CN112928415B - Medium composite type sub-terahertz dielectric waveguide transmission line - Google Patents

Medium composite type sub-terahertz dielectric waveguide transmission line Download PDF

Info

Publication number
CN112928415B
CN112928415B CN202110265310.6A CN202110265310A CN112928415B CN 112928415 B CN112928415 B CN 112928415B CN 202110265310 A CN202110265310 A CN 202110265310A CN 112928415 B CN112928415 B CN 112928415B
Authority
CN
China
Prior art keywords
dielectric
transmission line
waveguide transmission
dielectric waveguide
terahertz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110265310.6A
Other languages
Chinese (zh)
Other versions
CN112928415A (en
Inventor
施金
耿昕
张凌燕
刘栩
徐凯
郁梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Nantong Research Institute for Advanced Communication Technologies Co Ltd
Original Assignee
Nantong University
Nantong Research Institute for Advanced Communication Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University, Nantong Research Institute for Advanced Communication Technologies Co Ltd filed Critical Nantong University
Priority to CN202110265310.6A priority Critical patent/CN112928415B/en
Publication of CN112928415A publication Critical patent/CN112928415A/en
Application granted granted Critical
Publication of CN112928415B publication Critical patent/CN112928415B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor

Abstract

The invention discloses a dielectric composite type sub-terahertz dielectric waveguide transmission line, which is characterized in that two low-dielectric-constant circular cylinder dielectrics are alternately distributed along the radial direction, wherein the dielectric constants of adjacent dielectric cylinders are different, the dielectric constants of the dielectric cylinders at intervals are the same, and the dielectric constant of the innermost dielectric cylinder is greater than that of the next-inner dielectric cylinder. The dielectric waveguide transmission line can give consideration to the characteristics of size, dispersion and loss at the sub-terahertz working frequency band, and has the advantages of small size, low dispersion and low loss.

Description

Medium composite type sub-terahertz dielectric waveguide transmission line
Technical Field
The invention relates to a sub-terahertz dielectric waveguide transmission line.
Background
The sub-terahertz (sub-THz) transmission system is an important part of sixth-generation mobile communication, and is widely applied to the fields of remote sensing, radar, environmental monitoring, biomedicine and the like. In the sub-terahertz frequency band, the surface resistance of the metal of the transmission system is larger under the influence of the skin effect of the metal surface, so that the transmission system of a metal waveguide type has higher conductor loss, and the transmission system composed of pure medium has the advantages of reducing the loss and being easier to bend in structure.
The existing sub-terahertz frequency band dielectric waveguide transmission line comprises a photonic crystal waveguide and a traditional cylindrical dielectric waveguide. The photonic crystal waveguide depends on multilayer reflection of traveling waves in a cladding, the dispersion of the photonic crystal waveguide is small, but the photonic crystal waveguide has large transmission loss, a complex structure, difficulty in processing, far larger size than wavelength and a narrow working frequency band. Conventional cylindrical dielectric waveguides are relatively simple to process, can be close in diameter to the wavelength, but suffer from significant loss increase with decreasing diameter, and high dispersion.
Disclosure of Invention
The purpose of the invention is as follows: aiming at the prior art, the dielectric composite type sub-terahertz dielectric waveguide transmission line is provided, and the effects of small size, low loss and low dispersion are achieved.
The technical scheme is as follows: a dielectric composite type sub-terahertz dielectric waveguide transmission line is characterized in that two kinds of circular cylindrical dielectrics with low dielectric constants are sequentially nested and compounded from inside to outside in an alternating mode to form a three-layer dielectric composite structure or a five-layer dielectric composite structure; the dielectric constant of the odd-numbered layer of circular column medium is smaller than that of the even-numbered layer of circular column medium from inside to outside along the radial direction; the dielectric waveguide transmission line works in the HE11Mode, dielectric waveguide transmission lines have diameters between 0.9-1 wavelength.
Has the advantages that: the invention adopts the alternative distribution of two low dielectric constant circular column media along the radial direction, wherein the dielectric constants of the adjacent dielectric columns are different, the dielectric constants of the dielectric columns at the interval layer are the same, and the dielectric constant of the innermost dielectric column is larger than that of the next inner dielectric column. The dielectric waveguide transmission line can give consideration to the characteristics of size, dispersion and loss at the sub-terahertz working frequency band, and has the advantages of small size, low dispersion and low loss.
Drawings
FIG. 1 is a schematic structural view of example 1;
FIG. 2 is a transmission loss simulation chart of example 1;
fig. 3 is a simulation diagram of group delay of embodiment 1;
fig. 4 is a schematic structural view of embodiment 2.
Detailed Description
The invention is further explained below with reference to the drawings.
Example 1:
as shown in fig. 1, a dielectric composite type sub-terahertz dielectric waveguide transmission line is formed by alternately embedding and compounding two kinds of circular cylindrical dielectrics with low dielectric constants from inside to outside in sequence to form a three-layer dielectric composite structure. The dielectric constant of the annular column medium 1 at the odd number layer is smaller than that of the annular column medium 1 at the odd number layer from inside to outside along the radial directionThe dielectric constant of the annular column medium 2 on the even number layer and the dielectric constant of two medium materials are both less than 3.5, and the flexibility is good, such as polytetrafluoroethylene and foam, polyethylene and foam. Dielectric waveguide transmission line operating in HE11Mode, the diameter of the dielectric waveguide transmission line is between 0.9-1 wavelength.
The dielectric waveguide transmission line of the present invention has a diameter slightly less than one wavelength and thus is small in size and operates in an HE11Mode, a wider operating band can be obtained. The signal is transmitted along the axial direction in the dielectric waveguide transmission line, and the electric field in the dielectric waveguide is in stepped distribution by the alternate distribution of two dielectric circular columns with low dielectric constants, so that the dielectric absorption loss and the radiation loss can be reduced, the fluctuation of the group delay in the whole frequency band is improved, and the low dispersion working characteristic is obtained.
The diameter of the dielectric waveguide transmission line of the embodiment is 2mm, and the working frequency band can cover 127.5-152.5 GHz. As shown in FIG. 2, the loss range is 2.95-3.24 dB/m in the whole working frequency band; as shown in FIG. 3, the ratio of the maximum fluctuation of the group delay to the bandwidth is 0.352 ps/GHz/m, and the dispersion is low.
Example 2:
as shown in fig. 4, the difference from embodiment 1 is only that the dielectric waveguide transmission line is formed by alternately nesting and compounding two kinds of circular cylindrical dielectrics with low dielectric constants from inside to outside in sequence to form a five-layer dielectric composite structure, and the working mechanism of the five-layer dielectric composite structure is the same as that of embodiment 1, and the effect is similar.
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, various modifications and decorations can be made without departing from the principle of the present invention, and these modifications and decorations should also be regarded as the protection scope of the present invention.

Claims (1)

1. A dielectric composite type sub-terahertz dielectric waveguide transmission line is characterized in that two kinds of circular column dielectrics with low dielectric constants are sequentially nested and compounded from inside to outside alternately to form a three-layer dielectric composite structure or a five-layer dielectric composite structure; from the inside to the outside in the radial direction, ofThe dielectric constant of the plurality of layers of circular column media is less than that of the even layer of circular column media; the dielectric waveguide transmission line works in the HE11Mode, dielectric waveguide transmission lines have diameters between 0.9-1 wavelength.
CN202110265310.6A 2021-03-11 2021-03-11 Medium composite type sub-terahertz dielectric waveguide transmission line Active CN112928415B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110265310.6A CN112928415B (en) 2021-03-11 2021-03-11 Medium composite type sub-terahertz dielectric waveguide transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110265310.6A CN112928415B (en) 2021-03-11 2021-03-11 Medium composite type sub-terahertz dielectric waveguide transmission line

Publications (2)

Publication Number Publication Date
CN112928415A CN112928415A (en) 2021-06-08
CN112928415B true CN112928415B (en) 2022-04-12

Family

ID=76172635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110265310.6A Active CN112928415B (en) 2021-03-11 2021-03-11 Medium composite type sub-terahertz dielectric waveguide transmission line

Country Status (1)

Country Link
CN (1) CN112928415B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3220476A1 (en) * 2016-03-16 2017-09-20 TE Connectivity Germany GmbH Low-loss dielectric waveguide for transmission of millimeter-wave signals and cable comprising the same
CN110574225A (en) * 2017-04-10 2019-12-13 罗森伯格高频技术有限及两合公司 Dielectric waveguide cable

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9515363B2 (en) * 2014-04-09 2016-12-06 Texas Instruments Incorporated Dielectric waveguide (DWG) filter having curved first and second DWG branches where the first branch forms a delay line that rejoins the second branch
US10622694B2 (en) * 2015-02-12 2020-04-14 Texas Instruments Incorporated Dielectric waveguide radar signal distribution
US9748626B2 (en) * 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
CN205376718U (en) * 2015-10-18 2016-07-06 中国电子科技集团公司第十研究所 Novel hollow medium of terahertz frequency band pipe loaded medium bars guided wave structure
CN205335403U (en) * 2015-10-18 2016-06-22 中国电子科技集团公司第十研究所 Terahertz frequency band shielding medium gap waveguide loaded medium bars guided wave structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3220476A1 (en) * 2016-03-16 2017-09-20 TE Connectivity Germany GmbH Low-loss dielectric waveguide for transmission of millimeter-wave signals and cable comprising the same
CN110574225A (en) * 2017-04-10 2019-12-13 罗森伯格高频技术有限及两合公司 Dielectric waveguide cable

Also Published As

Publication number Publication date
CN112928415A (en) 2021-06-08

Similar Documents

Publication Publication Date Title
EP3432041B1 (en) Multicore fiber
US2769148A (en) Electrical conductors
US3583786A (en) Optical waveguide formed of cylinders with optically smooth interfaces therebetween
EP0026937A1 (en) Single mode optical fibers
GB1392452A (en) Waveguides
EP3290970A1 (en) Multicore fiber
US8508312B2 (en) OMT type broadband multiband transmission-reception coupler-separator for RF frequency telecommunications antennas
JPS588253U (en) Wireless communication device for confined spaces
CN104157934A (en) Ultra wide band plasma filter provided with artificial surface
CN104868253A (en) Metal flat lens antenna
CN112928415B (en) Medium composite type sub-terahertz dielectric waveguide transmission line
US2751561A (en) Wave-guide mode discriminators
CN112433294B (en) Terahertz waveguide based on double negative curvature cladding structures
US9368852B2 (en) Method for performing frequency band splitting
JP2557048B2 (en) Round birefringent dielectric optical waveguide
US3772619A (en) Low-loss waveguide transmission
US3066268A (en) Electric waveguide construction
JP5646940B2 (en) Electromagnetic wave transmission medium
CN202275908U (en) Leakage coaxial cable with novel structure
US20220263211A1 (en) Dielectric waveguide
US4679008A (en) Sharp mode-transducer bend for overmoded waveguide
CN112928416B (en) Defected ground type metal circular waveguide
US5151673A (en) Compact bend for TE01 mode circular overmoded waveguide
US2494691A (en) Electric wave guide
CN112928417B (en) Porous sub-terahertz dielectric waveguide transmission line

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant