CN112783031B - Soft instruction starting control and level signal isolation circuit system - Google Patents

Soft instruction starting control and level signal isolation circuit system Download PDF

Info

Publication number
CN112783031B
CN112783031B CN202011607698.5A CN202011607698A CN112783031B CN 112783031 B CN112783031 B CN 112783031B CN 202011607698 A CN202011607698 A CN 202011607698A CN 112783031 B CN112783031 B CN 112783031B
Authority
CN
China
Prior art keywords
signal
chip
differential
level
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011607698.5A
Other languages
Chinese (zh)
Other versions
CN112783031A (en
Inventor
杨永明
王元超
华楠
刘禹
匡海鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN202011607698.5A priority Critical patent/CN112783031B/en
Publication of CN112783031A publication Critical patent/CN112783031A/en
Application granted granted Critical
Publication of CN112783031B publication Critical patent/CN112783031B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25257Microcontroller

Abstract

The invention relates to the technical field of electronics, in particular to a soft instruction starting control and level signal isolation circuit system, which comprises: the device comprises an interface DSP, a power supply conversion module, a driving relay, an electromagnetic relay, a voltage conversion chip, a differential receiving chip and a differential sending chip. The circuit system converts the electric signal into a differential signal through a differential chip, and then controls an enabling signal of the differential chip by using an interface DSP. After the bus power supply is switched on, the interface DSP is in a power-on working state, the differential chip is set to be in a non-enabling state by utilizing the enabling control signal of the differential chip, the output signal of the differential chip is in a high-resistance state at the moment, namely, an open circuit is formed, and voltage cannot be coupled at pins such as an I/O interface, an SPI interface and an SCI interface of the chip connected with the interface DSP. After the interface DSP receives a starting instruction, the electromagnetic relay is controlled to be closed firstly to complete system electrification, and then the differential chip is placed in an enabling state to realize level signal receiving and transmitting between chips connected with the signal level.

Description

Soft instruction starting control and level signal isolation circuit system
Technical Field
The invention relates to the technical field of electronics, in particular to a soft instruction starting control and level signal isolation circuit system.
Background
The system startup control can be realized by a mechanical switch or a software instruction. The software instruction mode is more flexible, and the system startup control can be remotely realized through software interface operation. When the control circuit based on the DSP adopts software instructions to realize the startup control of the system, after the bus power supply is switched on by the system, the DSP of the interface is electrified to work, other circuits are not electrified, and the system is in a non-startup state. And the interface DSP receives and analyzes the control instruction sent by the upper computer through the SCI serial port, and after the start-up instruction is received, the interface DSP controls the relay to switch on the power supply to complete the start-up and electrification of the whole system.
However, when the interface DSP is powered on, a voltage of about 1V is coupled out from corresponding pins connected based on TTL level signals, such as I/O, SPI, and SCI, between the interface DSP and other chips of the system, and the coupled voltage will directly act on the unpowered chip. After the control system is connected with a bus power supply and before a starting-up instruction is not received, a chip which is in electrical signal connection with the interface DSP is under the action of coupling voltage, and the coupling voltage is in a charged state at a pin corresponding to the plug, so that potential safety hazards are brought to plugging and unplugging of the plug.
Therefore, it is highly desirable to isolate the undesired coupling voltage during the software boot control process, so that the whole boot process has higher flexibility, safety and stability.
Disclosure of Invention
The embodiment of the invention provides a soft instruction starting control and level signal isolation circuit system, which at least solves the technical problem that a chip electrically connected with an interface DSP in the existing soft instruction starting control system is acted by coupling voltage.
According to an embodiment of the present invention, a soft command boot control and level signal isolation circuit system is provided, including: the device comprises an interface DSP, a power supply conversion module, a driving relay, an electromagnetic relay, a voltage conversion chip, a differential receiving chip and a differential sending chip; wherein:
the interface DSP sets an enabling control signal as a non-enabling signal, the non-enabling signal is converted into a low-level signal by the voltage conversion chip and then acts on the differential sending chip and the differential receiving chip to enable the differential sending chip and the differential receiving chip to be in a non-enabling state, and at the moment, output signals of the differential sending chip and the differential receiving chip are in a high impedance state;
after receiving a starting instruction of an upper computer, the interface DSP sets the power-on control signal as a high-level signal, the power-on control signal is converted into the high-level signal by the voltage conversion chip to drive the relay to be closed, the electromagnetic relay is attracted after being powered on, and the circuit system is powered on and started; meanwhile, the DSP sets the enable control signal as an enable level signal, the enable control signal is converted into a high level signal through the voltage conversion chip, and the differential sending chip and the differential receiving chip are in an enable state at the moment, so that correct receiving of the 1-path receiving signal and correct sending of the 1-path sending signal are realized.
Further, after the circuit system is connected with the bus power supply, the bus power supply is converted into working digital voltage of the interface DSP by the power supply conversion module, and the interface DSP is electrified and started; the interface DSP sets the power-on control signal as a low level signal, and the power-on control signal is converted into the low level signal through the voltage conversion chip; the driving relay is in a disconnected state when the power-on control signal is low, the electromagnetic relay is not powered on at the moment, and the circuit system is in a shutdown state.
Furthermore, the interface DSP sets the power-on control signal as a low-level 0V signal, and the power-on control signal is converted into the low-level 0V signal through the voltage conversion chip.
Furthermore, the interface DSP sets the enable control signal to be the disable low-level 0V signal, and the disable low-level 0V signal is converted into a low-level signal by the voltage conversion chip and then acts on the differential transmitting chip and the differential receiving chip to make them in a non-enable state.
Furthermore, when the output signals of the differential transmitting chip and the differential receiving chip are in a high impedance state, voltage cannot be coupled out of the digital power supply pin of the differential output receiving end chip, and effective isolation of level signals is achieved.
Furthermore, after the interface DSP receives a starting instruction of the upper computer, the power-on control signal is set to be a high-level 3.3V signal, the power-on control signal is converted into a high-level 5V signal through the voltage conversion chip to drive the relay to be closed, the electromagnetic relay is attracted after being powered on, and the circuit system is powered on and started.
Furthermore, the interface DSP sets the enable control signal to be an enable level 3.3V signal, the enable control signal is converted into a high level 5V signal by the voltage conversion chip, and the differential sending chip and the differential receiving chip are in an enable state at this time.
Further, the DSP interface receives and analyzes the starting instruction sent by the upper computer by adopting an SCI serial port.
Further, the interface DSP controls the driving relay switch by using the IO level signal.
Further, the power conversion module is a DC-DC power conversion module.
The soft instruction starting control and level signal isolation circuit system converts an electric signal into a differential signal through a differential chip, and then controls an enabling signal of the differential chip by using an interface DSP. After the bus power supply is switched on, the interface DSP is in a power-on working state, the differential chip is set to be in a non-enabling state by utilizing the enabling control signal of the differential chip, the output signal of the differential chip is in a high-resistance state at the moment, namely, an open circuit is formed, and voltage cannot be coupled at pins such as an I/O interface, an SPI interface and an SCI interface of the chip connected with the interface DSP. After the interface DSP receives a starting instruction, the electromagnetic relay is controlled to be closed firstly to complete system electrification, and then the differential chip is placed in an enabling state to realize level signal receiving and transmitting between chips connected with the signal level.
Drawings
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the invention without limiting the invention. In the drawings:
FIG. 1 is a circuit diagram of a soft command power-on control and level signal isolation circuit system according to the present invention.
Detailed Description
In order to make the technical solutions of the present invention better understood, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
It should be noted that the terms "first," "second," and the like in the description and claims of the present invention and in the drawings described above are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order. It is to be understood that the data so used is interchangeable under appropriate circumstances such that the embodiments of the invention described herein are capable of operation in sequences other than those illustrated or described herein. Furthermore, the terms "comprises," "comprising," and "having," and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, system, article, or apparatus that comprises a list of steps or elements is not necessarily limited to those steps or elements expressly listed, but may include other steps or elements not expressly listed or inherent to such process, method, article, or apparatus.
According to an embodiment of the present invention, there is provided a soft instruction power-on control and level signal isolation circuit system, referring to fig. 1, including: the device comprises an interface DSP, a power supply conversion module, a driving relay, an electromagnetic relay, a voltage conversion chip, a differential receiving chip and a differential sending chip; wherein:
the interface DSP sets an enabling control signal as a non-enabling signal, the non-enabling signal is converted into a low-level signal by the voltage conversion chip and then acts on the differential sending chip and the differential receiving chip to enable the differential sending chip and the differential receiving chip to be in a non-enabling state, and at the moment, output signals of the differential sending chip and the differential receiving chip are in a high impedance state;
after receiving a starting instruction of an upper computer, the interface DSP sets the power-on control signal as a high-level signal, the power-on control signal is converted into the high-level signal by the voltage conversion chip to drive the relay to be closed, the electromagnetic relay is attracted after being powered on, and the circuit system is powered on and started; meanwhile, the DSP sets the enable control signal as an enable level signal, the enable control signal is converted into a high level signal through the voltage conversion chip, and the differential sending chip and the differential receiving chip are in an enable state at the moment, so that correct receiving of the 1-path receiving signal and correct sending of the 1-path sending signal are realized.
The soft instruction starting control and level signal isolation circuit system converts an electric signal into a differential signal through a differential chip, and then controls an enabling signal of the differential chip by using an interface DSP. After the bus power supply is switched on, the interface DSP is in a power-on working state, the differential chip is set to be in a non-enabling state by utilizing the enabling control signal of the differential chip, the output signal of the differential chip is in a high-resistance state at the moment, namely, an open circuit is formed, and voltage cannot be coupled at pins such as an I/O interface, an SPI interface and an SCI interface of the chip connected with the interface DSP. After the interface DSP receives a starting instruction, the electromagnetic relay is controlled to be closed firstly to complete system electrification, and then the differential chip is placed in an enabling state to realize level signal receiving and transmitting between chips connected with the signal level.
After the circuit system is connected with a bus power supply, the bus power supply is converted into working digital voltage of an interface DSP by a power supply conversion module, and the interface DSP is electrified and started; the interface DSP sets the power-on control signal as a low level signal, and the power-on control signal is converted into the low level signal through the voltage conversion chip; the driving relay is in a disconnected state when the power-on control signal is low, the electromagnetic relay is not powered on at the moment, and the circuit system is in a shutdown state.
The interface DSP sets the power-on control signal as a low-level 0V signal, and the power-on control signal is converted into the low-level 0V signal through the voltage conversion chip.
The interface DSP sets the enable control signal as a disable low-level 0V signal, and the disable low-level 0V signal is converted into a low-level signal by the voltage conversion chip and then acts on the differential sending chip and the differential receiving chip to enable the differential sending chip and the differential receiving chip to be in a non-enable state.
When the output signals of the differential transmitting chip and the differential receiving chip are in a high impedance state, voltage cannot be coupled out of the digital power supply pin of the receiving end chip of the differential output, and effective isolation of level signals is achieved.
After receiving a starting instruction of the upper computer, the interface DSP sets the power-on control signal to be a high-level 3.3V signal, the power-on control signal is converted into a high-level 5V signal through the voltage conversion chip to drive the relay to be closed, the electromagnetic relay is attracted after being powered on, and the circuit system is powered on and started.
The interface DSP sets the enabling control signal to be an enabling level 3.3V signal, the enabling control signal is converted into a high level 5V signal through the voltage conversion chip, and the differential sending chip and the differential receiving chip are in an enabling state at the moment.
The DSP interface receives and analyzes the starting instruction sent by the upper computer by the SCI.
Wherein, the interface DSP utilizes IO level signal control drive relay switch.
The power supply conversion module is a DC-DC power supply conversion module.
The following describes the soft command power-on control and level signal isolation circuit system according to the present invention in detail with specific embodiments:
the embodiment of the invention provides a soft instruction starting control and level signal isolation circuit system, which is used for realizing soft starting control and isolating unexpected coupling voltage at the same time and ensuring the safety and stability of the system.
The embodiment of the invention provides a software instruction starting control and level signal isolation circuit system, which is characterized in that on one hand, the circuit system receives and analyzes a control instruction sent by an upper computer through an interface DSP by adopting an SCI (serial communication interface) serial port, and further controls a driving relay to switch on a power supply to realize the soft starting of the whole system. On the other hand, the circuit system controls the output state of the differential chip through the enable control signal, and effective isolation of the level signal is achieved. The starting mode of the circuit system has higher flexibility, safety and stability.
Specifically, on one hand, the circuit system receives a software startup control instruction of an upper computer through an SCI (serial interface) serial port, controls a driving relay switch by using an IO (input/output) level signal, and controls the electromagnetic relay switch for supplying power through a driving relay control system to realize system startup control. On the other hand, the embodiment of the invention provides a level signal isolation circuit, which aims at the problem that after the DSP is electrified, the voltage is coupled out from the corresponding pin of the chip which is connected with the DSP through level signals such as an I/O interface, an SPI interface, an SCI interface and the like. Firstly, the electric signal is converted into a differential signal through a differential chip, and then an enabling signal of the differential chip is controlled by using an interface DSP. After the bus power supply is switched on, the interface DSP is in a power-on working state, the differential chip is set to be in a non-enabling state by utilizing the enabling control signal of the differential chip, the output signal of the differential chip is in a high-resistance state at the moment, namely, an open circuit is formed, and voltage cannot be coupled at pins such as an I/O interface, an SPI interface and an SCI interface of the chip connected with the interface DSP. After the interface DSP receives a starting instruction, the IO signal is used for controlling the electromagnetic relay to be closed to complete system electrification, and then the differential chip is placed in an enabling state to realize level signal receiving and sending between the chips connected with the signal level.
Fig. 1 is a schematic diagram of a soft instruction power-on control and level signal isolation circuit system according to the present embodiment.
Referring to fig. 1, fig. 1 is a circuit system for soft instruction power-on control and level signal isolation according to an embodiment of the present invention. The circuit system is composed of an interface DSP, a DC-DC power supply conversion module, a driving relay, an electromagnetic relay, a voltage conversion chip, a differential receiving chip and a differential sending chip.
And after the system bus power supply is switched on, the DC-DC power supply conversion module converts the bus power supply into the working digital voltage of the interface DSP, and the interface DSP is electrified and started. The interface DSP sets the power-on control signal as a low-level 0V signal, and the power-on control signal is converted into the low-level 0V signal through the voltage conversion chip. The driving relay is in a disconnected state when the power-on control signal is low, the electromagnetic attraction coil of the electromagnetic relay is not powered on at the moment, and the system is in a shutdown state.
The interface DSP sets the enabling control signal as a non-enabling low-level 0V signal, the non-enabling signal is converted into a low-level 0V signal through the voltage conversion chip and then acts on the differential sending chip and the differential receiving chip to enable the differential sending chip and the differential receiving chip to be in a non-enabling state, at the moment, an output signal of the differential chip (including the differential sending chip and the differential receiving chip) is in a high-impedance state, voltage cannot be coupled out of a digital power supply pin of a receiving end chip for differential output, and effective isolation of level signals is achieved.
After receiving a starting instruction of the upper computer, the interface DSP sets the power-on control signal to be a high-level 3.3V signal, the power-on control signal is converted into a high-level 5V signal through the voltage conversion chip to drive the relay to be closed, the electromagnetic coil of the electromagnetic relay is attracted after being powered on, and the system is powered on and started. Meanwhile, the interface DSP sets the enabling control signal as an enabling level 3.3V signal, the enabling control signal is converted into a high level 5V signal through the voltage conversion chip, and the differential sending chip and the differential receiving chip are in an enabling state at the moment, so that correct receiving of the 1-path receiving signal and correct sending of the 1-path sending signal are realized.
The above-mentioned serial numbers of the embodiments of the present invention are merely for description and do not represent the merits of the embodiments.
In the above embodiments of the present invention, the descriptions of the respective embodiments have respective emphasis, and for parts that are not described in detail in a certain embodiment, reference may be made to related descriptions of other embodiments.
In the embodiments provided in the present application, it should be understood that the disclosed technology can be implemented in other ways. The above-described system embodiments are merely illustrative, and for example, a division of a unit may be a logical division, and an actual implementation may have another division, for example, multiple units or components may be combined or integrated into another system, or some features may be omitted, or not executed. In addition, the shown or discussed mutual coupling or direct coupling or communication connection may be an indirect coupling or communication connection through some interfaces, units or modules, and may be in an electrical or other form.
The units described as separate parts may or may not be physically separate, and parts displayed as units may or may not be physical units, may be located in one place, or may be distributed on a plurality of units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment.
In addition, functional units in the embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit. The integrated unit can be realized in a form of hardware, and can also be realized in a form of a software functional unit.
The integrated unit, if implemented in the form of a software functional unit and sold or used as a stand-alone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present invention may be embodied in the form of a software product, which is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device) to execute all or part of the steps of the method according to the embodiments of the present invention. And the aforementioned storage medium includes: a U-disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic or optical disk, and other various media capable of storing program codes.
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, various modifications and decorations can be made without departing from the principle of the present invention, and these modifications and decorations should also be regarded as the protection scope of the present invention.

Claims (10)

1. A soft command power-on control and level signal isolation circuitry, comprising: the device comprises an interface DSP, a power supply conversion module, a driving relay, an electromagnetic relay, a voltage conversion chip, a differential receiving chip and a differential sending chip; wherein:
the interface DSP sets an enable control signal as a disable signal, the disable signal is converted into a low-level signal by the voltage conversion chip and then acts on the differential sending chip and the differential receiving chip to enable the differential sending chip and the differential receiving chip to be in a non-enable state, and at the moment, output signals of the differential sending chip and the differential receiving chip are in a high-impedance state;
after the interface DSP receives a starting instruction of the upper computer, the interface DSP sets a power-on control signal as a high-level signal, the power-on control signal is converted into the high-level signal through the voltage conversion chip to drive the driving relay to be closed, the electromagnetic relay is closed after being powered on, and the circuit system is powered on and started; meanwhile, the interface DSP sets an enabling control signal as an enabling level signal, the enabling control signal is converted into a high level signal through the voltage conversion chip, and at the moment, the differential sending chip and the differential receiving chip are in an enabling state, so that correct receiving of the 1-path receiving signal and correct sending of the 1-path sending signal are realized.
2. The soft instruction power-on control and level signal isolation circuit system of claim 1, wherein after the circuit system is connected with a bus power supply, the power conversion module converts the bus power supply into a working digital voltage of the interface DSP, and the interface DSP is powered on and started; the interface DSP sets the power-on control signal as a low-level signal, and the power-on control signal is converted into the low-level signal through the voltage conversion chip; the driving relay is in a disconnected state when the power-on control signal is low, the electromagnetic relay is not powered on at the moment, and the circuit system is in a shutdown state.
3. The system according to claim 2, wherein the interface DSP sets the power-on control signal to be a low-level 0V signal, and the power-on control signal is converted to a low-level 0V signal by the voltage conversion chip.
4. The system according to claim 1, wherein the interface DSP sets the enable control signal to be a disable low-level 0V signal, and the disable low-level 0V signal is converted into a low-level signal by the voltage conversion chip and then applied to the differential transmitter chip and the differential receiver chip to be in a disable state.
5. The soft-instruction power-on control and level signal isolation circuit system according to claim 1, wherein when the output signals of the differential transmitting chip and the differential receiving chip are in a high impedance state, no voltage is coupled to a digital power pin of a receiving end chip of the differential output, so that effective isolation of level signals is achieved.
6. The soft instruction power-on control and level signal isolation circuit system according to claim 1, wherein the interface DSP receives a power-on instruction from an upper computer, sets a power-on control signal to be a high-level 3.3V signal, the power-on control signal is converted into a high-level 5V signal by the voltage conversion chip, the drive relay is closed, the electromagnetic relay is closed after being powered on, and the circuit system is powered on and powered on.
7. The system according to claim 1, wherein the interface DSP sets the enable control signal to be an enable level 3.3V signal, and the enable control signal is converted to a high level 5V signal by the voltage conversion chip, and the differential transmitter chip and the differential receiver chip are in an enable state.
8. The soft instruction power-on control and level signal isolation circuit system of claim 1, wherein the interface DSP receives and analyzes the power-on instruction sent by the upper computer using an SCI serial port.
9. The soft instruction power-on control and level signal isolation circuitry of claim 1, wherein the interface DSP controls the drive relay switch with IO level signals.
10. The soft-instruction power-on control and level signal isolation circuitry of claim 1, wherein the power conversion module is a DC-DC power conversion module.
CN202011607698.5A 2020-12-30 2020-12-30 Soft instruction starting control and level signal isolation circuit system Active CN112783031B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011607698.5A CN112783031B (en) 2020-12-30 2020-12-30 Soft instruction starting control and level signal isolation circuit system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011607698.5A CN112783031B (en) 2020-12-30 2020-12-30 Soft instruction starting control and level signal isolation circuit system

Publications (2)

Publication Number Publication Date
CN112783031A CN112783031A (en) 2021-05-11
CN112783031B true CN112783031B (en) 2021-12-17

Family

ID=75753433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011607698.5A Active CN112783031B (en) 2020-12-30 2020-12-30 Soft instruction starting control and level signal isolation circuit system

Country Status (1)

Country Link
CN (1) CN112783031B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116149758B (en) * 2023-04-18 2023-07-28 深圳魔视智能科技有限公司 Chip starting configuration system

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291031A (en) * 2008-05-30 2008-10-22 北京意科通信技术有限责任公司 Energy conservative monitoring plug
CN101951217A (en) * 2010-08-13 2011-01-19 株洲南车时代电气股份有限公司 Diesel locomotive auxiliary engine control device
CN102236334A (en) * 2011-05-08 2011-11-09 肇庆市志成气动有限公司 Digital pressure switch
CN102590811A (en) * 2012-01-13 2012-07-18 西安电子科技大学 Small FMCW-based (frequency modulated continuous wave) SAR (synthetic aperture radar) imaging system by using FPGA (field programmable gate array)
CN102971963A (en) * 2010-02-05 2013-03-13 莱克桑德电子研究公司 Method and arrangement for driving a microphone
CN203102385U (en) * 2012-12-27 2013-07-31 深圳市金溢科技有限公司 Radio frequency (RF) transmit-receive device, road side unit, ETC (Electronic Toll Collection) and intelligent parking lot management system
CN103713530A (en) * 2013-12-09 2014-04-09 沈阳创新设计服务有限公司 Power failure protection system of production line
CN105094263A (en) * 2015-08-14 2015-11-25 浪潮软件集团有限公司 Startup and shutdown linkage control device and system
CN107664969A (en) * 2017-09-05 2018-02-06 普联技术有限公司 The control method that intelligent double-control switchs and control system and control system work
CN108322034A (en) * 2018-01-26 2018-07-24 郑州云海信息技术有限公司 A kind of soft starting device and method of Switching Power Supply
US10082842B1 (en) * 2017-08-10 2018-09-25 Super Micro Computer, Inc. Hot swapping technique for expansion cards
CN109067159A (en) * 2018-09-14 2018-12-21 上海南芯半导体科技有限公司 A kind of soft start controller and load switching device of load switching device
CN109807435A (en) * 2018-12-28 2019-05-28 上海沪工焊接集团股份有限公司 Inverter type welder and its protection control circuit
CN110221672A (en) * 2019-05-07 2019-09-10 六安市同心畅能电子科技有限公司 A kind of computer power Zero consumption standby circuit with remote-controlled start-up
CN110543208A (en) * 2019-09-19 2019-12-06 中国科学院长春光学精密机械与物理研究所 power supply, power-level integrated circuit and cantilever type three-axis stable tracking platform system
CN111200363A (en) * 2018-11-19 2020-05-26 深南电路股份有限公司 Switching power supply and electronic device
CN111751721A (en) * 2020-06-08 2020-10-09 国网江西省电力有限公司电力科学研究院 Inductive load starting protection method and device
CN211740560U (en) * 2020-04-07 2020-10-23 安徽皖仪科技股份有限公司 Power-on self-checking system of spectrophotometer
CN111835191A (en) * 2020-08-10 2020-10-27 上海川土微电子有限公司 Soft start circuit and soft start method for isolating DC-DC power supply chip
US10838407B2 (en) * 2015-05-18 2020-11-17 Milwaukee Electric Tool Corporation User interface for tool configuration and data capture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9871508B2 (en) * 2014-12-19 2018-01-16 Monolithic Power Systems, Inc. Smart switch for connecting an input power supply to a load

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291031A (en) * 2008-05-30 2008-10-22 北京意科通信技术有限责任公司 Energy conservative monitoring plug
CN102971963A (en) * 2010-02-05 2013-03-13 莱克桑德电子研究公司 Method and arrangement for driving a microphone
CN101951217A (en) * 2010-08-13 2011-01-19 株洲南车时代电气股份有限公司 Diesel locomotive auxiliary engine control device
CN102236334A (en) * 2011-05-08 2011-11-09 肇庆市志成气动有限公司 Digital pressure switch
CN102590811A (en) * 2012-01-13 2012-07-18 西安电子科技大学 Small FMCW-based (frequency modulated continuous wave) SAR (synthetic aperture radar) imaging system by using FPGA (field programmable gate array)
CN203102385U (en) * 2012-12-27 2013-07-31 深圳市金溢科技有限公司 Radio frequency (RF) transmit-receive device, road side unit, ETC (Electronic Toll Collection) and intelligent parking lot management system
CN103713530A (en) * 2013-12-09 2014-04-09 沈阳创新设计服务有限公司 Power failure protection system of production line
US10838407B2 (en) * 2015-05-18 2020-11-17 Milwaukee Electric Tool Corporation User interface for tool configuration and data capture
CN105094263A (en) * 2015-08-14 2015-11-25 浪潮软件集团有限公司 Startup and shutdown linkage control device and system
US10082842B1 (en) * 2017-08-10 2018-09-25 Super Micro Computer, Inc. Hot swapping technique for expansion cards
CN107664969A (en) * 2017-09-05 2018-02-06 普联技术有限公司 The control method that intelligent double-control switchs and control system and control system work
CN108322034A (en) * 2018-01-26 2018-07-24 郑州云海信息技术有限公司 A kind of soft starting device and method of Switching Power Supply
CN109067159A (en) * 2018-09-14 2018-12-21 上海南芯半导体科技有限公司 A kind of soft start controller and load switching device of load switching device
CN111200363A (en) * 2018-11-19 2020-05-26 深南电路股份有限公司 Switching power supply and electronic device
CN109807435A (en) * 2018-12-28 2019-05-28 上海沪工焊接集团股份有限公司 Inverter type welder and its protection control circuit
CN110221672A (en) * 2019-05-07 2019-09-10 六安市同心畅能电子科技有限公司 A kind of computer power Zero consumption standby circuit with remote-controlled start-up
CN110543208A (en) * 2019-09-19 2019-12-06 中国科学院长春光学精密机械与物理研究所 power supply, power-level integrated circuit and cantilever type three-axis stable tracking platform system
CN211740560U (en) * 2020-04-07 2020-10-23 安徽皖仪科技股份有限公司 Power-on self-checking system of spectrophotometer
CN111751721A (en) * 2020-06-08 2020-10-09 国网江西省电力有限公司电力科学研究院 Inductive load starting protection method and device
CN111835191A (en) * 2020-08-10 2020-10-27 上海川土微电子有限公司 Soft start circuit and soft start method for isolating DC-DC power supply chip

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TMS320F28335 DSP芯片高可靠电源管理电路设计;王伟等;《测控技术》;20181018;全文 *
导弹发射控制模拟器的设计方法;郭志成等;《战术导弹技术》;20090515;全文 *

Also Published As

Publication number Publication date
CN112783031A (en) 2021-05-11

Similar Documents

Publication Publication Date Title
CN104317376B (en) Power distribution inside cable
CN110231861B (en) Method and apparatus for providing power to an electronic device
WO2021057528A1 (en) Type a-type c cable and cable chip thereof
CN210129644U (en) Type A-Type C cable and cable chip thereof
CN107835967A (en) Voltage conversion for USB power delivery sources controls
EP1092194B1 (en) Device for use as stand-alone device and as slave device in a data bus system
CN112783031B (en) Soft instruction starting control and level signal isolation circuit system
CN108701106A (en) A kind of data transmission method and equipment
US20150269110A1 (en) Cable with multiple functions
CN110854805A (en) Apparatus and method for ensuring power delivery in a universal serial bus interface
CN102882499A (en) Hot-plug control circuit and system of power supply
CN117792499A (en) Repeater with Y-Cable and signal transmission system thereof
CN211017659U (en) USB connects converting circuit and connects converter
WO2016173081A1 (en) Method and device for implementing connection control
CN111817381B (en) Charger, data line and charging equipment
CN103887674A (en) Power-supply adapter plate and power-supplying system provided with power-supply adapter plate
CN103092694A (en) State switching method, state switching device and electronic equipment
CN219322510U (en) Device with wireless communication module
KR20090022533A (en) Device and method for providing hot-swap function using switching regulator
TWI449025B (en) Power distribution inside cable
KR102109582B1 (en) System for performing charging and data communication
US11372471B2 (en) System circuit board, operating method for a system circuit board, and computer system
CN116319154A (en) Control circuit and CAN transceiver system
CN116244246A (en) Device and method for recovering connection after USB failure
CN117251394A (en) Hardware switching circuit and method for realizing dual-system USB communication ports based on Type-C interface

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant