CN112824937A - 一种路线生成方法、装置和割草机 - Google Patents

一种路线生成方法、装置和割草机 Download PDF

Info

Publication number
CN112824937A
CN112824937A CN201911143593.6A CN201911143593A CN112824937A CN 112824937 A CN112824937 A CN 112824937A CN 201911143593 A CN201911143593 A CN 201911143593A CN 112824937 A CN112824937 A CN 112824937A
Authority
CN
China
Prior art keywords
satellite positioning
point
measuring
measurement
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911143593.6A
Other languages
English (en)
Other versions
CN112824937B (zh
Inventor
何明明
章心忆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Positec Power Tools Suzhou Co Ltd
Original Assignee
Positec Power Tools Suzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Positec Power Tools Suzhou Co Ltd filed Critical Positec Power Tools Suzhou Co Ltd
Priority to CN201911143593.6A priority Critical patent/CN112824937B/zh
Priority claimed from CN201911143593.6A external-priority patent/CN112824937B/zh
Priority to PCT/CN2020/118865 priority patent/WO2021098388A1/zh
Publication of CN112824937A publication Critical patent/CN112824937A/zh
Application granted granted Critical
Publication of CN112824937B publication Critical patent/CN112824937B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

本公开涉及一种路线生成方法、装置和割草机。包括:接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上;将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,并确定所述起点的位置;根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线。本公开实施例不用刻意的寻找定位信号较好的区域,免去了用户多次尝试烦恼,降低了作业难度,提高了用户使用体验性。

Description

一种路线生成方法、装置和割草机
技术领域
本公开涉及自动控制技术领域,尤其涉及一种路线生成方法、装置和割草机。
背景技术
现有的智能割草机或割草机器人在户外进行割草前,需要先构建虚拟路线,以限定割草区域和非割草区域,确定智能割草机的行进边界。为了精确的构建路线,路线的起点位置数据较为重要,配有定位装置操作人员往往在割草区域尝试多次,以选择一个信号较好的区域作为路线的起点位置,不仅增加了作业难度而且大大降低智能割草机的使用体验性。
发明内容
为克服相关技术中存在的问题,实现快速精准的绘制路线,本公开提供一种路线生成方法和装置。
根据本公开实施例的第一方面,提供一种路线生成方法,包括:
接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上;
将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,并确定所述起点的位置;
根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线。
在一种可能的实现方式中,所述方法还包括:
判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送完成的提示消息。
在一种可能的实现方式中,在所述判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送完成的提示消息之前,还包括:
接收是否完成的触发指令。
在一种可能的实现方式中,所述根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
根据接收的卫星定位信号,确定所述起点之后的测量点的位置;
连接所述测量点的位置,得到测量点位置曲线,生成所述路线。
在一种可能的实现方式中,所述连接所述测量点的位置,得到测量点位置曲线,生成所述路线,包括:
连接所述测量点的位置,得到测量点位置曲线;
对所述测量点位置曲线进行平滑处理,生成所述路线。
在一种可能的实现方式中,在所述接收测量点的卫星定位信号之前,还包括:
接收开始的触发指令;
响应于所述触发指令,开始接收所述测量点的卫星定位信号。
在一种可能的实现方式中,所述方法还包括:
接收结束的触发指令;
响应于所述触发指令,停止接收所述测量点的卫星定位信号。
在一种可能的实现方式中,判断所述卫星定位信号的质量在预设阈值范围以内的方式,包括:
判断接收卫星的数量在预设阈值范围以内和/或判断卫星定位信号的信噪比在预设阈值范围以内。
在一种可能的实现方式中,所述方法还包括:
按照预设距离或预设接收卫星定位信号时间或预设获取传感器数据时间,设置所述测量点。
在一种可能的实现方式中,所述根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
确定所述起点之后的卫星定位信号质量在预设阈值范围以外的第一测量点;
利用所述第一测量点的传感器定位数据确定所述第一测量点的位置;
确定所述起点之后的测量点的位置,生成所述路线。
在一种可能的实现方式中,所述利用所述第一测量点的传感器定位数据确定所述第一测量点的位置,包括:
在存在多个连续第一测量点的情况下,分别确定与所述多个连续第一测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
根据所述第一测量点的传感器定位数据确定所述第一测量点的传感器定位位置;
利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置。
在一种可能的实现方式中,利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续第一测量点上,生成所述第一测量点的位置。
在一种可能的实现方式中,在所述接收测量点的卫星定位信号步骤之后,还包括:
若所述测量点卫星定位信号的质量在预设阈值范围以外,则利用所述测量点的传感器定位数据确定所述测量点的位置,并将首个确定位置的测量点设置为路线的起点。
在一种可能的实现方式中,所述根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
在存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,分别确定与所述测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置。
在一种可能的实现方式中,所述利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续的卫星定位信号的质量在预设阈值范围以外的测量点上,生成所述测量点的位置。
根据本公开实施例的第二方面,提供一种路线生成装置,所述路线生成装置可拆卸式地安装于割草机上,包括:
卫星信号接收器,用于接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上;
处理器,用于执行下述方法:
将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,并确定所述起点的位置;
根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线。
在一种可能的实现方式中,所述处理器还用于执行下述方法:
判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送完成的提示消息。
在一种可能的实现方式中,所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时,包括:
根据接收的卫星定位信号,确定所述起点之后的测量点的位置;
连接所述测量点的位置,得到测量点位置曲线。
在一种可能的实现方式中,所述连接所述测量点的位置,得到测量点位置曲线,生成所述路线,包括:
连接所述测量点的位置,得到测量点位置曲线;
对所述测量点位置曲线进行平滑处理,生成所述路线。
对所述测量点位置曲线进行平滑处理,生成所述路线。
在一种可能的实现方式中,所述处理器在实现步骤接收测量点的卫星定位信号之前,还包括:
接收开始的触发指令;
响应于所述触发指令,开始接收所述测量点的卫星定位信号。
在一种可能的实现方式中,所述处理器还用于执行下述方法:
接收结束的触发指令;
响应于所述触发指令,停止接收所述测量点的卫星定位信号。
在一种可能的实现方式中,所述处理器判断所述卫星定位信号的质量在预设阈值范围以内的方式,包括:
判断接收卫星的数量是否大于预设数值和/或判断卫星定位信号的信噪比是否大于预设信噪比值。
在一种可能的实现方式中,所述处理器还用于执行下述方法:
按照预设距离或预设接收卫星定位信号时间或预设获取传感器数据时间,设置所述测量点。在一种可能的实现方式中,所述装置包括:
对应地,所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时,包括:
获取卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据;
确定所述起点之后的卫星定位信号质量在预设阈值范围以外的第一测量点;
利用所述第一测量点的所述传感器定位数据确定所述第一测量点的位置;
确定所述起点之后的测量点的位置,生成所述路线。
在一种可能的实现方式中,所述处理器在实现步骤利用所述第一测量点的传感器定位数据确定所述第一测量点的位置时,包括:
在存在多个连续第一测量点的情况下,分别确定与所述多个连续第一测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
根据所述第一测量点的传感器定位数据确定所述第一测量点的传感器定位位置;
利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置。
在一种可能的实现方式中,所述处理器在实现步骤利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置时,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续第一测量点上,生成所述第一测量点的位置。
在一种可能的实现方式中,所述处理器在实现步骤接收测量点的卫星定位信号,之后,还包括:
若所述测量点卫星定位信号的质量在预设阈值范围以外,则利用所述测量点的传感器定位数据确定所述测量点的位置,并将首个确定位置的测量点设置为路线的起点。
在一种可能的实现方式中,所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时包括:
在存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,分别确定与所述测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置。
在一种可能的实现方式中,所述处理器在实现步骤利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置时,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续的卫星定位信号的质量在预设阈值范围以外的测量点上,生成所述测量点的位置。
根据本公开实施例的第三方面,提供一种割草机,包括:
割草机主体,所述割草机主体上设有切割刀片、车轮以及驱动车轮转动的驱动电机;
定位传感器,用于获取卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据;
根据本公开任一实施例所述的路线生成装置,所述路线生成装置可拆卸地安装于所述割草机主体上。
根据本公开实施例的第四方面,提供一种电子设备,包括:
存储器,用于存储处理器可执行的指令;
处理器,执行所述指令时实现本公开任一实施例所述的方法;
卫星信号接收器,用于接收测量点的卫星定位信号;
显示器,用于显示所述卫星定位信号的质量以及所述测量点的位置;
通信模块,用于接收卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据,以及将路线发送给割草机。
根据本公开实施例的第五方面,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行根据本公开任一实施例所述的方法。
根据本公开实施例的第六方面,提供一种路线生成方法,包括:
接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上;
若所述测量点卫星定位信号的质量在预设阈值范围以外,则利用所述测量点的传感器定位数据确定所述测量点的位置,并将首个确定位置的测量点设置为路线的起点。
在一种可能的实现方式中,所述根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
在存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,分别确定与所述测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置。
在一种可能的实现方式中,所述利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续的卫星定位信号的质量在预设阈值范围以外的测量点上,生成所述测量点的位置。
本公开的实施例提供的技术方案可以包括以下有益效果:本公开通过在所述割草区域与非割草区域的交界任意位置开始,利用卫星导航定位接收卫星定位信号,并对接收到的卫星定位信号的质量进行实时的判断,若当前测量点接收的卫星信号的质量小于或等于预设阈值,则不用存储所述卫星定位信号,继续接收下一测量点的卫星定位信号,将首次遇到的接收卫星信号质量大于所述预设阈值的测量点作为路线的起点,存储所述起点以及起点之后测量点的位置数据。本公开实施例不用刻意的寻找定位信号较好的区域,免去了用户多次尝试烦恼,降低了作业难度,提高了用户使用体验性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是本公开提供的一种路线生成方法和装置的应用场景图。
图2是根据一示例性实施例示出的一种路线生成方法的流程图。
图3是根据一示例性实施例示出的一种路线生成方法的流程图。
图4是根据一示例性实施例示出的一种路线生成方法的流程图。
图5是根据一示例性实施例示出的一种路线生成装置的框图。
图6是根据一示例性实施例示出的一种割草机的结构示意图。
图7是根据一示例性实施例示出的一种电子设备的框图。
图8是根据一示例性实施例示出的一种电子设备显示界面图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
为了方便本领域技术人员理解本公开实施例提供的技术方案,下面先对技术方案实现的技术环境进行说明。
智能割草机或割草机器人在户外进行割草前,需要先构建路线或割草地图,作为割草区域和非割草区域的边界,所述非割草区域如房屋、树木、景观等。传统的路线的通过布设物理线缆或物理屏障,有些物理线缆上会通电,形成电子回路,割草机在距离所述物理线缆一长度范围内,会检测到磁场信号,从而停止前行,转换方向;一些割草机在触碰到物理屏障后会反弹回来,转换方向。传统的路线方法安装起来较为不便,若出现断线,检测维护成本较大,遇上恶劣天气如刮风雷电时,安全性不高。近年来,为了克服上述缺陷,相关技术中提出了虚拟的路线,并利用导航技术,将割草机的行驶范围限定在虚拟路线以内,为了避免割草机行驶到非割草区域,路线的位置准确性显得尤为重要。而路线的起点位置更成为重中之重,为了确定路线的起点位置,配有定位装置的操作人员需要寻找开阔的地方,并在割草区域边界尝试多次,以选择一个信号较好的位置点,不仅增加了作业难度,降低作业效率而且严重影响割草机的使用体验性。
基于类似于上文所述的实际技术需求,本公开提出了一种路线生成方法和装置。
下面结合附图1和附图2对本公开所述的路线生成方法进行详细的说明。图1是本公开提供的一种路线生成方法和装置的应用场景图,图2是根据一示例性实施例示出的一种路线生成方法的流程图。参考图1所示,生成工作区域地图的过程中,用户100可以手持路线生成装置或者控制安装有路线生成装置的割草机101沿着工作区域的边界等位置行走来记录工作区域的边界。用户100可以在所述割草区域边界的任一位置开始建图,可以通过按键的方式将程序启动。参考图2所示,所述路线生成装置,接收用户开始的触发指令,开始建图程序,利用卫星导航定位接收机接收测量点的卫星定位信号,并对所述卫星定位信号的质量进行判断。参考图1所示,若用户选择在A位置点102启动程序,而A位置点102的卫星定位信号较弱,则所述路线生成装置不记录A点的位置,用户沿割草边界行走至B位置点103,该位置定位信号变好,则路线生成装置将B位置点103为路线的起点,开始记录存储定位数据。用户继续行走,在此过程中不断的接收测量点的卫星定位信号,存储测量点的位置信息,在一个示例中,可以将接收的卫星定位信号与实时动态载波相位差分技术RTK(RealTime Kinematic)相结合,计算测量点的位置,包括:在基准站107上安置另外一台卫星导航定位接收机,连续接收卫星定位信号,并将基准站位置信息和接收到的卫星定位信号通过无线电传输设备实时地发送给测量点处的无线接收设备,利用测量点的卫星导航定位接收机接收到的卫星定位信号以及利用无线接收设备接收到的关于基准站的位置信息和卫星定位信号数据,根据相对定位的原理,实时计算出测量点位置的三维坐标。当用户行走至C位置点104时,由于障碍物105的遮挡,卫星定位信号变弱,所述路线生成装置则会启动其他定位方式进行建图工作。当用户行走至D位置点106时,卫星定位信号重新变强,则重新启动卫星定位方式进行定位。当用户行走完一圈,至建图起点位置B位置点102附近时,可以通过按键询问是否建图结束。参考图2所示,所述路线生成装置则启动判断是否建图结束的程序,自动计算当前测量点与标记的起点的距离进行判断,若所述距离大于或等于预设长度值,则建图工作尚未结束,用户继续向前行走,接收机不断的接收卫星定位信号,若所述距离小于所述预设长度值,则程序会提醒用户,接收用户的结束的触发指令,路线的测量点位置检测工作结束。本公开实施例中,用户可以在任意位置启动建图工作,不需要特意寻找信号较好的区域,减少了用户的劳动,使其获得更好的用户体验。
图3是本公开提供的一种路线生成方法的一种实施例的方法流程图。虽然本公开提供了如下述实施例或附图所示的方法操作步骤,但基于常规或者无需创造性的劳动在所述方法中可以包括更多或者更少的操作步骤。在逻辑性上不存在必要因果关系的步骤中,这些步骤的执行顺序不限于本公开实施例提供的执行顺序。
具体的,本公开提供的一种路线生成方法的一种实施例如图3所示,所述方法可以应用于智能割草机或割草机器人中,包括:
步骤S31,接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上。
本公开实施例中,所述卫星定位信号既可以包括来自组合的全球导航卫星系统GNSS发送的信号,又可以包括独立的导航卫星系统发送的信号,如美国的GPS、俄罗斯的Glonass、欧洲的Galileo以及中国的北斗卫星导航系统,还可以包括相关的增强系统,如美国的WAAS(广域增强系统)、欧洲的EGNOS(欧洲静地导航重叠系统)和日本的MSAS(多功能运输卫星增强系统)等,还可以包括在建和以后要建设的其他卫星导航系统所发送的信号。所述待割草区域可以包括工作区域的边界位置,如草坪的边界,还可以包括在工作区域中存在的设施的边界,如花园、水池等,所述待割草区域用于限定割草机割草的范围,进一步的,所述待割草区域还可以包括:工作区域中的通道或者所述工作区域内由用户限定的某一区域等情况。所述测量点被设置于用户自定义的待割草区域上,所述测量点可以包括连续的测量点也可以包括离散的测量点,考虑计算复杂度以及实际应用需求,设置间隔一定距离的离散测量点较为实用。可以利用卫星导航定位接收机接收测量点的卫星定位信号,其中所述卫星导航定位接收机的类型包括导航型接收机和/或测量型接收机。
步骤S32,将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,并确定所述起点的位置;
本公开实施例中,所述路线包括割草区域与非割草区域的交界位置,即上文所述的用户自定义的待割草区域的边界,或称割草区域的边界地图。所述路线的起点指的是构建虚拟路线的起始点,从这一点开始记录并存储数据,不包括割草机进行割草工作的起始点。在所述割草区域与非割草区域的交界任一位置开始,利用卫星导航定位接收卫星定位信号,同时,对接收信号的质量进行判断,如果没有达到预设阈值范围以内,则不存储卫星定位信号数据,继续前行,并继续接收卫星定位信号以及对接收信号的质量进行判断,假如当前测量点的信号质量在预设阈值范围以内,表示信号质量较好,则将当前测量点设置为路线的起点,存储当前测量点卫星定位信号数据,可以在整个路线的所有测量点采集结束以后计算测量点的位置,也可以实时的计算测量点的位置,当实时的计算测量点的位置时,可以存储测量点的位置数据而不存储接收到的卫星定位信号,以节省存储空间。
步骤S33,根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线。
本公开实施例中,所述卫星定位信号的内容包括不同频率的载波信号、不同的测距码信号以及卫星的轨道信息。在一个示例中,测量点的位置生成方式包括通过信号传播时间差乘以信号的传播速度获得。在另一示例中,可以将接收的卫星定位信号与实时动态载波相位差分技术RTK相结合,计算测量点的位置,包括:在基准站上安置另外一台卫星导航定位接收机,连续接收卫星定位信号,并将基准站位置信息和接收到的卫星定位信号通过无线电传输设备实时地发送给测量点处的无线接收设备,利用测量点的卫星导航定位接收机接收到的卫星定位信号以及利用无线接收设备接收到的关于基准站的位置信息和卫星定位信号数据,根据相对定位的原理,实时计算出测量点位置的三维坐标。
本公开实施例中,可以利用所述测量点的三维位置数据中的经度位置和维度位置标示所述测量点的位置,比如,测量点A的位置信息可以表示成(S,W),测得测量点的位置信息是南纬48°36′,西经89°52′,则表示成(S48°36′,W89°52′)。
本公开通过在所述割草区域与非割草区域的交界任意位置开始,利用卫星导航定位接收卫星定位信号,并对接收到的卫星定位信号的质量进行实时的判断,若当前测量点接收的卫星信号的质量小于或等于预设阈值,则不用存储所述卫星定位信号,继续接收下一测量点的卫星定位信号,将首次遇到的接收卫星信号质量大于所述预设阈值的测量点作为路线的起点,存储所述起点以及起点之后测量点的位置数据。本公开实施例不用刻意的寻找定位信号较好的区域,免去了用户多次尝试烦恼,降低了作业难度,提高了用户使用体验性。
在一种可能的实现方式中,所述路线的生成方法还包括:
步骤S34,判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送完成的提示消息。
本公开实施例中,在沿割草边界进行获取测量点的位置数据过程中,需要对测量点的位置与起点位置进行比较,避免重复测量。可以通过判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送提示消息,提示完成测量。在一个示例中,所述提示消息的提示方法可以通过语音、视频动画、文字、图片等任一种方式实现。
本公开实施例通过比较所述起点与所述测量点的距离与预设长度值之间的大小,对测量结果有着准确的评估作用,避免了人工判断的准确度弱和不确定性。
在一种可能的实现方式中,所述路线生成方法还包括:
步骤S35,接收是否完成的触发指令。
本公开实施例中,在沿割草边界进行获取测量点的位置数据过程中,用户会有一个初判断,比如沿割草边界行走完一圈后,会预估检测即将完成,因此,设置一个是否完成的触发指令,在接收到所述是否完成的触发指令后,对所述起点与所述测量点的距离与预设长度值之间的大小进行比较,如果满足条件,则提示用户检测完成。
本公开通过设置判断触发指令,避免了每进行一次测量点的测试都进行一次判断造成占用资源的缺陷,提高了检测效率。
在一种可能的实现方式中,所述步骤S33,根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线。包括
步骤S334,根据接收的卫星定位信号,确定所述起点之后的测量点的位置;
步骤S335,连接所述测量点的位置,得到测量点位置曲线,生成所述路线。
本公开实施例中,可以采用上述任一种实施例确定所述起点之后测量点的位置数据,连接所述测量点的位置,得到测量点的位置曲线。
在一种可能的实现方式中,所述步骤S335,连接所述测量点的位置,得到测量点位置曲线,生成所述路线,包括:
步骤S3351,连接所述测量点的位置,得到测量点位置曲线;
步骤S3352,对所述测量点位置曲线进行平滑处理,生成所述路线。
本公开实施例中,考虑到每个测量点都是离散的,且测量存在误差的可能,因此,连接形成测量点位置曲线出现不平滑的现象,表现为曲线的尖角,因此有必要对所述测量点的位置曲线进行平滑处理。在一个示例中,可以通过滑动平均法进行平滑,包括确定一定长度的测量点,比如三个测量点或五个测量点,用测量点的平均值代替该长度内中心测量点的位置,需要说明的是,所述测量点位置曲线的平滑方式不限于上述举例,例如,还可以通过Savitzky-Golay滤波、Spline样条曲线平滑的方法,所属领域技术人员在本申请技术精髓的启示下,还可能做出其它变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内。
在一种可能的实现方式中,所述路线生成方法还包括:
步骤S36,接收开始的触发指令;
步骤S37,响应于所述触发指令,开始接收所述测量点的卫星定位信号。
本公开实施例中,所述开始的触发指令,用于启动路线的生成程序工作,其中接收的方式包括但不限于通过按键启动、声音控制启动、预设手势启动等,接收触发指令的控件可以安装于割草机上或手机等终端设备的应用程序上,其中,安装于终端设备上的触发指令启动后通过无线、或蓝牙等方式发送至接收端。在接收到开始的触发指令以后,响应于所述触发指令,开始接收测量点的卫星定位信号。
在一种可能的实现方式中,所述路线生成方法还包括:
步骤S38,接收结束的触发指令;
步骤S39,响应于所述触发指令,停止接收所述测量点的卫星定位信号。
本公开实施例中,所述结束的触发指令,用于终止路线的生成程序工作,其中接收的方式可以包括但不限于上述实施例中的通过按键启动、声音控制启动、预设手势启动等,接收触发指令的控件可以安装于割草机上或手机等终端设备的应用程序上,其中,安装于终端设备上的触发指令启动后通过无线、或蓝牙等方式发送至接收端。在接收到结束的触发指令以后,响应于所述触发指令,停止接收测量点的卫星定位信号。
在一种可能的实现方式中,所述判断所述卫星定位信号的质量在预设阈值范围以内的方式,包括:
步骤S310,判断接收卫星的数量在预设阈值范围以内和/或判断卫星定位信号的信噪比在预设阈值范围以内。
本公开实施例中,根据卫星定位的原理:测量点的位置生成方式包括通过信号传播时间差乘以信号的传播速度,在一个示例中,可以根据卫星的数量在预设范围以内进行判断卫星信号的强弱,例如,可以设置为若检测到卫星数量大于3颗,则对应为卫星定位信号的质量在预设阈值范围以内,通过方程式,得到测量点的三维位置数据和时间信息。在另一个示例中,所述卫星定位信号还可以包括RTK信号,将卫星定位技术与RTK技术相结合,包括:在基准站上安置另外一台卫星导航定位接收机,连续接收卫星定位信号,并将基准站位置信息和接收到的卫星定位信号通过无线电传输设备实时地发送给测量点处的无线接收设备,利用测量点的卫星导航定位接收机接收到的卫星定位信号以及利用无线接收设备接收到的关于基准站的位置信息和卫星定位信号数据,根据相对定位的原理,实时结算处测量点位置的三维坐标。可以看出,接收机接收到的卫星定位信号以及无线接收设备接收到的关于基准站的位置信息和卫星定位信号数据对定位结果的影响也比较大,因此可以根据RTK信号的信噪比是否在预设阈值范围以内进行判断卫星定位信号的强弱。在这里,所述RTK信号包括接收机接收到的卫星定位信号以及无线接收设备接收到的关于基准站的位置信息和卫星定位信号。需要说明的是,所述判断所述卫星定位信号的质量在预设阈值范围以内的设置方式不限于上述举例,所属领域技术人员在本申请技术精髓的启示下,还可能做出其它变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内
在一种可能的实现方式中,所述路线生成方法还包括:
步骤S311,按照预设距离或预设接收卫星定位信号时间或预设获取传感器数据时间,设置所述测量点。
本公开实施例中,所述测量点被设置于用户自定义的待割草区域的边界上,可以按照预设距离进行设置,比如,确定完当前测量点的位置以后,沿割草区域的边界行驶预设距离0.5米的位置,作为新的测量点的位置,或者根据用户步长,行进一步作为一个测量点,再行进一步作为下一个测量点。还可以按照预设接收卫星定位信号的时间或获取传感器数据的时间,包括:在卫星定位信号质量在预设阈值范围以内的情况下,利用接收卫星定位信号的时间进行测量点的确定,比如,确定完当前测量点的位置以后,沿割草区域边界向前行驶,间隔一秒接收到了卫星定位信号,将接收到卫星定位信号的位置作为新的测量点;在卫星定位信号小于或等于预设阈值的情况下,利用获取传感器数据的时间进行测量点的确定,比如,确定完当前测量点的位置以后,沿割草区域边界向前行驶,间隔0.5秒接收到了传感器数据,将接收到传感器数据的位置作为新的测量点。
在一种可能的实现方式中,所述步骤S33,根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
S331,确定所述起点之后的卫星定位信号质量在预设阈值范围以外的第一测量点;
S332,利用所述第一测量点的传感器定位数据确定所述第一测量点的位置;
S333,确定所述起点之后的测量点的位置,生成所述路线。
本公开实施例中,在确定好起点后,所述路线上还有很多的测量点,分布构成一个闭环的割草区域边界。在所述起点之后,还可能包括一段或多段路线处于信号较弱的区域的测量点,本公开实施例中称之为第一测量点。其中信号强弱的衡量可以通过判断所述第一测量点的卫星定位信号的质量是否在预设阈值范围以外来实现。
本公开实施例中,若所述测量点的卫星信号质量在预设阈值范围以外,则不能通过卫星定位信号去确定测量点的位置,或得到的测量点的位置不准确,对于这样的第一测量点,可以通过其他定位方式获取所述第一测量点的位置,在一个示例中,可以通过传感器定位数据确定所述第一测量点的位置。其中,所述传感器定位数据来源于传感器获取的数据,在一个示例中,所述传感器可以包括:惯导传感器,如陀螺仪和加速度计,所述陀螺仪用于角速度值,通过对所述角速度值进行积分累计处理计算相对于起始方向的偏转角度,
Figure BDA0002281596150000141
其中,δ为在t时刻相对起始方向的偏转角度,w为瞬间角速度,t0为起始时刻。所述测量值的一次积分或两次积分可分别求出角度或位置参量。在另一个示例中,所述传感器还可以包括:旋转接收器,已知3个或3个以上的信标位置,利用旋转接收器扫描所述信标位置得到所述信标位置与旋转接收器所在位置的相对角,根据所述相对角,利用三角测量法计算测量点的位置。需要说明的是,所述传感器的设置方式不限于上述举例,所属领域技术人员在本申请技术精髓的启示下,还可能做出其它变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内。
本公开实施例中,所述起点之后的测量点可以通过两种方式确定其位置,当所述测量点的卫星定位信号质量小于或等于预设值时,利用传感器定位数据确定所述第一测量点的位置,当所述测量点的卫星定位信号质量大于所述预设值时,利用卫星定位信号确定测量点的位置,两者相互补充,充分发挥各自的优势,同时客服了卫星定位导航受地形障碍物遮挡而导致的定位中断和传感器定位误差随时间而累积的缺陷。
在一种可能的实现方式中,所述步骤S332,利用所述第一测量点的传感器定位数据确定所述第一测量点的位置,包括:
步骤S3321,在存在多个连续第一测量点的情况下,分别确定与所述多个连续第一测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
步骤S3322,根据所述第一测量点的传感器定位数据确定所述第一测量点的传感器定位位置;
步骤S3323,利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置。
本公开实施例中,在测量点接收卫星定位信号的过程中,会遇到卫星定位信号较弱的区域,此时,会连续出现多个卫星定位信号质量小于或等于预设值的测量点,称之为第一测量点。所述第一测量点的位置需要通过传感器定位数据确定,其定位的准确性相较于卫星定位信号的定位准确性较低,因此,需要对利用传感器定位数据定位的第一测量点的位置进行修正。本公开实施例中,可以利用两个修正测量点的位置数据对第一测量点进行修正。在一个示例中,可以通过标记的方式确定修正测量点,比如,检测到当前测量点的卫星定位信号质量大于预设阈值,下一测量点的卫星定位信号在预设阈值范围以外,则将当前测量点标记为第一个修正测量点;再比如,检测到当前测量点的卫星定位信号质量在预设阈值范围以外,下一个测量点的卫星定位信号在预设阈值范围以内,则将下一个测量点标记为第二个修正测量点。在另一示例中,可以为每个测量点进行编号,比如9号测量点的卫星定位信号质量首次由强变弱,在这里,所述强表示卫星定位信号质量在预设阈值范围以内,所述弱表示卫星定位信号质量小于预设阈值,在9号测量点之前的8号测量点被确定为第一个修正测量点;再比如,30号测量点卫星定位信号首次由弱变强,则30号测量点被确定为第二个修正测量点。
本公开实施例中所述根据所述第一测量点的传感器定位数据确定所述第一测量点的传感器定位位置的方法包括但不限于上述实施例中的:利用惯导传感器通过对所述角速度值进行积分累计处理计算相对于起始方向的偏转角度,
Figure BDA0002281596150000151
其中,δ为在t时刻相对起始方向的偏转角度,w为瞬间角速度,t0为起始时刻,来求出测量点的角度或位置参量;利用旋转接收器扫描所述信标位置得到所述信标位置与旋转接收器所在位置的相对角,根据所述相对角,利用三角测量法计算测量点的位置。
本公开实施例中,所述利用惯导传感器计算第一测量点的位置时,即由加速度计检测当前第一测量点的线加速度,然后积分得到速度和位移,同时与陀螺仪检测的角速率以及积分得到当前第一测量点的位置,但随着时间的推移,所述当前第一测量点位置以后的第一测量点标定误差和陀螺漂移累计误差迅速增加,可以利用较为准确的两个修正测量点的位置与传感器测量的第一测量点的位置之间的差值对传感器定位位置进行修正,方法包括但不限于使用Kalman滤波算法、Sage-Husa自适应滤波算法。
本公开实施例利用与所述多个连续第一测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点的位置信息,对第一测量点的传感器定位位置进行修正,得到更为准确的第一测量点的位置,提高了路线的准确性。
在一种可能的实现方式中,所述步骤S3323,利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置。包括
步骤S33231,获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
步骤S33232,确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
步骤S33233,将所述差值分配至所述多个连续第一测量点上,生成所述第一测量点的位置。
本公开实施例中,可以利用卫星导航定位接收机接收所述两个修正测量点的卫星定位信号,并利用上述实施例中的通过信号传播时间差乘以信号的传播速度,确定修正测量点的三维位置数据,以及利用传感器获取修正测量点的传感器数据,并可以利用上述实施例中的利用惯导传感器通过对角速度值进行积分累计处理计算相对于起始方向的偏转角度来求出修正测量点的角度或位置参量;利用旋转接收器扫描所述信标位置得到所述信标位置与旋转接收器所在位置的相对角,根据所述相对角,利用三角测量法计算修正测量点的位置。进而确定两个修正测量点的卫星定位位置与传感器定位位置之间的差值δ。
本公开实施例中,所述将所述差值分配至所述多个连续第一测量点上,生成所述第一测量点的位置。可以包括:获取第一测量点的个数N,将所述差值按照第一测量的个数进行平均分配,每个第一测量点的误差值为
Figure BDA0002281596150000161
则所述第一测量点的位置最终为传感器定位位置与误差值
Figure BDA0002281596150000162
之和。需要说明的是,所述差值分配方法不限于上述举例,所属领域技术人员在本申请技术精髓的启示下,还可能做出其它变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内。
本公开通过将两个修正点的卫星定位位置与传感器定位位置求差值,并将差值按照第一测量点的数量进行分配,修正第一测量点的传感器定位位置,算法简单易于实现。
在一种可能的实现方式中,在所述步骤S31接收测量点的卫星定位信号步骤之后,还包括:
步骤S312,若所述测量点卫星定位信号的质量在预设阈值范围以外,则利用所述测量点的传感器定位数据确定所述测量点的位置,并将首个确定位置的测量点设置为路线的起点。
本公开实施例与上述实施例不同的是,在所述割草区域与非割草区域的交界任意位置进行路线测定时,如遇到卫星定位信号质量较弱的区域,即所述测量点卫星定位信号的质量在预设阈值范围以外时,则利用传感器定位数据对所述测量点进行位置确定,并将首个确定的测量点设置为路线的起点,在所述起点确定之后,如遇到卫星定位信号质量大于所述预设阈值的测量点的时候,无需再将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,本公开实施例结束路线时,通过直接接受用户结束的指令,便停止工作。
本公开实施例不用刻意的寻找定位信号较好的区域,免去了用户多次尝试烦恼,降低了作业难度,提高了用户使用体验性。
在一种可能的实现方式中,所述步骤S33,根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
步骤S336,在存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,分别确定与所述测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
步骤S337,利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置。
本公开实施例中,在接收卫星定位信号的过程中,若存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,单独利用卫星定位信号数据很难实现所述测量点的准确定位,因此,选用通过传感器定位数据确定所述测量点的位置。同样的,定位的准确性相较于卫星定位信号的定位准确性较低,需要对传感器的定位位置进行修正。修正的方法,包括:在一个示例中,可以通过标记的方式确定修正测量点,比如,检测到当前测量点的卫星定位信号质量在预设阈值范围以外,下一测量点的卫星定位信号在预设阈值范围以内,则将当前测量点标记为第一个修正测量点;再比如,检测到当前测量点的卫星定位信号质量大在预设阈值范围以内,下一个测量点的卫星定位信号在预设阈值范围以外,则将下一个测量点标记为第二个修正测量点。在另一示例中,可以为每个测量点进行编号,比如15号测量点的卫星定位信号质量首次由弱变强,在这里,所述强表示卫星定位信号质量在预设阈值范围以内,所述弱表示卫星定位信号质量在预设阈值范围以外,15号测量点被确定为第一个修正测量点;再比如,150号测量点卫星定位信号首次有强变弱,则150号测量点的前一个测量点149号测量点被确定为第二个修正测量点。
本公开实施例利用较为准确的两个修正测量点的位置与传感器测量的卫星定位信号的质量在预设阈值范围以外的测量点的位置之间的差值对传感器定位位置进行修正,得到更为准确的测量点的位置,提高了路线的准确性。
在一种可能的实现方式中,所述步骤S337,利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置,包括:
步骤S3371,获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
步骤S3372,确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
步骤S3373,将所述差值分配至所述多个连续的卫星定位信号的质量在预设阈值范围以外的测量点上,生成所述测量点的位置。
本公开实施例利用两个修正测量点的位置对卫星定位信号在预设阈值范围以外的测量点的传感器定位位置进行修正的具体方法,与上述实施例中相对应的方法相同,在这里不再赘述。
本公开通过将两个修正点的卫星定位位置与传感器定位位置求差值,并将差值按照测量点的数量进行分配,修正测量点的传感器定位位置,算法简单易于实现。
图4是本公开提供的一种路线生成方法的一种实施例的方法流程图。参考图5所示,用户手持定位模块,沿工作区域的边界行走,利用卫星导航定位接收机手机测量点的定位数据,并对卫星定位信号的质量进行判断,在一个示例中,如所述卫星定位信号的质量在预设阈值范围以内,则判定信号好的情况,反之,设置为信号不好的情况。并利用卫星定位信号数据确定测量点的位置作为路线的起点位置,继续行走并存储定位数据,若在此过程中,再次遇到卫星定位信号质量不好的测量点,可以采用与上述实施例相关的方法,利用传感器定位数据确定所述卫星定位信号不好的测量点,并选取修正测量点对所述卫星定位信号不好的测量点的位置进行修正,在一种可能的实现方式中,可以通过接收用户结束建图的询问指令,启动判断是否建图结束的程序,自动计算当前测量点与标记的起点的距离进行判断,若所述距离大于或等于预设长度值,则建图工作尚未结束,用户继续向前行走,接收机不断的接收卫星定位信号,若所述距离小于所述预设长度值,则程序会提醒用户,接收用户的结束的触发指令,路线的测量点位置检测工作结束。在另一个示例中,所述卫星定位信号的质量小于或等于预设阈值,则直接利用传感器定位数据对测量点的位置进行定位,所述传感器包括上述实施例中任一种,其定位方法也已在上述实施例中进行了描述,在这里不再赘述。记录此位置作为起点并开始存储坐标,在此过程中,可以采用与上述实施例相关的方法,利用传感器定位数据确定所述卫星定位信号不好的测量点,并选取修正测量点对所述卫星定位信号不好的测量点的位置进行修正,在一种可能的实现方式中,可以通过接收用户结束建图的指令,用户可以凭记忆沿工作区域行走一周后,结束建图。
本公开实施例,本公开实施例不用刻意的寻找定位信号较好的区域,免去了用户多次尝试烦恼,降低了作业难度,提高了用户使用体验性。
图5是根据一示例性实施例示出的一种路线生成装置500框图。参照图5,该装置包括:
卫星信号接收器501,用于接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上;
处理器502,用于执行下述方法:
将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,并确定所述起点的位置;
根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器还用于执行下述方法:
判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送完成的提示消息。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时,包括:
根据接收的卫星定位信号,确定所述起点之后的测量点的位置;
连接所述测量点的位置,得到测量点位置曲线,生成所述路线。
在一种可能的实现方式中,所述处理器在实现步骤连接所述测量点的位置,得到测量点位置曲线,生成所述路线,包括:
连接所述测量点的位置,得到测量点位置曲线;
对所述测量点位置曲线进行平滑处理,生成所述路线。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器在实现步骤接收测量点的卫星定位信号之前,还包括:
接收开始的触发指令;
响应于所述触发指令,开始接收所述测量点的卫星定位信号。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器还用于执行下述方法:
接收结束的触发指令;
响应于所述触发指令,停止接收所述测量点的卫星定位信号。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器判断所述卫星定位信号的质量在预设阈值范围以内的方式,包括:
判断接收卫星的数量是否大于预设数值和/或判断RTK信号的信噪比是否大于预设信噪比值。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器还用于执行下述方法:
按照预设距离或预设接收卫星定位信号时间或预设获取传感器数据时间,设置所述测量点。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时,包括:
获取卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据;
确定所述起点之后的卫星定位信号质量在预设阈值范围以外的第一测量点;
利用所述第一测量点的所述传感器定位数据确定所述第一测量点的位置;
确定所述起点之后的测量点的位置,生成所述路线。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器在实现步骤利用所述第一测量点的传感器定位数据确定所述第一测量点的位置时,包括:
在存在多个连续第一测量点的情况下,分别确定与所述多个连续第一测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
根据所述第一测量点的传感器定位数据确定所述第一测量点的传感器定位位置;
利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置。
在一种可能的实现方式中,所述路线生成装置包括:
所述处理器在实现步骤利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置时,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续第一测量点上,生成所述第一测量点的位置。
在一种可能的实现方式中,所述处理器在实现步骤接收测量点的卫星定位信号之后,还包括:
若所述测量点卫星定位信号的质量在预设阈值范围以外,则利用所述测量点的传感器定位数据确定所述测量点的位置,并将首个确定位置的测量点设置为路线的起点。
在一种可能的实现方式中,所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时包括:
在存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,分别确定与所述测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置。
在一种可能的实现方式中,所述处理器在实现步骤利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置时,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续的卫星定位信号的质量在预设阈值范围以外的测量点上,生成所述测量点的位置。
关于上述实施例中的装置,其中各个部件执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图6是根据一示例性实施例示出的一种割草机的结构示意图。参照图6,所述割草机包括:
割草机主体600,所述割草机主体600上设有切割刀片602、车轮601以及驱动车轮转动的驱动电机、定位传感器,在本实施例中,所述驱动电机和定位传感器均位于割草机主体600的内部。定位传感器,用于获取卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据。根据本公开任一实施例所述的路线生成装置500,所述路线生成装置500可拆卸地安装于所述割草机主体上。在一种可能的实现方式中,用户可以推着割草机沿割草区域边界,利用所述路线生成装置603进行测量点的数据接收,也可以将路线生成装置500从割草机上拆卸下来,沿割草区域边界,进行测量点的数据接收。
图7是根据一示例性实施例示出的一种电子设备的框图。参照图7,该电子设备700包括:
存储器71,用于存储处理器可执行的指令;
处理器502,执行所述指令时实现本公开任一实施例所述的路线生成方法;
卫星信号接收器73,用于接收测量点的卫星定位信号;
显示器75,用于显示所述卫星定位信号的质量以及所述测量点的位置;
通信模块76,用于接收卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据,以及将路线发送给割草机。
本公开实施例中,电子设备700可以包括智能电话机、平板个人计算机、移动电话机、视频电话机、电子书籍阅读器、桌面PC、膝上PC、上网本计算机、工作站、服务器、个人数字助力(PDA)、便携多媒体播放器(PMP)、音频层3(MP3)播放器、移动医疗设备、相机、或可穿戴设备中的至少一个。其中,可穿戴设备可以包括首饰型(例如,手表、戒指、手镯、脚镯、项链、眼镜、隐形眼镜、或头戴式设备(HDM))、织物或衣物型(如,电子服装)、物理附件型(如,皮肤垫或纹身)、或身体植入性(如,可植入电路)中的至少一个,电子设备700可以是上述设备之一或其组合,根据实施例的电子设备700可以不限于上述电子设备,且可以包括其他电子设备和根据技术的发展的新电子设备。
本公开实施例中,所述卫星信号接收器73、存储器71、处理器502、定位传感器74、显示器75、通信模块76,可以通过总线77进行连接。所述总线77包括用于在上述组件之间传达通信(如控制消息和/或数据)的电路。所述处理器42可以包括中央处理单元(CPU)、应用处理器(AP)、或通信处理器(CP)中的一个或多个,所述处理器502可以执行执行所述指令时实现本公开任一实施例所述的路线生成方法,所述路线通过显示器75显示出来。
图8是根据一示例性实施例示出的一种电子设备显示界面图。参照图8,所述显示器界面可以显示所述卫星定位信号的质量,参见图8左上角的信号质量标志801,以及所述测量点的位置802,其中可以用一些特殊符号,如三角形803来标记起点位置,五角星符号804表示当前测量点位置,所述显示器上设有控件805,包括是否完成控件,开始控件以及结束控件。当按下开始控件,路线生成的应用便开始工作,接收卫星定位信号数据;当按下是否完成控件,路线生成的应用会将当前测量点的位置与起点位置做比较,若两者距离小于预设长度值,则提醒用户。可以结束了;当按下结束控件,路线生成应用便结束工作,表示路线生成完毕。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由装置500的处理器执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (32)

1.一种路线生成方法,其特征在于,包括:
接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上;
将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,并确定所述起点的位置;
根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线。
2.根据权利要求1所述的方法,其特征在于,还包括:
判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送完成的提示消息。
3.根据权利要求2所述的方法,其特征在于,在所述判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送完成的提示消息之前,还包括:
接收是否完成的触发指令。
4.根据权利要求1所述的方法,其特征在于,所述根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
根据接收的卫星定位信号,确定所述起点之后的测量点的位置;
连接所述测量点的位置,得到测量点位置曲线,生成所述路线。
5.根据权利要求4所述的方法,其特征在于,所述连接所述测量点的位置,得到测量点位置曲线,生成所述路线,包括:
连接所述测量点的位置,得到测量点位置曲线;
对所述测量点位置曲线进行平滑处理,生成所述路线。
6.根据权利要求1所述的方法,其特征在于,在所述接收测量点的卫星定位信号之前,还包括:
接收开始的触发指令;
响应于所述触发指令,开始接收所述测量点的卫星定位信号。
7.根据权利要求1所述的方法,其特征在于,还包括:
接收结束的触发指令;
响应于所述触发指令,停止接收所述测量点的卫星定位信号。
8.根据权利要求1所述的方法,其特征在于,判断所述卫星定位信号的质量在预设阈值范围以内的方式,包括:
判断接收卫星的数量在预设阈值范围以内和/或判断卫星定位信号的信噪比在预设阈值范围以内。
9.根据权利要求1所述的方法,其特征在于,还包括:
按照预设距离或预设接收卫星定位信号时间或预设获取传感器数据时间,设置所述测量点。
10.根据权利要求1所述的方法,其特征在于,所述根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
确定所述起点之后的卫星定位信号质量在预设阈值范围以外的第一测量点;
利用所述第一测量点的传感器定位数据确定所述第一测量点的位置;
确定所述起点之后的测量点的位置,生成所述路线。
11.根据权利要求10所述的方法,其特征在于,所述利用所述第一测量点的传感器定位数据确定所述第一测量点的位置,包括:
在存在多个连续第一测量点的情况下,分别确定与所述多个连续第一测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
根据所述第一测量点的传感器定位数据确定所述第一测量点的传感器定位位置;
利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置。
12.根据权利要求11所述的方法,其特征在于,利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续第一测量点上,生成所述第一测量点的位置。
13.根据权利要求1所述的方法,其特征在于,在所述接收测量点的卫星定位信号步骤之后,还包括:
若所述测量点卫星定位信号的质量在预设阈值范围以外,则利用所述测量点的传感器定位数据确定所述测量点的位置,并将首个确定位置的测量点设置为路线的起点。
14.根据权利要求13所述的方法,其特征在于,所述根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线,包括:
在存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,分别确定与所述测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置。
15.根据权利要求14所述的方法,其特征在于,所述利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续的卫星定位信号的质量在预设阈值范围以外的测量点上,生成所述测量点的位置。
16.一种路线生成装置,其特征在于,所述路线生成装置可拆卸式地安装于割草机上,包括:
卫星信号接收器,用于接收测量点的卫星定位信号,所述测量点被设置于用户自定义的待割草区域上;
处理器,用于执行下述方法:
将首个卫星定位信号的质量在预设阈值范围以内的测量点设置为路线的起点,并确定所述起点的位置;
根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线。
17.根据权利要求16所述的装置,其特征在于,所述处理器还用于执行下述方法:
判断测量点与所述起点的距离是否小于预设长度值,若所述距离小于所述预设长度值,则发送完成的提示消息。
18.根据权利要求16所述的装置,其特征在于,所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时,包括:
根据接收的卫星定位信号,确定所述起点之后的测量点的位置;
连接所述测量点的位置,得到测量点位置曲线,生成所述路线。
19.根据权利要求18所述的装置,其特征在于,所述处理器在实现步骤连接所述测量点的位置,得到测量点位置曲线,生成所述路线,包括:
连接所述测量点的位置,得到测量点位置曲线;
对所述测量点位置曲线进行平滑处理,生成所述路线。
20.根据权利要求16所述的装置,其特征在于,所述处理器在实现步骤接收测量点的卫星定位信号之前,还包括:
接收开始的触发指令;
响应于所述触发指令,开始接收所述测量点的卫星定位信号。
21.根据权利要求16所述的装置,其特征在于,所述处理器还用于执行下述方法:
接收结束的触发指令;
响应于所述触发指令,停止接收所述测量点的卫星定位信号。
22.根据权利要求16所述的装置,其特征在于,所述处理器判断所述卫星定位信号的质量在预设阈值范围以内的方式,包括:
判断接收卫星的数量是否大于预设数值和/或判断卫星定位信号的信噪比是否大于预设信噪比值。
23.根据权利要求16所述的装置,其特征在于,所述处理器还用于执行下述方法:
按照预设距离或预设接收卫星定位信号时间或预设获取传感器数据时间,设置所述测量点。
24.根据权利要求16所述的装置,其特征在于,包括:
所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时,包括:
获取卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据;
确定所述起点之后的卫星定位信号质量在预设阈值范围以外的第一测量点;
利用所述第一测量点的所述传感器定位数据确定所述第一测量点的位置;
确定所述起点之后的测量点的位置,生成所述路线。
25.根据权利要求24所述的装置,其特征在于,所述处理器在实现步骤利用所述第一测量点的传感器定位数据确定所述第一测量点的位置时,包括:
在存在多个连续第一测量点的情况下,分别确定与所述多个连续第一测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
根据所述第一测量点的传感器定位数据确定所述第一测量点的传感器定位位置;
利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置。
26.根据权利要求25所述的装置,其特征在于,所述处理器在实现步骤利用所述两个修正测量点的位置分别对所述多个连续第一测量点的传感器定位位置进行修正,生成所述第一测量点的位置时,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续第一测量点上,生成所述第一测量点的位置。
27.根据权利要求16所述的装置,其特征在于,所述处理器在实现步骤接收测量点的卫星定位信号,之后,还包括:
若所述测量点卫星定位信号的质量在预设阈值范围以外,则利用所述测量点的传感器定位数据确定所述测量点的位置,并将首个确定位置的测量点设置为路线的起点。
28.根据权利要求27所述的装置,其特征在于,所述处理器在实现步骤根据接收的卫星定位信号,确定所述起点之后的测量点的位置,生成所述路线时包括:
在存在多个连续的卫星定位信号的质量在预设阈值范围以外的测量点的情况下,分别确定与所述测量点前后相邻的卫星定位信号质量大于所述预设阈值的两个修正测量点;
利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置。
29.根据权利要求28所述的装置,其特征在于,所述处理器在实现步骤利用两个修正测量点的位置分别对所述测量点的传感器定位位置进行修正,生成所述测量点的位置时,包括:
获取所述两个修正测量点的卫星定位信号以及传感器定位数据;
确定所述两个修正测量点的卫星定位位置与传感器定位位置之间的差值;
将所述差值分配至所述多个连续的卫星定位信号的质量在预设阈值范围以外的测量点上,生成所述测量点的位置。
30.一种割草机,其特征在于,包括:
割草机主体,所述割草机主体上设有切割刀片、车轮以及驱动车轮转动的驱动电机;
定位传感器,用于获取卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据;
根据权利要求16至29中任一项所述的路线生成装置,所述路线生成装置可拆卸地安装于所述割草机主体上。
31.一种电子设备,其特征在于,包括:
存储器,用于存储处理器可执行的指令;
处理器,执行所述指令时实现权利要求1至15中任一项所述的方法;
卫星信号接收器,用于接收测量点的卫星定位信号;
显示器,用于显示所述卫星定位信号的质量以及所述测量点的位置;
通信模块,用于接收卫星定位信号质量在预设阈值范围以外的第一测量点的传感器定位数据,以及将路线发送给割草机。
32.一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,使得处理器能够执行根据权利要求1至15中任一项所述的方法。
CN201911143593.6A 2019-11-20 2019-11-20 一种路线生成方法、装置和割草机 Active CN112824937B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911143593.6A CN112824937B (zh) 2019-11-20 一种路线生成方法、装置和割草机
PCT/CN2020/118865 WO2021098388A1 (zh) 2019-11-20 2020-09-29 一种路线生成方法、装置和割草机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911143593.6A CN112824937B (zh) 2019-11-20 一种路线生成方法、装置和割草机

Publications (2)

Publication Number Publication Date
CN112824937A true CN112824937A (zh) 2021-05-21
CN112824937B CN112824937B (zh) 2024-05-28

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543036A (zh) * 2021-07-16 2021-10-22 联想(北京)有限公司 数据处理方法、装置及电子设备
US11917938B2 (en) 2022-07-05 2024-03-05 Willand (Beijing) Technology Co., Ltd. Method for constructing map for mower, storage medium, mower, and mobile terminal

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206255A (zh) * 2007-12-13 2008-06-25 西安华迅微电子有限公司 一种捕获gps弱信号的方法
CN101861393A (zh) * 2007-09-18 2010-10-13 巴斯夫植物科学有限公司 产量提高的植物
CN106342230B (zh) * 2010-12-01 2012-05-02 中国人民解放军兰州军区测绘信息中心 一种适合高原高寒地区的gps动态精确定位方法
CN102834732A (zh) * 2010-02-14 2012-12-19 天宝导航有限公司 使用区域增强网络的gnss信号处理
CN103324192A (zh) * 2012-03-23 2013-09-25 苏州宝时得电动工具有限公司 边界设置方法及边界设置系统
CN103386665A (zh) * 2012-05-07 2013-11-13 苏州宝时得电动工具有限公司 电动工具的控制方法及执行该控制方法的电动工具
CN103491625A (zh) * 2012-06-11 2014-01-01 中兴通讯股份有限公司 一种无线移动终端的定位方法及系统
CN103891464A (zh) * 2012-12-28 2014-07-02 苏州宝时得电动工具有限公司 自动割草系统
CN104067145A (zh) * 2014-05-26 2014-09-24 中国科学院自动化研究所 剪枝机器人系统
CN105898711A (zh) * 2016-03-25 2016-08-24 北京智慧图科技有限责任公司 一种基于地磁基准线的定位方法及装置
CN105988415A (zh) * 2015-02-13 2016-10-05 苏州宝时得电动工具有限公司 多区域切割控制系统及其控制方法
CN107045137A (zh) * 2016-02-06 2017-08-15 苏州宝时得电动工具有限公司 自动工作系统,自移动设备及其控制方法
US20170285652A1 (en) * 2016-03-31 2017-10-05 Honda Motor Co., Ltd. Control apparatus for utility vehicle
CN107974995A (zh) * 2016-10-24 2018-05-01 苏州宝时得电动工具有限公司 自移动设备路径规划方法和系统
CN207380746U (zh) * 2017-11-10 2018-05-18 江苏省泰州引江河管理处 一种湖泊网格化管理系统
CN108040582A (zh) * 2018-01-26 2018-05-18 武汉理工大学 一种基于dgps的自动循迹电动割草机
CN108227692A (zh) * 2016-12-09 2018-06-29 苏州宝时得电动工具有限公司 自动移动设备、自动工作系统及其控制方法
CN108228741A (zh) * 2016-12-15 2018-06-29 苏州宝时得电动工具有限公司 自动工作系统的地图生成方法、装置和自动工作系统
CN108957512A (zh) * 2017-05-26 2018-12-07 苏州宝时得电动工具有限公司 定位装置及方法以及自动行走设备
CN108955677A (zh) * 2018-08-02 2018-12-07 苏州中德睿博智能科技有限公司 一种基于激光雷达与gps的拓扑地图创建方法及建图装置
CN109029444A (zh) * 2018-06-12 2018-12-18 深圳职业技术学院 一种基于图像匹配和空间定位的室内导航系统及导航方法
CN109032147A (zh) * 2018-09-10 2018-12-18 扬州方棱机械有限公司 基于卫星定位信号生成割草机器人虚拟边界的方法
CN109247117A (zh) * 2017-07-14 2019-01-22 苏州宝时得电动工具有限公司 自动检测边界线断线的方法、装置和智能割草机
CN109491397A (zh) * 2019-01-14 2019-03-19 深圳市傲基电子商务股份有限公司 割草机器人及其割草区域划定方法
CN109682371A (zh) * 2017-10-18 2019-04-26 苏州宝时得电动工具有限公司 自动行走设备及其定位方法及装置
CN109683604A (zh) * 2017-10-18 2019-04-26 苏州宝时得电动工具有限公司 自动行走设备及其定位方法及装置
JP2019106939A (ja) * 2017-12-19 2019-07-04 株式会社クボタ 自動走行作業機
US20190250604A1 (en) * 2014-12-15 2019-08-15 Irobot Corporation Robot Lawnmower Mapping
CN110197519A (zh) * 2018-02-26 2019-09-03 苏州宝时得电动工具有限公司 地图生成过程中的信号补偿方法、装置及存储介质
CN110312418A (zh) * 2017-11-16 2019-10-08 南京德朔实业有限公司 智能割草系统

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861393A (zh) * 2007-09-18 2010-10-13 巴斯夫植物科学有限公司 产量提高的植物
CN101206255A (zh) * 2007-12-13 2008-06-25 西安华迅微电子有限公司 一种捕获gps弱信号的方法
CN102834732A (zh) * 2010-02-14 2012-12-19 天宝导航有限公司 使用区域增强网络的gnss信号处理
CN106342230B (zh) * 2010-12-01 2012-05-02 中国人民解放军兰州军区测绘信息中心 一种适合高原高寒地区的gps动态精确定位方法
CN103324192A (zh) * 2012-03-23 2013-09-25 苏州宝时得电动工具有限公司 边界设置方法及边界设置系统
CN103386665A (zh) * 2012-05-07 2013-11-13 苏州宝时得电动工具有限公司 电动工具的控制方法及执行该控制方法的电动工具
CN103491625A (zh) * 2012-06-11 2014-01-01 中兴通讯股份有限公司 一种无线移动终端的定位方法及系统
CN103891464A (zh) * 2012-12-28 2014-07-02 苏州宝时得电动工具有限公司 自动割草系统
CN104067145A (zh) * 2014-05-26 2014-09-24 中国科学院自动化研究所 剪枝机器人系统
US20190250604A1 (en) * 2014-12-15 2019-08-15 Irobot Corporation Robot Lawnmower Mapping
CN105988415A (zh) * 2015-02-13 2016-10-05 苏州宝时得电动工具有限公司 多区域切割控制系统及其控制方法
CN107045137A (zh) * 2016-02-06 2017-08-15 苏州宝时得电动工具有限公司 自动工作系统,自移动设备及其控制方法
CN105898711A (zh) * 2016-03-25 2016-08-24 北京智慧图科技有限责任公司 一种基于地磁基准线的定位方法及装置
US20170285652A1 (en) * 2016-03-31 2017-10-05 Honda Motor Co., Ltd. Control apparatus for utility vehicle
CN107974995A (zh) * 2016-10-24 2018-05-01 苏州宝时得电动工具有限公司 自移动设备路径规划方法和系统
CN108227692A (zh) * 2016-12-09 2018-06-29 苏州宝时得电动工具有限公司 自动移动设备、自动工作系统及其控制方法
CN108228741A (zh) * 2016-12-15 2018-06-29 苏州宝时得电动工具有限公司 自动工作系统的地图生成方法、装置和自动工作系统
CN108957512A (zh) * 2017-05-26 2018-12-07 苏州宝时得电动工具有限公司 定位装置及方法以及自动行走设备
CN109247117A (zh) * 2017-07-14 2019-01-22 苏州宝时得电动工具有限公司 自动检测边界线断线的方法、装置和智能割草机
CN109683604A (zh) * 2017-10-18 2019-04-26 苏州宝时得电动工具有限公司 自动行走设备及其定位方法及装置
CN109682371A (zh) * 2017-10-18 2019-04-26 苏州宝时得电动工具有限公司 自动行走设备及其定位方法及装置
CN207380746U (zh) * 2017-11-10 2018-05-18 江苏省泰州引江河管理处 一种湖泊网格化管理系统
CN110312418A (zh) * 2017-11-16 2019-10-08 南京德朔实业有限公司 智能割草系统
JP2019106939A (ja) * 2017-12-19 2019-07-04 株式会社クボタ 自動走行作業機
CN108040582A (zh) * 2018-01-26 2018-05-18 武汉理工大学 一种基于dgps的自动循迹电动割草机
CN110197519A (zh) * 2018-02-26 2019-09-03 苏州宝时得电动工具有限公司 地图生成过程中的信号补偿方法、装置及存储介质
CN109029444A (zh) * 2018-06-12 2018-12-18 深圳职业技术学院 一种基于图像匹配和空间定位的室内导航系统及导航方法
CN108955677A (zh) * 2018-08-02 2018-12-07 苏州中德睿博智能科技有限公司 一种基于激光雷达与gps的拓扑地图创建方法及建图装置
CN109032147A (zh) * 2018-09-10 2018-12-18 扬州方棱机械有限公司 基于卫星定位信号生成割草机器人虚拟边界的方法
CN109491397A (zh) * 2019-01-14 2019-03-19 深圳市傲基电子商务股份有限公司 割草机器人及其割草区域划定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543036A (zh) * 2021-07-16 2021-10-22 联想(北京)有限公司 数据处理方法、装置及电子设备
US11917938B2 (en) 2022-07-05 2024-03-05 Willand (Beijing) Technology Co., Ltd. Method for constructing map for mower, storage medium, mower, and mobile terminal

Also Published As

Publication number Publication date
WO2021098388A1 (zh) 2021-05-27

Similar Documents

Publication Publication Date Title
CN108226964B (zh) 自移动设备及其定位故障报警方法和自动工作系统
US11378979B2 (en) Moving object and positioning method therefor, automated working system, and storage medium
CN106370190B (zh) 车辆导航、位置标记方法、装置及系统
KR102111104B1 (ko) 루트 평탄화
JP6202535B2 (ja) パーソナルナビゲーションデバイスのサービスの継続性を確保するための方法、およびそのデバイス
US8934923B1 (en) System and method for geo-positioning guidance with respect to a land tract boundary
CN108308059B (zh) 宠物项圈系统及宠物项圈控制方法
US20160258759A1 (en) Path planning based on obstruction mapping
CN108521793A (zh) 一种失锁重捕的方法及终端设备
US20220151147A1 (en) Self-moving lawn mower and supplementary operation method for an unmowed region thereof
US11924710B2 (en) Location selection for transmitting emergency beacons
CN103760585A (zh) 一种适用林区的星-地结合定位方法
EP3696574A1 (en) Robotic vehicle for soil cultivation
US20210378172A1 (en) Mower positioning configuration system
CA3054590A1 (en) Automatic pressure sensor output calibration for reliable altitude determination
JP6554679B2 (ja) 測位システム
WO2015035501A1 (en) System and method for enhanced integrated navigation with wireless angle of arrival
US9689990B2 (en) Dual coaxial NSS receiver system
US20180074195A1 (en) Determining a boundary enclosing a region of interest for a body of water
CN112824937B (zh) 一种路线生成方法、装置和割草机
CN112824937A (zh) 一种路线生成方法、装置和割草机
US20160238711A1 (en) Gnss-based obstruction mapping
CN110082799A (zh) 定位校正方法、装置及智能穿戴设备
KR20130026031A (ko) 휴대용 단말기의 멀티패스 지역 내 위치정보 보정장치 및 그 방법
JP6528164B2 (ja) 測位システム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant