filed on 5/2/2006; (2) U.S. patent application Ser. No. 10/840,862, "Multipoint Touchscreen", filed 5/6/2004; (3) U.S. patent application Ser. No. 10/903,964, "Gestures For Touch Sensitive Input Devices", filed 7/30/2004; (4) U.S. patent application Ser. No. 11/048,264, "Gestures For Touch Sensitive Input Devices", filed 1/31/2005; (5) U.S. patent application Ser. No. 11/038,590, "Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices", filed 1/18/2005; (6) U.S. patent application Ser. No. 11/228,758, "Virtual Input Device Placement On A Touch Screen User Interface", filed 9/16/2005; (7) U.S. patent application Ser. No. 11/228,700, "Operation Of A Computer With ATouch Screen Interface", filed 9/16/2005; (8) U.S. patent application Ser. No. 11/228,737, "Activating Virtual Keys Of A Touch-Screen Virtual Keyboard", filed on 9/16/2005; and (9) U.S. patent application Ser. No. 11/367,749, "Multi-Functional Hand-Held Device," filed 3/2006. All of these applications are incorporated by reference herein in their entirety.
Touch screen 212 has, for example, a video resolution in excess of 100 dpi. In some implementations, the touch screen has a video resolution of about 160 dpi. The user makes contact with touch screen 212 using any suitable object or appendage, such as a stylus, finger, or the like. In some embodiments, the user interface is designed to work primarily through finger-based contact and gestures, which may not be as accurate as stylus-based input due to the large contact area of the finger on the touch screen. In some embodiments, the device translates the finger-based coarse input into a precise pointer/cursor location or command for performing the action desired by the user.
In some embodiments, the device 200 includes a touch pad (not shown) for activating or deactivating a specific function in addition to the touch screen. In some embodiments, the touch pad is a touch sensitive area of the device that, unlike the touch screen, does not display visual output. The touch pad is a touch sensitive surface separate from the touch screen 212 or an extension of the touch sensitive surface formed by the touch screen.
The device 200 also includes a power system 262 for powering the various components. The power system 262 includes a power management system, one or more power sources (e.g., batteries, alternating Current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., light Emitting Diode (LED)), and any other components associated with the generation, management, and distribution of power in the portable device.
The device 200 also includes one or more optical sensors 264. Fig. 2A shows an optical sensor coupled to an optical sensor controller 258 in the I/O subsystem 206. The optical sensor 264 includes a Charge Coupled Device (CCD) or a Complementary Metal Oxide Semiconductor (CMOS) phototransistor. The optical sensor 264 receives light projected through one or more lenses from the environment and converts the light into data representing an image. In conjunction with an imaging module 243 (also called a camera module), the optical sensor 264 captures still images or video. In some embodiments, the optical sensor is located at the back of the device 200, opposite the touch screen display 212 at the front of the device, such that the touch screen display is used as a viewfinder for still image and/or video image acquisition. In some embodiments, the optical sensor is located at the front of the device such that the user's image is acquired for the video conference while the user views other video conference participants on the touch screen display. In some implementations, the position of the optical sensor 264 can be changed by the user (e.g., by rotating a lens and sensor in the device housing) such that a single optical sensor 264 is used with the touch screen display for both video conferencing and still image and/or video image acquisition.
The device 200 optionally further includes one or more contact strength sensors 265. Fig. 2A shows a contact intensity sensor coupled to an intensity sensor controller 259 in the I/O subsystem 206. The contact strength sensor 265 optionally includes one or more piezoresistive strain gauges, capacitive force sensors, electrical force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other strength sensors (e.g., sensors for measuring force (or pressure) of a contact on a touch-sensitive surface). The contact strength sensor 265 receives contact strength information (e.g., pressure information or a surrogate for pressure information) from the environment. In some implementations, at least one contact intensity sensor is juxtaposed or adjacent to a touch-sensitive surface (e.g., touch-sensitive display system 212). In some embodiments, at least one contact intensity sensor is located on the rear of the device 200, opposite the touch screen display 212 located on the front of the device 200.
The device 200 also includes one or more proximity sensors 266. Fig. 2A shows a proximity sensor 266 coupled to the peripheral interface 218. Alternatively, the proximity sensor 266 is coupled to the input controller 260 in the I/O subsystem 206. The proximity sensor 266 performs as described in the following U.S. patent applications: 11/241,839, entitled "Proximity Detector In Handheld Device";11/240,788, entitled "Proximity Detector In Handheld Device";11/620,702, entitled "Using Ambient Light Sensor To Augment Proximity Sensor Output";11/586,862, entitled "Automated Response To And Sensing Of User Activity In Portable Devices"; and 11/638,251, entitled "Methods And Systems For Automatic Configuration Of Peripherals," which are hereby incorporated by reference in their entirety. In some implementations, the proximity sensor turns off and disables the touch screen 212 when the multifunction device is placed near the user's ear (e.g., when the user is making a telephone call).
The device 200 optionally further comprises one or more tactile output generators 267. Fig. 2A illustrates a haptic output generator coupled to a haptic feedback controller 261 in I/O subsystem 206. The tactile output generator 267 optionally includes one or more electroacoustic devices such as speakers or other audio components; and/or electromechanical devices for converting energy into linear motion such as motors, solenoids, electroactive polymers, piezoelectric actuators, electrostatic actuators, or other tactile output generating means (e.g., means for converting an electrical signal into a tactile output on a device). The contact strength sensor 265 receives haptic feedback generation instructions from the haptic feedback module 233 and generates a haptic output on the device 200 that can be perceived by a user of the device 200. In some embodiments, at least one tactile output generator is juxtaposed or adjacent to a touch-sensitive surface (e.g., touch-sensitive display system 212), and optionally generates tactile output by moving the touch-sensitive surface vertically (e.g., inward/outward of the surface of device 200) or laterally (e.g., backward and forward in the same plane as the surface of device 200). In some embodiments, at least one tactile output generator sensor is located on the rear of the device 200, opposite the touch screen display 212 located on the front of the device 200.
The device 200 also includes one or more accelerometers 268. Fig. 2A shows accelerometer 268 coupled to peripheral interface 218. Alternatively, accelerometer 268 is coupled to input controller 260 in I/O subsystem 206. Accelerometer 268 performs as described in the following U.S. patent publications: U.S. patent publication 20050190059, "acception-based Theft Detection System for Portable Electronic Devices" and U.S. patent publication 20060017692, "Methods And Apparatuses For Operating A Portable Device Based On An Accelerometer," both of which are incorporated herein by reference in their entirety. In some implementations, information is displayed in a portrait view or a landscape view on a touch screen display based on analysis of data received from one or more accelerometers. The device 200 optionally includes a magnetometer (not shown) and a GPS (or GLONASS or other global navigation system) receiver (not shown) in addition to the one or more accelerometers 268 for obtaining information regarding the position and orientation (e.g., longitudinal or lateral) of the device 200.
In some embodiments, the software components stored in memory 202 include an operating system 226, a communication module (or set of instructions) 228, a contact/motion module (or set of instructions) 230, a graphics module (or set of instructions) 232, a text input module (or set of instructions) 234, a Global Positioning System (GPS) module (or set of instructions) 235, a digital assistant client module 229, and an application program (or set of instructions) 236. In addition, the memory 202 stores data and models, such as user data and models 231. Further, in some embodiments, memory 202 (fig. 2A) or 470 (fig. 4) stores device/global internal state 257, as shown in fig. 2A and 4. The device/global internal state 257 includes one or more of the following: an active application state indicating which applications (if any) are currently active; display status, indicating what applications, views, or other information occupy various areas of the touch screen display 212; sensor status, including information obtained from the various sensors of the device and the input control device 216; and location information relating to the device location and/or pose.
Operating system 226 (e.g., darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or embedded operating systems such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.), and facilitates communication between the various hardware components and software components.
The communication module 228 facilitates communication with other devices through one or more external ports 224 and also includes various software components for processing data received by the RF circuitry 208 and/or the external ports 224. External port 224 (e.g., universal Serial Bus (USB), firewire, etc.) is adapted to be coupled directly to other devices or indirectly via a network (e.g., the internet, wireless LAN, etc.). In some embodiments, the external port is in communication withThe 30-pin connector used on the (Apple inc. Trademark) device is the same or similar and/or compatible with a multi-pin (e.g., 30-pin) connector.
The contact/motion module 230 optionally detects contact with the touch screen 212 (in conjunction with the display controller 256) and other touch sensitive devices (e.g., a touch pad or physical click wheel). The contact/motion module 230 includes various software components for performing various operations related to contact detection, such as determining whether contact has occurred (e.g., detecting a finger press event), determining the strength of the contact (e.g., the force or pressure of the contact, or a substitute for the force or pressure of the contact), determining whether there is movement of the contact and tracking movement across the touch-sensitive surface (e.g., detecting one or more finger drag events), and determining whether the contact has stopped (e.g., detecting a finger lift event or a contact break). The contact/motion module 230 receives contact data from the touch-sensitive surface. Determining movement of the point of contact optionally includes determining a velocity (magnitude), a speed (magnitude and direction), and/or an acceleration (change in magnitude and/or direction) of the point of contact, the movement of the point of contact being represented by a series of contact data. These operations are optionally applied to single point contacts (e.g., single finger contacts) or simultaneous multi-point contacts (e.g., "multi-touch"/multiple finger contacts). In some embodiments, the contact/motion module 230 and the display controller 256 detect contact on the touch pad.
In some implementations, the contact/motion module 230 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether the user has "clicked" on an icon). In some embodiments, at least a subset of the intensity thresholds are determined according to software parameters (e.g., the intensity thresholds are not determined by activation thresholds of specific physical actuators and may be adjusted without changing the physical hardware of the device 200). For example, without changing the touchpad or touch screen display hardware, the mouse "click" threshold of the touchpad or touch screen may be set to any of a wide range of predefined thresholds. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more intensity thresholds in a set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting multiple intensity thresholds at once with a system-level click on an "intensity" parameter).
The contact/motion module 230 optionally detects gesture input by the user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different movements, timings, and/or intensities of the detected contacts). Thus, gestures are optionally detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger press event, and then detecting a finger lift (lift off) event at the same location (or substantially the same location) as the finger press event (e.g., at the location of the icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event, then detecting one or more finger-dragging events, and then detecting a finger-up (lift-off) event.
Graphics module 232 includes various known software components for rendering and displaying graphics on touch screen 212 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual characteristics) of the displayed graphics. As used herein, the term "graphic" includes any object that may be displayed to a user, including without limitation text, web pages, icons (such as user interface objects including soft keys), digital images, video, animation, and the like.
In some embodiments, graphics module 232 stores data representing graphics to be used. Each graphic is optionally assigned a corresponding code. The graphic module 232 receives one or more codes designating graphics to be displayed from an application program or the like, and also receives coordinate data and other graphic attribute data together if necessary, and then generates screen image data to output to the display controller 256.
Haptic feedback module 233 includes various software components for generating instructions for use by one or more haptic output generators 267 to generate haptic output at one or more locations on device 200 in response to user interaction with device 200.
The text input module 234, which in some examples is a component of the graphics module 232, provides a soft keyboard for entering text in various applications (e.g., contacts 237, email 240, IM 241, browser 247, and any other application requiring text input).
The GPS module 235 determines the location of the device and provides this information for use in various applications (e.g., to the phone 238 for use in location-based dialing, to the camera 243 as picture/video metadata, and to applications that provide location-based services, such as weather gadgets, local page gadgets, and map/navigation gadgets).
The digital assistant client module 229 includes various client-side digital assistant instructions to provide client-side functionality of the digital assistant. For example, the digital assistant client module 229 is capable of accepting acoustic input (e.g., voice input), text input, touch input, and/or gesture input through various user interfaces of the portable multifunction device 200 (e.g., microphone 213, one or more accelerometers 268, touch-sensitive display system 212, one or more optical sensors 264, other input control devices 216, etc.). The digital assistant client module 229 is also capable of providing output in audio form (e.g., voice output), visual form, and/or tactile form through various output interfaces of the portable multifunction device 200 (e.g., speaker 211, touch-sensitive display system 212, one or more tactile output generators 267, etc.). For example, the output is provided as voice, sound, an alert, a text message, a menu, graphics, video, animation, vibration, and/or a combination of two or more of the foregoing. During operation, the digital assistant client module 229 communicates with the DA server 106 using the RF circuitry 208.
The user data and model 231 includes various data associated with the user (e.g., user-specific vocabulary data, user preference data, user-specified name pronunciations, data from a user electronic address book, backlog, shopping list, etc.) to provide client-side functionality of the digital assistant. Further, the user data and models 231 include various models (e.g., speech recognition models, statistical language models, natural language processing models, ontologies, task flow models, service models, etc.) for processing user inputs and determining user intent.
In some examples, the digital assistant client module 229 utilizes the various sensors, subsystems, and peripherals of the portable multifunction device 200 to gather additional information from the surrounding environment of the portable multifunction device 200 to establish a context associated with a user, current user interaction, and/or current user input. In some examples, the digital assistant client module 229 provides contextual information, or a subset thereof, along with user input to the DA server 106 to help infer user intent. In some examples, the digital assistant also uses the context information to determine how to prepare the output and communicate it to the user. The context information is referred to as context data.
In some examples, the contextual information accompanying the user input includes sensor information such as lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, and the like. In some examples, the contextual information may also include a physical state of the device, such as device orientation, device location, device temperature, power level, speed, acceleration, movement pattern, cellular signal strength, and the like. In some examples, information related to the software state of the DA server 106, such as the running process of the portable multifunction device 200, installed programs, past and current network activities, background services, error logs, resource usage, etc., is provided to the DA server 106 as contextual information associated with user input.
In some examples, the digital assistant client module 229 selectively provides information (e.g., user data 231) stored on the portable multifunction device 200 in response to a request from the DA server 106. In some examples, the digital assistant client module 229 also brings up additional input from the user via a natural language dialog or other user interface upon request by the DA server 106. The digital assistant client module 229 communicates this additional input to the DA server 106 to assist the DA server 106 in intent inference and/or to implement user intent expressed in the user request.
The digital assistant is described in more detail below with reference to fig. 7A-7C. It should be appreciated that the digital assistant client module 229 may include any number of sub-modules of the digital assistant module 726 described below.
The application 236 includes the following modules (or instruction sets) or a subset or superset thereof:
contact module 237 (sometimes referred to as an address book or contact list);
a telephone module 238;
video conferencing module 239;
email client module 240;
an Instant Messaging (IM) module 241;
a fitness support module 242;
a camera module 243 for still and/or video images;
an image management module 244;
a video player module;
a music player module;
browser module 247;
calendar module 248;
gadget module 249, which in some examples includes one or more of the following:
weather gadgets 249-1, stock gadgets 249-2, calculator gadgets 249-3, alarm gadgets 249-4, dictionary gadgets 249-5, and other gadgets acquired by the user, and user created gadgets 249-6;
a gadget creator module 250 for forming the user-created gadget 249-6;
search module 251;
A video and music player module 252 that incorporates the video player module and the music player module;
notepad module 253;
map module 254; and/or
An online video module 255.
Examples of other applications 236 stored in the memory 202 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, contacts module 237 is used to manage an address book or contact list (e.g., in application internal state 292 of contacts module 237 stored in memory 202 or memory 470), including: adding one or more names to the address book; deleting the name from the address book; associating a telephone number, email address, physical address, or other information with the name; associating the image with the name; classifying and classifying names; providing a telephone number or email address to initiate and/or facilitate communications through telephone 238, video conferencing module 239, email 240 or IM 241; etc.
In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, telephone module 238 is used to input a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contact module 237, modify telephone numbers that have been entered, dial a corresponding telephone number, conduct a conversation, and disconnect or hang-up when the conversation is completed. As described above, wireless communication uses any of a variety of communication standards, protocols, and technologies.
In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, optical sensor 264, optical sensor controller 258, contact/motion module 230, graphics module 232, text input module 234, contacts module 237, and telephony module 238, videoconferencing module 239 includes executable instructions to initiate, conduct, and terminate a videoconference between a user and one or more other parties according to user instructions.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, email client module 240 includes executable instructions for creating, sending, receiving, and managing emails in response to user instructions. In conjunction with the image management module 244, the email client module 240 makes it very easy to create and send emails with still or video images captured by the camera module 243.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, instant message module 241 includes executable instructions for: inputting a character sequence corresponding to an instant message, modifying previously inputted characters, transmitting a corresponding instant message (e.g., using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for phone-based instant messages or using XMPP, SIMPLE, or IMPS for internet-based instant messages), receiving an instant message, and viewing the received instant message. In some embodiments, the transmitted and/or received instant messages include graphics, photographs, audio files, video files, and/or other attachments as supported in MMS and/or Enhanced Messaging Services (EMS). As used herein, "instant message" refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, map module 254, and music player module, workout support module 242 includes executable instructions for: creating workouts (e.g., with time, distance, and/or calorie burn targets); communicate with a fitness sensor (exercise device); receiving fitness sensor data; calibrating a sensor for monitoring fitness; selecting and playing music for exercise; and displaying, storing and transmitting the fitness data.
In conjunction with touch screen 212, display controller 256, optical sensor 264, optical sensor controller 258, contact/motion module 230, graphics module 232, and image management module 244, camera module 243 includes executable instructions for: capturing still images or videos (including video streams) and storing them in the memory 202, modifying features of still images or videos, or deleting still images or videos from the memory 202.
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and camera module 243, image management module 244 includes executable instructions for arranging, modifying (e.g., editing), or otherwise manipulating, tagging, deleting, presenting (e.g., in a digital slide or album), and storing still and/or video images.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, browser module 247 includes executable instructions for browsing the internet according to user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, email client module 240, and browser module 247, calendar module 248 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do items, etc.) according to user instructions.
In conjunction with the RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, gadget module 249 is a mini-application (e.g., weather gadget 249-1, stock market gadget 249-2, calculator gadget 249-3, alarm gadget 249-4, and dictionary gadget 249-5) or a mini-application created by a user (e.g., user created gadget 249-6) that can be downloaded and used by a user. In some embodiments, gadgets include HTML (hypertext markup language) files, CSS (cascading style sheet) files, and JavaScript files. In some embodiments, gadgets include XML (extensible markup language) files and JavaScript files (e.g., yahoo | gadgets).
In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, gadget creator module 250 is used by a user to create gadgets (e.g., to make user-specified portions of web pages into gadgets).
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, search module 251 includes executable instructions for searching memory 202 for text, music, sound, images, video, and/or other files matching one or more search criteria (e.g., one or more user-specified search terms) according to user instructions.
In conjunction with the touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuit 210, speaker 211, RF circuit 208, and browser module 247, the video and music player module 252 includes executable instructions that allow a user to download and playback recorded music and other sound files stored in one or more file formats (such as MP3 or AAC files), as well as executable instructions for displaying, rendering, or otherwise playing back video (e.g., on the touch screen 212 or on an external display connected via the external port 224). In some embodiments, the device 200 optionally includes the functionality of an MP3 player such as an iPod (trademark of Apple inc.).
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, notepad module 253 includes executable instructions for creating and managing notepads, backlog, etc. in accordance with user instructions.
In conjunction with the RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, and browser module 247, map module 254 is configured to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data related to shops and other points of interest at or near a particular location, and other location-based data) according to user instructions.
In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuit 210, speaker 211, RF circuit 208, text input module 234, email client module 240, and browser module 247, online video module 255 includes instructions that allow a user to access, browse, receive (e.g., by streaming and/or downloading), play back (e.g., on a touch screen or on a connected external display via external port 224), send emails with links to particular online videos, and otherwise manage online videos in one or more file formats (such as h.264). In some embodiments, the instant messaging module 241 is used instead of the email client module 240 to send links to particular online videos. Additional descriptions of online video applications can be found in U.S. provisional patent application Ser. No. 60/936,562, entitled "Portable Multifunction Device, method, and Graphical User Interface for Playing Online Videos," filed on even 20, 6, 2007, and U.S. patent application Ser. No. 11/968,067, entitled "Portable Multifunction Device, method, and Graphical User Interface for Playing Online Videos," filed on even 31, 12, 2007, the contents of both of which are hereby incorporated by reference in their entirety.
Each of the modules and applications described above corresponds to a set of executable instructions for performing one or more of the functions described above, as well as the methods described in this patent application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules may be combined or otherwise rearranged in various embodiments. For example, the video player module may be combined with the music player module into a single module (e.g., video and music player module 252 in fig. 2A). In some embodiments, memory 202 stores a subset of the modules and data structures described above. Further, the memory 202 stores additional modules and data structures not described above.
In some embodiments, device 200 is a device on which the operation of a predefined set of functions is performed exclusively by a touch screen and/or touch pad. By using a touch screen and/or a touch pad as the primary input control device for operation of the device 200, the number of physical input control devices (such as push buttons, dials, etc.) on the device 200 is reduced.
A predefined set of functions performed solely by the touch screen and/or touch pad optionally includes navigation between user interfaces. In some embodiments, the touch pad, when touched by a user, navigates the device 200 from any user interface displayed on the device 200 to a main menu, home menu, or root menu. In such implementations, a touch pad is used to implement a "menu button". In some other embodiments, the menu buttons are physical push buttons or other physical input control devices, rather than touch pads.
Fig. 2B is a block diagram illustrating exemplary components for event processing according to some embodiments. In some embodiments, memory 202 (fig. 2A) or memory 470 (fig. 4) includes event sorter 270 (e.g., in operating system 226) and corresponding applications 236-1 (e.g., any of the aforementioned applications 237-251, 255, 480-490).
Event classifier 270 receives event information and determines an application view 291 of application 236-1 and application 236-1 to which to deliver the event information. Event sorter 270 includes event monitor 271 and event dispatcher module 274. In some embodiments, the application 236-1 includes an application internal state 292 that indicates one or more current application views that are displayed on the touch-sensitive display 212 when the application is active or executing. In some embodiments, the device/global internal state 257 is used by the event classifier 270 to determine which application(s) are currently active, and the application internal state 292 is used by the event classifier 270 to determine the application view 291 to which to deliver event information.
In some implementations, the application internal state 292 includes additional information, such as one or more of the following: restoration information to be used when the application 236-1 resumes execution, user interface state information indicating that the information is being displayed or ready for display by the application 236-1, a state queue for enabling the user to return to a previous state or view of the application 236-1, and a repeat/undo queue of previous actions taken by the user.
Event monitor 271 receives event information from peripheral interface 218. The event information includes information about sub-events (e.g., user touches on the touch sensitive display 212 as part of a multi-touch gesture). Peripheral interface 218 transmits information it receives from I/O subsystem 206 or sensors, such as proximity sensor 266, one or more accelerometers 268, and/or microphone 213 (via audio circuitry 210). The information received by the peripheral interface 218 from the I/O subsystem 206 includes information from the touch-sensitive display 212 or touch-sensitive surface.
In some embodiments, event monitor 271 sends requests to peripheral interface 218 at predetermined intervals. In response, peripheral interface 218 transmits the event information. In other embodiments, the peripheral interface 218 transmits event information only if there is a significant event (e.g., an input above a predetermined noise threshold is received and/or an input exceeding a predetermined duration is received).
In some implementations, the event classifier 270 also includes a hit view determination module 272 and/or an active event identifier determination module 273.
When the touch sensitive display 212 displays more than one view, the hit view determination module 272 provides a software process for determining where within one or more views a sub-event has occurred. The view is made up of controls and other elements that the user can see on the display.
Another aspect of the user interface associated with an application is a set of views, sometimes referred to herein as application views or user interface windows, in which information is displayed and touch-based gestures occur. The application view (of the respective application) in which the touch is detected corresponds to a level of programming within the application's programming hierarchy or view hierarchy. For example, the lowest horizontal view in which a touch is detected is referred to as the hit view, and the set of events that are considered to be correct inputs is determined based at least in part on the hit view of the initial touch that begins a touch-based gesture.
Hit view determination module 272 receives information related to sub-events of touch-based gestures. When an application has multiple views organized in a hierarchy, hit view determination module 272 identifies the hit view as the lowest view in the hierarchy that should process sub-events. In most cases, the hit view is the lowest level view in which the initiating sub-event (e.g., the first sub-event in a sequence of sub-events that form an event or potential event) occurs. Once the hit view is identified by the hit view determination module 272, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as a hit view.
The activity event recognizer determination module 273 determines which view or views within the view hierarchy should receive a particular sequence of sub-events. In some implementations, the active event identifier determination module 273 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, the activity event recognizer determination module 273 determines that all views that include the physical location of the sub-event are actively engaged views and, thus, that all actively engaged views should receive a particular sequence of sub-events. In other embodiments, even if the touch sub-event is completely localized to an area associated with one particular view, the higher view in the hierarchy will remain the actively engaged view.
Event dispatcher module 274 dispatches event information to an event recognizer (e.g., event recognizer 280). In embodiments that include an active event recognizer determination module 273, the event dispatcher module 274 delivers event information to the event recognizer determined by the active event recognizer determination module 273. In some embodiments, the event dispatcher module 274 stores event information in event queues that is retrieved by the corresponding event receiver 282.
In some embodiments, operating system 226 includes event classifier 270. Alternatively, application 236-1 includes event classifier 270. In yet another embodiment, the event classifier 270 is a stand-alone module or part of another module stored in the memory 202 (such as the contact/motion module 230).
In some embodiments, the application 236-1 includes a plurality of event handlers 290 and one or more application views 291, each of which includes instructions for processing touch events that occur within a corresponding view of the user interface of the application. Each application view 291 of the application 236-1 includes one or more event recognizers 280. Typically, the respective application view 291 includes a plurality of event recognizers 280. In other embodiments, one or more of the event recognizers 280 are part of a separate module, which is a higher level object such as a user interface toolkit (not shown) or application 236-1 from which to inherit methods and other properties. In some implementations, the respective event handlers 290 include one or more of the following: the data updater 276, the object updater 277, the GUI updater 278, and/or the event data 279 received from the event classifier 270. Event handler 290 utilizes or invokes data updater 276, object updater 277 or GUI updater 278 to update the application internal state 292. Alternatively, one or more of the application views 291 include one or more corresponding event handlers 290. Additionally, in some implementations, one or more of the data updater 276, the object updater 277, and the GUI updater 278 are included in the respective application view 291.
The corresponding event identifier 280 receives event information (e.g., event data 279) from the event classifier 270 and identifies events from the event information. Event recognizer 280 includes event receiver 282 and event comparator 284. In some embodiments, event recognizer 280 further includes at least a subset of metadata 283 and event transfer instructions 288 (which include sub-event transfer instructions).
Event receiver 282 receives event information from event sorter 270. The event information includes information about sub-events such as touches or touch movements. The event information also includes additional information, such as the location of the sub-event, according to the sub-event. When a sub-event relates to the motion of a touch, the event information also includes the rate and direction of the sub-event. In some embodiments, the event includes rotation of the device from one orientation to another orientation (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about a current orientation of the device (also referred to as a device pose).
Event comparator 284 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub-event, or determines or updates the state of the event or sub-event. In some embodiments, event comparator 284 includes event definition 286. Event definition 286 includes definitions of events (e.g., a predefined sequence of sub-events), such as event 1 (287-1), event 2 (287-2), and other events. In some embodiments, sub-events in event (287) include, for example, touch start, touch end, touch move, touch cancel, and multi-touch. In one example, the definition of event 1 (287-1) is a double click on the displayed object. For example, a double click includes a first touch on the displayed object for a predetermined length of time (touch start), a first lift-off on the displayed object for a predetermined length of time (touch end), a second touch on the displayed object for a predetermined length of time (touch start), and a second lift-off on the displayed object for a predetermined length of time (touch end). In another example, the definition of event 2 (287-2) is a drag on the displayed object. For example, dragging includes touching (or contacting) on the displayed object for a predetermined period of time, movement of the touch on the touch-sensitive display 212, and lifting of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 290.
In some embodiments, event definition 287 includes a definition of an event for a corresponding user interface object. In some implementations, event comparator 284 performs hit testing to determine which user interface object is associated with the sub-event. For example, in an application view that displays three user interface objects on touch-sensitive display 212, when a touch is detected on touch-sensitive display 212, event comparator 284 performs a hit test to determine which of the three user interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 290, the event comparator uses the results of the hit test to determine which event handler 290 should be activated. For example, event comparator 284 selects the event handler associated with the sub-event and the object that triggered the hit test.
In some embodiments, the definition of the respective event (287) further includes a delay action that delays delivery of the event information until it has been determined that the sequence of sub-events does or does not correspond to an event type of the event recognizer.
When the respective event recognizer 280 determines that the sequence of sub-events does not match any of the events in the event definition 286, the respective event recognizer 280 enters an event impossible, event failed, or event end state after which subsequent sub-events of the touch-based gesture are ignored. In this case, the other event recognizers (if any) that remain active for the hit view continue to track and process sub-events of the ongoing touch-based gesture.
In some embodiments, the respective event recognizer 280 includes metadata 283 having configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to the actively engaged event recognizer. In some embodiments, metadata 283 includes configurable attributes, flags, and/or lists that indicate how event recognizers interact or are able to interact with each other. In some embodiments, metadata 283 includes configurable attributes, flags, and/or lists that indicate whether sub-events are delivered to different levels in the view or programmatic hierarchy.
In some embodiments, when one or more particular sub-events of an event are identified, the corresponding event recognizer 280 activates an event handler 290 associated with the event. In some implementations, the respective event identifier 280 delivers event information associated with the event to the event handler 290. The activation event handler 290 is different from sending (and deferring) sub-events to the corresponding hit view. In some embodiments, event recognizer 280 throws a marker associated with the recognized event, and event handler 290 associated with the marker obtains the marker and performs a predefined process.
In some implementations, the event delivery instructions 288 include sub-event delivery instructions that deliver event information about the sub-event without activating the event handler. Instead, the sub-event delivery instructions deliver the event information to an event handler associated with the sub-event sequence or to an actively engaged view. Event handlers associated with the sequence of sub-events or with the actively engaged views receive the event information and perform a predetermined process.
In some embodiments, the data updater 276 creates and updates data used in the application 236-1. For example, the data updater 276 updates a telephone number used in the contact module 237, or stores a video file used in the video player module. In some embodiments, object updater 277 creates and updates objects used in application 236-1. For example, the object updater 277 creates a new user interface object or updates the location of the user interface object. GUI updater 278 updates the GUI. For example, the GUI updater 278 prepares display information and sends the display information to the graphics module 232 for display on a touch-sensitive display.
In some embodiments, event handler 290 includes or has access to data updater 276, object updater 277, and GUI updater 278. In some embodiments, the data updater 276, the object updater 277, and the GUI updater 278 are included in a single module of the respective application 236-1 or application view 291. In other embodiments, they are included in two or more software modules.
It should be appreciated that the above discussion regarding event handling of user touches on a touch sensitive display also applies to other forms of user inputs that utilize an input device to operate the multifunction device 200, not all of which are initiated on a touch screen. For example, mouse movements and mouse button presses optionally in conjunction with single or multiple keyboard presses or holds; contact movement on the touchpad, such as tap, drag, scroll, etc.; inputting by a touch pen; movement of the device; verbal instructions; detected eye movement; inputting biological characteristics; and/or any combination thereof is optionally used as input corresponding to sub-events defining the event to be distinguished.
Fig. 3 illustrates a portable multifunction device 200 with a touch screen 212 in accordance with some embodiments. The touch screen optionally displays one or more graphics within a User Interface (UI) 300. In this and other embodiments described below, a user can select one or more of these graphics by making a gesture on the graphics, for example, with one or more fingers 302 (not drawn to scale in the figures) or one or more styluses 303 (not drawn to scale in the figures). In some embodiments, selection of one or more graphics will occur when a user breaks contact with the one or more graphics. In some embodiments, the gesture optionally includes one or more taps, one or more swipes (left to right, right to left, up and/or down), and/or scrolling of a finger that has been in contact with the device 200 (right to left, left to right, up and/or down). In some implementations or in some cases, inadvertent contact with the graphic does not select the graphic. For example, when the gesture corresponding to the selection is a tap, a swipe gesture that swipes over an application icon optionally does not select the corresponding application.
The device 200 also includes one or more physical buttons, such as a "home" or menu button 304. As previously described, menu button 304 is used to navigate to any application 236 in a set of applications executing on device 200. Alternatively, in some embodiments, the menu buttons are implemented as soft keys in a GUI displayed on touch screen 212.
In some embodiments, device 200 includes a touch screen 212, menu buttons 304, a press button 306 for powering the device on/off and for locking the device, one or more volume adjustment buttons 308, a Subscriber Identity Module (SIM) card slot 310, a headset jack 312, and a docking/charging external port 224. Pressing button 306 is optionally used to turn on/off the device by pressing the button and holding the button in the pressed state for a predefined time interval; locking the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or unlock the device or initiate an unlocking process. In an alternative embodiment, the device 200 also accepts verbal input through the microphone 213 for activating or deactivating certain functions. The device 200 also optionally includes one or more contact intensity sensors 265 for detecting the intensity of contacts on the touch screen 212 and/or one or more haptic output generators 267 for generating haptic outputs for a user of the device 200.
FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments. The device 400 need not be portable. In some embodiments, the device 400 is a laptop computer, a desktop computer, a tablet computer, a multimedia player device, a navigation device, an educational device (such as a child learning toy), a gaming system, or a control device (e.g., a home controller or an industrial controller). Device 400 typically includes one or more processing units (CPUs) 410, one or more network or other communication interfaces 460, memory 470, and one or more communication buses 420 for interconnecting these components. Communication bus 420 optionally includes circuitry (sometimes referred to as a chipset) that interconnects and controls communications between system components. The device 400 includes an input/output (I/O) interface 430 with a display 440, typically a touch screen display. The I/O interface 430 also optionally includes a keyboard and/or mouse (or other pointing device) 450 and a touch pad 455, a tactile output generator 457 (e.g., similar to one or more tactile output generators 267 described above with reference to fig. 2A), a sensor 459 (e.g., an optical sensor, an acceleration sensor, a proximity sensor, a touch-sensitive sensor, and/or a contact intensity sensor (similar to one or more contact intensity sensors 265 described above with reference to fig. 2A)), for generating a tactile output on the device 400. Memory 470 includes high-speed random access memory such as DRAM, SRAM, DDR RAM or other random access solid state memory devices; and optionally includes non-volatile memory such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 470 optionally includes one or more storage devices located remotely from CPU 410. In some embodiments, memory 470 stores programs, modules, and data structures, or a subset thereof, similar to those stored in memory 202 of portable multifunction device 200 (fig. 2A). In addition, the memory 470 optionally stores additional programs, modules, and data structures not present in the memory 202 of the portable multifunction device 200. For example, the memory 470 of the device 400 optionally stores the drawing module 480, the presentation module 482, the word processing module 484, the website creation module 486, the disk editing module 488, and/or the spreadsheet module 490, while the memory 202 of the portable multifunction device 200 (fig. 2A) optionally does not store these modules.
Each of the above-described elements in fig. 4 are in some examples stored in one or more of the previously mentioned memory devices. Each of the above-described modules corresponds to a set of instructions for performing the above-described functions. The above-described modules or programs (e.g., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules are combined or otherwise rearranged in various embodiments. In some embodiments, memory 470 stores a subset of the modules and data structures described above. Further, the memory 470 stores additional modules and data structures not described above.
Attention is now directed to embodiments of user interfaces that may be implemented on, for example, portable multifunction device 200.
Fig. 5A illustrates an exemplary user interface of an application menu on the portable multifunction device 200 in accordance with some embodiments. A similar user interface is implemented on device 400. In some embodiments, user interface 500 includes the following elements, or a subset or superset thereof:
a signal strength indicator 502 for wireless communications, such as cellular signals and Wi-Fi signals;
time 504;
bluetooth indicator 505;
battery status indicator 506;
Tray 508 with icons for commonly used applications, such as:
icon 516 of phone module 238 marked "phone", optionally including an indicator 514 of the number of missed calls or voice messages;
an icon 518 labeled "mail" for email client module 240, optionally including an indicator 510 of the number of unread emails;
icon 520 marked "browser" of browser module 247; and
video and music player module 252 (also known as iPod (trademark of Apple inc.)
Module 252) icon 522 labeled "iPod"; and
icons of other applications, such as:
icon 524 of IM module 241 marked "message"; the method comprises the steps of carrying out a first treatment on the surface of the
Icon 526 marked "calendar" of calendar module 248; the method comprises the steps of carrying out a first treatment on the surface of the
Icon 528 of image management module 244 labeled "photo"; the method comprises the steps of carrying out a first treatment on the surface of the
Icon 530 marked "camera" for camera module 243; the method comprises the steps of carrying out a first treatment on the surface of the
Icon 532 marked "online video" of online video module 255; the method comprises the steps of carrying out a first treatment on the surface of the
Icon 534 labeled "stock market" for stock market gadget 249-2; the method comprises the steps of carrying out a first treatment on the surface of the
Icon 536 labeled "map" for map module 254; the method comprises the steps of carrying out a first treatment on the surface of the
Icon 538 marked "weather" for weather gadget 249-1; the method comprises the steps of carrying out a first treatment on the surface of the
Icon 540 marked "clock" for alarm clock gadget 249-4; the method comprises the steps of carrying out a first treatment on the surface of the
Icon 542 labeled "fitness support" for fitness support module 242; the method comprises the steps of carrying out a first treatment on the surface of the
Icon 544 labeled "notepad" for notepad module 253; and
the marked "set" icon 546 for setting applications or modules provides access to the settings of the device 200 and its various applications 236.
It should be noted that the iconic labels shown in fig. 5A are merely exemplary. For example, the icon 522 of the video and music player module 252 is optionally labeled "music" or "music player". Other labels are optionally used for various application icons. In some embodiments, the label of the respective application icon includes a name of the application corresponding to the respective application icon. In some embodiments, the label of a particular application icon is different from the name of the application corresponding to the particular application icon.
Fig. 5B illustrates an exemplary user interface on a device (e.g., device 400 of fig. 4) having a touch-sensitive surface 551 (e.g., tablet or touch pad 455 of fig. 4) separate from a display 550 (e.g., touch screen display 212). The device 400 also optionally includes one or more contact intensity sensors (e.g., one or more of the sensors 459) for detecting the intensity of contacts on the touch-sensitive surface 551 and/or one or more tactile output generators 457 for generating tactile outputs for a user of the device 400.
While some of the examples that follow will be given with reference to inputs on touch screen display 212 (where the touch sensitive surface and the display are combined), in some embodiments the device detects inputs on a touch sensitive surface that is separate from the display, as shown in fig. 5B. In some implementations, the touch-sensitive surface (e.g., 551 in fig. 5B) has a primary axis (e.g., 552 in fig. 5B) that corresponds to the primary axis (e.g., 553 in fig. 5B) on the display (e.g., 550). According to these embodiments, the device detects contact (e.g., 560 and 562 in fig. 5B) with the touch-sensitive surface 551 at a location (e.g., 560 corresponds to 568 and 562 corresponds to 570 in fig. 5B) corresponding to the respective location on the display. In this way, user inputs (e.g., contacts 560 and 562 and their movements) detected by the device on the touch-sensitive surface (e.g., 551 in FIG. 5B) are used by the device to manipulate a user interface on the display (e.g., 550 in FIG. 5B) of the multifunction device when the touch-sensitive surface is separated from the device. It should be appreciated that similar approaches are optionally used for other user interfaces described herein.
Additionally, while the following examples are primarily given with reference to finger inputs (e.g., finger contacts, single-finger flick gestures, finger swipe gestures), it should be understood that in some embodiments one or more of these finger inputs are replaced by input from another input device (e.g., mouse-based input or stylus input). For example, a swipe gesture is optionally replaced with a mouse click (e.g., rather than a contact), followed by movement of the cursor along the path of the swipe (e.g., rather than movement of the contact). As another example, a flick gesture is optionally replaced by a mouse click (e.g., instead of detection of contact, followed by ceasing to detect contact) when the cursor is over the position of the flick gesture. Similarly, when multiple user inputs are detected simultaneously, it should be appreciated that multiple computer mice are optionally used simultaneously, or that the mice and finger contacts are optionally used simultaneously.
Fig. 6A illustrates an exemplary personal electronic device 600. The device 600 includes a body 602. In some embodiments, device 600 includes some or all of the features described with respect to devices 200 and 400 (e.g., fig. 2A-4). In some implementations, the device 600 has a touch sensitive display 604, hereinafter referred to as a touch screen 604. In addition to or in lieu of the touch screen 604, the device 600 has a display and a touch-sensitive surface. As with devices 200 and 400, in some implementations, touch screen 604 (or touch-sensitive surface) has one or more intensity sensors for detecting the intensity of a contact (e.g., touch) being applied. One or more intensity sensors of the touch screen 604 (or touch sensitive surface) provide output data representative of the intensity of the touch. The user interface of device 600 responds to touches based on touch strength, meaning that touches of different strengths may invoke different user interface operations on device 600.
Techniques for detecting and processing touch intensity may exist, for example, in related applications: international patent application serial number PCT/US2013/040061, filed 5/8 a 2013, method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application, and international patent application serial number PCT/US2013/069483, filed 11 a 2013, method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships, each of which is hereby incorporated by reference in its entirety.
In some embodiments, the device 600 has one or more input mechanisms 606 and 608. Input mechanisms 606 and 608 (if included) are in physical form. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some embodiments, the device 600 has one or more attachment mechanisms. Such attachment mechanisms, if included, may allow for attachment of the device 600 to, for example, a hat, glasses, earrings, necklace, shirt, jacket, bracelet, watchband, bracelet, pants, leash, shoe, purse, backpack, or the like. These attachment mechanisms allow the user to wear the device 600.
Fig. 6B illustrates an exemplary personal electronic device 600. In some embodiments, the apparatus 600 includes some or all of the components described with respect to fig. 2A, 2B, and 4. The device 600 has a bus 612 that operatively couples an I/O section 614 to one or more computer processors 616 and memory 618. The I/O section 614 is connected to a display 604, which may have a touch sensitive member 622 and optionally also a touch intensity sensitive member 624. In addition, the I/O portion 614 is connected to a communication unit 630 for receiving application and operating system data using Wi-Fi, bluetooth, near Field Communication (NFC), cellular, and/or other wireless communication technologies. The device 600 includes input mechanisms 606 and/or 608. For example, input mechanism 606 is a rotatable input device or a depressible input device and a rotatable input device. In some examples, input mechanism 608 is a button.
In some examples, input mechanism 608 is a microphone. The personal electronic device 600 includes, for example, various sensors, such as a GPS sensor 632, an accelerometer 634, an orientation sensor 640 (e.g., a compass), a gyroscope 636, a motion sensor 638, and/or combinations thereof, all of which are operatively connected to the I/O section 614.
The memory 618 of the personal electronic device 600 is a non-transitory computer-readable storage medium for storing computer-executable instructions that, when executed by the one or more computer processors 616, for example, cause the computer processors to perform the techniques and processes described above. The computer-executable instructions are also stored and/or transmitted, for example, within any non-transitory computer-readable storage medium, for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. The personal electronic device 600 is not limited to the components and configuration of fig. 6B, but may include other components or additional components in a variety of configurations.
As used herein, the term "affordance" refers to user-interactive graphical user interface objects displayed on the display screens of device 200, device 400, device 600, and/or device 900 (fig. 2A, 4, 6A-6B, and 9A-9C). For example, images (e.g., icons), buttons, and text (e.g., hyperlinks) each constitute an affordance.
As used herein, the term "focus selector" refers to an input element for indicating the current portion of a user interface with which a user is interacting. In some implementations that include a cursor or other position marker, the cursor acts as a "focus selector" such that when the cursor detects an input (e.g., presses an input) on a touch-sensitive surface (e.g., touch pad 455 in fig. 4 or touch-sensitive surface 551 in fig. 5B) above a particular user interface element (e.g., a button, window, slider, or other user interface element), the particular user interface element is adjusted according to the detected input. In some implementations including a touch screen display (e.g., touch sensitive display system 212 in fig. 2A or touch screen 212 in fig. 5A) that enables direct interaction with user interface elements on the touch screen display, the contact detected on the touch screen acts as a "focus selector" such that when an input (e.g., a press input by a contact) is detected on the touch screen display at the location of a particular user interface element (e.g., a button, window, slider, or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations, the focus is moved from one area of the user interface to another area of the user interface without a corresponding movement of the cursor or movement of contact on the touch screen display (e.g., by moving the focus from one button to another using a tab key or arrow key); in these implementations, the focus selector moves according to movement of the focus between different areas of the user interface. Regardless of the particular form that the focus selector takes, the focus selector is typically controlled by the user in order to deliver a user interface element (or contact on the touch screen display) that is interactive with the user of the user interface (e.g., by indicating to the device the element with which the user of the user interface desires to interact). For example, upon detection of a press input on a touch-sensitive surface (e.g., a touchpad or touch screen), the position of a focus selector (e.g., a cursor, contact, or selection box) over a respective button will indicate that the user desires to activate the respective button (rather than other user interface elements shown on the device display).
As used in the specification and claims, the term "characteristic intensity" of a contact refers to the characteristic of a contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on a plurality of intensity samples. The characteristic intensity is optionally based on a predefined number of intensity samples or a set of intensity samples acquired during a predetermined period of time (e.g., 0.05 seconds, 0.1 seconds, 0.2 seconds, 0.5 seconds, 1 second, 2 seconds, 5 seconds, 10 seconds) relative to a predefined event (e.g., after detection of contact, before or after detection of lift-off of contact, before or after detection of start of movement of contact, before or after detection of end of contact, and/or before or after detection of decrease in intensity of contact). The characteristic intensity of the contact is optionally based on one or more of: maximum value of contact strength, average value of contact strength, value at the first 10% of contact strength, half maximum value of contact strength, 90% maximum value of contact strength, etc. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether the user has performed an operation. For example, the set of one or more intensity thresholds includes a first intensity threshold and a second intensity threshold. In this example, contact of the feature strength that does not exceed the first threshold results in a first operation, contact of the feature strength that exceeds the first strength threshold but does not exceed the second strength threshold results in a second operation, and contact of the feature strength that exceeds the second threshold results in a third operation. In some implementations, a comparison between the feature strength and one or more thresholds is used to determine whether to perform one or more operations (e.g., whether to perform the respective operation or to forgo performing the respective operation) instead of being used to determine whether to perform the first operation or the second operation.
In some implementations, a portion of the gesture is identified for determining a feature strength. For example, the touch-sensitive surface receives a continuous swipe contact that transitions from a starting position and to an ending position where the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end position is based only on a portion of the continuous swipe contact, rather than the entire swipe contact (e.g., the portion of the swipe contact located only at the end position). In some embodiments, a smoothing algorithm is applied to the intensity of the swipe contact before determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of the following: an unweighted moving average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some cases, these smoothing algorithms eliminate narrow spikes or depressions in the intensity of the swipe contact for the purpose of determining the characteristic intensity.
The intensity of the contact on the touch-sensitive surface is characterized relative to one or more intensity thresholds, such as a contact detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the tap strength threshold corresponds to a strength of: at this intensity the device will perform the operations normally associated with clicking a button of a physical mouse or touch pad. In some embodiments, the deep compression intensity threshold corresponds to an intensity of: at this intensity the device will perform an operation that is different from the operation normally associated with clicking a physical mouse or a button of a touch pad. In some implementations, when a contact is detected with a characteristic intensity below a light press intensity threshold (e.g., and above a nominal contact detection intensity threshold, a contact below the nominal contact detection intensity threshold is no longer detected), the device will move the focus selector according to movement of the contact over the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent across different sets of user interface drawings.
The increase in contact characteristic intensity from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a "light press" input. The increase in contact characteristic intensity from an intensity below the deep-press intensity threshold to an intensity above the deep-press intensity threshold is sometimes referred to as a "deep-press" input. The increase in the contact characteristic intensity from an intensity below the contact detection intensity threshold to an intensity between the contact detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting a contact on the touch surface. The decrease in the contact characteristic intensity from an intensity above the contact detection intensity threshold to an intensity below the contact detection intensity threshold is sometimes referred to as detecting a lift-off of contact from the touch surface. In some embodiments, the contact detection intensity threshold is zero. In some embodiments, the contact detection intensity threshold is greater than zero.
In some implementations described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting a respective press input performed with a respective contact (or contacts), wherein a respective press input is detected based at least in part on detecting an increase in intensity of the contact (or contacts) above a press input intensity threshold. In some implementations, the respective operation is performed in response to detecting that the intensity of the respective contact increases above a press input intensity threshold (e.g., a "downstroke" of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above a press input intensity threshold and a subsequent decrease in intensity of the contact below the press input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press input threshold (e.g., an "upstroke" of the respective press input).
In some implementations, the device employs intensity hysteresis to avoid accidental inputs, sometimes referred to as "jitter," in which the device defines or selects a hysteresis intensity threshold that has a predefined relationship to the compression input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the compression input intensity threshold, or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the compression input intensity threshold). Thus, in some embodiments, the press input includes an increase in the intensity of the respective contact above a press input intensity threshold and a subsequent decrease in the intensity of the contact below a hysteresis intensity threshold corresponding to the press input intensity threshold, and the respective operation is performed in response to detecting that the intensity of the respective contact subsequently decreases below the hysteresis intensity threshold (e.g., an "upstroke" of the respective press input). Similarly, in some embodiments, a press input is detected only when the device detects an increase in contact intensity from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press input intensity threshold and optionally a subsequent decrease in contact intensity to an intensity at or below the hysteresis intensity, and a corresponding operation is performed in response to detecting a press input (e.g., an increase in contact intensity or a decrease in contact intensity depending on the circumstances).
For ease of explanation, optionally, a description of operations performed in response to a press input associated with a press input intensity threshold or in response to a gesture comprising a press input is triggered in response to detecting any of the following: the contact strength increases above the compression input strength threshold, the contact strength increases from an intensity below the hysteresis strength threshold to an intensity above the compression input strength threshold, the contact strength decreases below the compression input strength threshold, and/or the contact strength decreases below the hysteresis strength threshold corresponding to the compression input strength threshold. In addition, in examples where the operation is described as being performed in response to the intensity of the detected contact decreasing below a press input intensity threshold, the operation is optionally performed in response to the intensity of the detected contact decreasing below a hysteresis intensity threshold that corresponds to and is less than the press input intensity threshold.
3. Digital assistant system
Fig. 7A illustrates a block diagram of a digital assistant system 700, according to various examples. In some examples, the digital assistant system 700 is implemented on a standalone computer system. In some examples, digital assistant system 700 is distributed across multiple computers. In some examples, some of the modules and functions of the digital assistant are divided into a server portion and a client portion, where the client portion is located on one or more user devices (e.g., device 104, device 122, device 200, device 400, or device 600) and communicates with the server portion (e.g., server system 108) over one or more networks, for example, as shown in fig. 1. In some examples, digital assistant system 700 is a specific implementation of server system 108 (and/or DA server 106) shown in fig. 1. It should be noted that digital assistant system 700 is only one example of a digital assistant system, and that digital assistant system 700 has more or fewer components than shown, combines two or more components, or may have a different configuration or layout of components. The various components shown in fig. 7A are implemented in hardware, in software instructions for execution by one or more processors, in firmware (including one or more signal processing integrated circuits and/or application specific integrated circuits), or in combinations thereof.
The digital assistant system 700 includes a memory 702, an input/output (I/O) interface 706, a network communication interface 708, and one or more processors 704. These components may communicate with each other via one or more communication buses or signal lines 710.
In some examples, memory 702 includes non-transitory computer-readable media such as high-speed random access memory and/or non-volatile computer-readable storage media (e.g., one or more disk storage devices, flash memory devices, or other non-volatile solid state memory devices).
In some examples, the I/O interface 706 couples input/output devices 716 of the digital assistant system 700, such as a display, a keyboard, a touch screen, and a microphone, to the user interface module 722. The I/O interface 706, along with the user interface module 722, receives user input (e.g., voice input, keyboard input, touch input, etc.) and processes the input accordingly. In some examples, for example, when the digital assistant is implemented on a standalone user device, the digital assistant system 700 includes any of the components and I/O communication interfaces described with respect to the device 200, 400, or 600 in fig. 2A, 4, 6A-6B, respectively. In some examples, digital assistant system 700 represents a server portion of a digital assistant implementation and may interact with a user through a client-side portion located on a user device (e.g., device 104, device 200, device 400, or device 600).
In some examples, the network communication interface 708 includes one or more wired communication ports 712 and/or wireless transmit and receive circuitry 714. One or more wired communication ports receive and transmit communication signals via one or more wired interfaces, such as ethernet, universal Serial Bus (USB), FIREWIRE, etc. The wireless circuitry 714 receives and transmits RF signals and/or optical signals from and to a communication network and other communication devices. The wireless communication uses any of a variety of communication standards, protocols, and technologies, such as GSM, EDGE, CDMA, TDMA, bluetooth, wi-Fi, voIP, wi-MAX, or any other suitable communication protocol. Network communication interface 708 enables communication between digital assistant system 700 and other devices via a network, such as the internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless Local Area Network (LAN), and/or a Metropolitan Area Network (MAN).
In some examples, memory 702 or a computer-readable storage medium of memory 702 stores programs, modules, instructions, and data structures, including all or a subset of the following: an operating system 718, a communication module 720, a user interface module 722, one or more application programs 724, and a digital assistant module 726. In particular, the memory 702 or a computer readable storage medium of the memory 702 stores instructions for performing the processes described above. One or more processors 704 execute these programs, modules, and instructions and read data from and write data to the data structures.
Operating system 718 (e.g., darwin, RTXC, LINUX, UNIX, iOS, OS X, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.), and facilitates communication between the various hardware, firmware, and software components.
The communication module 720 facilitates communication between the digital assistant system 700 and other devices via the network communication interface 708. For example, the communication module 720 communicates with the RF circuitry 208 of an electronic device (such as the device 200, 400, or 600 shown in fig. 2A, 4, 6A-6B, respectively). The communication module 720 also includes various components for processing data received by the wireless circuit 714 and/or the wired communication port 712.
The user interface module 722 receives commands and/or input from a user (e.g., from a keyboard, touch screen, pointing device, controller, and/or microphone) via the I/O interface 706 and generates user interface objects on a display. The user interface module 722 also prepares and communicates output (e.g., voice, sound, animation, text, icons, vibration, haptic feedback, illumination, etc.) to the user via the I/O interface 706 (e.g., through a display, audio channel, speaker, touch pad, etc.).
Application programs 724 include programs and/or modules configured to be executed by the one or more processors 704. For example, if the digital assistant system is implemented on a standalone user device, the applications 724 include user applications such as games, calendar applications, navigation applications, or mail applications. If the digital assistant system 700 is implemented on a server, the applications 724 include, for example, a resource management application, a diagnostic application, or a scheduling application.
The memory 702 also stores a digital assistant module 726 (or server portion of the digital assistant). In some examples, digital assistant module 726 includes the following sub-modules, or a subset or superset thereof: an input/output processing module 728, a Speech To Text (STT) processing module 730, a natural language processing module 732, a dialog flow processing module 734, a task flow processing module 736, a services processing module 738, and a speech synthesis processing module 740. Each of these modules has access to one or more of the following systems or data and models of digital assistant module 726, or a subset or superset thereof: ontology 760, vocabulary index 744, user data 748, task flow model 754, service model 756, and ASR system 758.
In some examples, using the processing modules, data, and models implemented in digital assistant module 726, the digital assistant may perform at least some of the following: converting the speech input into text; identifying a user intent expressed in natural language input received from a user; actively elicit and obtain information needed to fully infer the user's intent (e.g., by disambiguating words, games, intent, etc.); determining a task flow for satisfying the inferred intent; and executing the task flow to satisfy the inferred intent.
In some examples, as shown in fig. 7B, I/O processing module 728 may interact with a user via I/O device 716 in fig. 7A or interact with a user device (e.g., device 104, device 200, device 400, or device 600) via network communication interface 708 in fig. 7A to obtain user input (e.g., voice input) and provide a response to the user input (e.g., as voice output). The I/O processing module 728 optionally obtains contextual information associated with the user input from the user device along with or shortly after receiving the user input. The contextual information includes user-specific data, vocabulary, and/or preferences related to user input. In some examples, the context information further includes software state and hardware state of the user device at the time the user request is received, and/or information related to the user's surroundings at the time the user request is received. In some examples, the I/O processing module 728 also sends follow-up questions related to the user request to the user and receives answers from the user. When a user request is received by the I/O processing module 728 and the user request includes a voice input, the I/O processing module 728 forwards the voice input to the STT processing module 730 (or speech recognizer) for voice-to-text conversion.
The STT processing module 730 includes one or more ASR systems 758. The one or more ASR systems 758 may process speech input received through the I/O processing module 728 to produce recognition results. Each ASR system 758 includes a front-end speech pre-processor. The front-end speech pre-processor extracts representative features from the speech input. For example, the front-end speech pre-processor performs a fourier transform on the speech input to extract spectral features characterizing the speech input as a sequence of representative multidimensional vectors. In addition, each ASR system 758 includes one or more speech recognition models (e.g., acoustic models and/or language models) and implements one or more speech recognition engines. Examples of speech recognition models include hidden Markov models, gaussian mixture models, deep neural network models, n-gram language models, and other statistical models. Examples of speech recognition engines include dynamic time warping based engines and Weighted Finite State Transducer (WFST) based engines. The extracted representative features of the front-end speech pre-processor are processed using one or more speech recognition models and one or more speech recognition engines to produce intermediate recognition results (e.g., phonemes, phoneme strings, and sub-words), and ultimately text recognition results (e.g., words, word strings, or symbol sequences). In some examples, the voice input is processed at least in part by a third party service or on a device of the user (e.g., device 104, device 200, device 400, or device 600) to produce the recognition result. Once STT processing module 730 generates a recognition result that includes a text string (e.g., a word, or a sequence of words, or a sequence of symbols), the recognition result is passed to natural language processing module 732 for intent inference. In some examples, the STT processing module 730 generates a plurality of candidate text representations of the speech input. Each candidate text representation is a sequence of words or symbols corresponding to a speech input. In some examples, each candidate text representation is associated with a speech recognition confidence score. Based on the speech recognition confidence scores, the STT processing module 730 ranks the candidate text representations and provides the n best (e.g., the n highest ranked) candidate text representations to the natural language processing module 732 for intent inference, where n is a predetermined integer greater than zero. For example, in one example, only the highest ranked (n=1) candidate text representations are delivered to the natural language processing module 732 for intent inference. As another example, the 5 highest ranked (n=5) candidate text representations are passed to the natural language processing module 732 for intent inference.
Further details regarding speech-to-text processing are described in U.S. patent application Ser. No. 13/236942, entitled "Consolidating Speech Recognition Results," filed on even date 20 at 9 and 2011, the entire disclosure of which is incorporated herein by reference.
In some examples, the STT processing module 730 includes a vocabulary of recognizable words and/or accesses the vocabulary via the phonetic-to-letter conversion module 731. Each vocabulary word is associated with one or more candidate pronunciations for the word represented in the speech recognition phonetic alphabet. In particular, the vocabulary of recognizable words includes words associated with a plurality of candidate pronunciations. For example, the vocabulary includes andand->The word "match" associated with the candidate pronunciation of (c). In addition, the vocabulary words are associated with custom candidate pronunciations based on previous speech input from the user. Such custom candidate pronunciations are stored in the STT processing module 730 and are associated with a particular user via a user profile on the device. In some examples, the candidate pronunciation of the word is determined based on the spelling of the word and one or more linguistic and/or phonetic rules. In some examples, the candidate pronunciation is generated manually, e.g., based on a known standard pronunciation.
In some examples, candidate pronunciations are ranked based on their popularity. For example, candidate hairSound waveRanking of (2) is higher than +.>As the former is a more common pronunciation (e.g., for users in a particular geographic region, or for any other suitable subset of users, among all users). In some examples, candidate pronunciations are ranked based on whether the candidate pronunciations are custom candidate pronunciations associated with the user. For example, custom candidate pronunciations are ranked higher than standard candidate pronunciations. This can be used to identify proper nouns having unique pronunciations that deviate from the canonical pronunciation. In some examples, the candidate pronunciation is associated with one or more speech features such as geographic origin, country, or race. For example, candidate pronunciation +.>Associated with the United states, and candidate pronunciation +.>Associated with the uk. Further, the ranking of candidate pronunciations is based on one or more characteristics (e.g., geographic origin, country, race, etc.) of the user in a user profile stored on the device. For example, the user may be determined from a user profile to be associated with the united states. Candidate pronunciation +.>Comparable candidate pronunciation +. >The ranking (associated with the uk) is higher. In some examples, one of the ranked candidate pronunciations may be selected as a predicted pronunciation (e.g., the most likely pronunciation).
Upon receiving a voice input, the STT processing module 730 is used to determine (e.g., using a voice model) that corresponds to the voiceThe input phonemes are then tried (e.g., using a language model) to determine words that match the phonemes. For example, if the STT processing module 730 first identifies a sequence of phonemes corresponding to a portion of the speech inputIt may then determine that the sequence corresponds to the word "match" based on the vocabulary index 744.
In some examples, STT processing module 730 uses fuzzy matching techniques to determine words in the utterance. Thus, for example, the STT processing module 730 determines a phoneme sequenceCorresponds to the word "key", even though the particular phoneme sequence is not a candidate phoneme sequence for that word.
The natural language processing module 732 of the digital assistant ("natural language processor") obtains the n best candidate textual representations ("word sequences" or "symbol sequences") generated by the STT processing module 730 and attempts to associate each candidate textual representation with one or more "actionable intents" identified by the digital assistant. "actionable intent" (or "user intent") represents a task that may be executed by a digital assistant and that may have an associated task flow implemented in task flow model 754. An associated task flow is a series of programmed actions and steps taken by the digital assistant to perform a task. The scope of the capabilities of the digital assistant depends on the number and variety of task flows that have been implemented and stored in the task flow model 754, or in other words, the number and variety of "actionable intents" identified by the digital assistant. However, the effectiveness of a digital assistant also depends on the ability of the assistant to infer the correct "one or more actionable intents" from user requests expressed in natural language.
In some examples, the natural language processing module 732 receives contextual information associated with the user request, for example, from the I/O processing module 728, in addition to the sequence of words or symbols obtained from the STT processing module 730. The natural language processing module 732 optionally uses the contextual information to clarify, supplement, and/or further define the information contained in the candidate text representations received from the STT processing module 730. The context information includes, for example, user preferences, hardware and/or software status of the user device, sensor information collected before, during, or shortly after a user request, previous interactions (e.g., conversations) between the digital assistant and the user, and so forth. As described herein, in some examples, the contextual information is dynamic and varies with time, location, content, and other factors of the conversation.
In some examples, natural language processing is based on, for example, ontology 760. Ontology 760 is a hierarchical structure that contains a number of nodes, each representing an "actionable intent" or "attribute" that is related to one or more of the "actionable intents" or other "attributes. As described above, "executable intent" refers to a task that a digital assistant is capable of performing, i.e., that the task is "executable" or can be performed. An "attribute" represents a parameter associated with a sub-aspect of an actionable intent or another attribute. The connections between the actionable intent nodes and the attribute nodes in ontology 760 define how the parameters represented by the attribute nodes pertain to the tasks represented by the actionable intent nodes.
In some examples, ontology 760 is composed of actionable intent nodes and attribute nodes. Within ontology 760, each actionable intent node is connected directly to or through one or more intermediate attribute nodes to one or more attribute nodes. Similarly, each attribute node is connected directly to or through one or more intermediate attribute nodes to one or more actionable intent nodes. For example, as shown in fig. 7C, ontology 760 includes a "restaurant reservation" node (i.e., an actionable intent node). The attribute nodes "restaurant", "date/time" (for reservation) and "party size" are each directly connected to the executable intent node (i.e., the "restaurant reservation" node).
Further, the attribute nodes "cuisine", "price section", "telephone number", and "location" are child nodes of the attribute node "restaurant", and are each connected to the "restaurant reservation" node (i.e., executable intention node) through the intermediate attribute node "restaurant". As another example, as shown in fig. 7C, ontology 760 also includes a "set reminder" node (i.e., another actionable intent node). The attribute nodes "date/time" (for setting reminders) and "topic" (for reminders) are both connected to the "set reminders" node. Since the attribute "date/time" is related to both the task of making a restaurant reservation and the task of setting a reminder, the attribute node "date/time" is connected to both the "restaurant reservation" node and the "set reminder" node in the ontology 760.
The actionable intent node, along with its linked attribute nodes, is described as a "domain". In this discussion, each domain is associated with a respective actionable intent and refers to a set of nodes (and relationships between those nodes) associated with a particular actionable intent. For example, ontology 760 shown in fig. 7C includes an example of restaurant reservation field 762 and an example of reminder field 764 within ontology 760. The restaurant reservation domain includes executable intent nodes "restaurant reservation," attribute nodes "restaurant," date/time, "and" party number, "and sub-attribute nodes" cuisine, "" price range, "" phone number, "and" location. The reminder field 764 includes executable intent nodes "set reminder" and attribute nodes "subject" and "date/time". In some examples, ontology 760 is composed of a plurality of domains. Each domain shares one or more attribute nodes with one or more other domains. For example, in addition to the restaurant reservation field 762 and the reminder field 764, a "date/time" attribute node is associated with many different fields (e.g., a travel reservation field, a movie ticket field, etc.).
Although fig. 7C shows two exemplary fields within ontology 760, other fields include, for example, "find movie," "initiate phone call," "find direction," "schedule meeting," "send message," and "provide answer to question," "read list," "provide navigation instructions," "provide instructions for task," and so forth. The "send message" field is associated with a "send message" actionable intent node and further includes attribute nodes such as "one or more recipients", "message type", and "message body". The attribute node "recipient" is further defined, for example, by sub-attribute nodes such as "recipient name" and "message address".
In some examples, ontology 760 includes all domains (and thus executable intents) that the digital assistant can understand and work with. In some examples, ontology 760 is modified, such as by adding or removing an entire domain or node, or by modifying relationships between nodes within ontology 760.
In some examples, nodes associated with multiple related actionable intents are clustered under a "superdomain" in ontology 760. For example, a "travel" super domain includes a cluster of travel-related attribute nodes and actionable intent nodes. Executable intent nodes associated with travel include "airline reservations," "hotel reservations," "car rentals," "route planning," "finding points of interest," and so forth. An actionable intent node under the same super domain (e.g., a "travel" super domain) has multiple attribute nodes in common. For example, executable intent nodes for "airline reservations," hotel reservations, "" car rentals, "" get routes, "and" find points of interest "share one or more of the attribute nodes" start location, "" destination, "" departure date/time, "" arrival date/time, "and" party number.
In some examples, each node in ontology 760 is associated with a set of words and/or phrases that are related to the attribute or actionable intent represented by the node. The respective set of words and/or phrases associated with each node is a so-called "vocabulary" associated with the node. A respective set of words and/or phrases associated with each node is stored in a vocabulary index 744 associated with the attribute or actionable intent represented by the node. For example, returning to FIG. 7B, the vocabulary associated with the node of the "restaurant" attribute includes words such as "food," "drink," "cuisine," "hunger," "eat," "pizza," "fast food," "meal," and the like. As another example, words associated with a node that "initiates a telephone call" may perform intent include words and phrases such as "call," "make a call to … …," "call the number," "make a phone call," and the like. The vocabulary index 744 optionally includes words and phrases in different languages.
The natural language processing module 732 receives the candidate text representations (e.g., one or more text strings or one or more symbol sequences) from the STT processing module 730 and, for each candidate representation, determines which nodes the words in the candidate text representation relate to. In some examples, a word or phrase in the candidate text representation "triggers" or "activates" those nodes if it is found to be associated (via the vocabulary index 744) with one or more nodes in the ontology 760. Based on the number and/or relative importance of activated nodes, the natural language processing module 732 selects one of the executable intents as a task that the user intends the digital assistant to perform. In some examples, the domain with the most "triggered" nodes is selected. In some examples, the domain with the highest confidence (e.g., based on the relative importance of its respective triggered node) is selected. In some examples, the domain is selected based on a combination of the number and importance of triggered nodes. In some examples, additional factors are also considered in selecting the node, such as whether the digital assistant has previously properly interpreted a similar request from the user.
The user data 748 includes user-specific information such as user-specific vocabulary, user preferences, user addresses, user's default second language, user's contact list, and other short-term or long-term information for each user. In some examples, the natural language processing module 732 uses user-specific information to supplement information contained in the user input to further define the user intent. For example, for a user request "invite my friends to my birthday party," the natural language processing module 732 can access the user data 748 to determine what the "friends" are and when and where the "birthday party" will be held without requiring the user to explicitly provide such information in his request.
It should be appreciated that in some examples, the natural language processing module 732 is implemented with one or more machine learning mechanisms (e.g., a neural network). In particular, the one or more machine learning mechanisms are configured to receive a candidate text representation and context information associated with the candidate text representation. Based on the candidate text representations and the associated context information, the one or more machine learning mechanisms are configured to determine an intent confidence score based on a set of candidate executable intents. The natural language processing module 732 may select one or more candidate actionable intents from a set of candidate actionable intents based on the determined intent confidence scores. In some examples, an ontology (e.g., ontology 760) is also utilized to select one or more candidate actionable intents from a set of candidate actionable intents.
Additional details of searching for ontologies based on symbol strings are described in U.S. patent application Ser. No. 12/347743, entitled "Method and Apparatus for Searching Using An Active Ontology," filed on 12/22 of 2008, the entire disclosure of which is incorporated herein by reference.
In some examples, once the natural language processing module 732 identifies an actionable intent (or domain) based on a user request, the natural language processing module 732 generates a structured query to represent the identified actionable intent. In some examples, the structured query includes parameters for one or more nodes within the domain of the actionable intent, and at least some of the parameters are populated with specific information and requirements specified in the user request. For example, the user says "help me reserve a seat at 7pm at sushi store. "in this case, the natural language processing module 732 is able to correctly identify the actionable intent as" restaurant reservation "based on user input. According to the ontology, the structured query of the "restaurant reservation" field includes parameters such as { cuisine }, { time }, { date }, { party number }, and the like. In some examples, based on the speech input and text derived from the speech input using STT processing module 730, natural language processing module 732 generates a partially structured query for the restaurant reservation domain, where the partially structured query includes parameters { cuisine = "sushi class" }, and { time = "7pm" }. However, in this example, the user utterance contains insufficient information to complete the structured query associated with the domain. Thus, based on the currently available information, other necessary parameters such as { party number } and { date } are not specified in the structured query. In some examples, the natural language processing module 732 populates some parameters of the structured query with the received contextual information. For example, in some examples, if the user requests a "nearby" sushi store, the natural language processing module 732 populates { location } parameters in the structured query with GPS coordinates from the user device.
In some examples, the natural language processing module 732 identifies a plurality of candidate actionable intents for each candidate text representation received from the STT processing module 730. Additionally, in some examples, a respective structured query is generated (partially or wholly) for each identified candidate executable intent. The natural language processing module 732 determines an intent confidence score for each candidate actionable intent and ranks the candidate actionable intents based on the intent confidence scores. In some examples, the natural language processing module 732 communicates the generated one or more structured queries (including any completed parameters) to the task flow processing module 736 ("task flow processor"). In some examples, one or more structured queries for the m best (e.g., m highest ranked) candidate executable intents are provided to the task flow processing module 736, where m is a predetermined integer greater than zero. In some examples, one or more structured queries for the m best candidate actionable intents are provided to the task flow processing module 736 along with the corresponding one or more candidate text representations.
Additional details for inferring user intent based on a plurality of candidate actionable intents determined from a plurality of candidate textual representations of a speech input are described in U.S. patent application Ser. No. 14/298725, entitled "System and Method for Inferring User Intent From Speech Inputs," filed 6/2014, the entire disclosure of which is incorporated herein by reference.
Task flow processing module 736 is configured to receive one or more structured queries from natural language processing module 732, complete the structured queries (if necessary), and perform the actions required to "complete" the user's final request. In some examples, the various processes necessary to accomplish these tasks are provided in the task flow model 754. In some examples, the task flow model 754 includes a process for obtaining additional information from a user, as well as a task flow for performing actions associated with executable intents.
As described above, to complete a structured query, task flow processing module 736 needs to initiate additional conversations with the user in order to obtain additional information and/or ascertain possibly ambiguous utterances. When such interactions are necessary, the task flow processing module 736 invokes the dialog flow processing module 734 to engage in a dialog with the user. In some examples, the dialog flow processor module 734 determines how (and/or when) to request additional information from the user and receives and processes user responses. Questions are provided to and answers are received from users through I/O processing module 728. In some examples, the dialog flow processing module 734 presents dialog outputs to the user via audible and/or visual outputs and receives input from the user via verbal or physical (e.g., click) responses. Continuing with the example above, when task flow processing module 736 invokes dialog flow processing module 734 to determine "party number" and "date" information for a structured query associated with the domain "restaurant reservation," dialog flow processing module 734 generates a query such as "several digits in a row? "and" what day to subscribe? "and the like. Upon receipt of an answer from the user, the dialog flow processing module 734 populates the structured query with missing information or passes information to the task flow processing module 736 to complete the missing information based on the structured query.
Once the task flow processing module 736 has completed the structured query for the executable intent, the task flow processing module 736 begins executing the final tasks associated with the executable intent. Accordingly, the task flow processing module 736 performs the steps and instructions in the task flow model according to the specific parameters contained in the structured query. For example, a task flow model for executable intent "restaurant reservationThe model includes steps and instructions for contacting the restaurant and actually requesting a reservation for a particular party number at a particular time. For example, using structured queries such as: { restaurant reservation, restaurant=abc cafe, date=3/12/2012, time=7pm, party number=5 }, the task flow processing module 736 can perform the following steps: (1) Logging into a server of an ABC cafe or such as(2) entering date, time, and dispatch information in the form of a web site, (3) submitting a form, and (4) forming calendar entries for reservations in the user's calendar.
In some examples, the task flow processing module 736 completes the tasks requested in the user input or provides the informational answers requested in the user input with the aid of a service processing module 738 ("service processing module"). For example, the service processing module 738 initiates a telephone call, sets up a calendar entry, invokes a map search, invokes or interacts with other user applications installed on the user device, and invokes or interacts with third party services (e.g., restaurant reservation portals, social networking sites, banking portals, etc.) on behalf of the task flow processing module 736. In some examples, the protocols and Application Programming Interfaces (APIs) required for each service are specified by a corresponding service model in service models 756. The service processing module 738 accesses an appropriate service model for a service and generates requests for the service according to the service model in accordance with the protocols and APIs required for the service.
For example, if a restaurant has enabled an online booking service, the restaurant submits a service model that specifies the necessary parameters to make the booking and communicates the values of the necessary parameters to the API of the online booking service. Upon request by the task flow processing module 736, the service processing module 738 can use the Web address stored in the service model to establish a network connection with the online booking service and send the necessary parameters of the booking (e.g., time, date, party number) to the online booking interface in a format according to the API of the online booking service.
In some examples, the natural language processing module 732, the dialog flow processing module 734, and the task flow processing module 736 are used collectively and repeatedly to infer and define a user's intent, to obtain information to further clarify and refine the user's intent, and to ultimately generate a response (i.e., output to the user, or complete a task) to satisfy the user's intent. The generated response is a dialog response to the voice input that at least partially satisfies the user's intent. Additionally, in some examples, the generated response is output as a speech output. In these examples, the generated response is sent to a speech synthesis processing module 740 (e.g., a speech synthesizer), where the generated response can be processed to synthesize the dialog response in speech form. In other examples, the generated response is data content related to satisfying a user request in a voice input.
In examples where the task flow processing module 736 receives a plurality of structured queries from the natural language processing module 732, the task flow processing module 736 first processes a first structured query of the received structured queries in an attempt to complete the first structured query and/or perform one or more tasks or actions represented by the first structured query. In some examples, the first structured query corresponds to the highest ranked executable intent. In other examples, the first structured query is selected from structured queries received based on a combination of the corresponding speech recognition confidence score and the corresponding intent confidence score. In some examples, if task flow processing module 736 encounters an error during processing of the first structured query (e.g., due to an inability to determine the necessary parameters), task flow processing module 736 can continue to select and process a second one of the received structured queries that corresponds to a lower-ranked executable intent. The second structured query is selected, for example, based on a speech recognition confidence score for the corresponding candidate text representation, an intent confidence score for the corresponding candidate actionable intent, a requisite parameter for a miss in the first structured query, or any combination thereof.
The speech synthesis processing module 740 is configured to synthesize speech output for presentation to a user. The speech synthesis processing module 740 synthesizes a speech output based on text provided by the digital assistant. For example, the generated dialog response is in the form of a text string. The speech synthesis processing module 740 converts the text string into audible speech output. The speech synthesis processing module 740 uses any suitable speech synthesis technique to generate speech output from text, including but not limited to: stitching synthesis, unit selection synthesis, diphone synthesis, domain-specific synthesis, formant synthesis, pronunciation synthesis, hidden Markov Model (HMM) based synthesis, and sine wave synthesis. In some examples, the speech synthesis processing module 740 is configured to synthesize individual words based on the phoneme strings corresponding to the words. For example, the phoneme string is associated with a word in the generated dialog response. The phoneme string is stored in metadata associated with the word. The speech synthesis processing module 740 is configured to directly process the phoneme strings in the metadata to synthesize words in speech form.
In some examples, instead of (or in addition to) using the speech synthesis processing module 740, speech synthesis is performed on a remote device (e.g., server system 108) and the synthesized speech is sent to a user device for output to a user. For example, this may occur in some implementations in which the output of the digital assistant is generated at a server system. And since the server system typically has more processing power or more resources than the user equipment, it is possible to obtain a higher quality speech output than would be achieved by the client-side synthesis.
Additional details regarding digital assistants can be found in U.S. patent application Ser. No. 12/987982, entitled "Intelligent Automated Assistant," filed 1/10/2011, and U.S. patent application Ser. No. 13/251088, entitled "Generating and Processing Task Items That Represent Tasks to Perform," filed 9/30/2011, the disclosures of which are incorporated herein by reference in their entireties.
4. System and process for determining and executing tasks
Fig. 8 is a block diagram illustrating a digital assistant 800 and an application 810 for performing tasks according to various examples. In some examples, digital assistant 800 includes (e.g., is) digital assistant system 700 and/or includes the modules, capabilities, and/or functions discussed above with respect to digital assistant system 700 as illustrated in fig. 1, 2A-2B, 6, and 7A-7C.
Fig. 9A-9C illustrate an exemplary electronic device 900 including a digital assistant 800 according to various examples. Each of fig. 9A, 9B, and 9C will be discussed below in conjunction with digital assistant 800 and application 810.
As shown in fig. 8, the digital assistant 800 receives user input 802 and context data 804. In some examples, user input 802 is speech input received by a microphone or other recording device of an electronic device (e.g., electronic device 900). In some examples, user input 802 is data indicative of (e.g., representative of) speech input received at a microphone or other device of an electronic device. In some examples, user input 802 includes a request for a task. For example, user input 802 includes a voice input 902 "send me picture of vacation to my mom," as shown in fig. 9A and 9B, which is also a request for a task to send a picture to the mom of the user.
In some examples, the context data 804 represents (e.g., indicates) a context displayed by the electronic device. For example, the context data 804 may include data representing a home screen user interface 910 displayed by the electronic device 900, as shown in FIG. 9A. Further, the context data 804 may include applications available in the home screen user interface 910, gadgets being displayed, and/or data incorporated into the applications and/or gadgets being displayed. Thus, the context data 804 represents the entire context being displayed by the electronic device 900 as well as data indicative of the individual applications or pieces of information.
Thus, the context data 804 includes the context displayed by the electronic device 900 and includes any application that the electronic device 900 is displaying or not displaying. For example, as discussed above and shown in fig. 9A, the electronic device 900 does not display any applications and thus the context data 804 indicates such context and also includes information about applications running and/or available on the electronic device 900. As another example, as shown in fig. 9B, the electronic device 900 is displaying a user interface 920 associated with an instant messaging application, and thus the context data 804 indicates that the instant messaging application is open (e.g., displayed).
After receiving user input 802 and context data 804, digital assistant 800 determines whether the context that is being displayed by the electronic device (e.g., electronic device 900) includes or does not include an application for performing the task.
In some examples, determining whether the context that the electronic device is displaying includes or does not include an application for performing a task includes determining whether the application is currently being displayed (e.g., open/active and displayed) by the electronic device. For example, when electronic device 900 is displaying home screen user interface 910 as shown in fig. 9A, digital assistant 800 determines that electronic device 900 is not displaying applications based on context data 804 representing the context displayed by electronic device 900 (note that electronic device 900 displays icons representing several applications, however, these applications are not open/active and are not displayed on electronic device 900, and thus are not currently displayed).
In some examples, in accordance with a determination that an application is currently being displayed by an electronic device, the digital assistant 800 determines whether a task is associated with the application. For example, when the electronic device 900 is displaying a user interface 920 as shown in fig. 9B, the digital assistant 800 determines that the electronic device 900 is displaying an instant messaging application based on the context data 804 representing the context displayed by the electronic device 900. Accordingly, the digital assistant 800 determines that the task of sending a photograph as described above is relevant to an instant messaging application because the instant messaging application can send data.
In some examples, determining whether the task is related to the application includes determining whether the application has the ability to perform the task. For example, when the task is to send a photograph, the digital assistant 800 may determine that the instant messaging application including the user interface 920 has the ability to share or otherwise provide the photograph to other users.
In some examples, the electronic device may display or activate two applications. In this case, where the digital assistant 800 determines to display multiple applications, a similar procedure may be used to determine which application should be used for the task. For example, if both a presentation application and a notes application are displayed, receiving the user utterance "create document," the digital assistant 800 will determine that both displayed applications support the task (e.g., "create document"), and may then prioritize the application that interacted with recently (e.g., recently launched, selected, used, etc.). Alternatively, if the user utterance is more directional, such as "create a presentation," the digital assistant 800 will determine that the presentation application is intended even though the note application was recently interacted with by the user.
In some examples, when the application does not have the capability to perform the task, the context displayed by the electronic device does not include the application for performing the task. For example, when the determined task is to send a photograph and only the map application is turned on/displayed, the digital assistant 800 may determine that the map application does not have the ability to perform the task because the map application cannot send a photograph.
When the digital assistant 800 determines that the context that the electronic device is displaying does not include an application for performing a task, the digital assistant 800 determines a target application 810 for performing the task and provides the payload 810 determined from the user input 802 to the target application 820.
In some examples, determining the target application 820 includes determining whether the user input 802 includes an application and selecting the application from the user input 802 as the target application 820. For example, user input 802 may include the phrase "send my vacation pictures to my mom in a message," where "message" is the name of the instant messaging application. Thus, the digital assistant 800 selects the instant messaging application as the target application 820.
In some examples, determining the target application 820 includes selecting an application having the ability to match the task that is the target application 820. For example, when the task is to send and/or share a picture, the digital assistant 800 may select any application having the ability to send and/or share a picture, including a photo or picture application, an instant messaging application, an email application, or any other application that may provide a picture to an intended recipient.
In some examples, determining the target application 820 includes determining a plurality of target applications having the ability to match the task. For example, as discussed above, the digital assistant 800 may determine that the text instant messaging application, the email application, and the photo application may each send a photo from a user's device (e.g., electronic device 900) and/or share a photo from a user's device (e.g., electronic device 900) with another person. Thus, because each of these applications has the ability to provide pictures, they each have the ability to match the tasks included in user input 802.
In some examples, determining the target application 820 includes selecting the target application 820 from a plurality of target applications based on the ranking of the target applications. Each application may be ranked according to factors including user preferences, one or more user inputs, usage and/or recent history, and the capabilities of the target application. Thus, applications that are ranked higher based on these factors may be selected by the digital assistant 800 as the target application 820.
For example, although each of the text instant messaging application, email application, and photo application may send and/or share pictures, the usage history may indicate that the user typically sent (or recently sent) pictures with the text instant messaging application, such that the text instant messaging application has a higher ranking and is selected by the digital assistant 800. As another example, the user may have previously indicated that they prefer to share pictures within the photo application, if possible, such that the photo application is ranked higher and selected by the digital assistant 800 as the target application 820.
As shown in fig. 9C, in some examples, the target selection 820 is determined by providing an output 912 that includes a plurality of target applications 912a, 912b, 912C (e.g., a list), etc., and thereafter receiving a selection of the target application from the plurality of target applications. For example, the digital assistant 800 may provide visual and/or audio output that asks the user which of several applications (e.g., a "Messenger application," "email application," "photo application," etc.) will be preferred for sending the picture. The user may then provide audio and/or touch input in response to selecting one of the applications. In some examples, the selected application may be stored and associated with user preferences that may then be considered when future inputs are received.
In some examples, the digital assistant 800 determines the payload 810 by processing the user input 802 using automatic speech processing and natural language processing, as discussed above with respect to fig. 7A-7C. The payload 810 includes a task and parameters for performing the task. For example, the task determined from user input 902 is to send a picture, while the parameters may include "vacation" or "mom" to indicate the picture and the recipient of the picture, respectively, that should be selected.
In some examples, payload 810 does not include instructions on how to perform the task. For example, the payload 810 includes the task of sending pictures as discussed in the above examples, as well as the parameters "vacation" and "mom," but does not provide any instructions on how to use these parameters to complete the task of sending pictures. Thus, the payload 810 provides information to the target application 820 that determines how to perform the task using the parameters included in the payload 810. This allows each application to perform tasks in a manner that best suits each individual application. In particular, a developer of an application may specify how the application should perform tasks using the payload 810 provided by the digital assistant 800. This allows new applications to be easily and efficiently integrated with the digital assistant 800 based on the payload structure without requiring further information to be provided by the digital assistant 800.
After providing the payload 810 to the target application 820, the target application 820 performs the task and determines the results 830 of the task. The target application 820 and the digital assistant 800 then provide results 830. For example, when the target application 820 is an instant messaging application, the target application 820 determines which pictures the user wants to send based on the parameter "vacation" and determines the recipient based on the word "mom". The instant messaging application then generates and sends a text message including the determined picture to the recipient mother.
In some examples, the target application 820 may request a payload (or additional payload information) if a task needs to be performed. For example, the user may say "please invite my friends to join my birthday party for girl friends next week". What date and time? ". The response and/or dialog output may include an application UI state or a digital assistant dialog session.
In some examples, digital assistant 800 and/or target application 820 access other applications or data of an electronic device (e.g., electronic device 900) to perform tasks. For example, digital assistant 800 may access a contacts application to determine the user's mom's phone number and a photos application to select a picture to send.
In some examples, providing the results of the task includes determining whether the target application 820 or a user interface associated with the target application 820 needs to be displayed. For example, when sending a picture as discussed in the example above, the digital assistant 800 may determine that a text instant messaging application need not be displayed because the user may be notified in another user interface that the picture was successfully sent. As another example, when multiple pictures are sent, such as an entire album where the user is on vacation, the digital assistant 800 may determine that a user interface associated with the result needs to be displayed to ensure that the user is notified that all pictures have been sent.
In some examples, in accordance with a determination that the application need not be displayed to perform the task, the results 830 are provided in a user interface other than the application user interface. In some examples, the results 830 are provided in a user interface element displayed on a currently displayed user interface. For example, a pop-up, affordance, or user interface element such as user interface element 904 shown in FIG. 9A may be displayed on home screen user interface 910 and may include a text "picture successfully sent" indicating to the user that the task has been performed without displaying target application 820. In other examples, audio or visual messages, tones, touch, or a combination thereof may be used to indicate success (or failure) of a task.
In some examples, in accordance with a determination that an application program is required to be displayed to perform a task, results 830 are provided in a user interface associated with the application program. For example, as shown in fig. 9B, a text message including a user vacation picture is displayed in a user interface 920 associated with the instant messaging application, indicating to the user that the task was successfully performed.
In some examples, the audio output including results 830 is provided by digital assistant 800. For example, as shown in fig. 9B, the digital assistant 800 can provide or cause the electronic device 900 to provide an audio output 908 of "i have sent your picture on vacation" to indicate to the user that the picture has been successfully sent.
In some examples, when the electronic device has displayed the target application 820, the results 830 are displayed in an updated user interface of the target application 820. For example, if the user provides user input 902 when the instant messaging application has been displayed, the digital assistant 800 updates or causes the electronic device 900 to update the user interface 920 associated with the instant messaging application, as shown in fig. 9B.
In some examples, the digital assistant 800 determines that the context that the electronic device is displaying includes an application for performing a task. For example, as described above, upon receiving user input 902, digital assistant 800 may determine that user interface 920 associated with an instant messaging application is currently being displayed, and thus the instant messaging application may perform the task of sending pictures to the user's mom.
In some examples, when an application for performing a task is displayed, the digital assistant 800 determines whether the application is a preferred application and when the application is a preferred application, selects the displayed application to perform the task. In some examples, determining whether the application is a preferred application includes determining whether the request includes the application. For example, when the user input 802 specifies the use of an instant messaging application, the digital assistant 800 determines that the instant messaging application is the preferred application.
In some examples, determining whether the application is a preferred application is based on a usage history associated with the application. For example, when the usage history between the user and the digital assistant 800 indicates that the user is typically sending pictures using an instant messaging application, then the instant messaging application is the preferred application. Conversely, if an instant messaging application is being displayed, but the usage history indicates that the user generally prefers email to send pictures, then the instant messaging application is not the preferred application.
In some examples, determining whether the application is a preferred application is based on the capabilities of the application. For example, an instant messaging application may not be able to effectively share a large number of pictures, such as an album on a user's vacation, while a photo application may be more suitable for such tasks. Thus, the digital assistant 800 may determine that an instant messaging application is not preferred for the task of sending a large number of pictures, but rather that a photo application is preferred.
Thus, it will be appreciated that the digital assistant 800 is able to determine the requirements of a task and execute the task to provide results in an efficient manner for the user and the application executing the task. In this way, the application user interface may be provided to the user in an efficient manner when necessary, while the results may be provided in other manners when the application need not be displayed to the user.
Fig. 10 illustrates a process 1000 for operating a digital assistant to perform tasks in accordance with various examples. Process 1000 is performed, for example, using one or more electronic devices implementing a digital assistant. In some examples, process 1000 is performed using a client-server system (e.g., system 100) and the blocks of process 1000 are partitioned in any manner between a server (e.g., DA server 106) and a client device (e.g., electronic device 900). In other examples, the blocks of process 1000 are divided between a server and a plurality of client devices (e.g., mobile phones and smart watches). Thus, while portions of process 1000 are described herein as being performed by a particular device of a client-server system, it should be understood that process 1000 is not so limited. In other examples, process 1000 is performed using only a client device (e.g., user device 104) or only a plurality of client devices. In process 1000, some blocks are optionally combined, the order of some blocks is optionally changed, and some blocks are optionally omitted. In some examples, additional steps may be performed in connection with process 1000.
At block 1002, user input is received that includes a request for a task (e.g., "send me picture of vacation to my mom" received at electronic device 900 that includes digital assistant 800). In some examples, the request includes a target application for performing the task.
At block 1004, in accordance with a determination that the context being displayed by the electronic device does not include an application for performing the task, a target application for performing the task is determined. In some examples, determining that the context that the electronic device is displaying does not include an application for performing the task includes determining whether the application is currently being displayed by the electronic device.
In some examples, in accordance with a determination that the application is currently being displayed by the electronic device, it is determined whether the task is associated with the application. In some examples, determining whether the task is related to the application includes determining whether the application has the ability to perform the task. In some examples, in accordance with a determination that the application does not have the capability to perform the task, the context displayed by the electronic device does not include the application for performing the task.
In some examples, determining the target application for performing the task further includes selecting the application as the target application in accordance with determining that the request includes the application. In some examples, determining the target application for performing the task further includes selecting the application as the target application based on determining that the capabilities of the application match the task. In some examples, determining a target application for performing a task further includes determining a plurality of target applications having capabilities that match the task.
In some examples, determining the target application for performing the task further includes selecting the target application from a plurality of target applications based on usage and/or recent history associated with the target application. In some examples, determining the target application for performing the task further includes selecting the target application from a plurality of target applications based on the ranking of the target applications. In some examples, the ranking of the target application is based on user preferences, one or more user inputs, usage history, and the capabilities of the target application.
In some examples, an output is provided that includes a plurality of target applications and a selection of a target application of the plurality of target applications is received (e.g., as described with respect to fig. 9C).
At block 1006, the payload determined from the request is provided to the target application. In some examples, the payload includes a task and parameters for the task.
At block 1008, the payload is used to perform a task with the target application. At block 1010, the results of the task (e.g., audio and/or visual confirmation that the task has been initiated and/or completed) are provided. In some examples, providing the results of the task further includes providing the results of the task in a user interface other than the application user interface in accordance with a determination that the application need not be displayed to perform the task. In some examples, providing the results of the task in a user interface other than the application user interface further includes displaying the results of the task in a user interface element displayed on the currently displayed user interface. In some examples, providing the results of the task further includes displaying the application to perform the task in accordance with the determination that the application is needed, displaying an application user interface that includes the results of the task. In some examples, providing the results of the task further includes providing an output including the results of the task.
In some examples, in accordance with a determination that the target application is currently being displayed, the results of the task are displayed in an updated user interface of the target application.
In some examples, in accordance with a determination that the context in which the electronic device is displaying includes an application for performing tasks in accordance with a determination that the application is a preferred application, the tasks are performed with the displayed application. In some examples, determining whether the application is a preferred application includes determining whether the request includes the application. In some examples, determining whether the application is a preferred application is based on a usage history associated with the application. In some examples, determining whether the application is a preferred application is based on the capabilities of the application.
The operations described above with reference to fig. 10 are optionally implemented by the components depicted in fig. 1-4, 6A-6B, 7A-7C, 8, and 9A-9C. For example, the operations of process 1000 may be implemented using digital assistant 800 and electronic device 900. It will be apparent to one of ordinary skill in the art how to implement other processes based on the components depicted in fig. 1-4, 6A-6B, 7A-7C, 8, and 9A-9C.
According to some implementations, a computer-readable storage medium (e.g., a non-transitory computer-readable storage medium) is provided that stores one or more programs for execution by one or more processors of an electronic device, the one or more programs including instructions for performing any of the methods or processes described herein.
According to some implementations, an electronic device (e.g., a portable electronic device) is provided that includes means for performing any of the methods and processes described herein.
According to some implementations, an electronic device (e.g., a portable electronic device) is provided that includes a processing unit configured to perform any of the methods and processes described herein.
According to some implementations, an electronic device (e.g., a portable electronic device) is provided that includes one or more processors and memory storing one or more programs for execution by the one or more processors, the one or more programs including instructions for performing any of the methods and processes described herein.
The foregoing description, for purposes of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Those skilled in the art will be able to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.
While the present disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. It should be understood that such variations and modifications are considered to be included within the scope of the disclosure and examples as defined by the claims.
As described above, one aspect of the present technology is to collect and use data from various sources to improve performance of tasks. The present disclosure contemplates that in some examples, such collected data may include personal information data that uniquely identifies or may be used to contact or locate a particular person. Such personal information data may include demographic data, location-based data, telephone numbers, email addresses, tweet IDs, home addresses, data or records related to the user's health or fitness level (e.g., vital sign measurements, medication information, exercise information), date of birth, or any other identifying or personal information.
The present disclosure recognizes that the use of such personal information data in the present technology may be used to benefit users. For example, personal information data may be used to fulfill target performance of a task. In addition, the present disclosure contemplates other uses for personal information data that are beneficial to the user. For example, health and fitness data may be used to provide insight into the overall health of a user, or may be used as positive feedback to individuals using technology to pursue health goals.
The present disclosure contemplates that entities responsible for collecting, analyzing, disclosing, transmitting, storing, or otherwise using such personal information data will adhere to established privacy policies and/or privacy practices. In particular, such entities should exercise and adhere to privacy policies and practices that are recognized as meeting or exceeding industry or government requirements for maintaining the privacy and security of personal information data. Such policies should be readily accessible to the user and should be updated as the collection and/or use of the data changes. Personal information from users should be collected for legal and reasonable use by entities and not shared or sold outside of these legal uses. In addition, such collection/sharing should be performed after informed consent is received from the user. In addition, such entities should consider taking any necessary steps to defend and secure access to such personal information data and to ensure that others who have access to personal information data adhere to their privacy policies and procedures. In addition, such entities may subject themselves to third party evaluations to prove compliance with widely accepted privacy policies and practices. In addition, policies and practices should be adjusted to collect and/or access specific types of personal information data and to suit applicable laws and standards including specific considerations of jurisdiction. For example, in the united states, the collection or acquisition of certain health data may be governed by federal and/or state law, such as the health insurance flow and liability act (HIPAA); while health data in other countries may be subject to other regulations and policies and should be processed accordingly. Thus, different privacy practices should be maintained for different personal data types in each country.
In spite of the foregoing, the present disclosure also contemplates embodiments in which a user selectively prevents use or access to personal information data. That is, the present disclosure contemplates that hardware elements and/or software elements may be provided to prevent or block access to such personal information data. For example, in terms of task execution, the present technology may be configured to allow a user to choose to "opt-in" or "opt-out" to participate in the collection of personal information data during or at any time after registration with a service. In addition to providing the "opt-in" and "opt-out" options, the present disclosure also contemplates providing notifications related to accessing or using personal information. For example, the user may be notified that his personal information data will be accessed when the application is downloaded, and then be reminded again just before the personal information data is accessed by the application.
Further, it is an object of the present disclosure that personal information data should be managed and processed to minimize the risk of inadvertent or unauthorized access or use. Once the data is no longer needed, risk can be minimized by limiting the data collection and deleting the data. In addition, and when applicable, included in certain health-related applications, the data de-identification may be used to protect the privacy of the user. De-identification may be facilitated by removing a particular identifier (e.g., date of birth, etc.), controlling the amount or characteristics of data stored (e.g., collecting location data at a city level rather than an address level), controlling the manner in which data is stored (e.g., aggregating data among users), and/or other methods, where appropriate.
Thus, while the present disclosure broadly covers the use of personal information data to implement one or more of the various disclosed embodiments, the present disclosure also contemplates that the various embodiments may be implemented without accessing such personal information data. That is, various embodiments of the present technology do not fail to function properly due to the lack of all or a portion of such personal information data. For example, the content may be selected and delivered to the user by inferring preferences based on non-personal information data or absolute minimum amount of personal information such as content requested by a device associated with the user, other non-personal information available to the content delivery service, or publicly available information.

Claims (29)

1. A method, comprising:
at an electronic device having one or more processors and memory:
receiving user input comprising a request for a task;
in accordance with a determination that the context being displayed by the electronic device does not include an application for performing the task:
determining a target application for performing the task;
providing the payload determined from the request to the target application;
performing the task with the target application using the payload; and
Providing the results of the task.
2. The method of claim 1, wherein the request comprises the target application for performing the task.
3. The method of claim 1, wherein determining that the context being displayed by the electronic device does not include the application for performing the task comprises: a determination is made as to whether the application is currently being displayed by the electronic device.
4. A method according to claim 3, further comprising:
in accordance with a determination that the application is currently being displayed by the electronic device, a determination is made as to whether the task is associated with the application.
5. The method of claim 4, wherein determining whether the task is related to the application comprises determining whether the application has the ability to perform the task.
6. The method of claim 5, wherein, in accordance with a determination that the application does not have the capability to perform the task, the context being displayed by the electronic device does not include the application for performing the task.
7. The method of any of claims 1-6, wherein determining a target application for performing the task further comprises:
In accordance with a determination that the request includes an application, the application is selected as the target application.
8. The method of any of claims 1-7, wherein determining a target application for performing the task further comprises:
and selecting the application program as the target application program according to the fact that the capability of the application program is determined to match the task.
9. The method of any of claims 1-8, wherein determining the target application for performing the task further comprises:
a plurality of target applications having the capability to match the task is determined.
10. The method of claim 9, wherein determining the target application for performing the task further comprises:
a target application is selected from the plurality of target applications based on a usage history associated with the target application.
11. The method of claim 9, wherein determining the target application for performing the task further comprises:
a target application is selected from the plurality of target applications based on the ranking of the target applications.
12. The method of claim 11, wherein the ranking of the target application is based on user preferences, one or more user inputs, a usage history, and the capabilities of the target application.
13. The method of claim 9, further comprising:
providing an output comprising the plurality of target applications; and
a selection of a target application of the plurality of target applications is received.
14. The method of any of claims 1-13, wherein the payload includes the task and parameters for the task.
15. The method of any of claims 1-14, wherein providing the results of the task further comprises:
in accordance with a determination that the application does not need to be displayed to perform the task, the results of the task are provided in a user interface other than the application user interface.
16. The method of claim 15, wherein providing the results of the task in the user interface other than the application user interface further comprises:
the results of the task are displayed in a user interface element displayed over a currently displayed user interface.
17. The method of any of claims 1-16, wherein providing the results of the task further comprises:
and displaying the application program to execute the task according to the determination, and displaying an application program user interface comprising the result of the task.
18. The method of any of claims 1-17, wherein providing the results of the task further comprises:
an output is provided that includes the results of the task.
19. The method of any one of claims 1 to 18, further comprising:
in accordance with a determination that the target application is currently being displayed, the results of the task are displayed in an updated user interface of the target application.
20. The method of any one of claims 1 to 19, further comprising:
in accordance with a determination that the context being displayed by the electronic device includes an application for performing the task:
in accordance with a determination that the application is a preferred application, the task is performed using the displayed application.
21. The method of claim 20, wherein determining whether the application is a preferred application comprises determining whether the request includes the application.
22. The method of claim 20, wherein determining whether the application is a preferred application is based on a usage history associated with the application.
23. The method of claim 20, wherein determining whether the application is a preferred application is based on capabilities of the application.
24. An electronic device, comprising:
one or more processors;
a memory; and
one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs comprising instructions for:
receiving user input comprising a request for a task;
in accordance with a determination that the context being displayed by the electronic device does not include an application for performing the task:
determining a target application for performing the task;
providing the payload determined from the request to the target application;
performing the task with the target application using the payload; and
providing the results of the task.
25. A non-transitory computer readable storage medium storing one or more programs configured for execution by one or more processors of an electronic device, the one or more programs comprising instructions for:
receiving user input comprising a request for a task;
in accordance with a determination that the context being displayed by the electronic device does not include an application for performing the task:
Determining a target application for performing the task;
providing the payload determined from the request to the target application;
performing the task with the target application using the payload; and
providing the results of the task.
26. An electronic device, comprising:
means for receiving user input comprising a request for a task;
in accordance with a determination that the context being displayed by the electronic device does not include an application for performing the task:
means for determining a target application for performing the task;
means for providing the payload determined from the request to the target application;
means for performing the task with the target application using the payload; and
and means for providing results of the task.
27. An electronic device, comprising:
one or more processors;
a memory; and
one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs comprising instructions for performing the method of any of claims 1-23.
28. A non-transitory computer readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of an electronic device, cause the electronic device to perform the method of any of claims 1-23.
29. An electronic device, comprising:
means for performing the method according to any one of claims 1 to 23.
CN202310643061.9A 2022-06-03 2023-06-01 Context-based task execution Pending CN117170485A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US63/348,789 2022-06-03
US17/949,952 2022-09-21
US17/949,952 US20230393712A1 (en) 2022-06-03 2022-09-21 Task execution based on context

Publications (1)

Publication Number Publication Date
CN117170485A true CN117170485A (en) 2023-12-05

Family

ID=88932519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310643061.9A Pending CN117170485A (en) 2022-06-03 2023-06-01 Context-based task execution

Country Status (1)

Country Link
CN (1) CN117170485A (en)

Similar Documents

Publication Publication Date Title
CN111901481B (en) Computer-implemented method, electronic device, and storage medium
CN112567323B (en) User activity shortcut suggestions
US11769497B2 (en) Digital assistant interaction in a video communication session environment
CN110473538B (en) Detecting triggering of a digital assistant
CN111480134B (en) Attention-aware virtual assistant cleanup
CN111656439B (en) Method for controlling electronic device based on delay, electronic device and storage medium
CN110364148B (en) Natural assistant interaction
CN108604449B (en) speaker identification
CN116414282A (en) Multi-modal interface
CN110637339B (en) Optimizing dialog policy decisions for digital assistants using implicit feedback
US20230058929A1 (en) Digital assistant interaction in a communication session
US20230098174A1 (en) Digital assistant for providing handsfree notification management
CN109257942B (en) User-specific acoustic models
CN111399714A (en) User activity shortcut suggestions
CN110612566B (en) Privacy maintenance of personal information
CN116486799A (en) Generating emoji from user utterances
CN117940879A (en) Digital assistant for providing visualization of clip information
CN112015873A (en) Speech assistant discoverability through in-device object location and personalization
CN110574023A (en) offline personal assistant
CN110651324B (en) Multi-modal interface
CN111243606B (en) User-specific acoustic models
EP4287022A1 (en) Task execution based on context
US20230359334A1 (en) Discovering digital assistant tasks
CN117170485A (en) Context-based task execution
CN117170536A (en) Integration of digital assistant with system interface

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination