CN113827593B - 角鲨烯化西达本胺前药自组装纳米粒及制备方法与应用 - Google Patents

角鲨烯化西达本胺前药自组装纳米粒及制备方法与应用 Download PDF

Info

Publication number
CN113827593B
CN113827593B CN202111068460.4A CN202111068460A CN113827593B CN 113827593 B CN113827593 B CN 113827593B CN 202111068460 A CN202111068460 A CN 202111068460A CN 113827593 B CN113827593 B CN 113827593B
Authority
CN
China
Prior art keywords
squalene
chi
prodrug
stock solution
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111068460.4A
Other languages
English (en)
Other versions
CN113827593A (zh
Inventor
谷满仓
陈凯迪
赵山
石燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruinjin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Co Ltd
Zhejiang Chinese Medicine University ZCMU
Original Assignee
Ruinjin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Co Ltd
Zhejiang Chinese Medicine University ZCMU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruinjin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Co Ltd, Zhejiang Chinese Medicine University ZCMU filed Critical Ruinjin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Co Ltd
Priority to CN202111068460.4A priority Critical patent/CN113827593B/zh
Publication of CN113827593A publication Critical patent/CN113827593A/zh
Priority to LU502105A priority patent/LU502105B1/fr
Application granted granted Critical
Publication of CN113827593B publication Critical patent/CN113827593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4406Non condensed pyridines; Hydrogenated derivatives thereof only substituted in position 3, e.g. zimeldine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/01Hydrocarbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • A61K47/551Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds one of the codrug's components being a vitamin, e.g. niacinamide, vitamin B3, cobalamin, vitamin B12, folate, vitamin A or retinoic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种角鲨烯化西达本胺前药自组装纳米粒及制备方法与应用,首先将角鲨烯酸和西达本胺分别溶解于甲基甲酰胺中,以N‑羟基琥珀酰亚胺以及1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸为催化剂,将两者混合反应制备角鲨烯化西达本胺前药分子;然后将角鲨烯酸和叶酸‑聚乙二醇‑氨基或对甲氧基苯甲酰胺‑聚乙二醇‑氨基分别溶解于甲基甲酰胺中,以N‑羟基琥珀酰亚胺(NHS)以及1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸(EDCI)为催化剂,将两者混合反应得小分子配体,将小分子配体以及精氨酸‑甘氨酸‑天冬氨酸和角鲨烯化西达本胺前药分子在水中自组装形成纳米粒;本发明可有效解决西达本胺在实体肿瘤治疗方面存在的渗透率低、靶向性差、毒副作用大的缺点。

Description

角鲨烯化西达本胺前药自组装纳米粒及制备方法与应用
技术领域
本发明涉及医药技术领域,尤其涉及一种角鲨烯化西达本胺前药自组装纳米粒及制备方法与应用。
背景技术
胰腺癌是一种恶性消化道肿瘤,死亡率为发病率的94%,肿瘤异质性高。由于缺乏早期诊断标志物,预后效果极差,目前5年生存率仅为8~9%。胰腺癌具有十分复杂的肿瘤微环境,包括多种类型的炎症细胞。此外,肿瘤相关成纤维细胞组成了致密的细胞外基质,阻碍药物递送的同时压缩了血管的空间,小分子药物难以进入肿瘤内部从而发挥杀伤肿瘤细胞的作用。目前胰腺癌的治疗仍以传统手术切除为主,然而符合手术条件的病人比例低且切除后有很高的复发率。
西达本胺是由深圳微芯生物科技有限责任公司自主设计和合成的新分子实体药物,机制新颖,是全球首个亚型选择性组蛋白去乙酰化酶(HDAC)抑制剂,属于表观遗传调控剂类药物,可以用于多种疾病如癌症等的治疗。临床研究表明西达本胺对包括外周T细胞淋巴瘤在内的各种淋巴瘤具有确切疗效,是首个获批用于治疗外周T细胞淋巴瘤的口服药物,通过抑制HDAC的生物学活性产生作用,并由此产生针对肿瘤发生的多条信号传递通路基因表达的改变(即表观遗传改变)。最新临床前研究结果显示,西达本胺对实体肿瘤包括乳腺癌、胰腺癌等具有良好的抗肿瘤作用,综合指标好于同类作用机制药物的同期研究结果。然而西达本胺为亲水性小分子化合物,对胰腺癌等实体肿瘤存在靶向性低,血液毒性大,肿瘤微环境渗透效率低等缺点。这些缺点严重限制了西达本胺在实体肿瘤方面的应用。
角鲨烯是天然合成胆固醇脂质的前体物质,疏水性强,生物安全性好,广泛应用于医药、化妆品、保健品等领域。许多研究结果表明,角鲨烯具有一定抗肿瘤生物活性,其作用机理是通过抑制肿瘤细胞的生长,增强机体的免疫力,从而增强对肿瘤的抵抗力。目前角鲨烯已被通过结构改造引入羧基,并与吉西他滨等小分子药物共价链接,形成前药分子,该前药分子有效改善了吉西他滨半衰期短的劣势,提高了抗肿瘤活性,同时更易在水中自组装形成纳米粒,揭示了角鲨烯化前药具有良好的应用于肿瘤靶向治疗的前景。然而目前尚未有角鲨烯化前药在改善胰腺癌微环境渗透,并通过胰腺癌细胞响应释药方面的应用公开报道。
发明内容
本发明的目的是针对西达本胺在治疗实体肿瘤时存在靶向性差和肿瘤微环境渗透率低等缺点,提供一种角鲨烯化西达本胺前药自组装纳米粒及制备方法与应用。本发明通过将西达本胺与角鲨烯链接形成前药分子提高西达本胺的生物相容性,同时以叶酸、对甲氧基苯甲酰胺或RGD等小分子配体作为靶头,制备一种新型双重靶向性自组装纳米粒。该自组装纳米粒可明显提高西达本胺对胰腺癌肿瘤微环境的渗透作用,同时具有更强的胰腺癌肿瘤靶向性和抑制肿瘤细胞增长作用。
本发明的目的是通过以下技术方案来实现的:一种角鲨烯化西达本胺前药自组装纳米粒的制备方法,包括以下步骤:
(1)制备角鲨烯化西达本胺(SQ-CHI)前药分子:将角鲨烯酸(SQ-COOH)溶解于甲基甲酰胺(DMF)中,配成浓度为100~200mg/mL的第一SQ-COOH储备液,每毫升SQ-COOH储备液中加入30~60mg的N-羟基琥珀酰亚胺(NHS)和50~100mg的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸(EDCI),室温反应30~120min,得到第一SQ-COOH反应液。另取西达本胺(CHI)溶解于甲基甲酰胺(DMF),配成浓度为50~100mg/mL的第一CHI储备液,将SQ-COOH反应液与CHI储备液按体积比为1~2:1混合并于室温氮气保护条件下反应48~96h,反应结束后通过快速柱层析法进行提纯即得角鲨烯化西达本胺(SQ-CHI)前药分子;洗脱液为二氯甲烷:甲醇=85~495:5。
(2)制备配体修饰的聚乙二醇化角鲨烯分子:将SQ-COOH溶解于DMF中,配成浓度为1000~2000mg/mL的第二SQ-COOH储备液,每毫升SQ-COOH储备液中加入30~60mg的NHS和50~100mg的EDCI,室温反应30~120min,得到第二SQ-COOH反应液。另取叶酸-聚乙二醇-氨基(FA-PEG-NH2)、对甲氧基苯甲酰胺-聚乙二醇-氨基(AEAA-PEG-NH2)或(精氨酸-甘氨酸-天冬氨酸-聚乙二醇-氨基)RGD-PEG-NH2溶于DMF配成浓度为50~100mg/mL的第二DMF储备液,将第二SQ-COOH反应液和第二DMF储备液按体积比1~2:1混合并于室温氮气保护条件下反应48~96h。反应结束后用分子截留量为3Kda的超滤离心管以10000~14000rpm转速高速离心30~60min,除去游离SQ-COOH,得到配体修饰聚乙二醇化角鲨烯分子。
(3)制备配体修饰角鲨烯化西达本胺前药纳米粒。将步骤1制备的制备角鲨烯化西达本胺(SQ-CHI)前药分子溶解于体积浓度为95~100%的乙醇,制备成浓度为3.32~6.64mg/mL的第三储备液。另取步骤2制备的配体修饰的聚乙二醇角鲨烯分子溶解于体积浓度为95~100%的乙醇,制备成浓度为0.664~3.32mg/mL的第四储备液。将第三储备液和第四储备液按体积比为1:1混合,所得混合液中角鲨烯化西达本胺(SQ-CHI)前药分子与配体修饰的聚乙二醇角鲨烯分子的质量比为1:0.1~1。将混合液作为油相,去离子水为水相,油相与水相体积比为1:1~20。取上述油相逐滴滴入水相中,搅拌5~10min后,减压蒸发除去乙醇,再将混合物置于超声仪中超声30~60min。即得配体修饰角鲨烯化西达本胺前药纳米粒。
一种根据上述的方法制备的角鲨烯化西达本胺前药自组装纳米粒。
一种上述角鲨烯化西达本胺前药自组装纳米粒在制备抗实体肿瘤治疗的药物中的应用。所述角鲨烯化西达本胺前药自组装纳米粒制备成制剂,所述该制剂可提高西达本胺对实体肿瘤的靶向性和肿瘤微环境渗透,增强西达本胺治疗胰腺癌、结直肠癌、胃癌、食管癌、乳腺癌、肺癌等恶性肿瘤的疗效。
下面对本发明作进一步研究:
1、载药量的测定
将角鲨烯化西达本胺前药自组装纳米粒高速离心,取上清液并采用超高效液相色谱法(UPLC)测定其中CHI的含量,根据西达本胺的标准曲线即可计算出相应的浓度,从而计算载药量。最终纳米粒的载药量为50~80%。
2、体外药物释放
本发明利用胰腺癌细胞高表达胰蛋白酶水平,构建携带胰酶响应链接分子的角鲨烯化西达本胺前药。该前药可在胰酶环境中响应性释放西达本胺,而在不含有胰酶的环境中西达本胺释放量很低。此外角鲨烯为脂质化合物,与药物链接可以改善药物亲脂性,解决西达本胺分子肿瘤微环境渗透性差等问题,具有广阔的应用前景。
取2mL新鲜CHI储备液或CHI-SQ-PEG-FA NPs置于透析袋(3KDa)内,以含有0.1~0.25%胰酶的透析介质透析,于0.1~72h取样1mL,补加等量同温的释放介质,采用UPLC法测定药物释放量。最终纳米粒在0.1%胰酶环境下72h释放CHI的累积释放率应为60~70%,在0.25%胰酶环境下72h释放CHI的累积释放率应为70~90%,而在不含有胰蛋白酶的介质中纳米药物的CHI积累释放率仅为30~50%。
3、角鲨烯化西达本胺前药自组装纳米粒在PBS中稳定性的测定
将本发明所制备角鲨烯化西达本胺前药自组装纳米粒与PBS混合,置于37±0.5恒温振荡,于0~96h测定角鲨烯化西达本胺前药自组装纳米粒的粒径和Zeta电位。以粒径变化和Zeta电位变化为评价指标。最终纳米粒96h后粒径为170~210nm,Zeta电位为-25~-10mV。
4、MTS法检测细胞毒性
本发明采用MTS法检测空白纳米粒对西达苯胺敏感型胰腺癌细胞株(PSN-1)和西达苯胺抵抗型胰腺癌细胞株(CFPAC-1)的抑制作用。取含空白纳米载体的培养液进行孵育,使用酶标仪测定OD值,计算细胞生存率。最终不同浓度(3.125μM~100μM)空白纳米粒处理PSN-1和CFPAC-1细胞后细胞存活率为93~97%。
5、细胞药效实验
(1)单层细胞培养模型药效实验
本发明构建PSN-1和CFPAC-1单层细胞模型,分别加入含0.15625~50μM纳米粒的培养液孵育96h,采用酶标仪测定OD值。最终0.15625~50μM纳米粒处理PSN-1和CFPAC-1的细胞后存活率分别为90~5%和95~10%。
(2)共培养肿瘤球模型药效实验
本发明将处于对数期的PSN-1或CFPAC-1与HPSC细胞悬液按2:7比例混合,以每孔5000个细胞置于超低吸附细胞板中形成体外共培养肿瘤球模型。将不同纳米药物与肿瘤球共孵育48~144h后,加入等体积的CellTiter-Glo试剂,采用多功能酶标仪于562nm检测发光信号值。最终,在PSN-1/HPSC和CFPAC-1/HPSC三维肿瘤球模型中,纳米粒处理48~144h后细胞存活率为70~20%和60~10%
6、细胞摄取实验
(1)单层细胞模型摄取实验
本发明首先制备香豆素6标记的自组装纳米粒。单层细胞模型构建同步骤5中的步骤(1)。分别加入含纳米粒的无血清培养液处理24h,荧光显微镜测定香豆素6荧光强度。最终纳米粒的摄取是一个缓慢的过程,给药后12h荧光强度分别达到峰值,且荧光信号消除速度较慢,提示纳米粒能被肿瘤细胞较好摄取,且具有一定的缓释作用。
(2)内化入胞定量分析
单层细胞模型构建同步骤5中的步骤(1)。模型构建完成后分别加入含CHI-SQ-FA/C6 NPs、CHI-SQ-AEAA/C6 NPs、CHI-SQ-RGD/C6 NPs的培养液于细胞培养箱孵育4~24h,使用流式细胞仪定量分析细胞摄取情况。最终各纳米粒荧光强度均于12h达到顶峰,各纳米粒在PSN-1细胞中12h的荧光强度为400~800×103,在CFPAC-1细胞中12h的荧光强度为800~1000×103,与步骤(1)具有相同的结果。
(3)共培养肿瘤球模型摄取实验
共培养肿瘤球模型构建方法同步骤5中的步骤(2)。模型构建完成后分别加入含CHI-SQ-FA/C6 NPs和CHI-SQ-AEAA/C6 NPs和CHI-SQ-RGD/C6 NPs,在无血清培养液中培养12h后加入0.2μg/mL DAPI 0.5mL孵育,采用激光共聚焦显微镜观察药物在肿瘤球内分布情况。最终各纳米粒均具有显著的荧光信号。
本发明的有益效果是:
1、本发明所构建的角鲨烯化西达本胺前药分子,通过角鲨烯具有亲脂性的特性,显著提高了亲水性小分子药物西达本胺的生物相容性,极大改善了西达本胺对胰腺癌肿瘤微环境的渗透性,使药物能够进入肿瘤细胞内部发挥药效。
2、本发明所构建的角鲨烯化西达本胺前药分子,以胰酶响应键链接,在胰蛋白酶环境下可大量释放西达本胺,极大改善了西达本胺在胰腺癌肿瘤微环境中的释放。
3、本发明通过反向溶剂蒸发法制备角鲨烯化西达本胺前药自组装纳米粒,操作较简便易行。
4、本发明所制备的角鲨烯化西达本胺前药自组装纳米粒,通过表面修饰小分子配体实现胰腺癌肿瘤细胞的主动靶向性,兼具纳米粒的EPR效应,具有双重靶向性,可以特异性地输送更多治疗药物至肿瘤部位发挥药效,具有显著的治疗优势。
附图说明
图1是实施例7制备的自组装纳米粒的扫描电子显微镜图;
图2是实施例7制备的自组装纳米粒的粒径分布图;
图3是实施例8制备的自组装纳米粒的扫描电子显微镜图;
图4是实施例8制备的自组装纳米粒的粒径分布图;
图5是西达本胺-角鲨烯-叶酸纳米粒在(0~0.25)%浓度胰蛋白酶环境下的释药曲线图;其中,(a)是西达本胺-角鲨烯-叶酸纳米粒在0%浓度胰蛋白酶环境下的释药曲线图;(b)是西达本胺-角鲨烯-叶酸纳米粒在0.1%浓度胰蛋白酶环境下的释药曲线图;(c)是西达本胺-角鲨烯-叶酸纳米粒在0.25%浓度胰蛋白酶环境下的释药曲线图;
图6是西达本胺-角鲨烯-对甲氧基苯甲酰胺纳米粒在(0~0.25)%浓度胰蛋白酶环境下的释药曲线图;其中,(a)是西达本胺-角鲨烯-对甲氧基苯甲酰胺纳米粒在0%浓度胰蛋白酶环境下的释药曲线图;(b)是西达本胺-角鲨烯-对甲氧基苯甲酰胺纳米粒在0.1%浓度胰蛋白酶环境下的释药曲线图;(c)是西达本胺-角鲨烯-对甲氧基苯甲酰胺纳米粒在0.25%浓度胰蛋白酶环境下的释药曲线图;
图7是西达本胺-角鲨烯-精氨酸-甘氨酸-天冬氨酸纳米粒在(0~0.25)%浓度胰蛋白酶环境下的释药曲线图;其中,(a)是西达本胺-角鲨烯-精氨酸-甘氨酸-天冬氨酸纳米粒在0%浓度胰蛋白酶环境下的释药曲线图;(b)是西达本胺-角鲨烯-精氨酸-甘氨酸-天冬氨酸纳米粒在0.1%浓度胰蛋白酶环境下的释药曲线图;(c)是西达本胺-角鲨烯-精氨酸-甘氨酸-天冬氨酸纳米粒在0.25%浓度胰蛋白酶环境下的释药曲线图;
图8是纳米粒与PBS混合后96h粒径和zeta电位变化图;
图9是空白纳米载体处理PSN-1细胞毒性实验图;
图10是空白纳米载体处理CFPAC-1细胞毒性实验图;
图11是不同浓度纳米粒处理PSN-1单层细胞96h后细胞增殖柱状图;
图12是不同浓度纳米粒处理CFPAC-1单层细胞96h后细胞增殖柱状图;
图13是纳米粒处理PSN-1/HSPC三位肿瘤球模型144h后肿瘤细胞增殖图;
图14是纳米粒处理CFPAC-1/HSPC三位肿瘤球模型144h后肿瘤细胞增殖图;
图15是纳米粒处理PSN-1单层细胞后荧光强度柱状图;
图16是纳米粒处理CFPAC-1单层细胞后荧光强度柱状图。
具体实施方式
为了使发明内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案进行进一步的说明,但本发明不仅限于此。
实施例1
角鲨烯化西达本胺前药分子(SQ-CHI)的制备过程,包括以下步骤:
称取1,1’,2-三角鲨烯酸(1,1’,2-Tris-norsqualenoyl acid,SQ-COOH)100mg加入1mLDMF溶解均匀,向反应体系中逐步加入N-羟基琥珀酰亚胺(NHS)30mg以及1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸(EDCI)100mg,室温氮气保护条件下反应30min。准确称取西达苯胺100mg溶于1mLDMF中,滴加入上述反应体系中,继续在室温氮气保护条件下搅拌反应48h,反应结束后采用快速柱层析法(洗脱液为二氯甲烷:甲醇=99:1;95:5)进行提纯。结果成功制备SQ-CHI前药分子。
实施例2
角鲨烯化西达本胺前药分子(SQ-CHI)的制备过程,包括以下步骤:
称取1,1’,2-三角鲨烯酸(1,1’,2-Tris-norsqualenoyl acid,SQ-COOH)200mg加入1mLDMF溶解均匀,向反应体系中逐步加入N-羟基琥珀酰亚胺(NHS)60mg以及1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸(EDCI)50mg,室温氮气保护条件下反应120min。准确称取西达苯胺100mg溶于1mLDMF中,滴加入上述反应体系中,继续在室温氮气保护条件下搅拌反应96h,反应结束后采用快速柱层析法(洗脱液为二氯甲烷:甲醇=95:5;85:5)进行提纯。结果成功制备SQ-CHI前药分子。
实施例1和实施例2均成功制备SQ-CHI前药分子,优选实施例1所制备前药分子进行后续研究。
实施例3
叶酸-聚乙二醇-角鲨烯(FA-PEG-SQ)小分子配体的制备过程,包括以下步骤:
准确称取SQ-COOH 100mg加入100μLDMF溶解均匀,向反应体系中逐步加入NHS30mg以及EDCI 100mg,室温氮气保护条件下反应30min。准确称取FA-PEG-NH2粉末100mg溶于100μL DMF中,滴加入上述反应体系中,氮气条件下继续室温搅拌反应48h。反应结束用超滤离心管(分子截留量3KDa),以10000rpm转速高速离心30min。结果成功制备SQ-PEG-FA复合物。
实施例4
叶酸-聚乙二醇-角鲨烯(FA-PEG-SQ)小分子配体的制备过程,包括以下步骤:
准确称取SQ-COOH 200mg加入100μLDMF溶解均匀,向反应体系中逐步加入NHS60mg以及EDCI 50mg,室温氮气保护条件下反应120min。准确称取FA-PEG-NH2粉末100mg溶于100μL DMF中,滴加入上述反应体系中,氮气条件下继续室温搅拌反应96h。反应结束用超滤离心管(分子截留量3KDa),以14000rpm转速高速离心30min。结果成功制备SQ-PEG-FA复合物。
实施例5
对甲氧基苯甲酰胺-聚乙二醇-角鲨烯(AEAA-PEG-SQ)小分子配体的制备过程,包括以下步骤:
准确称取SQ-COOH 100mg加入100μLDMF溶解均匀,向反应体系中逐步加入NHS30mg以及EDCI 100mg,室温氮气保护条件下反应30min。准确称取AEAA-PEG-NH2粉末100mg溶于100μL DMF中,滴加入上述反应体系中,氮气条件下继续室温搅拌反应48h。反应结束用超滤离心管(分子截留量3KDa),以10000rpm转速高速离心30min。结果成功制备SQ-PEG-AEAA复合物。
实施例6
精氨酸-甘氨酸-天冬氨酸-聚乙二醇-角鲨烯(RGD-PEG-SQ)小分子配体的制备过程,包括以下步骤:
准确称取SQ-COOH 200mg加入100μLDMF溶解均匀,向反应体系中逐步加入NHS60mg以及EDCI 50mg,室温氮气保护条件下反应120min。准确称取RGD-PEG-NH2粉末100mg溶于100μL DMF中,滴加入上述反应体系中,氮气条件下继续室温搅拌反应96h。反应结束用超滤离心管(分子截留量3KDa),以14000rpm转速高速离心30min。结果成功制备SQ-PEG-RGD复合物。
实施例3-6均成功制备小分子配体复合物,优选实施例3所制备FA-PEG-SQ小分子配体进行后续纳米粒的制备,但本发明不仅限于此。
实施例7
角鲨烯化西达本胺前药自组装纳米粒的制备过程,包括以下步骤:准确称取6.64mg实施例1制备的SQ-CHI,加入2mL95%乙醇混合均匀制备成3.32mg/mL的SQ-CHI储备液。准确称取6.64mg实施例3制备的SQ-PEG-FA加入95%乙醇2mL混合均匀制备成3.32mg/mL的SQ-PEG-FA储备液。将SQ-CHI储备液与SQ-PEG-FA储备液混合以体积比1:1混合均匀,混合液中SQ-CHI与SQ-PEG-FA质量比为1:1。以SQ-CHI与SQ-PEG-FA混合液作为油相,去离子水作为水相。取油相逐滴滴入在搅拌情况下的1mL去离子水中,使油相与水相的体积比例为1:20,搅拌5min后,减压蒸发除去乙醇,再将混合物置于超声仪中超声60min,即得CHI-SQ-FANPs混悬液。检测纳米粒粒径分布与zeta电位,采用透射电子显微镜观察纳米粒外观形态。结果如图1和2所示得到的FA-SQ-CHI纳米粒粒径均一,具有典型“核壳”结构,粒径为173.3±1.5nm,PDI为0.2±0.2,zeta电位为-13.1±0.9mV。
实施例8
角鲨烯化西达本胺前药自组装纳米粒的制备过程,包括以下步骤:准确称取6.64mg实施例1制备的SQ-CHI,加入1mL100%乙醇混合均匀制备成6.64mg/mL的SQ-CHI储备液。准确称取6.64mg实施例3制备的SQ-PEG-AEAA加入100%乙醇10mL混合均匀制备成0.664mg/mL的SQ-PEG-AEAA储备液。将SQ-CHI储备液与SQ-PEG-FA储备液混合以体积比1:1混合均匀,混合液中SQ-CHI与SQ-PEG-FA质量比为1:0.1。以SQ-CHI与SQ-PEG-FA混合液作为油相,去离子水作为水相。取油相逐滴滴入在搅拌情况下的1mL去离子水中,使油相与水相的体积比例为1:1,搅拌10min后,减压蒸发除去乙醇,再将混合物置于超声仪中超声30min,即得CHI-SQ-AEAA NPs混悬液。检测纳米粒粒径分布与zeta电位,采用透射电子显微镜观察纳米粒外观形态。结果如图3和4所示得到的CHI-SQ-AEAA纳米粒粒径均一,具有典型“核壳”结构,粒径为168.2±0.7nm,PDI为0.4±0.1,zeta电位为-7.2±1.1mV。
实施例9:载药量测定
分别将制备的CHI-SQ-FA NPs以及CHI-SQ-AEAA NPs和CHI-SQ-RGD NPs复溶,以12000rpm高速离心30min后取滤液过0.22μm滤膜得续滤液,采用UPLC法测定续滤液中CHI的含量,冻干称纳米粒的总质量,并根据方程式计算纳米粒的载药量(DL%)。色谱条件:色谱柱为ACQUITY
Figure BDA0003259492410000082
BEH C18柱(2.1×50mm,1.7μm);体积流量0.2mL/min;柱温23;进样量5μL;检测时间10min;流动相0.1%甲酸溶液:乙腈(75:25);检测波长258nm。
结果根据CHI标准曲线计算,CHI-SQ-FA NPs的载药量为74.1±0.5%;CHI-SQ-AEAA NPs的载药量为59.8±0.4%;CHI-SQ-RGD NPs的载药量为63.2±0.8%。
Figure BDA0003259492410000081
实施例10:西达本胺在不同胰蛋白酶环境下的释放
准确量取2mL实施例7所制备的CHI-SQ-FA NPs,CHI-SQ-AEAA NPs和CHI-SQ-RGDNPs混悬液,置于预先处理过的透析袋(3KDa)内,取0.1%的胰酶置于透析袋内,分别置于40mL释放介质中,于37±0.5恒温振荡(75rpm),分别于0.1、0.5、1、2、4、6、8、10、12、24、30、36、48、72h取样1mL,随后补加等量同温的释放介质,所有样品经0.22μm微孔滤膜滤过后用UPLC测定药物含量,根据CHI标准曲线,计算CHI累积释药率(Q%)。
实施例11:西达本胺在不同胰蛋白酶环境下的释放
准确量取2mL实施例7所制备的CHI-SQ-FA NPs混悬液,置于预先处理过的透析袋(3KDa)内,取0.25%的胰酶置于透析袋内,分别置于40mL释放介质中,于37±0.5恒温振荡(75rpm),分别于0.1、0.5、1、2、4、6、8、10、12、24、30、36、48、72h取样1mL,随后补加等量同温的释放介质,所有样品经0.22μm微孔滤膜滤过后用UPLC测定药物含量,根据CHI标准曲线,计算CHI累积释药率(Q%)。
CHI-SQ-AEAA NPs和CHI-SQ-RGD NPs在不同胰蛋白酶环境下释放的测定方法同CHI-SQ-FA。
结果如图5~7所示,当释放介质中不含胰蛋白酶时,各纳米粒72h的累计释药率仅为41.0±2.0%(CHI-SQ-FA NPs);39.2±1.7%(CHI-SQ-AEAA NPs);35.1±1.3%(CHI-SQ-RGD NPs)。当释放介质中含有0.1%胰蛋白酶时,纳米粒72h的累计释药率达到68.2±3.8%;65.2±0.7%(CHI-SQ-AEAA NPs);62.1±2.5%(CHI-SQ-RGD NPs)。当释放介质中含有0.25%胰蛋白酶时,纳米粒72h的累计释药率达到80.2±4.0%,79.2±3.4%(CHI-SQ-AEAA NPs);85.1±0.3%(CHI-SQ-RGD NPs)。胰蛋白酶可以有效促进纳米粒的释放。
实施例12:CHI-SQ-FA NPs在PBS中稳定性的测定
将实施例7制备的CHI-SQ-FA NPs以及与PBS(PH7.4)以体积比1:20混合后,置于37±0.5恒温振荡(100rpm),分别在第1,3,6,12,18,24,30,36,42,48,72,96h测定CHI-SQ-FANPs的粒径和Zeta电位。以粒径和Zeta电位的变化作为稳定性评价指标。
结果如图8所示,96h后CHI-SQ-FA NPs粒径略有增加,达到205.6±3.2nm,Zeta电位达到-20.8±0.9mV。
CHI-SQ-AEAA NPs和CHI-SQ-RGD NPs稳定性测定方法同CHI-SQ-FA NPs。结果CHI-SQ-AEAA NPs 96h后粒径达到196.6±3.8nm,Zeta电位达到-10.3±1.2mV;CHI-SQ-AEAANPs 96h后粒径达到188.5±1.5nm,Zeta电位达到-3.4±0.2mV。整体来说,纳米粒在96h内具有较好的稳定性。
实施例13:MTS法检测细胞毒性
取处于对数生长期的西达苯胺敏感型胰腺癌细胞株(PSN-1)和西达本胺抵抗型胰腺癌细胞株(CFPAC-1)细胞,以4~6×104个/mL的细胞悬液接种于于96孔板,37培养24h后,分别加入3.125、6.25、12.5、25.0、50.0、100.0μmol·L-1SQ-PEG NPs,继续培养96h后,吸去含药培养液,每孔加入100μL含MTS工作液,于培养箱中继续孵育4h后,取出震摇14s,使用酶标仪于490nm处测定OD值并计算细胞生存率。
结果如图9~10所示,经空白纳米粒处理后,PSN-1和CFPAC-1细胞平均存活率分别为95.4±0.7%和93.7±0.5%,且各浓度下PSN-1和CFPAC-1细胞存活率均大于93%,具有良好的安全性。
实施例14:体外细胞药效实验
1、单层细胞培养模型药效实验
取处于对数生长期的PSN-1和CFPAC-1细胞,经0.25%胰酶消化后制成4~6×104个/ml的细胞悬液,然后以每孔100μL接种于96孔细胞板中,置于37恒温培养箱中培养2h使细胞贴壁。每孔加入100μL含0.15625、1.5625、3.125、6.25、12.5、25、50μmol·L-1CHI-SQ-FANPs培养液,然后将细胞板转入培养箱中继续培养96h后,弃去原培养液,每孔加入MTS工作液(MTS储备液/细胞培养液=1:5)100μL,继续转至培养箱中培养4h后,取出于摇床上震荡15秒,利用酶标仪在490nm处测定各孔的吸光度(OD值)计算肿瘤细胞增殖率。
CHI-SQ-AEAA NPs和CHI-SQ-RGD NPs对单层PSN-1和CFPAC-1细胞的药效研究同CHI-SQ-FA NPs。
结果如图11~12所示,当药物浓度达到3.125μmol·L-1时,游离CHI和纳米粒均可显著抑制肿瘤细胞的增长,当浓度达到50μmol·L-1时,CHI-SQ-FA NPs组的PSN-1细胞存活率仅为10.1±3.7%,CFPAC-1细胞存活率为21.1±0.9%,CHI-SQ-PEG NPs组PSN-1细胞存活率为15.7±4.0%,CFPAC-1细胞存活率为25.3±1.8%。CHI-SQ-AEAA NPs和CHI-SQ-RGDNPs结果与CHI-SQ-FA NPs一致。其中,CHI-SQ-AEAA NPs组的PSN-1细胞存活率仅为18.7±4.2%,CFPAC-1细胞存活率为28.7%±1.7%;CHI-SQ-RGD NPs组的PSN-1细胞存活率为16.21%±3.2%,CFPAC-1细胞存活率为14.7%±1.5%。
2、共培养肿瘤球模型药效实验
将处于对数期的PSN-1与HPSC细胞悬液按2:7比例混合,以每孔5000个细胞置于超低吸附细胞板中形成体外共培养肿瘤球模型。将含CHI-SQ-FA NPs培养液与肿瘤球共孵育48、96、144h后,加入等体积的CellTiter-Glo试剂,将细胞培养板放置于轨道式振荡器摇晃15min,室温避光放置30min,吸取细胞裂解液至黑色96板孔内,采用多功能酶标仪检测发光信号值(562nm)。CFPAC-1/HPSC共培养细胞肿瘤球处理方法同PSN-1/HPSC共培养细胞肿瘤球。
结果如图13~14所示,CFPAC-1/HPSC共培养细胞肿瘤球模型经CHI-SQ-FA NPs处理144h后,细胞存活率为39.8±9.0%;PSN-1/HPSC共培养细胞肿瘤球模型经CHI-SQ-FANPs处理144h后,细胞存活率为28.6±4.6%。CFPAC-1/HPSC共培养细胞肿瘤球模型经CHI-SQ-PEG NPs处理144h后,细胞存活率为45.8±7.1%;PSN-1/HPSC共培养细胞肿瘤球模型经CHI-SQ-PEG NPs处理144h后,细胞存活率为53.7±3.2%。CHI-SQ-AEAA NPs和CHI-SQ-RGDNPs对共培养肿瘤球模型的药效结果同CHI-SQ-FA NPs,分别为CHI-SQ-AEAA NPs处理CFPAC-1/HPSC共培养细胞肿瘤球模型144h后细胞存活率为23.7±2.3%,处理PSN-1/HPSC共培养细胞肿瘤球模型144h后细胞存活率为50.3±5.1%;CHI-SQ-RGD NPs处理CFPAC-1/HPSC共培养细胞肿瘤球模型144h后细胞存活率为35.1±1.3%,处理PSN-1/HPSC共培养细胞肿瘤球模型144h后细胞存活率为44.3±3.1%。
实施例15:体外细胞摄取实验
1、单层细胞培养模型摄取实验
准确称取1mg香豆素6,均匀溶于无水乙醇中,形成200μg/mL香豆素6储备液。取10μL香豆素6与实施例7制备的CHI-SQ-FA以1:0.7混合均匀,取0.1mL混合液用注射器逐滴滴入搅拌情况下的1ml去离子水中,搅拌5min,减压蒸发除去乙醇,再将混合物置于超声仪中超声30min。随后,将包裹香豆素6纳米粒转移至3KDa的超滤管中,以12000rpm条件下高速离心20min,除去未包裹的香豆素6,即得CHI-SQ-FA/C6 NPs。
取处于对数生长期的PSN-1或CFPAC-1细胞,以106个/ml接种于6孔板中,常规培养24h使其贴壁,加入CHI-SQ-FA/C6 NPs,CHI-SQ-AEAA/C6 NPs或CHI-SQ-RGD/C6 NPs的培养液于细胞培养箱孵育4h,12h和24h,随后弃去含药培养基加入冰冷的PBS(PH7.4)终止细胞摄取过程,并用1mL PBS(pH7.4)清洗3次,然后用0.05%胰蛋白酶将细胞从6孔板中消化消化下来,用新鲜的细胞培养液终止消化,离心,弃上清液,收集细胞,进行细胞计数,使细胞数在3~5×105个/ml,将细胞分散于PBS(PH7.4)清洗3遍,使用流式细胞仪定量分析细胞摄取情况。
结果如图15~16所示,在PSN-1和CFPAC-1细胞中,CHI-SQ-FA NPs、CHI-SQ-AEAANPs、CHI-SQ-RGD NPs的荧光强度均于12h达到顶峰,分别为CHI-SQ-FA NPs为549.6±17.5×103(PSN-1)和620.7±30.0×103(CFPAC-1),CHI-SQ-AEAA NPs为613.3±12.7×103(PSN-1)和810.7±34.1×103(CFPAC-1),CHI-SQ-RGD NPs为533.5±13.5×103(PSN-1)和792.5±21.1×103(CFPAC-1)。相较于游离的香豆素6,肿瘤细胞可缓慢且大量的摄取本发明所制备的自组装纳米粒。
2、共培养肿瘤球模型摄取实验
CFPAC-1/HPSC和PSN-1/HPSC三维肿瘤球模型培养方法同实施例14步骤(3)。培养24h后吸弃培养液,用PBS洗涤3次,加入步骤(1)所制备的CHI-SQ-FA/C6 NPs在无血清培养液中培养,12h后吸除培养液,预冷的PBS漂洗3次。用4%多聚甲醛固定15min后弃去,PBS漂洗3次,随后加入0.5mL DAPI(0.2μg/mL)孵育12h后弃去,PBS漂洗3次,将处理好的肿瘤球转移至激光共聚焦四分小皿中,使用激光共聚焦显微镜观察药物的肿瘤球内分布情况。
结果所示,本发明所制备的CHI-PEG-FA NPs处理12h后在肿瘤球模型中检测出明显的荧光信号,且强于游离香豆素6和西达本胺-角鲨烯-聚乙二醇纳米粒。在肿瘤球模型中具有良好的渗透能力。
由以上实施例可见,本发明创造性地通过化学改造,将角鲨烯与西达本胺通过胰酶响应键相链接,形成两亲性角鲨烯化西达本胺前药分子,该前药分子可显著提高西达本胺对胰腺癌肿瘤微环境的渗透能力,且在胰腺癌细胞高表达的胰蛋白酶环境下易发生断裂从而释放,实现胰腺癌靶向释药。角鲨烯化西达本胺前药可在水溶液中经自组装形成纳米粒,显著提高该前药分子在体内的滞留时间和胰腺癌微环境被动靶向性。同时本发明以叶酸、对甲氧基苯甲酰胺或RGD等小分子配体作为靶头,可进一步显著提高西达本胺对胰腺癌细胞的主动靶向效应。总之本发明创新性地制备了小分子配体靶头修饰的角鲨烯化西达本胺前药自组装纳米粒,该纳米粒同时具有增强的胰腺癌微环境渗透性、胰腺癌细胞响应释药性、小分子配体介导的胰腺癌细胞主动靶向性以及自组装纳米粒的肿瘤组织被动靶向特性,载药量大,稳定性好且操作方法简单易行。本发明从制剂角度为西达本胺抗胰腺癌治疗提供了新策略。

Claims (3)

1.一种角鲨烯化西达本胺前药自组装纳米粒的制备方法,其特征在于,包括以下步骤:
(1)制备角鲨烯化西达本胺(SQ-CHI)前药分子:将角鲨烯酸(SQ-COOH)溶解于甲基甲酰胺(DMF)中,配成浓度为100~200mg/mL的第一SQ-COOH储备液,每毫升SQ-COOH储备液中加入30~60mg的N-羟基琥珀酰亚胺(NHS)和50~100mg的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸(EDCI),室温反应30~120min,得到第一SQ-COOH反应液;另取西达本胺(CHI)溶解于甲基甲酰胺(DMF),配成浓度为50~100mg/mL的第一CHI储备液,将SQ-COOH反应液与CHI储备液按体积比为1~2:1混合并于室温氮气保护条件下反应48~96h,反应结束后通过快速柱层析法进行提纯即得角鲨烯化西达本胺(SQ-CHI)前药分子;洗脱液为二氯甲烷:甲醇=85~495:5;
(2)制备配体修饰的聚乙二醇化角鲨烯分子:将SQ-COOH溶解于DMF中,配成浓度为1000~2000mg/mL的第二SQ-COOH储备液,每毫升SQ-COOH储备液中加入30~60mg的NHS和50~100mg的EDCI,室温反应30~120min,得到第二SQ-COOH反应液;另取叶酸-聚乙二醇-氨基(FA-PEG-NH2)、对甲氧基苯甲酰胺-聚乙二醇-氨基(AEAA-PEG-NH2)或(精氨酸-甘氨酸-天冬氨酸-聚乙二醇-氨基)RGD-PEG-NH2溶于DMF配成浓度为50~100mg/mL的第二DMF储备液,将第二SQ-COOH反应液和第二DMF储备液按体积比1~2:1混合并于室温氮气保护条件下反应48~96h;反应结束后用分子截留量为3Kda的超滤离心管以10000~14000rpm转速高速离心30~60min,除去游离SQ-COOH,得到配体修饰聚乙二醇化角鲨烯分子;
(3)制备配体修饰角鲨烯化西达本胺前药纳米粒;将步骤(1)制备的制备角鲨烯化西达本胺(SQ-CHI)前药分子溶解于体积浓度为95~100%的乙醇,制备成浓度为3.32~6.64mg/mL的第三储备液;另取步骤(2)制备的配体修饰的聚乙二醇角鲨烯分子溶解于体积浓度为95~100%的乙醇,制备成浓度为 0.664~3.32mg/mL的第四储备液;将第三储备液和第四储备液按体积比为1:1混合,所得混合液中角鲨烯化西达本胺(SQ-CHI)前药分子与配体修饰的聚乙二醇角鲨烯分子的质量比为1:0.1~1;将混合液作为油相,去离子水为水相,油相与水相体积比为1:1~20;取上述油相逐滴滴入水相中,搅拌5~10min后,减压蒸发除去乙醇,再将混合物置于超声仪中超声30~60min; 即得配体修饰角鲨烯化西达本胺前药纳米粒。
2.一种根据权利要求1所述的方法制备的角鲨烯化西达本胺前药自组装纳米粒。
3.一种权利要求2所述角鲨烯化西达本胺前药自组装纳米粒在制备抗胰腺癌治疗的药物中的应用。
CN202111068460.4A 2021-09-13 2021-09-13 角鲨烯化西达本胺前药自组装纳米粒及制备方法与应用 Active CN113827593B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111068460.4A CN113827593B (zh) 2021-09-13 2021-09-13 角鲨烯化西达本胺前药自组装纳米粒及制备方法与应用
LU502105A LU502105B1 (fr) 2021-09-13 2022-05-17 Nanoparticules auto-assemblées de précurseur de chidamide squalénisé et son procédé de préparation et applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111068460.4A CN113827593B (zh) 2021-09-13 2021-09-13 角鲨烯化西达本胺前药自组装纳米粒及制备方法与应用

Publications (2)

Publication Number Publication Date
CN113827593A CN113827593A (zh) 2021-12-24
CN113827593B true CN113827593B (zh) 2023-03-03

Family

ID=78958955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111068460.4A Active CN113827593B (zh) 2021-09-13 2021-09-13 角鲨烯化西达本胺前药自组装纳米粒及制备方法与应用

Country Status (2)

Country Link
CN (1) CN113827593B (zh)
LU (1) LU502105B1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111205276A (zh) * 2018-11-22 2020-05-29 青岛博远高分子材料研究院有限公司 由有机小分子化合物自组装形成的微纳结构及其应用
WO2020128972A1 (en) * 2018-12-20 2020-06-25 Novartis Ag Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
CN112386585A (zh) * 2020-10-20 2021-02-23 浙江大学 一种自组装纳米药物及其制备方法与应用
CN112566666A (zh) * 2018-05-14 2021-03-26 努瓦申生物公司 靶向抗癌核激素受体的化合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112566666A (zh) * 2018-05-14 2021-03-26 努瓦申生物公司 靶向抗癌核激素受体的化合物
CN111205276A (zh) * 2018-11-22 2020-05-29 青岛博远高分子材料研究院有限公司 由有机小分子化合物自组装形成的微纳结构及其应用
WO2020128972A1 (en) * 2018-12-20 2020-06-25 Novartis Ag Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
CN112386585A (zh) * 2020-10-20 2021-02-23 浙江大学 一种自组装纳米药物及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"叶酸修饰角鲨烯化西达本胺前药自组装纳米粒的构建与增强胰腺癌微环境递药的实验研究";陈凯迪等;《药学学报》;20211231;参见摘要 *
Anshuman Ambike等."Interaction of Self-Assembled Squalenoyl Gemcitabine Nanoparticles with Phospholipid-Cholesterol Monolayers Mimicking a Biomembrane".《Langmuir》.2011,第4891-4899页. *

Also Published As

Publication number Publication date
CN113827593A (zh) 2021-12-24
LU502105B1 (fr) 2022-11-17

Similar Documents

Publication Publication Date Title
CN110801431B (zh) 一种核-壳型智能纳米递送系统的构建及应用
US9629923B2 (en) Cisplatin complex and preparation method thereof
JP2011524446A (ja) ポリグリコールで修飾されたキトサンオリゴ糖脂肪酸グラフト体、その調製方法およびその使用
CN114377149B (zh) 一种Mn基可降解MOF纳米反应器及其制备方法和应用
CN114259477B (zh) 一种促渗透、缓解肿瘤缺氧并能靶向肿瘤细胞的纳米递送体系及其制备方法和应用
CN111744009B (zh) 一种双靶向的酸敏感普鲁士蓝载药体系的制备方法及应用
CN106729735A (zh) 一种pH敏感的多肽聚合物及其制备方法和应用
CN107019673A (zh) 一种具有肿瘤主动靶向功能的紫杉醇脂质体制剂及其制备方法和应用
CN113304119A (zh) 一种外泌体联合索拉非尼脂质体的构建方法
CN113633625A (zh) 一种杂膜负载氧化磷酸化抑制剂的纳米药物及其制备方法
CN112121182B (zh) 一种检测缺氧细胞用纳米探针及其制备方法与应用
CN113827593B (zh) 角鲨烯化西达本胺前药自组装纳米粒及制备方法与应用
CN110354276B (zh) 一种前药及其制备方法和应用
CN111821469A (zh) 归巢靶向rsgrvsn肽修饰的聚乙二醇-聚多巴胺-普鲁士蓝复合纳米粒子及制备方法
CN107028882B (zh) 一种物理包裹的肿瘤靶向纳米递药系统及制备方法和应用
CN112675306B (zh) 一种靶向增强肿瘤光动力治疗效果的氟化纳米复合物及其制备和应用
CN115252790A (zh) 双靶向的肿瘤微环境响应的多功能纳米递送系统及其制备方法与应用
CN116262138A (zh) 一种具有核壳结构的pH响应型外泌体载体及其制备方法与应用
CN113278092A (zh) 一种聚合物载体材料及其制剂和应用
CN113616806A (zh) 一种铂-艾考糊精-聚己内酯大分子化合物、纳米载药系统及其应用
CN112891339A (zh) 包封青蒿素的血红素纳米囊泡、制备方法和用途
CN116617408B (zh) 一种微生物与功能核酸共递送系统及其制备方法与应用
CN112826938B (zh) 环γ-聚谷氨酸涂层智能纳米药物输送体系及其制备方法
CN109666087A (zh) 一种环糊精类衍生物及其制备方法与应用
CN110025577A (zh) 一种多肽药物口服靶向系统M27-39@FA-MCNs复合体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant