CN116179004A - Method for preparing super-hydrophobic anti-fouling paint by self-assembly method and application - Google Patents

Method for preparing super-hydrophobic anti-fouling paint by self-assembly method and application Download PDF

Info

Publication number
CN116179004A
CN116179004A CN202310284787.8A CN202310284787A CN116179004A CN 116179004 A CN116179004 A CN 116179004A CN 202310284787 A CN202310284787 A CN 202310284787A CN 116179004 A CN116179004 A CN 116179004A
Authority
CN
China
Prior art keywords
super
sio
nanowire
hydrophobic
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310284787.8A
Other languages
Chinese (zh)
Other versions
CN116179004B (en
Inventor
田秋晓
刘剑
雷宗建
袁子美
马瑞杰
毕伟涛
周剑
陶雄
黄勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Communications Expressway Operation Group Co ltd
Hubei Expressway Industrial Development Co ltd
Beijing Huachu Lumei Transportation Technology Co ltd
Original Assignee
Hubei Communications Expressway Operation Group Co ltd
Hubei Expressway Industrial Development Co ltd
Beijing Huachu Lumei Transportation Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Communications Expressway Operation Group Co ltd, Hubei Expressway Industrial Development Co ltd, Beijing Huachu Lumei Transportation Technology Co ltd filed Critical Hubei Communications Expressway Operation Group Co ltd
Priority to CN202310284787.8A priority Critical patent/CN116179004B/en
Publication of CN116179004A publication Critical patent/CN116179004A/en
Application granted granted Critical
Publication of CN116179004B publication Critical patent/CN116179004B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The invention discloses a method for preparing super-hydrophobic anti-fouling paint by self-assembly method and application thereof, which selects SiO with high mechanical strength 2 Nanowires replace common SiO 2 Microsphere, and coating TiO on its surface 2 Forming array-shaped SiO by spraying solvent on primer and adopting a preparation mode of inducing self-assembly precipitation method on the basis of inorganic-organic hybridization 2 Nanowire @ TiO 2 The super-hydrophobic coating enhances the super-hydrophobic, wear-resistant and weather-resistant properties and endows the coating with the function of degrading organic pollutants on the surface under the action of illumination. The invention is rinsed by natural rainwater or common tap water, and dust stained on the surface can be carried by water to realize the self-cleaning function.

Description

Method for preparing super-hydrophobic anti-fouling paint by self-assembly method and application
Technical field:
the invention belongs to the technical field of super-hydrophobic anti-fouling paint, and particularly relates to a method for preparing super-hydrophobic anti-fouling paint by a self-assembly method and application thereof.
The background technology is as follows:
the surface of the bridge and tunnel facility is corroded by wind and rain and various pollutants are adhered throughout the year, so that the quality of the bridge and tunnel facility is seriously influenced, the degradation and corrosion of the facility are accelerated, and the safety and the service life of the bridge and tunnel structure are influenced. With the enhancement of environmental awareness and the increase of labor cost, the application of the super-hydrophobic anti-fouling paint on bridge and tunnel facilities is increasingly wide. The key to superhydrophobic materials is the chemical nature of the material surface and its roughness, which tends to exhibit hydrophobicity when the surface energy of the solid surface is low and the surface is rough. To obtain superhydrophobic surfaces, there are two methods: firstly, constructing a micro-nano coarse structure required by superhydrophobic on the surface of a substance with low surface energy; secondly, grafting low surface energy substances or groups on the surface of the micro-nano coarse structure to enable the particles to be hydrophobic due to grafting of organic long chains on the surface of the particles. However, there are two problems in practical use: (1) The preparation method is complex, often requires special equipment, has complex process, has selectivity to the base material, and is not suitable for preparing the super-hydrophobic coating in a large area; (2) The super-hydrophobic durability of the coating is poor, the actual service time is too short, and the combination property and the air permeability of the single-component inorganic/organic coating and the matrix are required to be improved.
The invention comprises the following steps:
the invention aims to provide a method for preparing super-hydrophobic anti-fouling paint by a self-assembly method, which selects SiO with high mechanical strength 2 Nanowires replace common SiO 2 Microsphere, and coating TiO on its surface 2 On the basis of inorganic-organic hybridization, the array-shaped SiO is formed by adopting a preparation mode of a solvent-induced self-assembly precipitation method 2 Nanowire @ TiO 2 Super-hydrophobic coating The super-hydrophobic, wear-resistant and weather-resistant performance is enhanced, organic pollutants on the surface are degraded under the action of illumination, and the dust stained on the surface can be carried by water to realize the self-cleaning function through leaching by natural rainwater or common tap water.
In order to solve the problems, the technical scheme of the invention is as follows:
a method for preparing super-hydrophobic anti-fouling paint by a self-assembly method comprises the following steps:
step one, wrapping TiO 2 Shell structure: siO is made of 2 The nanowire powder is ultrasonically dispersed in an organic solution and is marked as A liquid; butyl titanate is dissolved in an organic solution and is marked as liquid B; dropwise adding the solution B into the solution A under stirring, and stirring for reacting to obtain SiO 2 Nanowire @ TiO 2 Is a dispersion of (a);
step two, preparing SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles: siO is made of 2 Nanowire @ TiO 2 Heating the dispersion liquid of (2) to 40-60 ℃, adding a cross-linking agent, magnetically stirring for 10-40 min, performing ultrasonic dispersion, performing suction filtration, and drying to obtain SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles;
brushing primer and spraying dichloroethane solution on the primer;
step four, preparing a hydrophobic coating by a self-assembly method: siO was isolated by self-assembled precipitation using standard sample sieves 2 Nanowire @ TiO 2 The super-hydrophobic particles are evenly sieved and dropped on the primer coated with dichloroethane solution, and the dichloroethane solution is preparedSlow volatilization induced SiO 2 Nanowire @ TiO 2 The superhydrophobic particles deposit near the solid-liquid-gas three-phase contact line to the primer surface forming regular stripes. After the curing is completed, the particles which are not combined with the primer are removed, thereby preparing the SiO 2 Nanowire @ TiO 2 Array super-hydrophobic coating.
Further improvements, the SiO 2 The diameter of the nanowire is 20-100 nm, and the length is more than 10 mu m.
Further improvement, in step one, siO 2 The mass volume ratio of the nanowire to the butyl titanate is 2-8 g: 0.5-4 ml; the organic solution is a mixed solution of ethanol and acetonitrile, and the volume ratio of the ethanol to the acetonitrile is 2:1.
in the first step, the solution B is slowly injected into the solution A, and then stirred and reacted at 20-50 ℃ for 2-30 h.
In the first step, the dropping speed of the liquid B slowly injected into the liquid A is controlled to be 30-60 drops/min, and each drop is added for 5-10 min at intervals of 5-mL, and stirring is kept during the period.
In the second step, the cross-linking agent comprises tetraethyl silicate and perfluoro decyl trimethoxy silane, wherein the mass ratio of the tetraethyl silicate to the perfluoro decyl trimethoxy silane is 5-8: 1, a step of; crosslinking agent and SiO 2 Nanowire @ TiO 2 The mass volume ratio of the dispersion liquid of (2) is 1g:4ml.
In the third step, the primer is prepared by the following steps: weighing waterborne epoxy putty A, butyl acetate B and waterborne epoxy curing agent emulsion C with preset mass, magnetically stirring, vacuumizing for 2-3 min to remove bubbles, and uniformly coating the waterborne epoxy putty A, butyl acetate B and waterborne epoxy curing agent emulsion C on an epoxy resin plate to serve as a primer; wherein, the volume ratio of the aqueous epoxy putty A to the butyl acetate B to the aqueous epoxy hardener emulsion C is 1:0.2 to 0.6:1, and magnetically stirring for 5-30 min.
In the fourth step, the curing time is 24-72 h; the pore diameter of the standard sample separating sieve is 100 meshes.
The super-hydrophobic anti-fouling paint prepared by the method for preparing the super-hydrophobic anti-fouling paint by the self-assembly method.
The super-hydrophobic anti-fouling paint prepared by the method for preparing the super-hydrophobic anti-fouling paint by the self-assembly method is used as a protective paint on the surface of tunnel facilities
The invention has the advantages that:
(1) The super-hydrophobic anti-fouling paint has super-hydrophobic anti-fouling, wear-resistant and weather-resistant properties, can degrade organic pollutants on the surface, and realizes a self-cleaning function through leaching by natural rainwater or common tap water;
(2) In the invention, siO with high mechanical strength is selected 2 Nanowires replace common SiO 2 The microspheres not only can enhance the compressive strength of the coating, but also can enhance the bonding strength of the coating;
(3) In the invention, siO is used for preparing 2 TiO coated outside nano wire 2 The surface of the modified paint is modified to ensure that the modified paint has super-hydrophobic performance, and simultaneously endows the modified paint with ultraviolet aging resistance, acid and alkali resistance and the like, so that the paint has excellent durability.
(4) The SiO with regular arrangement is prepared by spraying dichloroethane solution on the priming paint, which is volatile, induces self-assembly precipitation 2 Nanowire @ TiO 2 The super-hydrophobic coating is firmer and has better hydrophobic performance.
Detailed Description
The invention will now be described in further detail with reference to specific examples, which are intended to illustrate, but not to limit, the invention.
The invention relates to a method and a process for preparing super-hydrophobic anti-fouling paint by a self-assembly method, which comprises the following steps:
(1) Wrapping TiO 2 Shell structure: siO is made of 2 The nanowire powder is ultrasonically dispersed in a mixed solution of ethanol and acetonitrile and is marked as solution A; dissolving butyl titanate into a mixed solution of ethanol and acetonitrile, and marking the mixed solution as solution B; under the stirring condition, slowly injecting the solution B into the solution A, and stirring for reaction to obtain SiO 2 Nanowire @ TiO 2 Is a dispersion of (a);
(2) Preparation of SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles: siO is made of 2 Nanowire @ TiO 2 Heating the dispersion liquid of (2) to 40-60 ℃, and adding a cross-linking agent tetraethyl silicate and perfluorodecylTrimethoxysilane, magnetically stirring for 10-40 min, ultrasonic dispersing, suction filtering, and drying to obtain SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles;
(3) Brushing primer: weighing a certain mass of aqueous epoxy putty A, butyl acetate B and aqueous epoxy curing agent emulsion C, magnetically stirring, vacuumizing for 2-3 min to remove bubbles, uniformly coating the mixture on an epoxy resin plate to serve as a primer, and spraying dichloroethane solution on the primer after the mixture is dried;
(4) Preparing a hydrophobic coating by a self-assembly method: siO was isolated by self-assembled precipitation using a 100 target quasi-sample sieve 2 Nanowire @ TiO 2 The super-hydrophobic particles are evenly sieved and fall on paint coated with dichloroethane solution, and the dichloroethane slowly volatilizes to induce SiO 2 Nanowire @ TiO 2 The superhydrophobic particles deposit near the solid-liquid-gas three-phase contact line to the primer surface forming regular stripes. After the curing is completed, the particles which are not combined with the primer are removed, thereby preparing the SiO 2 Nanowire @ TiO 2 Array super-hydrophobic coating.
In the above method, in step (1), siO 2 White powder with diameter of 20-100 nm and length of more than 10 mu m of nano wire, and after liquid B is injected into liquid A, siO 2 The ratio of the nanowire to the butyl titanate is (2-8) g: (0.5-4 ml), slowly injecting the solution B into the solution A, reacting for 2-30 h at 20-50 ℃, controlling the dripping speed of the solution B into the solution A to be 30-60 drops/min, and keeping stirring during the period of 5-10 min of each drop of 5 mL; the volume ratio of ethanol to acetonitrile in the ethanol and acetonitrile mixed solution is 2: in the step (2), the proportion of the cross-linking agent tetraethyl silicate and the perfluoro decyl trimethoxy silane is (5-8): 1, a step of; in the step (3), the proportion of the aqueous epoxy putty A, the butyl acetate B and the aqueous epoxy hardener emulsion C is 1: (0.2 to 0.6): 1, magnetically stirring for 5-30 min; in the step (4), the curing time is 24-72 h.
Example 1:
(1) Wrapping TiO 2 Shell structure: siO with diameter of 20 nm and length of > 10 μm 2 The nanowire powder 20g is ultrasonically dispersed in a mixed solution of 100 ml ethanol and acetonitrile, and is marked as solution A; 5g of butyl titanate was dissolved in 100The mixture of ethanol and acetonitrile is marked as liquid B; wherein SiO is 2 The ratio of nanowires to butyl titanate was 2 g:0.5 ml, slowly injecting the solution B into the solution A under stirring, controlling the dripping speed at 30 drops/min, adding 5-mL each for 5 min, stirring, and reacting at 20deg.C for 30-h to obtain SiO 2 Nanowire @ TiO 2 Is a dispersion of (a);
(2) Preparation of SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles: siO is made of 2 Nanowire @ TiO 2 50g of the cross-linking agents tetraethyl silicate and perfluorodecyl trimethoxysilane were added in a ratio of 5:1 magnetically stirring for 40 min, ultrasonic dispersing, suction filtering, and drying to obtain SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles;
(3) Brushing primer: weighing a certain mass of aqueous epoxy putty A, butyl acetate B and aqueous epoxy curing agent emulsion C, and ensuring A: b: the mass ratio of C is 1:0.2:1, magnetically stirring for 5 min, vacuumizing for 2-3 min to remove bubbles, uniformly coating the bubbles on an epoxy resin plate to serve as a primer, and spraying dichloroethane solution on the primer after drying;
(4) Preparing a hydrophobic coating by a self-assembly method: siO was isolated by self-assembled precipitation using a 100 target quasi-sample sieve 2 Nanowire @ TiO 2 The super-hydrophobic particles are evenly sieved and placed on a primer coated with dichloroethane solution, and the dichloroethane is slowly volatilized to induce SiO 2 Nanowire @ TiO 2 The superhydrophobic particles deposit near the solid-liquid-gas three-phase contact line to the primer surface forming regular stripes. After curing 24 h, the particles not bonded to the primer are removed, thereby preparing SiO 2 Nanowire @ TiO 2 Array super-hydrophobic coating.
Example 2:
(1) Wrapping TiO 2 Shell structure: dispersing SiO2 nanowire powder 40g with the diameter of 20 nm and the length of more than 10 mu m in a mixed solution of 200ml ethanol and acetonitrile by ultrasonic, and marking as A solution; 10g of butyl titanate is dissolved in 200ml of mixed solution of ethanol and acetonitrile and is marked as solution B; wherein SiO is 2 The ratio of nanowires to butyl titanate was 4 g:1 ml, slowly injecting solution B into solution A under stirringIn the solution, the dropping speed is controlled at 40 drops/min, each drop is added at intervals of 5 mL for 6 min, stirring is kept, and the reaction is carried out at 30 ℃ for 20 h, thus obtaining SiO 2 Nanowire @ TiO 2 Is a dispersion of (a);
(2) Preparation of SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles: siO is made of 2 Nanowire @ TiO 2 100g of the cross-linking agents tetraethyl silicate and perfluorodecyl trimethoxysilane were added in a ratio of 6:1 magnetically stirring for 30 min, ultrasonic dispersing, suction filtering, and drying to obtain SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles;
(3) Brushing primer: weighing a certain mass of aqueous epoxy putty A, butyl acetate B and aqueous epoxy curing agent emulsion C, and ensuring A: b: the mass ratio of C is 1:0.3:1, magnetically stirring for 10 min, vacuumizing for 2-3 min to remove bubbles, uniformly coating the bubbles on an epoxy resin plate to serve as a primer, and spraying dichloroethane solution on the primer after drying;
(4) Preparing a hydrophobic coating by a self-assembly method: siO was isolated by self-assembled precipitation using a 100 target quasi-sample sieve 2 Nanowire @ TiO 2 The super-hydrophobic particles are evenly sieved and placed on a primer coated with dichloroethane solution, and the dichloroethane is slowly volatilized to induce SiO 2 Nanowire @ TiO 2 The superhydrophobic particles deposit near the solid-liquid-gas three-phase contact line to the primer surface forming regular stripes. After curing 36 h, the particles not bonded to the primer are removed to prepare SiO 2 Nanowire @ TiO 2 And (3) a super-hydrophobic coating.
Example 3:
(1) Wrapping TiO 2 Shell structure: siO with diameter of 20 nm and length of > 10 μm 2 The nanowire powder 60 g is ultrasonically dispersed in a mixed solution of 300ml ethanol and acetonitrile, and is marked as solution A; dissolving 20g of butyl titanate in 300ml of a mixed solution of ethanol and acetonitrile, and marking as solution B; wherein SiO is 2 The ratio of nanowires to butyl titanate was 6 g:2 ml slowly injecting the solution B into the solution A under stirring, controlling the dripping speed at 45 drops/min, adding 5 mL drops each for 7 min, stirring, and reacting at 40deg.C for 10 h to obtain SiO 2 Nanowire @ TiO 2 Is a dispersion of (2);
(2) Preparation of SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles: siO is made of 2 Nanowire @ TiO 2 150g of the cross-linking agents tetraethyl silicate and perfluorodecyl trimethoxysilane were added in a ratio of 7:1 magnetically stirring for 20 min, ultrasonic dispersing, suction filtering, and drying to obtain SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles;
(3) Brushing primer: weighing a certain mass of aqueous epoxy putty A, butyl acetate B and aqueous epoxy curing agent emulsion C, and ensuring A: b: the mass ratio of C is 1:0.4:1, magnetically stirring for 15 min, vacuumizing for 2-3 min to remove bubbles, uniformly coating the bubbles on an epoxy resin plate to serve as a primer, and spraying dichloroethane solution on the primer after drying;
(4) Preparing a hydrophobic coating by a self-assembly method: siO was isolated by self-assembled precipitation using a 100 target quasi-sample sieve 2 Nanowire @ TiO 2 The super-hydrophobic particles are evenly sieved and placed on a primer coated with dichloroethane solution, and the dichloroethane is slowly volatilized to induce SiO 2 Nanowire @ TiO 2 The superhydrophobic particles deposit near the solid-liquid-gas three-phase contact line to the primer surface forming regular stripes. After curing 48 h, the particles not bonded to the primer are removed, thereby preparing SiO 2 Nanowire @ TiO 2 And (3) a super-hydrophobic coating.
Example 4:
(1) Wrapping TiO 2 Shell structure: dispersing SiO2 nanowire powder 80 g with the diameter of 20 nm and the length of more than 10 mu m in a mixed solution of 400ml ethanol and acetonitrile in an ultrasonic manner, and marking the mixed solution as A solution; 40g of butyl titanate is dissolved in 400ml of mixed solution of ethanol and acetonitrile and is marked as solution B; wherein SiO is 2 The ratio of nanowires to butyl titanate was 8g: 4ml slowly injecting the solution B into the solution A under stirring, controlling the dripping speed at 50 drops/min, adding 5-mL of each drop for 8 min, stirring, and reacting at 45deg.C for 3 h to obtain SiO 2 Nanowire @ TiO 2 Is a dispersion of (a);
(2) Preparation of SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles: siO is made of 2 Nanowire @ TiO 2 Heating the dispersion of (2) to 55200g of cross-linking agents tetraethyl silicate and perfluorodecyl trimethoxysilane were added at a ratio of 7.5:1 magnetically stirring for 15 min, ultrasonic dispersing, suction filtering, and drying to obtain SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles;
(3) Brushing primer: weighing a certain mass of aqueous epoxy putty A, butyl acetate B and aqueous epoxy curing agent emulsion C, and ensuring A: b: the mass ratio of C is 1:0.5:1, magnetically stirring for 20 min, vacuumizing for 2-3 min to remove bubbles, uniformly coating the bubbles on an epoxy resin plate to serve as a primer, and spraying dichloroethane solution on the primer after drying;
(4) Preparing a hydrophobic coating by a self-assembly method: siO was isolated by self-assembled precipitation using a 100 target quasi-sample sieve 2 Nanowire @ TiO 2 The super-hydrophobic particles are evenly sieved and placed on a primer coated with dichloroethane solution, and the dichloroethane is slowly volatilized to induce SiO 2 Nanowire @ TiO 2 The superhydrophobic particles deposit near the solid-liquid-gas three-phase contact line to the primer surface forming regular stripes. After curing 60 h, the particles not bonded to the primer are removed to prepare SiO 2 Nanowire @ TiO 2 And (3) a super-hydrophobic coating.
Example 5:
(1) Wrapping TiO 2 Shell structure: dispersing SiO2 nanowire powder 80 g with the diameter of 20 nm and the length of more than 10 mu m in a mixed solution of 400ml ethanol and acetonitrile in an ultrasonic manner, and marking the mixed solution as A solution; 40g of butyl titanate is dissolved in 400ml of mixed solution of ethanol and acetonitrile and is marked as solution B; wherein SiO is 2 The ratio of nanowires to butyl titanate was 8g: 4ml slowly injecting the solution B into the solution A under stirring, controlling the dripping speed at 60 drops/min, adding 5: 5 mL of each drop for 10 min, stirring, and reacting at 50deg.C for 2: 2 h to obtain SiO 2 Nanowire @ TiO 2 Is a dispersion of (a);
(2) Preparation of SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles: siO is made of 2 Nanowire @ TiO 2 200g of the cross-linking agents tetraethyl silicate and perfluorodecyl trimethoxysilane were added in a ratio of 8:1 magnetically stirring for 10 min, ultrasonic dispersing, suction filtering, and drying to obtain SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles;
(3) Brushing primer: weighing a certain mass of aqueous epoxy putty A, butyl acetate B and aqueous epoxy curing agent emulsion C, and ensuring A: b: the mass ratio of C is 1:0.6:1, magnetically stirring for 30 min, vacuumizing for 2-3 min to remove bubbles, uniformly coating the bubbles on an epoxy resin plate to serve as a primer, and spraying dichloroethane solution on the primer after drying;
(4) Preparing a hydrophobic coating by a self-assembly method: siO was isolated by self-assembled precipitation using a 100 target quasi-sample sieve 2 Nanowire @ TiO 2 The super-hydrophobic particles are evenly sieved and placed on a primer coated with dichloroethane solution, and the dichloroethane is slowly volatilized to induce SiO 2 Nanowire @ TiO 2 The superhydrophobic particles deposit near the solid-liquid-gas three-phase contact line to the primer surface forming regular stripes. After curing 72 h, the particles not bonded to the primer are removed, thereby preparing SiO 2 Nanowire @ TiO 2 And (3) a super-hydrophobic coating.
Performance detection
(1) Superhydrophobicity: the contact angle was measured with a DataPhysics OCA35 (with temperature control accessory accurate temperature control range of-30 ℃ C. To 160 ℃ C.) in Germany, the drop quantity was 4 [ mu ] L, and the static contact angle was the average of 5 contact angles measured.
(2) Weather resistance: QUV/Se artificial aging device of Q-panel company in U.S.A.: test conditions: wavelength 340 nm, radiation power 0.68W/m 2 Cycling the program: ultraviolet irradiation for 8 h at 50 ℃, condensation for 4 h and aging for 1440 h at 40 ℃; the weather resistance of the coating is reflected by measuring the change in the contact angle of the coating.
(3) Self-cleaning: gasoline is used as a pollution source. By applying a layer of salad oil to the surface of the superhydrophobic coating, and then placing the coating under an ultraviolet lamp (365 nm, 20 mW/cm 2 ) The self-cleaning properties of the coating are characterized by measuring the change in contact angle of the surface of the coating.
The performance of examples 1-5 and commercially available superhydrophobic anti-fouling coatings was tested for superhydrophobicity, weatherability and self-cleaning properties and the test results are shown in table 1.
TABLE 1 Performance test results
Figure SMS_1
The foregoing description is only a preferred embodiment of the invention and is not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.

Claims (10)

1. The method for preparing the super-hydrophobic anti-fouling paint by a self-assembly method is characterized by comprising the following steps of:
step one, wrapping TiO 2 Shell structure: siO is made of 2 The nanowire powder is ultrasonically dispersed in an organic solution and is marked as A liquid; butyl titanate is dissolved in an organic solution and is marked as liquid B; dropwise adding the solution B into the solution A under stirring, and stirring for reacting to obtain SiO 2 Nanowire @ TiO 2 Is a dispersion of (a);
step two, preparing SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles: siO is made of 2 Nanowire @ TiO 2 Heating the dispersion liquid of (2) to 40-60 ℃, adding a cross-linking agent, magnetically stirring for 10-40 min, performing ultrasonic dispersion, performing suction filtration, and drying to obtain SiO 2 Nanowire @ TiO 2 Super-hydrophobic particles;
brushing primer and spraying dichloroethane solution on the primer;
step four, preparing a hydrophobic coating by a self-assembly method: siO was isolated by self-assembled precipitation using standard sample sieves 2 Nanowire @ TiO 2 The super-hydrophobic particles are evenly sieved and placed on a primer coated with dichloroethane solution, and the dichloroethane is slowly volatilized to induce SiO 2 Nanowire @ TiO 2 The super-hydrophobic particles are deposited on the surface of the primer near the solid-liquid-gas three-phase contact line to form regular stripes; after the curing is completed, the particles which are not combined with the primer are removed, thereby preparing the SiO 2 Nanowire @ TiO 2 Array super-hydrophobic coating.
2. The self-assembly of claim 1The method for preparing the super-hydrophobic anti-fouling coating is characterized in that the SiO 2 The diameter of the nanowire is 20-100 nm, and the length is more than 10 mu m.
3. The method for preparing the super-hydrophobic and anti-fouling coating by a self-assembly method according to claim 1, wherein in the first step, siO 2 The mass volume ratio of the nanowire to the butyl titanate is 2-8 g: 0.5-4 ml; the organic solution is a mixed solution of ethanol and acetonitrile, and the volume ratio of the ethanol to the acetonitrile is 2:1.
4. the method for preparing the super-hydrophobic anti-fouling paint by the self-assembly method according to claim 1, wherein in the first step, after the solution B is slowly injected into the solution A, stirring and reacting at 20-50 ℃ for 2-30 h.
5. The method for preparing a super-hydrophobic anti-fouling coating according to claim 4, wherein in the first step, the dripping speed of the liquid B slowly injected into the liquid A is controlled to be 30-60 drops/min, and each drop is added for 5-10 min at intervals of 5-mL, and stirring is kept during the period.
6. The method for preparing the super-hydrophobic anti-fouling paint by the self-assembly method according to claim 1, wherein in the second step, the cross-linking agent comprises tetraethyl silicate and perfluoro decyl trimethoxy silane, and the mass ratio of the tetraethyl silicate to the perfluoro decyl trimethoxy silane is 5-8: 1, a step of; crosslinking agent and SiO 2 Nanowire @ TiO 2 The mass volume ratio of the dispersion liquid of (2) is 1g:4ml.
7. The method for preparing the super-hydrophobic anti-fouling paint by a self-assembly method according to claim 1, wherein in the third step, the preparation method of the primer is as follows: weighing waterborne epoxy putty A, butyl acetate B and waterborne epoxy curing agent emulsion C with preset mass, magnetically stirring, vacuumizing for 2-3 min to remove bubbles, and uniformly coating the waterborne epoxy putty A, butyl acetate B and waterborne epoxy curing agent emulsion C on an epoxy resin plate to serve as a primer; wherein, the volume ratio of the aqueous epoxy putty A to the butyl acetate B to the aqueous epoxy hardener emulsion C is 1:0.2 to 0.6:1, and magnetically stirring for 5-30 min.
8. The method for preparing the super-hydrophobic anti-fouling coating by using the self-assembly method according to claim 1, wherein in the fourth step, the curing time is 24-72 hours; the pore diameter of the standard sample separating sieve is 100 meshes.
9. A superhydrophobic anti-fouling coating prepared by the method for preparing a superhydrophobic anti-fouling coating according to any one of claims 1-8.
10. A superhydrophobic anti-fouling coating prepared by the method for preparing a superhydrophobic anti-fouling coating by the self-assembly process according to any one of claims 1-8, which is used as a protective coating on tunnel facility surfaces.
CN202310284787.8A 2023-03-22 2023-03-22 Method for preparing super-hydrophobic anti-fouling paint by self-assembly method and application Active CN116179004B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310284787.8A CN116179004B (en) 2023-03-22 2023-03-22 Method for preparing super-hydrophobic anti-fouling paint by self-assembly method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310284787.8A CN116179004B (en) 2023-03-22 2023-03-22 Method for preparing super-hydrophobic anti-fouling paint by self-assembly method and application

Publications (2)

Publication Number Publication Date
CN116179004A true CN116179004A (en) 2023-05-30
CN116179004B CN116179004B (en) 2024-05-17

Family

ID=86448940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310284787.8A Active CN116179004B (en) 2023-03-22 2023-03-22 Method for preparing super-hydrophobic anti-fouling paint by self-assembly method and application

Country Status (1)

Country Link
CN (1) CN116179004B (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081487A1 (en) * 2000-04-21 2001-11-01 Science & Technology Corporation @ Unm Prototyping of patterned functional nanostructures
US20090020924A1 (en) * 2007-02-21 2009-01-22 Iowa State University Research Foundation, Inc. Drying-mediated self-assembly of ordered or hierarchically ordered micro- and sub-micro scale structures and their uses as multifunctional materials
CN101449405A (en) * 2006-05-18 2009-06-03 巴斯夫欧洲公司 Patterning nanowires on surfaces for fabricating nanoscale electronic devices
WO2011047359A2 (en) * 2009-10-16 2011-04-21 Cornell University Method and apparatus including nanowire structure
KR20110064160A (en) * 2009-12-07 2011-06-15 한국과학기술원 Method for preparing superhydrophobic peptide nanostructure
WO2012135997A1 (en) * 2011-04-02 2012-10-11 中国科学院化学研究所 Method for forming microelectrode-pair arrays on silicon substrate surface with hydrophobic silicon pillars
CN104000742A (en) * 2013-02-26 2014-08-27 义乌市雅诗兰化妆品有限公司 Sunscreen lotion and revitalizing CC sunscreen cream
CN106398334A (en) * 2016-09-09 2017-02-15 东南大学 Super-wear-resisting super-hydrophobic coating and preparation method thereof
CN106751051A (en) * 2016-12-20 2017-05-31 东莞市佳乾新材料科技有限公司 A kind of automobile preparation method of ageing-resistant fluid sealant
KR20200068476A (en) * 2018-12-05 2020-06-15 한국세라믹기술원 Super water-repellent structure with high strength and high durability and fabricating method of the same
WO2020218989A1 (en) * 2019-04-24 2020-10-29 Erciyes Universitesi Robust superhydrophobic coatings with self- assembled hierarchical structures
CN112625595A (en) * 2020-12-08 2021-04-09 中国科学院海洋研究所 Nano synergistic low surface energy antifouling composition and preparation method thereof
CN113005523A (en) * 2021-02-24 2021-06-22 电子科技大学 Preparation method of Spiro-OMeTAD monoclinic crystal

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081487A1 (en) * 2000-04-21 2001-11-01 Science & Technology Corporation @ Unm Prototyping of patterned functional nanostructures
CN101449405A (en) * 2006-05-18 2009-06-03 巴斯夫欧洲公司 Patterning nanowires on surfaces for fabricating nanoscale electronic devices
US20090020924A1 (en) * 2007-02-21 2009-01-22 Iowa State University Research Foundation, Inc. Drying-mediated self-assembly of ordered or hierarchically ordered micro- and sub-micro scale structures and their uses as multifunctional materials
WO2011047359A2 (en) * 2009-10-16 2011-04-21 Cornell University Method and apparatus including nanowire structure
KR20110064160A (en) * 2009-12-07 2011-06-15 한국과학기술원 Method for preparing superhydrophobic peptide nanostructure
WO2012135997A1 (en) * 2011-04-02 2012-10-11 中国科学院化学研究所 Method for forming microelectrode-pair arrays on silicon substrate surface with hydrophobic silicon pillars
CN104000742A (en) * 2013-02-26 2014-08-27 义乌市雅诗兰化妆品有限公司 Sunscreen lotion and revitalizing CC sunscreen cream
CN106398334A (en) * 2016-09-09 2017-02-15 东南大学 Super-wear-resisting super-hydrophobic coating and preparation method thereof
CN106751051A (en) * 2016-12-20 2017-05-31 东莞市佳乾新材料科技有限公司 A kind of automobile preparation method of ageing-resistant fluid sealant
KR20200068476A (en) * 2018-12-05 2020-06-15 한국세라믹기술원 Super water-repellent structure with high strength and high durability and fabricating method of the same
WO2020218989A1 (en) * 2019-04-24 2020-10-29 Erciyes Universitesi Robust superhydrophobic coatings with self- assembled hierarchical structures
CN112625595A (en) * 2020-12-08 2021-04-09 中国科学院海洋研究所 Nano synergistic low surface energy antifouling composition and preparation method thereof
CN113005523A (en) * 2021-02-24 2021-06-22 电子科技大学 Preparation method of Spiro-OMeTAD monoclinic crystal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LINGLING WANG等: "Bioinspired preparation of ultrathin SiO(2) shell on ZnO nanowire array for ultraviolet-durable superhydrophobicity", 《LANGMUIR》, vol. 25, no. 23, pages 13619 - 13624 *
肖亮: "溶剂挥发诱导自组装法制备碳纳米管阵列", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅰ辑)》, no. 01, pages 015 - 36 *

Also Published As

Publication number Publication date
CN116179004B (en) 2024-05-17

Similar Documents

Publication Publication Date Title
KR101082721B1 (en) Photocatalytic coating material, photocatalytic composite material and process for producing the same, self-cleaning water-based coating comopsitions, and self-cleaning member
CN111518456B (en) Permeable waterproof alkali-resistant coating and preparation method thereof
CN111621049A (en) Super-hydrophobic coating with strong durability and preparation method thereof
CN104193289A (en) Hydrophobic protective paint and preparation method thereof
CN101568605A (en) Metal effect pigments for use in the cathodic electrodeposition painting, method for the production and use of the same, and electrodeposition paint
CN104119751B (en) A kind of nano enamel and preparation method thereof for aircraft skin
CN113372815A (en) Preparation method and application of biomass-based super-hydrophobic coating
CN110669408B (en) Nano modified epoxy resin anticorrosive paint and preparation method thereof
CN109401458A (en) Exterior wall imitation stone lacquer and preparation method thereof
CN114985236A (en) Preparation method of super-hydrophobic antifouling coating on surface of glass insulator
CN116179004B (en) Method for preparing super-hydrophobic anti-fouling paint by self-assembly method and application
KR101615550B1 (en) Organic-inorganic hybrid protective coating composition having heat resistance and separation property, and products thereof
CN112175422B (en) Coating composition for automobile glass
CN113500838A (en) High-strength self-cleaning reflective film and preparation method thereof
WO2008112946A1 (en) Water-based polyurethane pigmented coating
JP2003342526A (en) Self-cleaning aqueous coating composition and self- cleaning member
CN114350192B (en) Coating with hydrophilic self-cleaning capability and preparation method thereof
JP2004204091A (en) Photocatalyst coating composition
CN114213962A (en) Acrylate coating and preparation method and application thereof
CN107880611B (en) Water-based inorganic anti-corrosion coating material
CN107177263A (en) Base material Mk system
WO2023187731A1 (en) Coating composition and a process for its preparation
CN113265200B (en) Biomass-based superhydrophobic coatings with durability and color diversity and uses thereof
CN116510353A (en) Super-hydrophobic and super-oleophobic particle and preparation method thereof
KR100608334B1 (en) Non-polluting high temperature baking type fluorine coating composition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant