CN114911738B - FPGA pin multiplexing method based on signal phase, electronic device and medium - Google Patents

FPGA pin multiplexing method based on signal phase, electronic device and medium Download PDF

Info

Publication number
CN114911738B
CN114911738B CN202210510990.8A CN202210510990A CN114911738B CN 114911738 B CN114911738 B CN 114911738B CN 202210510990 A CN202210510990 A CN 202210510990A CN 114911738 B CN114911738 B CN 114911738B
Authority
CN
China
Prior art keywords
signal
fpga
signal set
clock domain
fpga pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210510990.8A
Other languages
Chinese (zh)
Other versions
CN114911738A (en
Inventor
李春峰
黄建锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Yunshu Innovation Software Technology Co ltd
Shanghai Hejian Industrial Software Group Co Ltd
Original Assignee
Beijing Yunshu Innovation Software Technology Co ltd
Shanghai Hejian Industrial Software Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Yunshu Innovation Software Technology Co ltd, Shanghai Hejian Industrial Software Group Co Ltd filed Critical Beijing Yunshu Innovation Software Technology Co ltd
Priority to CN202210510990.8A priority Critical patent/CN114911738B/en
Publication of CN114911738A publication Critical patent/CN114911738A/en
Application granted granted Critical
Publication of CN114911738B publication Critical patent/CN114911738B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/4068Electrical coupling

Abstract

The invention relates to a signal phase-based FPGA pin multiplexing method, electronic equipment and a medium, comprising a step S1 of acquiring a TDM high-speed clock period T of an FPGA and N pieces of signal set information (S) designed by a chip 1 ,S 2 ,…S N },S n ={A n ,R n ,T n ,P n ,a n ,b n }; s2, if the phase difference P between the nth signal set and the nth-1 signal set is met simultaneously n ‑P n‑1 >(R n‑1 *b n‑1 +a n‑1 ) T, phase difference P of Nth signal set and first signal set N ‑P 1 <T 1 ‑[(R N *b N +a N )*T],T 1 ≤T N
Figure DDA0003637865070000011
Figure DDA0003637865070000012
Step S3 is executed; step S3, mixing a n Individual clock domain identification and/or check identification is added to b n A is n In (1), produce A n’ According to A 1’ ,A 2’ ,…A N’ The sequence of which sends the signals from the first FPGA pin to the second FPGA pin in sequence. The invention improves the multiplexing rate of the FPGA pin on the basis of the constraint condition corresponding to the signal set phase without increasing the signal delay.

Description

FPGA pin multiplexing method based on signal phase, electronic device and medium
Technical Field
The invention relates to the technical field of chips, in particular to a signal phase-based FPGA pin multiplexing method, electronic equipment and a medium.
Background
In a chip emulation (emulation) system and a prototype (prototype) system, they are usually implemented based on a plurality of FPGAs. In a chip simulation (emulation) system and a chip prototype (prototype) system, signal transmission between chips is realized through connection between pins of an FPGA. Since the number of signals is much larger than the number of pins of the FPGA, it is usually necessary to multiplex a plurality of user signals with one pin of the FPGA to transfer the signals. However, in the prior art, the more signals are multiplexed, the greater the delay of the signals from one FPGA pin to another FPGA pin, and the lower the operating frequency of the chip design, which are often the determining factors affecting the performance of the chip emulation system and the chip prototype system. Therefore, it is known how to improve the multiplexing rate of the FPGA pins without increasing the signal delay, and further improve the operating frequency of the chip design, so as to improve the performance of the chip simulation system and the chip prototype system.
Disclosure of Invention
The invention aims to provide an FPGA pin multiplexing method based on signal phase, electronic equipment and a medium, which improve the multiplexing rate of FPGA pins under the condition of not increasing signal delay.
According to a first aspect of the present invention, there is provided a signal phase-based FPGA pin multiplexing method, including:
s1, obtaining a TDM high-speed clock period T of the FPGA and N pieces of signal set information (S) designed by a chip 1 ,S 2 ,…S N And the FPGA is used for realizing the function of chip design, wherein S n Is the nth signal set information, and the value range of N is 1 to N, S n ={A n ,R n ,T n ,P n ,a n ,b n },A n Is S n The nth signal set of (a), different signal sets belonging to different clock domains; r n Is S n TDM multiplexing proportion of (1), T n Is S n Clock period of (D), P 1 Is S 1 At the time of one of the rising edges of the clock, P n+1 Is at P n Then S n+1 At the moment of the first clock rising edge of (1), P 1 <P 2 <…P N ,a n Is A n The reserved signal is used for storing clock domain identification and/or check identification, a n ≥1;b n Is A n Number of transmissions of b n ≥1;
S2, if the phase difference P between the nth signal set and the (n-1) th signal set is met simultaneously n -P n-1 >(R n-1 *b n-1 +a n-1 ) T, phase difference P of Nth signal set and first signal set N -P 1 <T 1 -[(R N *b N +a N )*T],T 1 ≤T N
Figure BDA0003637865050000021
Step S3 is executed;
step S3, mixing a n Individual clock domain identification and/or check identification is added to b n A is n In (1), produce A n ', according to A 1 ’,A 2 ’,…A N The sequence of' sends signals from the first FPGA pin to the second FPGA pin in turn.
According to a second aspect of the present invention, there is provided an electronic apparatus comprising: at least one processor; and a memory communicatively coupled to the at least one processor; wherein the memory stores instructions executable by the at least one processor, the instructions being arranged to perform the method of the first aspect of the invention.
According to a third aspect of the invention, there is provided a computer readable storage medium, the computer instructions being for performing the method of the first aspect of the invention.
Compared with the prior art, the invention has obvious advantages and beneficial effects. By means of the technical scheme, the FPGA pin multiplexing method based on the signal phase, the electronic equipment and the medium can achieve considerable technical progress and practicability, have wide industrial utilization value and at least have the following advantages:
the method of the invention transmits the signals of other signal sets by using the invalid data transmission time slot of the first signal set based on the constraint condition corresponding to the signal phase relation under the condition of not increasing the signal delay, thereby improving the multiplexing rate of the FPGA pin, further improving the running frequency of the chip design and improving the performance of the chip simulation system and the chip prototype system.
The foregoing description is only an overview of the technical solutions of the present invention, and in order to make the technical means of the present invention more clearly understood, the present invention may be implemented in accordance with the content of the description, and in order to make the above and other objects, features, and advantages of the present invention more clearly understood, the following preferred embodiments are described in detail with reference to the accompanying drawings.
Drawings
Fig. 1 is a flowchart of an FPGA pin multiplexing method based on signal phases according to an embodiment of the present invention;
fig. 2 is a schematic diagram of data transmission of a clock domain signal set multiplexing FPGA pin in the prior art.
Detailed Description
To further illustrate the technical means and effects of the present invention adopted to achieve the predetermined objects, the following detailed description will be given to specific embodiments and effects of an FPGA pin multiplexing method, an electronic device and a medium based on signal phases according to the present invention with reference to the accompanying drawings and preferred embodiments.
An embodiment of the present invention provides a signal phase-based FPGA (Field-Programmable Gate Array) pin multiplexing method, as shown in fig. 1, including:
s1, obtaining a TDM (Testing Data Management/Technical Data Management) high-speed clock period T of the FPGA and N pieces of signal set information (S1, S2, \ 8230; S) of chip design N And the FPGA is used for realizing the function of chip design.
Wherein S is n Is the nth signal set information, and the value range of N is 1 to N, S n ={A n ,R n ,T n ,P n ,a n ,b n },A n Is S n Different signal sets belong to different clock domains. R n Is S n The TDM multiplexing ratio of (A) is understood to be n Including R n Signals belonging to the same clock domain, R n The value of (c) may satisfy the frequency requirement of the nth signal set. T is a unit of n Is S n Is, it can be understood that T n And is more than or equal to T so as to realize TDM. P 1 Is S 1 On one of the clocksMoment of rising edge, P n+1 Is at P n Then S n+1 At the time of the first clock rising edge of (2), P 1 <P 2 <…P N 。a n Is A n The reserved signal bits used for storing the clock domain identification and/or the check identification, a n ≥1;b n Is A n Number of transmissions of (b) n Is more than or equal to 1. Note that, in order to prevent signal transmission failure due to system jitter or the like, a signal is generally transmitted multiple times to increase the transmission success rate, and therefore, b n Can be set according to specific redundancy requirements, preferably, b n And (2). It will be appreciated that if redundancy is not required, b n May be set to 1. The value of N is too large, which may increase signal delay, and is preferably less than or equal to 3.
S2, if the phase difference P between the nth signal set and the (n-1) th signal set is met simultaneously n -P n-1 >(R n-1 *b n-1 +a n-1 ) T, phase difference P of Nth signal set and first signal set N -P 1 <T 1 -[(R N *b N +a N )*T],T 1 ≤T N
Figure BDA0003637865050000041
Step S3 is performed.
As an embodiment, N =2, the first signal set and the second signal set multiplex one FPGA pin, and the first signal set and the second signal set must satisfy:
phase difference P of the second signal set and the first signal set 2 -P 1 >(R 1 *b 1 +a 1 ) T to ensure that in a round of multiplexing, the signals of the second signal set are transmitted after the transmission of the first signal set is completed.
Phase difference P of the second signal set and the first signal set 2 -P 1 <T 1 -(R 2 *b 2 +a 2 ) T to ensure that the signals of the second signal set are sent in the next round of multiplexing and after the first signal set is sent, so that the first signals are not influencedAnd (4) signal transmission of the sets.
In addition, T is required to be satisfied 1 ≤T 2
Figure BDA0003637865050000042
Therefore, the second signal set and the third signal set \8230areensured, the Nth signal set transmits signals by using invalid data transmission time slots of the first signal set, and the utilization rate of pins of the FPGA is improved.
As an embodiment, if N =3, the first signal set, the second signal set, and the third signal set multiplex one FPGA pin, and the first signal set, the second signal set, and the third signal set must satisfy:
phase difference P of the second signal set and the first signal set 2 -P 1 >(R 1 *b 1 +a 1 )*T。
Phase difference P of third signal set and second signal set 3 -P 2 >(R 2 *b 2 +a 2 )*T。
Third signal set phase difference P of first signal set 3 -P 1 <T 1 -(R 3 *b 3 +a 3 ) T to ensure that the signals of the second signal set are transmitted before and after the signals of the first signal set are transmitted in the next round of multiplexing, so that the transmission of the signals of the first signal set is not affected.
It should be noted that, in the prior art, pin multiplexing is, as shown in fig. 2 as an example, independently multiplexed for each signal set, that is, multiplexing is separately set for each clock domain. In fig. 2, TDM _ clk represents a TDM clock, TDM _ tx represents data transmission of a transmitting-end FPGA pin, and TDM _ rx represents data transmission of a receiving-end FPGA pin, and assuming that T =0.714ns and the multiplexing ratio is 8. In the embodiment of the invention, by judging the signal phase, the signal sets of other clock domains are added in t2-t1 for FPGA pin multiplexing under the condition of not influencing the signal sending of the signal set in the figure 2, so that the utilization rate of the FPGA pin is improved.
Step S3, mixing a n Individual clock domain identification and/or check identification is added to b n A is n In (1), produce A n ', according to A 1 ’,A 2 ’,…A N The sequence of' sends signals from the first FPGA pin to the second FPGA pin in turn.
According to the method provided by the embodiment of the invention, under the condition that the signal delay is not increased, the invalid data transmission time slot of the first signal set is utilized to transmit the signals of other signal sets based on the constraint condition corresponding to the signal phase relation, the multiplexing rate of the FPGA pin is improved, the running frequency of the chip design is further improved, and the performance of a chip simulation system and a chip prototype system is improved. The invalid data transmission time slot of the first signal set refers to the time taken for the first signal pin to transmit the first signal set in one period from the first FPGA pin to the second FPGA pin in the one period, and is subtracted by the time taken for the second FPGA pin to receive the first signal set, and it can be understood that the time taken for the first signal set to transmit the first signal set in the one period from the first FPGA pin is equal to the time taken for the first signal set to transmit the first signal set in the one period from the first FPGA pin.
As an example, A 1 ' begin sending signals from the first FPGA pin, receive all { A ] to the second FPGA pin 1 ’,A 2 ’,…A N ' } period of time, as one multiplexing period TW, for the ith multiplexing period TW i And step S3 includes:
step S31 at TW i Start position, set n =1.
Step S32, A n ' continuously sending the first FPGA pin to the second FPGA pin, and executing the step S33 after the sending is finished.
Step S33, if N < N, N = N +1 is set, and the process returns to step S32, and if N = N, i = i +1 is set, and the process returns to step S31.
It should be noted that the clock domain identifier is used to distinguish which clock domain the signal in the signal set belongs to, and the check identifier is used to check the signal, and the addition modes of the clock domain identifier and the check identifier are flexible, and can be added to corresponding positions according to specific application requirements, as long as the function of distinguishing the signal clock domain or checking can be implemented. As an example of the way in which the liquid is introduced,
as an example, a n =1, in said step S3, in b n A is n First of (A) n First adding A n Clock domain identification of (A), generating n ’。
As an example, a n Not less than 2, in the step S3, at least in b n A is n First of (A) n Adding A to the first position of n Clock domain identification of (1), in b n A is n At least one A of n And the tail part of the terminal is added with a check mark. For example at each A n The first addition of A n Clock domain identification of (A), each n In (3) tail addition A n The check mark of (2). Or, at b n A is n First of (A) n The first addition of A n Clock domain identification of (a), at b n A is n Last one of A n And adding a check mark at the tail part of the terminal. It should be noted that the number of the clock domain identifiers and the number of the check identifiers may be one or more, and are flexibly set according to application requirements.
As an example, a j Not less than 2, in step S3, in b n A is n At least one A is added to the head of each p bits j Clock domain identification of (1), adding A to the spare bits of the last p bits j The check mark of (2). And the corresponding clock domain identifier is set for each P bit, so that the signal sequencing is more orderly and the processing is convenient. As exemplified in table 1.
Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
0:dataset0 data0 data1 data2 data3 data4 data5 data6
0:dataset0 data7 data0 data1 data2 data3 data4 data5
0:dataset0 data6 data7 crc0 crc1 crc2 crc3 crc4
1:dataset1 data8 data9 data10 data11 data12 data13 data14
1:dataset1 data8 data9 data10 data11 data12 data13 data14
1:dataset1 data8 data9 data10 data11 data12 data13 data14
TABLE 1
In table 1, the 0 th bit of every 8 bits is used for signal indication, 0. The data of the first set of signals are all of the same clock domain. The signals of the second set of signals are all of the other clock domain. The signal phases of the first signal set of the second signal set satisfy the conditions listed in step S2. crc denotes the check mark. Table 1 is only an example, and the number and the positions of the clock domain identifier and the check identifier may be flexibly set. In addition, compared with the multiplexing ratio of the FPGA pins in the prior art shown in fig. 2, in the example of table 1, from 8.
As an embodiment, the method further comprises:
step S4, when { A 1 ’,A 2 ’,…A N And the signal in the' reaches the pin of the second FPGA, the currently received signal is analyzed, and the current target clock domain is determined based on the clock domain mark obtained by current analysis.
It is understood that when { A } 1 ’,A 2 ’,…A N The arrival of the signal in the' at the second FPGA pin means that there is a { A } 1 ’,A 2 ’,…A N When the signal in' } reaches the second FPGA pin, { A } 1 ’,A 2 ’,…A N The signal in' } is sent continuously to the second FPGA pin.
Step S5, if the corresponding check bit identification exists, checking the received signal, if the check passes, performing synchronous operation on the signal and then sending the signal to a current target clock domain, and if the check bit does not exist, performing synchronous operation on the signal and then sending the signal to the current target clock domain;
and S6, if a new clock domain identifier is obtained through analysis, updating the current target clock domain based on the new clock domain identifier.
The signals transmitted from the first FPGA pin to the second FPGA pin can be demultiplexed through the steps S5 to S6, signal synchronization is carried out by adopting calibration logic, if a check mark exists, the signals can be checked through the check logic to confirm whether a link has errors, and if the link has errors, prompt information can be sent.
It should be noted that some exemplary embodiments are described as processes or methods depicted as flowcharts. Although a flowchart may describe the steps as a sequential process, many of the steps can be performed in parallel, concurrently or simultaneously. In addition, the order of the steps may be rearranged. A process may be terminated when its operations are completed, but may have additional steps not included in the figure. A process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc.
An embodiment of the present invention further provides an electronic device, including: at least one processor; and a memory communicatively coupled to the at least one processor; wherein the memory stores instructions executable by the at least one processor and configured to perform a method according to an embodiment of the invention.
The embodiment of the invention also provides a computer-readable storage medium, and the computer instructions are used for executing the method of the embodiment of the invention.
Although the present invention has been described with reference to a preferred embodiment, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (8)

1. An FPGA pin multiplexing method based on signal phase is characterized by comprising the following steps:
s1, obtaining a TDM high-speed clock period T of the FPGA and N pieces of signal set information (S) designed by a chip 1 ,S 2 ,…S N And the FPGA is used for realizing the function of chip design, wherein S n Is the nth signal set information, and the value range of N is 1 to N, S n ={A n ,R n ,T n ,P n ,a n ,b n },A n Is S n The nth signal set of (a), different signal sets belonging to different clock domains; r is n Is S n TDM multiplex proportion of (T) n Is S n Clock period of (D), P 1 Is S 1 At the moment of one of the clock rising edges, P n+1 Is at P n Then S n+1 At the moment of the first clock rising edge of (1), P 1 <P 2 <…P N ,a n Is A n The reserved signal is used for storing clock domain identification and/or check identification, a n ≥1;b n Is A n Number of transmissions of b n ≥1;
S2, if the phase difference P between the nth signal set and the nth-1 signal set is met simultaneously n -P n-1 >(R n-1 *b n-1 +a n-1 ) T, phase difference P of Nth signal set and first signal set N -P 1 <T 1 -[(R N *b N +a N )*T],T 1 ≤T N
Figure FDA0003637865040000011
Step S3 is executed;
step S3, mixing a n Individual clock domain identification and/or check identification is added to b n A is n In (1), produce A n ', according to A 1 ’,A 2 ’,…A N The sequence of' sends signals from the first FPGA pin to the second FPGA pin in turn.
2. The method of claim 1,
a is prepared from 1 ' begin sending signals from the first FPGA pin to the second FPGA pin to receive all { A 1 ’,A 2 ’,…A N ' } period of time, as one multiplexing period TW, for the ith multiplexing period TW i And step S3 includes:
step S31, at TW i A start position, set n =1;
step S32, A n ' continuous transmission from the first FPGA pin to the secondTwo FPGA pins, after the transmission is finished, executing the step S33;
in step S33, if N < N, N = N +1 is set, and the process returns to step S32, and if N = N, i = i +1 is set, and the process returns to step S31.
3. The method of claim 1,
a j not less than 2, in step S3, in b n A is n At least one A is added to the head of each p bits j The clock domain of (1) and the spare bits of the last p bits are added with A j The check mark of (2).
4. The method of claim 1,
further comprising:
step S4, when { A } 1 ’,A 2 ’,…A N The signal in the' reaches the second FPGA pin, the currently received signal is analyzed, and the current target clock domain is determined based on the clock domain mark obtained by current analysis;
s5, if the corresponding check bit identification exists, checking the received signal, if the check passes, performing synchronous operation on the signal and then sending the signal to a current target clock domain, and if the check bit does not exist, performing synchronous operation on the signal and then sending the signal to the current target clock domain;
and S6, if a new clock domain identifier is obtained through analysis, updating the current target clock domain based on the new clock domain identifier.
5. The method of claim 1,
b n the values of (A) are all 2.
6. The method of claim 1,
n is less than or equal to 3.
7. An electronic device, comprising:
at least one processor;
and a memory communicatively coupled to the at least one processor;
wherein the memory stores instructions executable by the at least one processor, the instructions being arranged to perform the method of any of the preceding claims 1-6.
8. A computer-readable storage medium having stored thereon computer-executable instructions for performing the method of any one of claims 1-6.
CN202210510990.8A 2022-05-11 2022-05-11 FPGA pin multiplexing method based on signal phase, electronic device and medium Active CN114911738B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210510990.8A CN114911738B (en) 2022-05-11 2022-05-11 FPGA pin multiplexing method based on signal phase, electronic device and medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210510990.8A CN114911738B (en) 2022-05-11 2022-05-11 FPGA pin multiplexing method based on signal phase, electronic device and medium

Publications (2)

Publication Number Publication Date
CN114911738A CN114911738A (en) 2022-08-16
CN114911738B true CN114911738B (en) 2022-11-11

Family

ID=82766960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210510990.8A Active CN114911738B (en) 2022-05-11 2022-05-11 FPGA pin multiplexing method based on signal phase, electronic device and medium

Country Status (1)

Country Link
CN (1) CN114911738B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7123051B1 (en) * 2004-06-21 2006-10-17 Altera Corporation Soft core control of dedicated memory interface hardware in a programmable logic device
US7276982B1 (en) * 2005-03-31 2007-10-02 Chris Karabatsos High frequency digital oscillator-on-demand with synchronization
EP2871494A1 (en) * 2013-11-08 2015-05-13 U-blox AG Phase-alignment between clock signals
US9294094B1 (en) * 2015-01-08 2016-03-22 Cadence Design Systems, Inc. Method and apparatus for fast low skew phase generation for multiplexing signals on a multi-FPGA prototyping system
CN108959139A (en) * 2018-07-11 2018-12-07 郑州云海信息技术有限公司 A kind of CPLD pin multiplexing method and device
CN110704366A (en) * 2019-09-11 2020-01-17 无锡江南计算技术研究所 Pin multiplexing device and method based on IDDR and ODDR circuits inside FPGA

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8332795B2 (en) * 2009-12-15 2012-12-11 Apple Inc. Automated pin multiplexing for programmable logic device implementation of integrated circuit design
US9030047B2 (en) * 2012-06-08 2015-05-12 International Business Machines Corporation Controlling a fault-tolerant array of converters
US10355893B2 (en) * 2017-10-02 2019-07-16 Micron Technology, Inc. Multiplexing distinct signals on a single pin of a memory device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7123051B1 (en) * 2004-06-21 2006-10-17 Altera Corporation Soft core control of dedicated memory interface hardware in a programmable logic device
US7276982B1 (en) * 2005-03-31 2007-10-02 Chris Karabatsos High frequency digital oscillator-on-demand with synchronization
EP2871494A1 (en) * 2013-11-08 2015-05-13 U-blox AG Phase-alignment between clock signals
US9294094B1 (en) * 2015-01-08 2016-03-22 Cadence Design Systems, Inc. Method and apparatus for fast low skew phase generation for multiplexing signals on a multi-FPGA prototyping system
CN108959139A (en) * 2018-07-11 2018-12-07 郑州云海信息技术有限公司 A kind of CPLD pin multiplexing method and device
CN110704366A (en) * 2019-09-11 2020-01-17 无锡江南计算技术研究所 Pin multiplexing device and method based on IDDR and ODDR circuits inside FPGA

Also Published As

Publication number Publication date
CN114911738A (en) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2021043008A1 (en) Method and apparatus for transmitting signaling information, and communication node and storage medium
KR101791396B1 (en) Method for feeding back channel state information, ue and system
US11728938B2 (en) Terminal and communication method
CN117675153A (en) Transmission link configuration using reference signal mapping
US20080085703A1 (en) Apparatus, method and computer program product providing user equipment self-terminating reporting technique
CN103039104B (en) Blind detection method and device
US20230116161A1 (en) Determination of start time of pdcch monitoring occasion
CN114747261A (en) SCell beam failure recovery method and device
US11139879B2 (en) Precoding determining method and device, electronic device, and storage medium
US20160149628A1 (en) Channel state information (csi) reporting for carrier aggregation
CN114911738B (en) FPGA pin multiplexing method based on signal phase, electronic device and medium
CN104244319A (en) CSI measuring and reporting method and device
CN114911737B (en) FPGA pin multiplexing method based on signal frequency, electronic device and medium
CN103843388A (en) Channel quality information calculation method, feedback method, and device
CN102013971A (en) Receiving apparatus and receiving method thereof
CN101599810B (en) Error concealing device and error concealing method
US8798124B2 (en) Method of measuring error vector magnitude
CN110705198A (en) Method for verifying multi-port multi-message type cross communication component
WO2021062634A1 (en) Physical downlink shared channel transmission method and communication device
EP3796582A1 (en) Information reporting method, data transmission method, user equipment and network side device
CN116527454A (en) Channel estimation method and device based on speech pilot frequency
CN103413003A (en) Sequence transmitting device, sequence receiving device, sequence transmitting method and sequence receiving method
CN105554783B (en) Air interface test device, system and air interface test method
JP6853284B2 (en) How to feed back channel state information, user equipment and systems
CN113225800A (en) Method, device and terminal for sending and receiving synchronous resource indication information

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant