CN115232756A - Recombinant yeast engineering bacterium for producing levo-borneol - Google Patents

Recombinant yeast engineering bacterium for producing levo-borneol Download PDF

Info

Publication number
CN115232756A
CN115232756A CN202110445318.0A CN202110445318A CN115232756A CN 115232756 A CN115232756 A CN 115232756A CN 202110445318 A CN202110445318 A CN 202110445318A CN 115232756 A CN115232756 A CN 115232756A
Authority
CN
China
Prior art keywords
bbtps3
blumea balsamifera
nucleic acid
monoterpene synthase
synthase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110445318.0A
Other languages
Chinese (zh)
Inventor
黄璐琦
马蕊
苏平
崔光红
靳保龙
郭娟
马莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Honghe Biotechnology Co ltd
Original Assignee
Sichuan Honghe Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Honghe Biotechnology Co ltd filed Critical Sichuan Honghe Biotechnology Co ltd
Priority to CN202110445318.0A priority Critical patent/CN115232756A/en
Publication of CN115232756A publication Critical patent/CN115232756A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P15/00Preparation of compounds containing at least three condensed carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01015Alpha,alpha-trehalose-phosphate synthase (UDP-forming) (2.4.1.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01068(2Z,6E)-Farnesyl diphosphate synthase (2.5.1.68)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/102Plasmid DNA for yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a recombinant bacterium and application thereof, the recombinant bacterium is a yeast containing or expressing blumea balsamifera monoterpene synthase BbTPS3 or blumea balsamifera monoterpene synthase BbTPS3 fusion protein in vivo, and is used for producing levo-borneol; experiments prove that the recombinant bacterium obtained by modification (such as codon optimization, protein truncation, kozak increase or protein fusion) can improve the yield of the L-borneol, and is suitable for industrial production of the L-borneol.

Description

Recombinant yeast engineering bacterium for producing levo-borneol
Technical Field
The invention relates to the field of genetic engineering and fermentation engineering, in particular to a genetic engineering bacterium for producing natural borneol and a construction method and application thereof.
Background
Borneol, also known as borneol, bicyclic monoterpene compounds, which is classified into d-borneol and l-borneol according to optical activity, the d-borneol is also known as natural borneol, the plant source is mainly camphor (Cinnamomum camphora (l.) presl) and plum-leaf tree (Cinnamomum burmann (Nees et t. Nees) Blume) of lauraceae; l-borneol is also called Blumea balsamifera (L.) DC., which is a main plant source of Blumea balsamifera (L.) DC., belonging to Compositae. The lavender, olibanum, pine tree, fir, citronella oil, and Olibanum may also contain Borneolum.
Borneol is a precious traditional Chinese medicinal material and a high-grade spice, and is widely applied to the fields of medicines, foods, daily chemicals, pesticides and the like, most of patent medicine raw materials and formulas of pharmaceutical enterprises and pharmaceutical factories tend to use cheap and easily-obtained synthetic borneol at present, but the synthetic borneol also contains toxic isoborneol besides borneol, and researchers adopt a plant extraction method on borneol plant sources, but the acquisition of natural borneol is limited by the low content of natural compounds in plants, the extraction rate, the long plant growth period, the limited planting area and the like. The method is a feasible idea for producing borneol and other monoterpene compounds and derivatives thereof by utilizing a synthetic biology strategy. It was found that the biosynthesis of monoterpene compounds is derived from the common precursor geranyl Diphosphate (GPP), and in plants, acetyl-CoA via Mevalonate (MVA) pathway and 4-phospho-2-methylerythrose (2-C-methyl-D-erythrol-4-phosphate, MEP) pathway produces isopentenyl Diphosphate (IPP) and its isomer dimethylallyl Diphosphate (DMAPP), IPP and DMAPP condense to produce Cascade under the catalysis of geranyl-pyrophosphate Synthase, and finally form a great variety of monoterpene compounds (O' BRIN T, BERTHOLANI S J, ZHANG Y, et al]ACS cat, 2018, 8. Zhang Chaoet al (CN 110669713A) discloses a yeast engineering bacterium with high-yield monoterpene component, and makes it be reconstituted in Saccharomyces cerevisiaeThe biosynthetic pathway of limonene synthase can realize the heterologous synthesis of D-limonene, and the yield of the D-limonene is 27.3mg/L; duckweed et al (CN 111411101A) use cis-linalool synthetase t67OMcLIS to construct linalool biosynthesis pathway by over-expressing whole MVA pathway and introducing ERG20 with FPP formation reducing ability F96W/N127W Variant, such that the supply of precursor GPP was enhanced, the final strain produced 53.14mg/L linalool culture in shake flasks. Therefore, the construction of the monoterpene engineering bacteria improves the yield of the monoterpene, but borneol related engineering bacteria are not reported.
Disclosure of Invention
One aspect of the invention is to provide a yeast engineering bacterium (recombinant bacterium) for producing L-borneol, wherein the recombinant bacterium is a yeast containing or expressing blumea balsamifera monoterpene synthase BbTPS3 in vivo. Blumea balsamifera synthase BbTPS3 described in the present invention has been disclosed in applicant's prior patent (CN 201910775971.6), which is a monoterpene synthase derived from Blumea balsamifera (L.) DC., that can be used to synthesize or prepare L-borneol, and the entire contents of which are incorporated herein and made a part thereof.
In another aspect, the yeast contains a codon-optimized blumea balsamifera monoterpene synthase BbTPS3 gene. The present invention is improved according to the codon preference of Saccharomyces cerevisiae, and the improved method is a conventional technical means in the art, for example, artificially synthesized according to the sequence of related genes known in the art and referring to the codon preference of Saccharomyces cerevisiae (the codon preference design of Saccharomyces cerevisiae can be carried out with reference to the information disclosed in http:// www.kazusa.or.jp/codon/cgi-bin/showcodin.cgispecies = 493), and any of the above genes designed according to the codon preference of Saccharomyces cerevisiae can be used in the present invention.
Preferably, the coding nucleic acid of the codon-optimized BbTPS3 is shown as SEQ ID NO. 1.
In another aspect, the invention also includes protein modifications to the key enzyme BbTPS3. The N-terminal amino acid of the BbTPS3 is truncated to form 3 truncated proteins (hereinafter referred to as t14-BbTPS3, t18-BbTPS3 and t38-BbTPS 3), and the levo-borneol yield of the truncated proteins of the t14-BbTPS3 and the t18-BbTPS3 is obviously improved. The coding nucleic acids of t14-BbTPS3, t18-BbTPS3 and t38-BbTPS3 are shown in SEQ ID NO 2, SEQ ID NO 3 and SEQ ID NO 4.
On the other hand, a universal Kozak sequence (SEQ ID NO: 5) was added in front of the ATG start codon of the truncated protein to obtain 3 new truncated forms (hereinafter referred to as t14-BbTPS3K, t18-BbTPS3K, t38-BbTPS 3K), and it was found that the yield of L-borneol was not increased, and then a yeast-specific Kozak sequence (SEQ ID NO: 6) was tried to obtain 1 new truncated form (hereinafter referred to as t14-BbTPS3K 2), and further the yield of D-borneol was increased.
On the other hand, on the basis of the experiments, the invention inspects the influence of the flexible connecting peptide on the yield, selects 5 flexible connecting peptides for inspection, and respectively constructs ERG20 from ' GGGS ', ' GSG ', ' YRSKI ', ' VIPFIS ', ' WRFSPKLQ F96W-N127W (also known as ERG20WW with sequence SEQ ID NO: 7) preceding fusion protein with BbTPS3-14 following fusion protein (hereinafter referred to as ERG20WW-GGGS-t14-BbTPS3K2 (SEQ ID NO: 8), ERG20WW-GSG-t14-BbTPS3K2 (SEQ ID NO: 9), ERG20WW-YRSQI-t14-BbTPS3K2 (SEQ ID NO: 10), ERG20WW-VIPFIS-t14-BbTPS3K2 (SEQ ID NO: 11), ERG20WW-WRFSPKLQ-t14-BbTPS3K2 (SEQ ID NO: 12), and ERG20WW F96WN127W -GGGS-t14-BbTPS3K2-2 (SEQ ID NO: 13); or a fusion protein with BbTPS3-14 at the front after construction of ERG20WW (hereinafter referred to as t14-BbTPS3K2-GGGS-ERG 20) F96W,N127W The fusion protein of-2 (SEQ ID NO: 14) further improves the production of L-borneol.
In certain embodiments, the in vivo containing or expressing a blumea balsamifera monoterpene synthase or a blumea balsamifera synthase BbTPS3 fusion protein according to the invention is introducing a nucleic acid encoding said blumea balsamifera monoterpene synthase or a nucleic acid encoding said blumea balsamifera monoterpene synthase BbTPS3 fusion protein into said yeast; and/or, the step of introducing the coding nucleic acid of blumea balsamifera monoterpene synthase into the microzyme is to introduce a coding nucleic acid expression cassette containing the blumea balsamifera monoterpene synthase into the microzyme; the step of introducing the coding nucleic acid of the blumea balsamifera monoterpene synthase fusion protein into the microzyme is to introduce a coding nucleic acid expression cassette containing the blumea balsamifera monoterpene synthase fusion protein into the microzyme; and/or, the coding nucleic acid expression cassette containing blumea balsamifera monoterpene synthase is introduced into the yeast through a vector expressing the coding nucleic acid expression cassette of blumea balsamifera monoterpene synthase; the yeast is preferably introduced in plasmid form.
In certain embodiments, the present invention improves the supply of precursor material GPP (hereinafter referred to as M/D) by optimization of the stock solution. For example, the yeast of the present invention comprises endogenous genes related to mevalonate pathway derived from yeast, such as acetoacetyl-CoA transferase gene ERG10, HMG-CoA synthase gene ERG13, HMG-CoA reductase gene tHMG1, phosphomevalonate kinase gene ERG8, mevalonate pyrophosphate decarboxylase gene ERG19, farnesyl pyrophosphate synthase gene ERG20, mevalonate kinase gene ERG12, isopentenyl pyrophosphate isomerase gene IDI1. In certain preferred embodiments, ERG20 used in the present invention is a mutant ERG20 F96W/N127W
In certain embodiments, the yeast of the invention is Saccharomyces cerevisiae (Saccharomyces cerevisiae); and/or the saccharomyces cerevisiae is CEN. PK2-1D, and the genotypes are MAT alpha, URA3-52, TRP1-289, LEU2-3112, HIS3 delta 1, MAL2-8C and SUC2.
In a fifth aspect of the present invention, there is provided a method for producing levoborneol, comprising:
inoculating the recombinant yeast for producing the L-borneol into a culture medium, fermenting, extracting, separating and fermenting a bacterial liquid to obtain a target product, namely the L-borneol, wherein the recombinant yeast can be used for producing GPP by fermentation.
Drawings
FIG. 1 is a schematic diagram of the biosynthetic pathway of GPP and L-borneol in Saccharomyces cerevisiae;
FIG. 2 is a graph of geraniol yield in engineered Chassis strains, where A is the growth curve of strain M/D; b is the yield of the M/D geraniol of the strain;
FIG. 3 is a GC-MS qualitative detection diagram of L-borneol, wherein A is a weather chromatogram detection result of L-borneol; b is the mass spectrum identification result of the levo-borneol;
FIG. 4A shows the effect of different N-terminal truncations of blumea balsamifera monoterpene synthase BbTPS3 on L-borneol production (MD-B3, MD-B5 and MD-B7) and the effect of different Kozak sequences on L-borneol production (MD-B4, MD-B6, MD-B8 and MD-B9);
FIG. 4B shows the effect of fusion proteins of different linker peptides on L-borneol production.
Detailed Description
Experimental materials
TABLE 1 vector and Strain information
Figure BDA0003035413230000041
TABLE 2 primer information
Figure BDA0003035413230000042
Figure BDA0003035413230000051
Figure BDA0003035413230000061
Construction of eukaryotic plasmid (pESC-LEU)
BbTPS3-F’AGGAGAAAAAACCCCGATGGTTGGTTTCCAGAAGCACTC
BbTPS3-R’GTGAGTCGTATTACGGGGTCTTTGGCTTCAACAACAAGGAG
TABLE 3 protein engineering primer information
Figure BDA0003035413230000071
The main reagents are as follows:
gene JET Gel Extraction Kit (Thermo Scientific Co., U.S.A.); atm plasma mini kit I (Omega Bio-Tek company, usa); pEASY-Uni Seamless Cloning and Assembly Kit (Kyoto King Kogyo Biotech, inc.); 2 × EasyTaq PCR Supermix (+ dye) (Beijing Quanjin Biotechnology is limitedCompany); easypure Genomic DNA Kit (Beijing Quanjin Biotechnology Co., ltd.); phusion high-fidelity Master Mix (NEB, USA); bsaI (NEB corporation, USA); bamHI-HF (NEB corporation, USA); t4 DNA Ligase, NEB, USA; SD-Ura Yeast Medium (Beijing Pankeno science and technology, ltd.); SD-LEU-Ura yeast medium (Beijing Pankeno science and technology Co., ltd.); frozen-EZ Yeast Transformation II Kit TM (Zymo Research Biotech Co., ltd;
YPD solid plate: 1% yeast extract +2% peptone +2% glucose +1.5% agar; preparing corresponding liquid culture medium (YPD liquid culture medium) without adding agar;
YPL induction medium: 1% yeast extract +2% peptone +2% galactose;
SD-Ura solid plate: SD-Ura +2% glucose +2% agar; the corresponding liquid culture medium (SD-Ura liquid culture medium) is obtained without adding agar;
SD-Ura-LEU solid plate: SD-Ura-LEU +2% glucose +2% agar; the corresponding liquid medium (SD-Ura-LEU liquid medium) was prepared without adding agar.
Example 1 construction of recombinant Yeast Chassis bacteria
The Saccharomyces cerevisiae CEN. PK2-1D is modified by taking precursor substance GPP increasing L-borneol as an index, and the modification method is referred to in the literature (Jianga G Z, yaoa M D, wanga Y, et al management of GES and ERG20 for biochemical Engineering in Saccharomyces cerevisiae [ J ] metabolism Engineering,2017, 41. (the recombinant yeast base plate bacteria information of the invention is shown in the table 1).
1. Construction of Yeast strains
The initial strain used in this study was CEN. PK2-1D from Saccharomyces cerevisiae (Table 1). All endogenous genes ERG10, ERG13, tHMG1, ERG12, ERG8, ERG19, IDI1, ERG20 of the MVA pathway are derived from CEN. PK2-1D genomic DNA. ERG20 mutant ERG20 used in this study F96W/N127W Is reported to have higher monoterpene production efficiency. By usingM2S integration method the Gene expression cassette is integrated into the yeast chromosome (Li S, ding W, zhang X, et al. Development of a modulated two-step (M2S) chromosome integration technique for integration of multiple transcription units in Saccharomyces cerevisiae [ J]Biotechnology for Biofuels,2016,30 (1): 232-243.). Briefly described, ERG10 and ERG13 were amplified by adding BsaI cleavage sites and the head-to-head promoter (pGAL 1-pGAL 10) was ligated into the termination vector T1- (TPI 1-PGI 1) to generate plasmid T1- (ERG 10-ERG 13). Two terminators were inserted into the plasmid, and homology arms L1 and L2 were designed at the terminators, respectively. Similarly, T2- (tHMG 1-tHMG 1), T3- (tHMG 1-ERG 12), T4- (ERG 8-ERG 19) and T5- (IDI 1-ERG 20) F96W-N127W ) Have specific homology arms L2 and L3, L3 and L4, L4 and L5, and L5 and L6, respectively.
Each expression module with a homology arm was amplified separately. This time, a foreign gene was constructed at the 15-locus (YPRC. DELTA.15) of the s.cerevisiae genome and used as a Ura selection marker. Amplifying from CEN. PK2-1D genome DNA to obtain upstream homology arm YPRC delta 15-UP; amplifying a URA3 module comprising a promoter from a pESC-URA vector; l1 was amplified from the T1 vector. The selection marker module YPRC delta 15up-ura3-L1 was formed by overlapping PCR (overlap PCR) assembly of 3 modules. The downstream homology arm YPRC delta 15DOWN is amplified from CEN. PK2-1D genomic DNA, L6 is amplified from a T5 vector, and then the downstream homology arm modules L6-YPRC delta 15 are generated by combination.
All modules were electroporated into cen. Pk2-1D for assembly and integration. The transformation product is dripped in the center of a defective SD-Ura solid plate, uniformly coated by a coater until all the coated bacterial liquid is completely absorbed, and placed in a 30 ℃ incubator for inverted culture for 2-3d. Single colony is picked for sequencing verification to obtain a positive strain MD (attached figure 1).
2. Fermentation of
To determine the capacity of MD strains to produce GPP, the strains were subjected to fermentation assays. The detailed process comprises the following steps:
(1) Picking single MD colony growing on the SD-Ura solid plate, placing the single MD colony in 10mL SD-Ura liquid culture medium, and keeping the temperature at 200rpm for 48h at 30 ℃;
(2) The cells were collected by centrifugation at 5000g 5min at room temperature, transferred to 10mL YPL induction medium, and induced-cultured at 30 ℃ and 200rpm for 48 hours to obtain a fermentation product.
3. Fermentation product extraction
The target component is terpenoid, fat-soluble and easily soluble in ethyl acetate, so that ethyl acetate is selected as a solvent to extract a fermentation product to obtain the target compound. Wherein the extraction steps are as follows:
(1) After fermentation, 5ml of fermentation liquor is sucked, and is added with equal volume of ethyl acetate for ultrasonic extraction for 1h, the fermentation liquor is evenly mixed by turning upside down every 10 minutes, and ice is added to keep the ultrasonic temperature at 10 ℃ so as to avoid volatilization of products;
(2) 13,000g, centrifuging for 10 minutes, sucking the upper organic phase, adding a proper amount of anhydrous sodium sulfate (drying for 30min at 120 ℃), shaking while adding, and removing the water in the extract;
(3) Transfer to liquid phase vial, seal, for GC-MS detection.
4. GC-MS detection of fermentation product
The GC-MS analysis conditions are as follows: the chromatographic column is TR-5ms (30 m × 0.25 mm), 1 μ L of sample is injected, and the sample is maintained at 50 deg.C for 2min and at 5 deg.C for min under no-flow-splitting mode -1 Raising the temperature to 230 ℃, keeping the temperature for 5min, and keeping the temperature for 10 ℃ min -1 Heating to 300 deg.C, and maintaining for 2min; the sample inlet temperature is 280 ℃, the transmission line temperature is 280 ℃, and the electron energy is 70ev, and the sample is scanned in the range of 50-300 m/z. And (4) taking a geraniol standard as a control, making a standard curve, and determining the content of geraniol in the sample.
In the MD strain, the yield of geraniol detected was 12.52 mg.L -1 . (FIG. 2).
Example 2 construction of BbTPS3 eukaryotic expression vector
The monoterpene synthase BbTPS3 cloned from blumea balsamifera (see the previous Chinese patent CN201910775971.6, the entire contents of which are incorporated herein) was modified according to the codon preference of Saccharomyces cerevisiae, and the modified method is a routine technical means in the art. An exemplary modified codon sequence of a monoterpene synthase gene is set forth in SEQ ID NO:1 is shown. The improved monoterpene synthase gene is obtained, a homologous arm primer is designed, and the improved monoterpene synthase gene is constructed to a BamHI site of a eukaryotic expression vector pESC-LEU in a homologous recombination mode. The specific operation is as follows:
(1) Primers BbTPS3-F 'and BbTPS3-R' with BamHI site homology arms are designed to carry out PCR amplification on monoterpene synthase BbTPS3 from pET32a (BbTPS 3 plasmid) (Chinese patent CN 201910775971.6), and a purified PCR product is obtained after recovery and purification. Wherein, the primer sequences are shown in Table 2 (sequences shown by underlining are vector homologous regions):
(2) The pESC-LEU vector (Agilent Technologies) was digested with BamHI, and the linearized vector backbone was recovered.
(3) The purified PCR product obtained in the step 1) is cloned to the linearized vector skeleton obtained in the step 2) according to the instruction of pEASY-Uni Seamless Cloning and Assembly Kit of Beijing all-style gold biotechnology, inc., so as to obtain a recombinant plasmid pESC-LEU:: bbTPS3.
The recombinant plasmid pESC-LEU:: bbTPS3 is transformed into Escherichia coli Trans5 alpha competent cells, an LB plate is coated, and positive clone PCR identification (purchased from Beijing all-type gold biotechnology Co., ltd.) is carried out to obtain pESC-LEU:: bbTPS3 recombinant bacteria, and pESC-LEU:: bbTPS3 recombinant plasmid is extracted by using an E.Z.N.ATM plasmid mini kit I (Omega Bio-Tek Co., ltd.).
EXAMPLE 3 fermentation of L-borneol
The constructed pESC-LEU is characterized in that BbTPS3 recombinant plasmid is transferred into an MD strain to carry out fermentation to detect the yield of the L-borneol, and the specific operation is as follows:
MD Yeast competent preparation
Yeast competent cells were prepared using ZYMO RESEARCH FROZEN-EZ Yeast Transformation II kit:
(1) Selecting a newly activated MD yeast single colony from an SD-Ura solid plate, inoculating the newly activated MD yeast single colony in 10mL SD-Ura liquid culture medium, and performing shake culture at the temperature of 30 ℃ until OD600= 0.8-1.0;
(2) Centrifuging at room temperature at 500g for 4min, and removing supernatant;
(3) Adding 10mL of Frozen-EZ Solution 1 suspended thalli, centrifuging at room temperature for 4min at 500g, and removing a supernatant;
(4) Adding 1mL of Frozen-EZ Solution 2 suspension thalli to obtain BY-Mono yeast competent cells, and subpackaging the BY-Mono yeast competent cells into sterilized 1.5mL of EP tubes with each tube being 50 mu L;
(5) Slowly cooling to-70 deg.C (4 deg.C, 1h; 20 deg.C, 1h; 40 deg.C, 1h; and storing at-70 deg.C), and prohibiting quick freezing of competent cells with liquid nitrogen.
2. The recombinant plasmid pESC-LEU is formed by transforming BbTPS3 into MD yeast competent cells
(1) Mixing 0.2-1 μ g of recombinant plasmid pESC-LEU (BbTPS 3 (less than 5 μ L) with 50 μ L of BY-Mono yeast competent cells;
(2) Adding 500 mu L of Frozen-EZ Solution 3, and violently and uniformly mixing;
(3) Incubating at 30 deg.C for 1-2h, mixing uniformly for 2-3 times;
(4) Taking 50-150 mu L of the incubated bacterial liquid, coating the incubated bacterial liquid on an SD-Ura-LEU solid plate, airing, placing the plate at 30 ℃ for inverted culture for 48h to obtain the recombinant yeast transferred with the recombinant plasmid pESC-LEU, wherein BbTPS3 is named as MD-B1. Fermentation was carried out and the L-borneol product was detected as in example 1. The initial strain obtained by fermentation contained 1.24 mg.L -1 Levo-borneol (figure 3).
Example 4 protein Structure optimization of the high-producing Module of L-borneol
The yeast codon-optimized BbTPS3 obtained in the invention is further modified. We have shown that BbTPS3 has no transit peptide but still has a prediction of transit peptide length based on the results of ChloroP1.1 (ChloroP (http:// www. Cbs. Dtu. Dk/services/ChloroP /)), and we have conducted truncation experiments with this as reference, and we have designed three truncation sites E14, R18 and N38 for truncation, which are named t14-BbTPS3, t18-BbTPS3 and t38-BbTPS3, respectively.
The protein truncated plasmids pESC-Leu: (t 14-BbTPS 3), pESC-Leu: (t 18-BbTPS 3) and pESC-Leu: (t 38-BbTPS 3) are transformed into yeast competent cells to obtain the strains MD-B3, MD-B5 and MD-B7, and fermentation is carried out to determine the yield of borneol (figure 3). On the other hand, on the basis of the truncated protein, the BbTPS3 selects a common Kozak sequence 'GCCACC', constructs in different truncated plasmid versions, designs a specific primer to carry out PCR amplification on the BbTPS3 (Table 3), and constructs plasmids pESC-LEU added with the Kozak sequence, namely BbTPS3K, pESC-LEU, t14-BbTPS3K, pESC-LEU, t18-BbTPS3K and pESC-LEU, t38-BbTPS3K. Transforming the constructed truncated plasmid into yeast competent cells to obtain strains MD-B2, MD-B4, MD-B6 and MD-B8, and further measuring the yield of borneol.
Comparison shows that the yeast specificity Kozak sequence 'AAAAAA' improves the borneol yield more, so that a truncated plasmid pESC-LEU with the highest borneol yield in BbTPS3 is constructed by t14-BbTPS3, a version added with the yeast specificity Kozak sequence 'AAAAAA' is obtained, and the plasmid pESC-LEU is obtained by t14-BbTPS3K2, so that the strain MD-B9 is obtained.
The specific operation is as follows:
(1) Truncated primers were designed and, as shown in Table 3, monoterpene synthase BbTPS3 was PCR amplified from pET32a:: bbTPS3 plasmid, recovered and purified to obtain purified PCR product. Wherein the primer sequences are shown in Table 3 (sequences shown by underlining are vector homologous regions):
(2) The pESC-LEU vector (Agilent Technologies, inc.) was digested with BamHI, and the linearized vector backbone was recovered.
(3) Taking the purified PCR product obtained in the step 1), and Cloning the purified PCR product to the linearized vector skeleton obtained in the step 2) according to the operation of the specification of pEASY-Uni Seamless Cloning and Assembly Kit of Beijing Omegand Biotechnology Limited company to obtain a recombinant plasmid pESC-LEU:: bbTPS3.
The recombinant plasmids pESC-LEU (T14-BbTPS 3), pESC-LEU (T18-BbTPS 3), pESC-LEU (t 38-BbTPS 3), pESC-LEU (T14-BbTPS 3K), pESC-LEU (T18-BbTPS 3K) and pESC-LEU (T38-BbTPS 3K) are transformed into escherichia coli Trans5 alpha competent cells, LB plates are coated, positive clone PCR identification (purchased from Beijing all-style gold biotechnology, inc.) is carried out, recombinant bacteria are obtained, and the recombinant plasmids are extracted by using an E.Z.N.ATM plasmid mini I (Omega-Tek company) kit.
The recombinant plasmid was transferred to MD strain by the method of example 3 to obtain new strains MD-B2, MD-B3, MD-B4, MD-B5, MD-B6, MD-B7, MD-B8, and MD-B9, and the yields are shown in FIG. 4A. As a result, the yield of L-borneol of the truncated MD-B3 and MD-B5 fusion proteins is improved, wherein the yield of the strains MD-B3 and MD-B5 is 2.13 mg.L respectively -1 And 1.39 mg. L -1 . In addition, the inventive method is characterized in thatThe yield of the strain MD-B9 optimized by the specific Kozak sequence of the yeast is improved and is 4.87 mg.L -1
Example 5 protein fusion to increase L-borneol production
In order to further improve the yield of borneol, we further construct a mutant ERG20 F96W/N127W And BbTPS3, and different connecting peptides are selected for connection, so that the structure of the fusion protein is optimized.
5 flexible connecting peptides were selected for experiments, GGGS, GSG, WRFSPKLQ, VIPFIS and YRSQI, respectively. BbTPS3 constructs pESC-LEU respectively as follows, ERG20 F96W/N127W -GGGS-BbTPS3,pESC-LEU::ERG20 F96W/N127W -GSG-BbTPS3,pESC-LEU::ERG20 F96W/N127W -WRFSPKLQ-BbTPS3,pESC-LEU::ERG20 F96W/N127W -VIPFIS-BbTPS3,pESC-LEU::ERG20 F96W/N127W -YRSKI-BbTPS 3, 5 fusion protein plasmids in total.
Meanwhile, selecting pESC-LEU as ERG20 F96W/N127W The influence of the sequence of the connecting peptide nucleic acid and the sequence of the protein before and after is inspected by-GGGS-t 14-BbTPS3K2, and respectively construct pESC-LEU F96W/N127W -GGGS-t14-BbTPS3K2-2,pESC-LEU::t14-BbTPS3K2-GGGS-ERG20 F96W/N127W 2 two fusion protein plasmids, the construction scheme is shown in FIG. 4B.
The 7 plasmids were transformed into yeast competent cells to obtain strains MD-B10, MD-B11, MD-B12, MD-B13, MD-B14, MD-B15, and MD-B15, which were then fermented to determine the yield of borneol (FIG. 4B).
To construct pESC-LEU ERG20 F96W/N127W The mutant ERG20 is exemplified by-GGGS-BbTPS 3 plasmid F96W/N127W The method is constructed to a BamHI site, bbTPS3 is constructed to a SalI site, and the middle is connected by a flexible connecting peptide "GGGS", and the experimental operation steps are as follows:
1) Carrying out double digestion on the plasmid pESC-LEU by using a restriction enzyme BamHI and a restriction enzyme SalI, placing the plasmid pESC-LEU in a constant-temperature metal bath at 37 ℃ for incubation for 1h, running agarose gel on a reaction product to obtain a single-purpose strip, and carrying out gel cutting recovery to obtain a linearized vector;
2) Specific primers with BamHI and SalI site homology arm sequences in pESC-LEU were used (Table)3) PCR amplification of ERG20 F96W/N127W The sequence, the reaction product is run on agarose gel to obtain a single-purpose band, and the band is cut and recovered to obtain ERG20 F96W/N127W DNA purification fragments;
3) The linearized vector was coupled with ERG20 F96W/N127W The DNA purified fragment is seamlessly spliced by utilizing a pEASY-Uni Seamless Cloning and Assembly Kit homologous recombination Kit, a reaction product is converted into a clone competent cell Trans1-T1, the PCR identification of positive bacteria is carried out, and the sequencing is carried out to obtain a plasmid pESC-LEU:: ERG20 F96W/N127W
4) ERG20 as the positive plasmid pESC-LEU obtained in 3) F96W/N127W Performing single enzyme digestion by using restriction enzyme SalI as a template, placing in a constant-temperature metal bath at 37 ℃ for incubation for 1h, running agarose gel on a reaction product to obtain a single-purpose strip, and performing gel cutting recovery to obtain a linearized vector;
5) PCR amplifying a BbTPS3 sequence by using a specific primer (table 3) with a SalI site homologous arm sequence in pESC-LEU and a flexible connecting peptide GGGS sequence, running agarose gel on a reaction product to obtain a single target strip, and performing gel cutting recovery to obtain a DNA purified fragment of the BbTPS 3;
6) Seamlessly splicing the linearized vector and the DNA purified fragment of BbTPS3 with flexible connecting peptide GGGS by using pEASY-Uni Senamless Cloning and Assembly Kit homologous recombination Kit, transforming and Cloning competent cells Trans1-T1 by reaction products, carrying out PCR identification on positive bacteria, and sequencing to obtain plasmid pESC-LEU:: ERG20 F96W /N127W -GGGS-BbTPS3。
BbTPS3 according to the method, the BbTPS3 fusion protein plasmid pESC-LEU is respectively constructed, ERG20 F96W/N127W -GGGS-BbTPS3,pESC-LEU::ERG20 F96W/N127W -GSG-BbTPS3,pESC-LEU::ERG20 F96W/N127W -WRFSPKLQ-BbTPS3,pESC-LEU::ERG20 F96W/N127W -VIPFIS-BbTPS3,pESC-LEU::ERG20 F96W/N127W YRSQI-BbTPS3, primers are shown in Table 3.
The above 7 well-constructed fusion protein plasmids were transformed into yeast competent cells as described in example 3, item 2, to obtain L-borneol-producing yeast strains MD-B10, MD-B11, MD-B12, MD-B13, MD-B14, MD-B15 and MD-B16, and further determining the yield of borneol, wherein the respective yield is 12.41 mg.L -1 、10.52mg·L -1 、12.68mg·L -1 、10.81mg·L -1 、9.10mg·L -1 、12.19mg·L -1 、9.16mg·L -1
The present invention has been described in detail above. It will be apparent to those skilled in the art that the invention can be practiced in a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation. While the invention has been described with reference to specific embodiments, it will be appreciated that the invention can be further modified. In general, this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains. The use of some of the essential features is made possible within the scope of the claims attached below.
Sequence listing
<110> Sichuan Hongda pharmaceutical Co Ltd
<120> recombinant yeast engineering bacterium for producing L-borneol
<130> KH20210323
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1671
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
atggttggtt tccagaagca ctcttgctcc acccaagtta ccgaaccaat catcaggagg 60
tcagctaact acccaccaag taggtggtct tacgaggtct tgcaatccgt caccaacaac 120
tacgttggcg agaagtacaa gatcacctcc aacaacttga aggagagggt caggatgatg 180
atctccaagg ataccgccat gaagaaccca ttgtccatgt tggagttggt cgacgacttg 240
cagagattgg gcgtttccta ccacttcaag gacgagatct ccaacgtctt gaagatgatc 300
tactcctacc actacgaggc ccacaacaat tggaacacct tggacttgaa cctaaaggcc 360
ttgggcttca ggttgttgag acaacacggt taccacatcc cacaggagat cttcaaggac 420
atcaccgacg aatccggtaa catcaaggct tccgttcaag acgacttcgt tgccatgttg 480
aacttgtacg aggcttcctt ctacgccgtt gacgacgaaa acatcatgga cgaagccaga 540
gagttcacca ggaagtgctt gaaggagaag ttggagaaga acaacatcgt caacaagtcc 600
atcatgatgt tgatctccca cgccttggaa cacccattgt tgttcaggat cccaaggttc 660
gagtccgttt ggttcatcga ggcttacaag accagggacg acatgatccc attgttgcta 720
gagttcgccg tcttggacta caacatcttg caaggtattc accaggagga cttgaagcac 780
gttagtaagt ggtgggtcgg tttgcattgg atcaagaact tggagttcgc cagggatagc 840
atggtcgagt gtttcagttg gtccgtagga gctaacccag aaccatcttt cagcgtcttg 900
aggaggaaca tgaccaagaa cttgaccttc acttccgtct tggacgacgt ttacgacgtt 960
tacggtacct tggacgagtt ggaacagttc accgaagcag ttaggaggtg ggatatgaac 1020
gcagctgaag gtttgccaga ctacatgaga atttgcttca tgggcttgta caacaccatc 1080
aacgagatgg cctacaacac cttcatcaac cacaagtcct tcgtcatccc atacttgagg 1140
aaggtctgga cagagttttg cgaagccaac ctacaagaag ctaggtggta ctactccggt 1200
tacatcccaa ccttcgagga gtacctaaag acttccgtta tcaccgttgc cgttccagtt 1260
atcgtcttgg ccgcttactt cttggaagct aacgacttgt ccaacgaggc tttcgacaac 1320
gttatccact cctccgctat catcttgagg ttgaccgacg atcaaggtac ttccgaagca 1380
gaattggcta gaggagacgt tccaaagtcc gttcagtgct acatgaacga aacaggcgct 1440
tccagaaacg aagccatcgc ctacatgaag aggttgatca tcaacgccca caagaccatc 1500
aacaaggaga ggatggcttg caagtcccca acattgcaga tcttcatgga gtgcgctacc 1560
aacttgggta gaatcggtca cgtcacctac gatcacggag atatgttcgg cgttccagat 1620
gattcccatc aatcccacca caactccttg ttgttgaagc caaagacctg a 1671
<210> 2
<211> 1632
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
atggaaccaa tcatcaggag gtcagctaac tacccaccaa gtaggtggtc ttacgaggtc 60
ttgcaatccg tcaccaacaa ctacgttggc gagaagtaca agatcacctc caacaacttg 120
aaggagaggg tcaggatgat gatctccaag gataccgcca tgaagaaccc attgtccatg 180
ttggagttgg tcgacgactt gcagagattg ggcgtttcct accacttcaa ggacgagatc 240
tccaacgtct tgaagatgat ctactcctac cactacgagg cccacaacaa ttggaacacc 300
ttggacttga acctaaaggc cttgggcttc aggttgttga gacaacacgg ttaccacatc 360
ccacaggaga tcttcaagga catcaccgac gaatccggta acatcaaggc ttccgttcaa 420
gacgacttcg ttgccatgtt gaacttgtac gaggcttcct tctacgccgt tgacgacgaa 480
aacatcatgg acgaagccag agagttcacc aggaagtgct tgaaggagaa gttggagaag 540
aacaacatcg tcaacaagtc catcatgatg ttgatctccc acgccttgga acacccattg 600
ttgttcagga tcccaaggtt cgagtccgtt tggttcatcg aggcttacaa gaccagggac 660
gacatgatcc cattgttgct agagttcgcc gtcttggact acaacatctt gcaaggtatt 720
caccaggagg acttgaagca cgttagtaag tggtgggtcg gtttgcattg gatcaagaac 780
ttggagttcg ccagggatag catggtcgag tgtttcagtt ggtccgtagg agctaaccca 840
gaaccatctt tcagcgtctt gaggaggaac atgaccaaga acttgacctt cacttccgtc 900
ttggacgacg tttacgacgt ttacggtacc ttggacgagt tggaacagtt caccgaagca 960
gttaggaggt gggatatgaa cgcagctgaa ggtttgccag actacatgag aatttgcttc 1020
atgggcttgt acaacaccat caacgagatg gcctacaaca ccttcatcaa ccacaagtcc 1080
ttcgtcatcc catacttgag gaaggtctgg acagagtttt gcgaagccaa cctacaagaa 1140
gctaggtggt actactccgg ttacatccca accttcgagg agtacctaaa gacttccgtt 1200
atcaccgttg ccgttccagt tatcgtcttg gccgcttact tcttggaagc taacgacttg 1260
tccaacgagg ctttcgacaa cgttatccac tcctccgcta tcatcttgag gttgaccgac 1320
gatcaaggta cttccgaagc agaattggct agaggagacg ttccaaagtc cgttcagtgc 1380
tacatgaacg aaacaggcgc ttccagaaac gaagccatcg cctacatgaa gaggttgatc 1440
atcaacgccc acaagaccat caacaaggag aggatggctt gcaagtcccc aacattgcag 1500
atcttcatgg agtgcgctac caacttgggt agaatcggtc acgtcaccta cgatcacgga 1560
gatatgttcg gcgttccaga tgattcccat caatcccacc acaactcctt gttgttgaag 1620
ccaaagacct ga 1632
<210> 3
<211> 1620
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
atgaggaggt cagctaacta cccaccaagt aggtggtctt acgaggtctt gcaatccgtc 60
accaacaact acgttggcga gaagtacaag atcacctcca acaacttgaa ggagagggtc 120
aggatgatga tctccaagga taccgccatg aagaacccat tgtccatgtt ggagttggtc 180
gacgacttgc agagattggg cgtttcctac cacttcaagg acgagatctc caacgtcttg 240
aagatgatct actcctacca ctacgaggcc cacaacaatt ggaacacctt ggacttgaac 300
ctaaaggcct tgggcttcag gttgttgaga caacacggtt accacatccc acaggagatc 360
ttcaaggaca tcaccgacga atccggtaac atcaaggctt ccgttcaaga cgacttcgtt 420
gccatgttga acttgtacga ggcttccttc tacgccgttg acgacgaaaa catcatggac 480
gaagccagag agttcaccag gaagtgcttg aaggagaagt tggagaagaa caacatcgtc 540
aacaagtcca tcatgatgtt gatctcccac gccttggaac acccattgtt gttcaggatc 600
ccaaggttcg agtccgtttg gttcatcgag gcttacaaga ccagggacga catgatccca 660
ttgttgctag agttcgccgt cttggactac aacatcttgc aaggtattca ccaggaggac 720
ttgaagcacg ttagtaagtg gtgggtcggt ttgcattgga tcaagaactt ggagttcgcc 780
agggatagca tggtcgagtg tttcagttgg tccgtaggag ctaacccaga accatctttc 840
agcgtcttga ggaggaacat gaccaagaac ttgaccttca cttccgtctt ggacgacgtt 900
tacgacgttt acggtacctt ggacgagttg gaacagttca ccgaagcagt taggaggtgg 960
gatatgaacg cagctgaagg tttgccagac tacatgagaa tttgcttcat gggcttgtac 1020
aacaccatca acgagatggc ctacaacacc ttcatcaacc acaagtcctt cgtcatccca 1080
tacttgagga aggtctggac agagttttgc gaagccaacc tacaagaagc taggtggtac 1140
tactccggtt acatcccaac cttcgaggag tacctaaaga cttccgttat caccgttgcc 1200
gttccagtta tcgtcttggc cgcttacttc ttggaagcta acgacttgtc caacgaggct 1260
ttcgacaacg ttatccactc ctccgctatc atcttgaggt tgaccgacga tcaaggtact 1320
tccgaagcag aattggctag aggagacgtt ccaaagtccg ttcagtgcta catgaacgaa 1380
acaggcgctt ccagaaacga agccatcgcc tacatgaaga ggttgatcat caacgcccac 1440
aagaccatca acaaggagag gatggcttgc aagtccccaa cattgcagat cttcatggag 1500
tgcgctacca acttgggtag aatcggtcac gtcacctacg atcacggaga tatgttcggc 1560
gttccagatg attcccatca atcccaccac aactccttgt tgttgaagcc aaagacctga 1620
<210> 4
<211> 1560
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
atgaacaact acgttggcga gaagtacaag atcacctcca acaacttgaa ggagagggtc 60
aggatgatga tctccaagga taccgccatg aagaacccat tgtccatgtt ggagttggtc 120
gacgacttgc agagattggg cgtttcctac cacttcaagg acgagatctc caacgtcttg 180
aagatgatct actcctacca ctacgaggcc cacaacaatt ggaacacctt ggacttgaac 240
ctaaaggcct tgggcttcag gttgttgaga caacacggtt accacatccc acaggagatc 300
ttcaaggaca tcaccgacga atccggtaac atcaaggctt ccgttcaaga cgacttcgtt 360
gccatgttga acttgtacga ggcttccttc tacgccgttg acgacgaaaa catcatggac 420
gaagccagag agttcaccag gaagtgcttg aaggagaagt tggagaagaa caacatcgtc 480
aacaagtcca tcatgatgtt gatctcccac gccttggaac acccattgtt gttcaggatc 540
ccaaggttcg agtccgtttg gttcatcgag gcttacaaga ccagggacga catgatccca 600
ttgttgctag agttcgccgt cttggactac aacatcttgc aaggtattca ccaggaggac 660
ttgaagcacg ttagtaagtg gtgggtcggt ttgcattgga tcaagaactt ggagttcgcc 720
agggatagca tggtcgagtg tttcagttgg tccgtaggag ctaacccaga accatctttc 780
agcgtcttga ggaggaacat gaccaagaac ttgaccttca cttccgtctt ggacgacgtt 840
tacgacgttt acggtacctt ggacgagttg gaacagttca ccgaagcagt taggaggtgg 900
gatatgaacg cagctgaagg tttgccagac tacatgagaa tttgcttcat gggcttgtac 960
aacaccatca acgagatggc ctacaacacc ttcatcaacc acaagtcctt cgtcatccca 1020
tacttgagga aggtctggac agagttttgc gaagccaacc tacaagaagc taggtggtac 1080
tactccggtt acatcccaac cttcgaggag tacctaaaga cttccgttat caccgttgcc 1140
gttccagtta tcgtcttggc cgcttacttc ttggaagcta acgacttgtc caacgaggct 1200
ttcgacaacg ttatccactc ctccgctatc atcttgaggt tgaccgacga tcaaggtact 1260
tccgaagcag aattggctag aggagacgtt ccaaagtccg ttcagtgcta catgaacgaa 1320
acaggcgctt ccagaaacga agccatcgcc tacatgaaga ggttgatcat caacgcccac 1380
aagaccatca acaaggagag gatggcttgc aagtccccaa cattgcagat cttcatggag 1440
tgcgctacca acttgggtag aatcggtcac gtcacctacg atcacggaga tatgttcggc 1500
gttccagatg attcccatca atcccaccac aactccttgt tgttgaagcc aaagacctga 1560
<210> 5
<211> 6
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
gccacc 6
<210> 6
<211> 6
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
aaaaaa 6
<210> 7
<211> 1056
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta 60
gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat 120
gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg 180
gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa 240
aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttactggtt ggtcgccgat 300
gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa 360
gttggggaaa ttgccatctg ggacgcattc atgttagagg ctgctatcta caagcttttg 420
aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc 480
accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc 540
gacttgagta agttctccct aaagaagcac tccttcatag ttactttcaa gactgcttac 600
tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag 660
gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat 720
gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa 780
gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga 840
aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag 900
attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag 960
gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta 1020
actgcgttct tgaacaaagt ttacaagaga agcaaa 1056
<210> 8
<211> 2706
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta 60
gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat 120
gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg 180
gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa 240
aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttactggtt ggtcgccgat 300
gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa 360
gttggggaaa ttgccatctg ggacgcattc atgttagagg ctgctatcta caagcttttg 420
aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc 480
accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc 540
gacttgagta agttctccct aaagaagcac tccttcatag ttactttcaa gactgcttac 600
tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag 660
gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat 720
gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa 780
gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga 840
aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag 900
attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag 960
gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta 1020
actgcgttct tgaacaaagt ttacaagaga agcaaaggtg gaggtagtaa aaaaatggaa 1080
ccaatcatca ggaggtcagc taactaccca ccaagtaggt ggtcttacga ggtcttgcaa 1140
tccgtcacca acaactacgt tggcgagaag tacaagatca cctccaacaa cttgaaggag 1200
agggtcagga tgatgatctc caaggatacc gccatgaaga acccattgtc catgttggag 1260
ttggtcgacg acttgcagag attgggcgtt tcctaccact tcaaggacga gatctccaac 1320
gtcttgaaga tgatctactc ctaccactac gaggcccaca acaattggaa caccttggac 1380
ttgaacctaa aggccttggg cttcaggttg ttgagacaac acggttacca catcccacag 1440
gagatcttca aggacatcac cgacgaatcc ggtaacatca aggcttccgt tcaagacgac 1500
ttcgttgcca tgttgaactt gtacgaggct tccttctacg ccgttgacga cgaaaacatc 1560
atggacgaag ccagagagtt caccaggaag tgcttgaagg agaagttgga gaagaacaac 1620
atcgtcaaca agtccatcat gatgttgatc tcccacgcct tggaacaccc attgttgttc 1680
aggatcccaa ggttcgagtc cgtttggttc atcgaggctt acaagaccag ggacgacatg 1740
atcccattgt tgctagagtt cgccgtcttg gactacaaca tcttgcaagg tattcaccag 1800
gaggacttga agcacgttag taagtggtgg gtcggtttgc attggatcaa gaacttggag 1860
ttcgccaggg atagcatggt cgagtgtttc agttggtccg taggagctaa cccagaacca 1920
tctttcagcg tcttgaggag gaacatgacc aagaacttga ccttcacttc cgtcttggac 1980
gacgtttacg acgtttacgg taccttggac gagttggaac agttcaccga agcagttagg 2040
aggtgggata tgaacgcagc tgaaggtttg ccagactaca tgagaatttg cttcatgggc 2100
ttgtacaaca ccatcaacga gatggcctac aacaccttca tcaaccacaa gtccttcgtc 2160
atcccatact tgaggaaggt ctggacagag ttttgcgaag ccaacctaca agaagctagg 2220
tggtactact ccggttacat cccaaccttc gaggagtacc taaagacttc cgttatcacc 2280
gttgccgttc cagttatcgt cttggccgct tacttcttgg aagctaacga cttgtccaac 2340
gaggctttcg acaacgttat ccactcctcc gctatcatct tgaggttgac cgacgatcaa 2400
ggtacttccg aagcagaatt ggctagagga gacgttccaa agtccgttca gtgctacatg 2460
aacgaaacag gcgcttccag aaacgaagcc atcgcctaca tgaagaggtt gatcatcaac 2520
gcccacaaga ccatcaacaa ggagaggatg gcttgcaagt ccccaacatt gcagatcttc 2580
atggagtgcg ctaccaactt gggtagaatc ggtcacgtca cctacgatca cggagatatg 2640
ttcggcgttc cagatgattc ccatcaatcc caccacaact ccttgttgtt gaagccaaag 2700
acctga 2706
<210> 9
<211> 2703
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta 60
gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat 120
gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg 180
gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa 240
aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttactggtt ggtcgccgat 300
gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa 360
gttggggaaa ttgccatctg ggacgcattc atgttagagg ctgctatcta caagcttttg 420
aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc 480
accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc 540
gacttgagta agttctccct aaagaagcac tccttcatag ttactttcaa gactgcttac 600
tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag 660
gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat 720
gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa 780
gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga 840
aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag 900
attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag 960
gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta 1020
actgcgttct tgaacaaagt ttacaagaga agcaaaggta gcggaaaaaa aatggaacca 1080
atcatcagga ggtcagctaa ctacccacca agtaggtggt cttacgaggt cttgcaatcc 1140
gtcaccaaca actacgttgg cgagaagtac aagatcacct ccaacaactt gaaggagagg 1200
gtcaggatga tgatctccaa ggataccgcc atgaagaacc cattgtccat gttggagttg 1260
gtcgacgact tgcagagatt gggcgtttcc taccacttca aggacgagat ctccaacgtc 1320
ttgaagatga tctactccta ccactacgag gcccacaaca attggaacac cttggacttg 1380
aacctaaagg ccttgggctt caggttgttg agacaacacg gttaccacat cccacaggag 1440
atcttcaagg acatcaccga cgaatccggt aacatcaagg cttccgttca agacgacttc 1500
gttgccatgt tgaacttgta cgaggcttcc ttctacgccg ttgacgacga aaacatcatg 1560
gacgaagcca gagagttcac caggaagtgc ttgaaggaga agttggagaa gaacaacatc 1620
gtcaacaagt ccatcatgat gttgatctcc cacgccttgg aacacccatt gttgttcagg 1680
atcccaaggt tcgagtccgt ttggttcatc gaggcttaca agaccaggga cgacatgatc 1740
ccattgttgc tagagttcgc cgtcttggac tacaacatct tgcaaggtat tcaccaggag 1800
gacttgaagc acgttagtaa gtggtgggtc ggtttgcatt ggatcaagaa cttggagttc 1860
gccagggata gcatggtcga gtgtttcagt tggtccgtag gagctaaccc agaaccatct 1920
ttcagcgtct tgaggaggaa catgaccaag aacttgacct tcacttccgt cttggacgac 1980
gtttacgacg tttacggtac cttggacgag ttggaacagt tcaccgaagc agttaggagg 2040
tgggatatga acgcagctga aggtttgcca gactacatga gaatttgctt catgggcttg 2100
tacaacacca tcaacgagat ggcctacaac accttcatca accacaagtc cttcgtcatc 2160
ccatacttga ggaaggtctg gacagagttt tgcgaagcca acctacaaga agctaggtgg 2220
tactactccg gttacatccc aaccttcgag gagtacctaa agacttccgt tatcaccgtt 2280
gccgttccag ttatcgtctt ggccgcttac ttcttggaag ctaacgactt gtccaacgag 2340
gctttcgaca acgttatcca ctcctccgct atcatcttga ggttgaccga cgatcaaggt 2400
acttccgaag cagaattggc tagaggagac gttccaaagt ccgttcagtg ctacatgaac 2460
gaaacaggcg cttccagaaa cgaagccatc gcctacatga agaggttgat catcaacgcc 2520
cacaagacca tcaacaagga gaggatggct tgcaagtccc caacattgca gatcttcatg 2580
gagtgcgcta ccaacttggg tagaatcggt cacgtcacct acgatcacgg agatatgttc 2640
ggcgttccag atgattccca tcaatcccac cacaactcct tgttgttgaa gccaaagacc 2700
tga 2703
<210> 10
<211> 2709
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta 60
gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat 120
gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg 180
gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa 240
aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttactggtt ggtcgccgat 300
gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa 360
gttggggaaa ttgccatctg ggacgcattc atgttagagg ctgctatcta caagcttttg 420
aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc 480
accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc 540
gacttgagta agttctccct aaagaagcac tccttcatag ttactttcaa gactgcttac 600
tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag 660
gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat 720
gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa 780
gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga 840
aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag 900
attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag 960
gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta 1020
actgcgttct tgaacaaagt ttacaagaga agcaaatata gaagtcaaat caaaaaaatg 1080
gaaccaatca tcaggaggtc agctaactac ccaccaagta ggtggtctta cgaggtcttg 1140
caatccgtca ccaacaacta cgttggcgag aagtacaaga tcacctccaa caacttgaag 1200
gagagggtca ggatgatgat ctccaaggat accgccatga agaacccatt gtccatgttg 1260
gagttggtcg acgacttgca gagattgggc gtttcctacc acttcaagga cgagatctcc 1320
aacgtcttga agatgatcta ctcctaccac tacgaggccc acaacaattg gaacaccttg 1380
gacttgaacc taaaggcctt gggcttcagg ttgttgagac aacacggtta ccacatccca 1440
caggagatct tcaaggacat caccgacgaa tccggtaaca tcaaggcttc cgttcaagac 1500
gacttcgttg ccatgttgaa cttgtacgag gcttccttct acgccgttga cgacgaaaac 1560
atcatggacg aagccagaga gttcaccagg aagtgcttga aggagaagtt ggagaagaac 1620
aacatcgtca acaagtccat catgatgttg atctcccacg ccttggaaca cccattgttg 1680
ttcaggatcc caaggttcga gtccgtttgg ttcatcgagg cttacaagac cagggacgac 1740
atgatcccat tgttgctaga gttcgccgtc ttggactaca acatcttgca aggtattcac 1800
caggaggact tgaagcacgt tagtaagtgg tgggtcggtt tgcattggat caagaacttg 1860
gagttcgcca gggatagcat ggtcgagtgt ttcagttggt ccgtaggagc taacccagaa 1920
ccatctttca gcgtcttgag gaggaacatg accaagaact tgaccttcac ttccgtcttg 1980
gacgacgttt acgacgttta cggtaccttg gacgagttgg aacagttcac cgaagcagtt 2040
aggaggtggg atatgaacgc agctgaaggt ttgccagact acatgagaat ttgcttcatg 2100
ggcttgtaca acaccatcaa cgagatggcc tacaacacct tcatcaacca caagtccttc 2160
gtcatcccat acttgaggaa ggtctggaca gagttttgcg aagccaacct acaagaagct 2220
aggtggtact actccggtta catcccaacc ttcgaggagt acctaaagac ttccgttatc 2280
accgttgccg ttccagttat cgtcttggcc gcttacttct tggaagctaa cgacttgtcc 2340
aacgaggctt tcgacaacgt tatccactcc tccgctatca tcttgaggtt gaccgacgat 2400
caaggtactt ccgaagcaga attggctaga ggagacgttc caaagtccgt tcagtgctac 2460
atgaacgaaa caggcgcttc cagaaacgaa gccatcgcct acatgaagag gttgatcatc 2520
aacgcccaca agaccatcaa caaggagagg atggcttgca agtccccaac attgcagatc 2580
ttcatggagt gcgctaccaa cttgggtaga atcggtcacg tcacctacga tcacggagat 2640
atgttcggcg ttccagatga ttcccatcaa tcccaccaca actccttgtt gttgaagcca 2700
aagacctga 2709
<210> 11
<211> 2712
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta 60
gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat 120
gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg 180
gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa 240
aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttactggtt ggtcgccgat 300
gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa 360
gttggggaaa ttgccatctg ggacgcattc atgttagagg ctgctatcta caagcttttg 420
aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc 480
accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc 540
gacttgagta agttctccct aaagaagcac tccttcatag ttactttcaa gactgcttac 600
tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag 660
gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat 720
gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa 780
gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga 840
aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag 900
attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag 960
gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta 1020
actgcgttct tgaacaaagt ttacaagaga agcaaagtga taccttttat ttcaaaaaaa 1080
atggaaccaa tcatcaggag gtcagctaac tacccaccaa gtaggtggtc ttacgaggtc 1140
ttgcaatccg tcaccaacaa ctacgttggc gagaagtaca agatcacctc caacaacttg 1200
aaggagaggg tcaggatgat gatctccaag gataccgcca tgaagaaccc attgtccatg 1260
ttggagttgg tcgacgactt gcagagattg ggcgtttcct accacttcaa ggacgagatc 1320
tccaacgtct tgaagatgat ctactcctac cactacgagg cccacaacaa ttggaacacc 1380
ttggacttga acctaaaggc cttgggcttc aggttgttga gacaacacgg ttaccacatc 1440
ccacaggaga tcttcaagga catcaccgac gaatccggta acatcaaggc ttccgttcaa 1500
gacgacttcg ttgccatgtt gaacttgtac gaggcttcct tctacgccgt tgacgacgaa 1560
aacatcatgg acgaagccag agagttcacc aggaagtgct tgaaggagaa gttggagaag 1620
aacaacatcg tcaacaagtc catcatgatg ttgatctccc acgccttgga acacccattg 1680
ttgttcagga tcccaaggtt cgagtccgtt tggttcatcg aggcttacaa gaccagggac 1740
gacatgatcc cattgttgct agagttcgcc gtcttggact acaacatctt gcaaggtatt 1800
caccaggagg acttgaagca cgttagtaag tggtgggtcg gtttgcattg gatcaagaac 1860
ttggagttcg ccagggatag catggtcgag tgtttcagtt ggtccgtagg agctaaccca 1920
gaaccatctt tcagcgtctt gaggaggaac atgaccaaga acttgacctt cacttccgtc 1980
ttggacgacg tttacgacgt ttacggtacc ttggacgagt tggaacagtt caccgaagca 2040
gttaggaggt gggatatgaa cgcagctgaa ggtttgccag actacatgag aatttgcttc 2100
atgggcttgt acaacaccat caacgagatg gcctacaaca ccttcatcaa ccacaagtcc 2160
ttcgtcatcc catacttgag gaaggtctgg acagagtttt gcgaagccaa cctacaagaa 2220
gctaggtggt actactccgg ttacatccca accttcgagg agtacctaaa gacttccgtt 2280
atcaccgttg ccgttccagt tatcgtcttg gccgcttact tcttggaagc taacgacttg 2340
tccaacgagg ctttcgacaa cgttatccac tcctccgcta tcatcttgag gttgaccgac 2400
gatcaaggta cttccgaagc agaattggct agaggagacg ttccaaagtc cgttcagtgc 2460
tacatgaacg aaacaggcgc ttccagaaac gaagccatcg cctacatgaa gaggttgatc 2520
atcaacgccc acaagaccat caacaaggag aggatggctt gcaagtcccc aacattgcag 2580
atcttcatgg agtgcgctac caacttgggt agaatcggtc acgtcaccta cgatcacgga 2640
gatatgttcg gcgttccaga tgattcccat caatcccacc acaactcctt gttgttgaag 2700
ccaaagacct ga 2712
<210> 12
<211> 2718
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta 60
gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat 120
gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg 180
gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa 240
aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttactggtt ggtcgccgat 300
gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa 360
gttggggaaa ttgccatctg ggacgcattc atgttagagg ctgctatcta caagcttttg 420
aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc 480
accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc 540
gacttgagta agttctccct aaagaagcac tccttcatag ttactttcaa gactgcttac 600
tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag 660
gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat 720
gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa 780
gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga 840
aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag 900
attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag 960
gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta 1020
actgcgttct tgaacaaagt ttacaagaga agcaaatggc ggttctcgcc gaagcttcag 1080
aaaaaaatgg aaccaatcat caggaggtca gctaactacc caccaagtag gtggtcttac 1140
gaggtcttgc aatccgtcac caacaactac gttggcgaga agtacaagat cacctccaac 1200
aacttgaagg agagggtcag gatgatgatc tccaaggata ccgccatgaa gaacccattg 1260
tccatgttgg agttggtcga cgacttgcag agattgggcg tttcctacca cttcaaggac 1320
gagatctcca acgtcttgaa gatgatctac tcctaccact acgaggccca caacaattgg 1380
aacaccttgg acttgaacct aaaggccttg ggcttcaggt tgttgagaca acacggttac 1440
cacatcccac aggagatctt caaggacatc accgacgaat ccggtaacat caaggcttcc 1500
gttcaagacg acttcgttgc catgttgaac ttgtacgagg cttccttcta cgccgttgac 1560
gacgaaaaca tcatggacga agccagagag ttcaccagga agtgcttgaa ggagaagttg 1620
gagaagaaca acatcgtcaa caagtccatc atgatgttga tctcccacgc cttggaacac 1680
ccattgttgt tcaggatccc aaggttcgag tccgtttggt tcatcgaggc ttacaagacc 1740
agggacgaca tgatcccatt gttgctagag ttcgccgtct tggactacaa catcttgcaa 1800
ggtattcacc aggaggactt gaagcacgtt agtaagtggt gggtcggttt gcattggatc 1860
aagaacttgg agttcgccag ggatagcatg gtcgagtgtt tcagttggtc cgtaggagct 1920
aacccagaac catctttcag cgtcttgagg aggaacatga ccaagaactt gaccttcact 1980
tccgtcttgg acgacgttta cgacgtttac ggtaccttgg acgagttgga acagttcacc 2040
gaagcagtta ggaggtggga tatgaacgca gctgaaggtt tgccagacta catgagaatt 2100
tgcttcatgg gcttgtacaa caccatcaac gagatggcct acaacacctt catcaaccac 2160
aagtccttcg tcatcccata cttgaggaag gtctggacag agttttgcga agccaaccta 2220
caagaagcta ggtggtacta ctccggttac atcccaacct tcgaggagta cctaaagact 2280
tccgttatca ccgttgccgt tccagttatc gtcttggccg cttacttctt ggaagctaac 2340
gacttgtcca acgaggcttt cgacaacgtt atccactcct ccgctatcat cttgaggttg 2400
accgacgatc aaggtacttc cgaagcagaa ttggctagag gagacgttcc aaagtccgtt 2460
cagtgctaca tgaacgaaac aggcgcttcc agaaacgaag ccatcgccta catgaagagg 2520
ttgatcatca acgcccacaa gaccatcaac aaggagagga tggcttgcaa gtccccaaca 2580
ttgcagatct tcatggagtg cgctaccaac ttgggtagaa tcggtcacgt cacctacgat 2640
cacggagata tgttcggcgt tccagatgat tcccatcaat cccaccacaa ctccttgttg 2700
ttgaagccaa agacctga 2718
<210> 13
<211> 2706
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta 60
gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat 120
gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg 180
gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa 240
aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttactggtt ggtcgccgat 300
gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa 360
gttggggaaa ttgccatctg ggacgcattc atgttagagg ctgctatcta caagcttttg 420
aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc 480
accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc 540
gacttgagta agttctccct aaagaagcac tccttcatag ttactttcaa gactgcttac 600
tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag 660
gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat 720
gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa 780
gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga 840
aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag 900
attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag 960
gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta 1020
actgcgttct tgaacaaagt ttacaagaga agcaaaggtg gtggttctaa aaaaatggaa 1080
ccaatcatca ggaggtcagc taactaccca ccaagtaggt ggtcttacga ggtcttgcaa 1140
tccgtcacca acaactacgt tggcgagaag tacaagatca cctccaacaa cttgaaggag 1200
agggtcagga tgatgatctc caaggatacc gccatgaaga acccattgtc catgttggag 1260
ttggtcgacg acttgcagag attgggcgtt tcctaccact tcaaggacga gatctccaac 1320
gtcttgaaga tgatctactc ctaccactac gaggcccaca acaattggaa caccttggac 1380
ttgaacctaa aggccttggg cttcaggttg ttgagacaac acggttacca catcccacag 1440
gagatcttca aggacatcac cgacgaatcc ggtaacatca aggcttccgt tcaagacgac 1500
ttcgttgcca tgttgaactt gtacgaggct tccttctacg ccgttgacga cgaaaacatc 1560
atggacgaag ccagagagtt caccaggaag tgcttgaagg agaagttgga gaagaacaac 1620
atcgtcaaca agtccatcat gatgttgatc tcccacgcct tggaacaccc attgttgttc 1680
aggatcccaa ggttcgagtc cgtttggttc atcgaggctt acaagaccag ggacgacatg 1740
atcccattgt tgctagagtt cgccgtcttg gactacaaca tcttgcaagg tattcaccag 1800
gaggacttga agcacgttag taagtggtgg gtcggtttgc attggatcaa gaacttggag 1860
ttcgccaggg atagcatggt cgagtgtttc agttggtccg taggagctaa cccagaacca 1920
tctttcagcg tcttgaggag gaacatgacc aagaacttga ccttcacttc cgtcttggac 1980
gacgtttacg acgtttacgg taccttggac gagttggaac agttcaccga agcagttagg 2040
aggtgggata tgaacgcagc tgaaggtttg ccagactaca tgagaatttg cttcatgggc 2100
ttgtacaaca ccatcaacga gatggcctac aacaccttca tcaaccacaa gtccttcgtc 2160
atcccatact tgaggaaggt ctggacagag ttttgcgaag ccaacctaca agaagctagg 2220
tggtactact ccggttacat cccaaccttc gaggagtacc taaagacttc cgttatcacc 2280
gttgccgttc cagttatcgt cttggccgct tacttcttgg aagctaacga cttgtccaac 2340
gaggctttcg acaacgttat ccactcctcc gctatcatct tgaggttgac cgacgatcaa 2400
ggtacttccg aagcagaatt ggctagagga gacgttccaa agtccgttca gtgctacatg 2460
aacgaaacag gcgcttccag aaacgaagcc atcgcctaca tgaagaggtt gatcatcaac 2520
gcccacaaga ccatcaacaa ggagaggatg gcttgcaagt ccccaacatt gcagatcttc 2580
atggagtgcg ctaccaactt gggtagaatc ggtcacgtca cctacgatca cggagatatg 2640
ttcggcgttc cagatgattc ccatcaatcc caccacaact ccttgttgtt gaagccaaag 2700
acctga 2706
<210> 14
<211> 2706
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
ggtggtggtt ctaaaaaaat ggaaccaatc atcaggaggt cagctaacta cccaccaagt 60
aggtggtctt acgaggtctt gcaatccgtc accaacaact acgttggcga gaagtacaag 120
atcacctcca acaacttgaa ggagagggtc aggatgatga tctccaagga taccgccatg 180
aagaacccat tgtccatgtt ggagttggtc gacgacttgc agagattggg cgtttcctac 240
cacttcaagg acgagatctc caacgtcttg aagatgatct actcctacca ctacgaggcc 300
cacaacaatt ggaacacctt ggacttgaac ctaaaggcct tgggcttcag gttgttgaga 360
caacacggtt accacatccc acaggagatc ttcaaggaca tcaccgacga atccggtaac 420
atcaaggctt ccgttcaaga cgacttcgtt gccatgttga acttgtacga ggcttccttc 480
tacgccgttg acgacgaaaa catcatggac gaagccagag agttcaccag gaagtgcttg 540
aaggagaagt tggagaagaa caacatcgtc aacaagtcca tcatgatgtt gatctcccac 600
gccttggaac acccattgtt gttcaggatc ccaaggttcg agtccgtttg gttcatcgag 660
gcttacaaga ccagggacga catgatccca ttgttgctag agttcgccgt cttggactac 720
aacatcttgc aaggtattca ccaggaggac ttgaagcacg ttagtaagtg gtgggtcggt 780
ttgcattgga tcaagaactt ggagttcgcc agggatagca tggtcgagtg tttcagttgg 840
tccgtaggag ctaacccaga accatctttc agcgtcttga ggaggaacat gaccaagaac 900
ttgaccttca cttccgtctt ggacgacgtt tacgacgttt acggtacctt ggacgagttg 960
gaacagttca ccgaagcagt taggaggtgg gatatgaacg cagctgaagg tttgccagac 1020
tacatgagaa tttgcttcat gggcttgtac aacaccatca acgagatggc ctacaacacc 1080
ttcatcaacc acaagtcctt cgtcatccca tacttgagga aggtctggac agagttttgc 1140
gaagccaacc tacaagaagc taggtggtac tactccggtt acatcccaac cttcgaggag 1200
tacctaaaga cttccgttat caccgttgcc gttccagtta tcgtcttggc cgcttacttc 1260
ttggaagcta acgacttgtc caacgaggct ttcgacaacg ttatccactc ctccgctatc 1320
atcttgaggt tgaccgacga tcaaggtact tccgaagcag aattggctag aggagacgtt 1380
ccaaagtccg ttcagtgcta catgaacgaa acaggcgctt ccagaaacga agccatcgcc 1440
tacatgaaga ggttgatcat caacgcccac aagaccatca acaaggagag gatggcttgc 1500
aagtccccaa cattgcagat cttcatggag tgcgctacca acttgggtag aatcggtcac 1560
gtcacctacg atcacggaga tatgttcggc gttccagatg attcccatca atcccaccac 1620
aactccttgt tgttgaagcc aaagaccatg gcttcagaaa aagaaattag gagagagaga 1680
ttcttgaacg ttttccctaa attagtagag gaattgaacg catcgctttt ggcttacggt 1740
atgcctaagg aagcatgtga ctggtatgcc cactcattga actacaacac tccaggcggt 1800
aagctaaata gaggtttgtc cgttgtggac acgtatgcta ttctctccaa caagaccgtt 1860
gaacaattgg ggcaagaaga atacgaaaag gttgccattc taggttggtg cattgagttg 1920
ttgcaggctt actggttggt cgccgatgat atgatggaca agtccattac cagaagaggc 1980
caaccatgtt ggtacaaggt tcctgaagtt ggggaaattg ccatctggga cgcattcatg 2040
ttagaggctg ctatctacaa gcttttgaaa tctcacttca gaaacgaaaa atactacata 2100
gatatcaccg aattgttcca tgaggtcacc ttccaaaccg aattgggcca attgatggac 2160
ttaatcactg cacctgaaga caaagtcgac ttgagtaagt tctccctaaa gaagcactcc 2220
ttcatagtta ctttcaagac tgcttactat tctttctact tgcctgtcgc attggccatg 2280
tacgttgccg gtatcacgga tgaaaaggat ttgaaacaag ccagagatgt cttgattcca 2340
ttgggtgaat acttccaaat tcaagatgac tacttagact gcttcggtac cccagaacag 2400
atcggtaaga tcggtacaga tatccaagat aacaaatgtt cttgggtaat caacaaggca 2460
ttggaacttg cttccgcaga acaaagaaag actttagacg aaaattacgg taagaaggac 2520
tcagtcgcag aagccaaatg caaaaagatt ttcaatgact tgaaaattga acagctatac 2580
cacgaatatg aagagtctat tgccaaggat ttgaaggcca aaatttctca ggtcgatgag 2640
tctcgtggct tcaaagctga tgtcttaact gcgttcttga acaaagttta caagagaagc 2700
aaatag 2706

Claims (10)

1. A recombinant bacterium is a yeast containing or expressing blumea balsamifera monoterpene synthase BbTPS3 or blumea balsamifera monoterpene synthase BbTPS3 fusion protein in vivo;
the blumea balsamifera monoterpene synthase BbTPS3 fusion protein comprises blumea balsamifera monoterpene synthase BbTPS3 and farnesyl pyrophosphate synthase.
2. The recombinant bacterium according to claim 1, wherein the gene for expressing blumea balsamifera monoterpene synthase BbTPS3 is codon-optimized; preferably, the coding nucleic acid of blumea balsamifera monoterpene synthase BbTPS3 comprises a nucleic acid shown as SEQ ID NO. 1.
3. The recombinant bacterium according to claim 1, wherein the coding nucleic acid of blumea balsamifera monoterpene synthase BbTPS3 comprises a nucleic acid shown as SEQ ID NO 2, SEQ ID NO 3 or SEQ ID NO 4.
4. The recombinant bacterium according to any one of the preceding claims, wherein the recombinant bacterium further comprises a Kozak sequence having a nucleic acid sequence as set forth in SEQ ID No. 6.
5. The recombinant bacterium of any one of the preceding claims, wherein the nucleic acid encoding farnesyl pyrophosphate synthase comprises the nucleic acid shown in SEQ ID NO. 7.
6. The recombinant bacterium of any one of the preceding claims, wherein the blumea balsamifera monoterpene synthase BbTPS3 fusion protein further comprises a linker peptide for linking the blumea balsamifera monoterpene synthase BbTPS3 and the farnesyl pyrophosphate synthase; the connecting peptide is selected from GGGS, GSG, YRSQI, VIPFIS or WRFSPKLQ.
7. The recombinant bacterium according to any one of the preceding claims, wherein the nucleic acid encoding the blumea balsamifera monoterpene synthase BbTPS3 fusion protein is selected from the nucleic acids shown in any one of SEQ ID NO 8-14.
8. The recombinant bacterium according to any one of the preceding claims, wherein the in vivo containing or expressing blumea balsamifera monoterpene synthase or blumea balsamifera monoterpene synthase BbTPS3 fusion protein is introducing a nucleic acid encoding the blumea balsamifera monoterpene synthase or a nucleic acid encoding the blumea balsamifera monoterpene synthase BbTPS3 fusion protein into the yeast;
and/or, the step of introducing the coding nucleic acid of blumea balsamifera monoterpene synthase into the microzyme is to introduce a coding nucleic acid expression cassette containing the blumea balsamifera monoterpene synthase into the microzyme;
the step of introducing the coding nucleic acid of the blumea balsamifera monoterpene synthase fusion protein into the microzyme is to introduce a coding nucleic acid expression cassette containing the blumea balsamifera monoterpene synthase fusion protein into the microzyme;
and/or, the coding nucleic acid expression cassette containing blumea balsamifera monoterpene synthase is introduced into the yeast through a vector expressing the coding nucleic acid expression cassette of blumea balsamifera monoterpene synthase; the yeast is preferably introduced in plasmid form.
9. Recombinant strain according to any of the preceding claims, wherein the yeast is saccharomyces cerevisiae, preferably cen.
10. Use of the recombinant bacterium of any one of claims 1-9 for the production of levoborneol.
CN202110445318.0A 2021-04-23 2021-04-23 Recombinant yeast engineering bacterium for producing levo-borneol Pending CN115232756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110445318.0A CN115232756A (en) 2021-04-23 2021-04-23 Recombinant yeast engineering bacterium for producing levo-borneol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110445318.0A CN115232756A (en) 2021-04-23 2021-04-23 Recombinant yeast engineering bacterium for producing levo-borneol

Publications (1)

Publication Number Publication Date
CN115232756A true CN115232756A (en) 2022-10-25

Family

ID=83665891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110445318.0A Pending CN115232756A (en) 2021-04-23 2021-04-23 Recombinant yeast engineering bacterium for producing levo-borneol

Country Status (1)

Country Link
CN (1) CN115232756A (en)

Similar Documents

Publication Publication Date Title
CN112779242A (en) Merry-tree monoterpene synthase CbTPS1 and related biological material and application thereof
CN112695003B (en) Genetically engineered bacterium for high yield of cembratriene-alcohol and construction method and application thereof
CN111041041A (en) Saccharomyces cerevisiae recombinant strain for producing α -lupinene, 8-hydroxy- α -lupinene and zingerone and construction method thereof
CN111235046A (en) Recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and construction method thereof
CN114058525A (en) High-yield squalene genetic engineering bacterium and construction method and application thereof
CN113774079A (en) Recombinant saccharomyces cerevisiae and construction method and application thereof
CN111088175A (en) Yarrowia lipolytica for producing bisabolene and construction method and application thereof
CN114107078A (en) High-yield valencene genetic engineering bacterium and construction method and application thereof
CN112175848B (en) Yeast strain for producing patchouli alcohol and construction method and application thereof
CN112391300B (en) Application of flavone 3 beta-hydroxylase derived from silybum marianum and coenzyme thereof
CN103898178B (en) Enzyme process prepares high chiral pure (S)-3-piperidine alcohols and the method for derivant thereof
WO2023208037A1 (en) Nerolidol synthase and use thereof
CN111154665B (en) Recombinant yarrowia lipolytica and construction method and application thereof
CN112409492B (en) Borneol camphor monoterpene synthase CcTPS1 and related biological materials and application thereof
CN112608936A (en) Promoter for regulating and controlling expression of yeast exogenous gene, regulation and control method and application thereof
CN114525215B (en) Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain
CN113265391B (en) Linalool synthase CcLS and coding gene and application thereof
CN113265390B (en) Ocimum synthase CcOS and coding gene and application thereof
CN115232756A (en) Recombinant yeast engineering bacterium for producing levo-borneol
CN111548946B (en) Recombinant yeast engineering bacterium for producing sub-tanshinone diene
CN113005130A (en) Tanshinone IIA synthase gene and application thereof
CN114561308A (en) Recombinant yeast engineering bacterium for producing D-borneol
CN115305254B (en) Terpenoid chassis microorganism and engineering bacterium as well as construction method and application thereof
CN109762837B (en) Method for regulating coenzyme Q synthesis by using salvia miltiorrhiza long-chain isopentenyl transferase gene SmPPS2
CN114606146B (en) Yeast for producing D-limonene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination